JP3852609B2 - Ice making equipment, refrigerator - Google Patents

Ice making equipment, refrigerator Download PDF

Info

Publication number
JP3852609B2
JP3852609B2 JP2003322561A JP2003322561A JP3852609B2 JP 3852609 B2 JP3852609 B2 JP 3852609B2 JP 2003322561 A JP2003322561 A JP 2003322561A JP 2003322561 A JP2003322561 A JP 2003322561A JP 3852609 B2 JP3852609 B2 JP 3852609B2
Authority
JP
Japan
Prior art keywords
ice
ice making
tray
generating unit
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003322561A
Other languages
Japanese (ja)
Other versions
JP2005090801A (en
Inventor
克正 坂本
誠 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003322561A priority Critical patent/JP3852609B2/en
Publication of JP2005090801A publication Critical patent/JP2005090801A/en
Application granted granted Critical
Publication of JP3852609B2 publication Critical patent/JP3852609B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

この発明は、氷を生成する際に製氷皿に供給された水の中に溶存する気体成分やイオン成分などを分離し、透明度の高い氷を得る製氷装置に関するものである。   The present invention relates to an ice making apparatus that separates gas components, ion components, and the like dissolved in water supplied to an ice tray when producing ice to obtain ice with high transparency.

従来、家庭用の冷凍冷蔵庫などにおいては、給水装置から供給された水を製氷皿に貯留して製氷し、製氷後に駆動装置で製氷皿を反転して離氷させ、この氷をためておく自動製氷装置が普及している。しかし、一般的には白濁した氷が形成される。   Conventionally, in a refrigerator-freezer for home use, the water supplied from the water supply device is stored in an ice tray to make ice, and after ice making, the ice tray is inverted by the drive device to separate the ice, and the ice is stored. Ice making equipment is widespread. However, generally cloudy ice is formed.

一般的に物質が結晶を形成する場合、単一の成分で結晶が形成される。水が凍結して氷になる場合も同様であるため、水中に溶解している不純物は凍結過程で氷―水界面に排出され、氷―水界面では不純物が過飽和状態になっている。そして、過飽和水層の不純物が水中に拡散する速度よりも氷の成長する速度が大きい場合、氷は不純物を取り込みながら成長し氷はこの取り込んだものにより白濁する。   In general, when a substance forms crystals, crystals are formed with a single component. The same applies to the case where water freezes to become ice, so that impurities dissolved in water are discharged to the ice-water interface during the freezing process, and the impurities are supersaturated at the ice-water interface. When the growth rate of ice is larger than the diffusion rate of impurities in the supersaturated water layer into the water, the ice grows while taking in the impurities, and the ice becomes clouded by the taken-in one.

氷が白濁して見えるのは、氷に光を反射して白く見える部分が形成されるためであるが、これは水中に溶解した物質、特に氷中に溶存しているガス成分(CO2、O2など)が微小な気泡として氷に閉じ込められているためである。氷の中に入った光は、気泡表面で屈折したり反射したりする。気体成分の体積としては同一であっても、より細かい気泡が沢山形成されているほうがそれだけ光の経路が変えられる確率は高くなる、すなわち光が散乱反射しやすくなるため、白っぽく見えるようになる。 Ice appears to be cloudy because light is reflected on the ice to form parts that appear white. This is due to substances dissolved in water, especially gas components dissolved in ice (CO 2 , This is because O 2 etc.) are trapped in ice as fine bubbles. Light that enters the ice is refracted and reflected on the surface of the bubble. Even if the volume of the gas component is the same, the probability that the path of the light is changed is increased as more fine bubbles are formed, that is, the light is more easily scattered and reflected, so that it looks whitish.

ただし、一般的に目にする氷は、透明度によらず、多くの単結晶氷が固まってできる多結晶氷であり、結晶間に供給水中に溶解していた物質が残っている場合が多い。従って、透明な氷を作る目的は、氷の実際の味向上よりはむしろ見た目のおいしさ感や美しさを追及することにあり、食品に関係する冷蔵庫では大きな問題になり多くの公知技術が知られている。   However, the ice generally seen is polycrystalline ice that is formed by solidifying a large amount of single crystal ice regardless of transparency, and there are many cases in which a substance dissolved in the supply water remains between the crystals. Therefore, the purpose of making transparent ice is not to improve the actual taste of ice, but to pursue the deliciousness and beauty of its appearance. This is a major problem in refrigerators related to food, and many known technologies are known. It has been.

例えば製氷皿を多数のコアなで連結された2重構造としたもの(特許文献1参照)、この製氷皿をヒーターを設けた断熱槽の開放面に取り付けた自動製氷装置が提案されている(特許文献2参照)。また不純物の入っている水を貯水したり水切り排水し、一部を揚水する技術がある(特許文献3参照)。   For example, an ice making apparatus having a double structure in which an ice tray is connected with a large number of cores (see Patent Document 1) and an automatic ice making apparatus in which this ice tray is attached to an open surface of a heat insulating tank provided with a heater have been proposed ( Patent Document 2). Further, there is a technique for storing water containing impurities, draining and draining water, and pumping a part of the water (see Patent Document 3).

特許2524811号公報(第6図、第10図など)Japanese Patent No. 2524811 (FIGS. 6, 10, etc.) 実開平6−4561号公報(図1など)Japanese Utility Model Publication No. 6-4561 (FIG. 1 etc.) 特許登録第2781429号(請求項1など)Patent registration No. 2781429 (claim 1 etc.)

従来の製氷装置では、透明氷を得る部分と白濁水を集める部分の間を連通する孔が小さいと、水の表面張力により下皿に水が入っていかず、上皿に白濁氷ができる可能性があったり、氷の体積膨張による圧力で、製氷皿が破損する危険性があるという問題があった。   In conventional ice making equipment, if the hole communicating between the part that obtains clear ice and the part that collects cloudy water is small, water may not enter the lower dish due to the surface tension of water, and there is a possibility that cloudy ice can form on the upper dish There was a problem that there was a risk that the ice tray was damaged by the pressure due to the volume expansion of ice.

更に給水時セパレータ下部に気泡が溜まることがある。この気泡が、上皿氷表面が凍結し、脱気面がなくなってから浮き上がってくることで、異形の氷が形成される。また離氷時、皿底面全体にわたり固体層の厚みが大きくなることにより、離氷時のひねりトルクが大きくなりモーター寸法のみならず余分なエネルギーが必要になるという問題があった。   Furthermore, air bubbles may accumulate at the bottom of the separator during water supply. This bubble rises after the surface of the upper ice plate freezes and the deaeration surface disappears, and deformed ice is formed. In addition, when the ice is removed, the thickness of the solid layer is increased over the entire bottom surface of the plate, which increases the twisting torque at the time of the ice removal and requires extra energy as well as the motor size.

更に離氷後、下皿氷を溶かすために、10W程度の高入力で30〜60分連続通電を必要とし、製氷皿下に設けられた貯氷箱内の氷や他室への影響、消費電力が悪化するなど実用にならないという問題があった。更に、氷融解後の水を給水タンクに戻す機構や氷を水から引上げ、乾燥させるための水切り篭などが必要というごとく構造が複雑になり、寸法が大きく、且つ、製造費用もかかるという問題があった。   Furthermore, to melt the lower tray ice after deicing, continuous energization is required for 30 to 60 minutes with a high input of about 10 W, the effect on the ice in the ice storage box provided under the ice tray and other rooms, power consumption There was a problem that it was not practical, such as worsening. Furthermore, there is a problem that the structure is complicated, the size is large, and the manufacturing cost is high, such as a mechanism for returning the water after melting the ice to the water supply tank and a drainer for pulling the ice from the water and drying it. there were.

この発明は、以上のような問題点を解決するためになされたもので、氷の不出来を解消でき、また、白濁氷融解水を処理する機構が不要であり、安価な構成部材で透明度の高い氷を精製できる製氷装置および製氷方法を提供することを目的とする。更にこの発明は透明氷を簡単に製造できるエネルギーの少ない装置を得ることが目的である。更にこの発明はおいしそうな透明氷を食品収納部分のスペースを減らさずに得られる実用的な冷蔵庫を提供することを目的としている。   The present invention has been made to solve the above-described problems, can solve the problem of ice, and does not require a mechanism for treating cloudy ice-melted water. An object is to provide an ice making apparatus and an ice making method capable of purifying high ice. A further object of the present invention is to obtain a low energy device that can easily produce transparent ice. A further object of the present invention is to provide a practical refrigerator in which delicious transparent ice can be obtained without reducing the space in the food storage part.

この発明の製氷装置は、区画された複数の製氷ブロックに給水をそれぞれ貯留し冷気を受けて製氷を行うとともにひねりを与えられ生成された氷が離氷する製氷皿と、前記製氷皿に区画され、冷気を受けて製氷が促進される製氷ブロックである第1の氷生成部と、前記第1の氷生成部と一体に設けられ、前記第1の氷生成部と開口部にて前記給水が連通し前記第1の氷生成部より冷気を受ける影響を少なくして製氷を遅らせられる第2の氷生成部と、を備え、前記第1の氷生成部にて生成された氷が前記製氷皿から分離しやすいように前記製氷皿の各製氷ブロックの部分の肉厚を前記製氷皿外周のフランジ部分より薄肉化して製氷皿の捻りトルクを低減するようにしたものである。 Ice making device of the present invention, the ice tray produced given the twist performs ice receives cool air to respectively store the water supply to the plurality of ice making blocks partitioned ice to the ice removing, it is divided into the ice tray A first ice generating unit that is an ice making block that is promoted to generate ice by receiving cold air, and the first ice generating unit, and the water supply is provided at the first ice generating unit and the opening. A second ice generator that delays ice making by reducing the influence of cold air from the first ice generator , and the ice generated in the first ice generator is the ice tray The wall thickness of each ice making block of the ice tray is made thinner than the flange portion on the outer periphery of the ice tray to reduce the twisting torque of the ice tray .

この発明の製氷装置は、区画された複数の製氷ブロックに給水をそれぞれ貯留し冷気を受けて製氷を行うとともに生成された氷が離氷可能な製氷皿と、前記製氷皿に区画され、冷気を受けて製氷が促進される製氷ブロックである第1の氷生成部と、前記第1の氷生成部と一体に設けられ前記第1の氷生成部と開口部にて前記給水が連通し前記第1の氷生成部より製氷を遅らせる様に加熱手段にて加熱される第2の氷生成部と、を備え、前記加熱手段を前記第2の氷生成部間に挟みこんでカバーにより固定するようにしたものである。 The ice making device according to the present invention stores water in each of a plurality of partitioned ice making blocks, receives cold air to make ice, and generates ice that can be de-iced, and is divided into the ice making trays to cool the air. A first ice generating unit that is an ice making block that receives and promotes ice making; and the first ice generating unit is provided integrally with the first ice generating unit. A second ice generating unit heated by heating means so as to delay ice making from the one ice generating unit, and the heating unit is sandwiched between the second ice generating units and fixed by a cover. It is a thing.

この発明の製氷装置、区画された複数の製氷ブロックに給水をそれぞれ貯留し冷気を受けて製氷を行うとともにひねりを与えられ生成された氷が離氷する製氷皿と、前記製氷皿に区画され、冷気を受けて製氷が促進される製氷ブロックである第1の氷生成部と、前記第1の氷生成部と一体に設けられ、前記第1の氷生成部と開口部にて前記給水が連通し前記第1の氷生成部より冷気を受ける影響を少なくして製氷を遅らせられる第2の氷生成部と、を備え、前記第1の氷生成部にて生成された氷が前記製氷皿から分離しやすいように前記製氷皿の各製氷ブロックの壁部分の肉厚を前記製氷皿外周のフランジ部分より薄肉化して製氷皿の捻りトルクを低減するようにしたので、製氷皿の捻りトルクが低減し、繰り返し捻りを実施しても破損する可能性が少ない。また、透明氷を簡単に製造できるエネルギーの少ない装置を得ることができる。更にこの発明は、おいしそうな透明氷を食品収納部分のスペースを減らさずに得られる実用的な冷蔵庫を提供できる。 The ice making device of the present invention, each of a plurality of partitioned ice making blocks stores water supply, receives cold air to make ice, and is twisted to produce ice that is de-iced, and is divided into the ice making trays, A first ice making unit, which is an ice making block that promotes ice making by receiving cold air, is provided integrally with the first ice producing unit, and the water supply communicates with the first ice producing unit and the opening. And a second ice generator that delays ice making by reducing the influence of cold air from the first ice generator, and the ice generated in the first ice generator is from the ice tray. The wall thickness of each ice making block of the ice tray is made thinner than the flange on the outer periphery of the ice tray to reduce the twisting torque of the ice tray so that it can be easily separated. And even after repeated twisting, it breaks Potential is small. In addition, it is possible to obtain a low-energy device that can easily produce transparent ice. Furthermore, the present invention can provide a practical refrigerator in which delicious transparent ice can be obtained without reducing the space in the food storage portion.

実施の形態1.
以下、この発明の実施の形態1について、図1から図5に従い説明する。図1はこの発明にかかる製氷装置が適用された家庭用冷凍冷蔵庫の正面断面図で、正面の扉を除いた場合の状態を説明している。図2(a)はこの発明にかかる製氷皿の側断面図で(b)は製氷装置の上面図、図3は製氷装置の上面図、図4はこの発明にかかる製氷皿の横断面図、図5(a)、(b)は製氷皿の横断面図、(c)は製氷皿を一部切欠いて、かつ要部を拡大して示す上面図である。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to FIGS. FIG. 1 is a front sectional view of a domestic refrigerator-freezer to which an ice making device according to the present invention is applied, and illustrates a state where a front door is removed. 2 (a) is a side sectional view of an ice making tray according to the present invention, (b) is a top view of the ice making device, FIG. 3 is a top view of the ice making device, and FIG. 4 is a cross-sectional view of the ice making tray according to the present invention. 5 (a) and 5 (b) are cross-sectional views of the ice tray, and FIG. 5 (c) is a top view showing the ice tray partially cut out and a main portion thereof being enlarged.

冷凍冷蔵庫本体1は、外箱2、内箱3、および外箱2と内箱3の間に充填された断熱材4により構成され、食品を収納する複数の区画が設けられ、製氷室5の上部に設置された冷蔵室6、製氷室5の下部に設置された野菜室7、冷凍冷蔵庫1の扉に設けられた図示されていない操作パネルによりエンドユーザが任意に温度を設定できる切替室8、冷凍室9などがあり、各室を区画形成する断熱材4を充填した区画壁10で分けられている。なお、図1では貯氷箱21と製氷皿11を同じ製氷室5の中に収納する例を説明しているが、これらを別の室に設けてもかまわない。また、前出の図示しない操作パネルは、冷蔵庫の各部屋の温度調節や運転モードをエンドユーザが選択したり、現状の各部屋の温度や運転モードなどを表示しエンドユーザに伝えることができる。   The refrigerator-freezer main body 1 is composed of an outer box 2, an inner box 3, and a heat insulating material 4 filled between the outer box 2 and the inner box 3, and is provided with a plurality of compartments for storing food. A refrigerating room 6 installed in the upper part, a vegetable room 7 installed in the lower part of the ice making room 5, and a switching room 8 in which the end user can arbitrarily set the temperature by an operation panel (not shown) provided on the door of the refrigerator 1 And a freezer compartment 9 and the like, which are divided by a partition wall 10 filled with a heat insulating material 4 for partitioning each chamber. Although FIG. 1 illustrates an example in which the ice storage box 21 and the ice tray 11 are stored in the same ice making chamber 5, they may be provided in different chambers. Further, the above-described operation panel (not shown) can be used by the end user to select the temperature adjustment and operation mode of each room of the refrigerator, or can display the current temperature and operation mode of each room to inform the end user.

図2、図3などに記載されている製氷皿11は製氷室5内に設置され、ポリプロピレンなどの樹脂材質からなる成型品であり、上面は開口し、その内側が凹状に形成された複数の製氷ブロック11bに区画され、図2(a)(b)の空気の流れが示すように、製氷皿11の上面である開放面に冷蔵庫1壁面から送風機(図示されていない)により吹き出される冷気を受けて上部から氷が生成され、上面を冷却した冷気は下部に循環して再び冷蔵庫1壁面に吸い込まれている。図3に示すように隣接する製氷ブロック間の壁面には、皿の内側寄りに設けられた各ブロック11bに給水を流し込みやすくする切り欠き溝11cで結ばれているものもある。また、図1に示すようにこの製氷皿11に給水する水を貯留する給水タンク12から製氷皿11に水を流す給水配管13が設けられており、図示されていないが、この給水配管13の出口には凍結防止のためのヒータ(図示されていない)が設けられ、制御装置からの指示に基づき給水配管13の電磁弁を開閉し製氷皿11へ一定量の給水が行われる。図2に示す製氷皿11の支持軸14を回転駆動するモータおよび減速ギアなどを内蔵した駆動装置15がフレーム16に設置されている。支持軸14の一端は製氷皿11を支持するフレーム16に連通し、他端を前記駆動装置15に接続し、離氷時に、この駆動が行われ製氷皿11が反転したときに、製氷皿11の反転を制限しひねりを加え脱氷を促進するフレーム側ストッパー17もフレーム16に設けられている。製氷皿11に加えられるひねりは、駆動装置15が支持軸14を回転させて製氷皿11の製氷皿側ストッパー11aがフレーム側ストッパー17にて停止しても、更に、支持軸14を例えば45゜廻すことにより製氷皿11にひねりが加えられ各ストッパー11a、17側と駆動装置15側で製氷皿11が変形することになる。   The ice tray 11 described in FIG. 2 and FIG. 3 is a molded product made of a resin material such as polypropylene, which is installed in the ice making chamber 5. The top surface is opened, and a plurality of recesses are formed on the inside. Cold air blown out from the wall surface of the refrigerator 1 to the open surface, which is the upper surface of the ice tray 11, as shown by the air flow in FIGS. 2 (a) and 2 (b). In response, ice is generated from the upper part, and the cold air that has cooled the upper surface circulates in the lower part and is sucked into the wall surface of the refrigerator 1 again. As shown in FIG. 3, some wall surfaces between adjacent ice making blocks are connected by notch grooves 11 c that make it easier to pour water into each block 11 b provided closer to the inside of the dish. Further, as shown in FIG. 1, a water supply pipe 13 for flowing water from the water supply tank 12 for storing water supplied to the ice tray 11 to the ice tray 11 is provided. A heater (not shown) for preventing freezing is provided at the outlet, and a certain amount of water is supplied to the ice tray 11 by opening and closing the electromagnetic valve of the water supply pipe 13 based on an instruction from the control device. A driving device 15 incorporating a motor and a reduction gear for rotating the support shaft 14 of the ice tray 11 shown in FIG. One end of the support shaft 14 communicates with a frame 16 that supports the ice tray 11, and the other end is connected to the driving device 15. When the ice tray 11 is inverted when this drive is performed at the time of ice removal, the ice tray 11 is reversed. The frame 16 is also provided with a frame-side stopper 17 that limits the reversal of the rotation and promotes the deicing by twisting. Even if the driving device 15 rotates the support shaft 14 and the ice tray side stopper 11a of the ice tray 11 stops at the frame side stopper 17, the twist applied to the ice tray 11 is further lowered by 45 °, for example. By rotating, the ice tray 11 is twisted, and the ice tray 11 is deformed on the stoppers 11a, 17 side and the driving device 15 side.

製氷皿11の水がほぼ凍結したことを認識できるような位置、例えば製氷皿11下部には、図4で示すサーミスタおよび直接サーミスタに冷気があたらないようサーミスタ下部に設けた断熱材からなる温度センサ部18が取り付けられており、さらに、給水した水が貯められる溝状の突起部20が下方に突出して設けられ、製氷皿11底面に設けられた開口部19と一体に成型され、製氷皿11と開口部19で連通している。この突起部20は、区画された上部の複数の製氷ブロック11bごとに設けられている。更に製氷装置の下方には、製氷皿11から反転して離氷した氷を受け止め貯氷する貯氷箱21がある。このように製氷皿11が製氷する区画は、上部の複数の製氷ブロック部11bである第1の氷生成部aと、これより大幅に少ない内容積である溝状の突起部20である第2の氷生成部bからなっている。   A temperature sensor comprising a heat-insulating material provided at a position where the water in the ice tray 11 can be recognized substantially frozen, for example, the thermistor shown in FIG. Further, a groove-like protrusion 20 for storing the supplied water is provided so as to protrude downward, and is molded integrally with an opening 19 provided on the bottom surface of the ice tray 11. And the opening 19 communicates with each other. The protrusion 20 is provided for each of the plurality of upper ice making blocks 11b. Further, below the ice making device, there is an ice storage box 21 for receiving and storing ice that has been inverted from the ice making tray 11 and deiced. In this way, the ice making tray 11 is made of ice by the first ice generating portion a which is the plurality of ice making block portions 11b in the upper portion and the second protrusion 20 which is a groove-like protrusion portion 20 having a significantly smaller internal volume. The ice generation part b of the.

なお、図示されていないが、冷凍冷蔵庫本体1には冷媒を圧縮する圧縮機、冷媒を絞るキャピラリーチューブ、ガス状態の冷媒の熱を庫外に放熱して凝縮させる凝縮器、液状態の冷媒を気化させ得られる冷熱で庫内空気を冷却する冷却器、冷却器等の冷凍サイクルと、この冷却機を通過し各室へ冷気を運ぶ通気ダクトと送風機、および各室への冷気供給量を調節するダンパ等の冷気循環装置と、冷蔵庫の各機器動作を制御する制御基板等の制御装置がある。これらの装置により冷気を供給して冷蔵庫内各個室の温度を変化させたり所定の温度に保ったり、霜取りや製氷、照明などの制御を行っている。   Although not shown, the refrigerator-freezer body 1 includes a compressor that compresses the refrigerant, a capillary tube that squeezes the refrigerant, a condenser that radiates and condenses the heat of the gaseous refrigerant to the outside, and a liquid refrigerant. Adjusting the refrigeration cycle of the cooler, cooler, etc. that cools the air in the cabinet with the cool heat that can be vaporized, the ventilation duct and blower that carries the cool air to each room through this cooler, and the amount of cool air supplied to each room There are cool air circulation devices such as dampers and control devices such as control boards for controlling the operation of each device of the refrigerator. Cold air is supplied by these devices to change the temperature of each individual room in the refrigerator, to keep it at a predetermined temperature, and to control defrosting, ice making, lighting, and the like.

次に、図2から図5に基づいてこの実施の形態にかかわる製氷動作の工程の一例を述べる。まず、給水タンク12から給水配管13を通って製氷皿11の一部に水が供給され、切り欠き溝11cを通り各製氷ブロック11bへ水が供給される。さらにこのとき、開口部19を通り突起部20にも水が供給される。なお、切り欠き溝11cは、突起部20に水が流れ込みやすいように、開口部19と直列の位置に設けられていてもよい。また、開口部19が複数ある場合には、それぞれの開口部19と直列になるように、一つの製氷ブロック11b間壁面に複数の切り欠き溝11cがあってもよい。このことにより各製氷ブロック11bへの水の供給がスムーズになるだけでなく、製氷皿11捻りに必要なトルクも低下することができる。   Next, an example of the steps of the ice making operation according to this embodiment will be described based on FIGS. First, water is supplied to a part of the ice tray 11 from the water supply tank 12 through the water supply pipe 13, and then supplied to each ice making block 11b through the notch groove 11c. Further, at this time, water is also supplied to the protrusion 20 through the opening 19. The notch groove 11 c may be provided at a position in series with the opening 19 so that water can easily flow into the protrusion 20. Moreover, when there are a plurality of openings 19, there may be a plurality of cutout grooves 11c on the wall surface between one ice making block 11b so as to be in series with each opening 19. This not only makes the water supply to each ice making block 11b smooth, but also reduces the torque required for twisting the ice making tray 11.

また各製氷ブロック11bへの水の供給をスムーズにする手段としては、図5(a)に示すように給水される製氷ブロック11bから各製氷ブロック11bへの切り欠き溝11c形状の底面を傾斜させることも有効である。これにより給水タンク12が空になる直前の給水時などに発生する少量の給水の際にも、各製氷ブロック11bへ水を供給しやすくなる。   As means for smoothing the water supply to each ice making block 11b, the bottom surface of the notch groove 11c shape from each ice making block 11b to each ice making block 11b is inclined as shown in FIG. 5 (a). It is also effective. This makes it easy to supply water to each ice making block 11b even when a small amount of water is generated when water is supplied immediately before the water supply tank 12 is emptied.

次に、供給された水は製氷室5で凍結される。一般的に、低温部に晒されている面から凍結が始まる。その際、氷は水分子でのみ結晶を形成し、水に溶解していた物質(Caなどのミネラル成分やO、CO2などの気体成分)は全て結晶の外の未凍結部に放出される。このとき、5mm/時間程度以下という凍結速度は十分遅いため、始めのうちは溶解した物質が、凍結速度よりも速く未凍結部に拡散し、透明な氷が生成され、その後、過飽和に達した気体成分が大きく集積し、光の散乱反射をある程度抑止した大気泡が1つまたは複数形成され、気泡入りグラスのような、透明度には影響しない氷のアクセントを得た意匠的に優れた氷を生成することができる。製氷皿のブロック11bごとにこのような過程で透明な氷が生成されていく。 Next, the supplied water is frozen in the ice making chamber 5. Generally, freezing starts from the surface exposed to the low temperature part. At that time, ice forms crystals only with water molecules, and all substances dissolved in water (mineral components such as Ca and gaseous components such as O 2 and CO 2 ) are released to the unfrozen part outside the crystals. The At this time, since the freezing rate of about 5 mm / hour or less is sufficiently slow, initially the dissolved substance diffuses to the unfrozen part faster than the freezing rate, and transparent ice is generated, and then reaches supersaturation. Designed with excellent design ice that has a large concentration of gas components and one or more large bubbles that suppress the scattering and reflection of light to some extent, and has an ice accent that does not affect transparency, such as glass with bubbles. Can be generated. Transparent ice is generated in this process for each block 11b of the ice tray.

この凍結時に、図2に示すように凍結速度が拡散速度を下回るように製氷皿11上面から冷気を供給し、製氷皿11の側面とフレーム16の隙間を通り貯氷箱21と製氷皿11下面の間の空間を通って流れていく。このとき、製氷皿11の上面は下面よりも低温かつ高風速の空気に接しているため、凍結は主に製氷皿11の上面から下面に向かって進行し、水に溶解していた物質のほとんどは未凍結部、すなわち製氷皿11下部へ向かって拡散していく。さらに凍結が進むと、突起部20のみ未凍結部となり製氷皿11には透明な氷が形成され、最後に突起部20が水に溶解していた物質のほとんどを含む形で白濁凍結して製氷が完了する。   At the time of this freezing, as shown in FIG. 2, cold air is supplied from the upper surface of the ice tray 11 so that the freezing speed is lower than the diffusion speed, and the ice storage box 21 and the lower surface of the ice tray 11 are passed through the gap between the side surface of the ice tray 11 and the frame 16. It flows through the space between. At this time, since the upper surface of the ice tray 11 is in contact with air at a lower temperature and higher wind speed than the lower surface, freezing mainly proceeds from the upper surface to the lower surface of the ice tray 11 and most of the substances dissolved in water. Diffuses toward the unfrozen portion, that is, the lower part of the ice tray 11. When the freezing further proceeds, only the protrusion 20 becomes an unfrozen part, and transparent ice is formed on the ice tray 11. Finally, the protrusion 20 is frozen in white turbidity in a form containing most of the substance dissolved in water, and ice making. Is completed.

この過程で、氷の体積は約10%増加する。従って、増加した体積分氷が伸張できる開放空間がないと、体積膨張の圧力により製氷皿11が破損する可能性がある。従来例にある製氷皿11のように、製氷皿11内に仕切りを設けた構造では、仕切に圧力がかかり、そこから製氷皿11が破損する。この発明では、製氷皿11においても突起部20内においても、体積膨張した分、氷は製氷皿11上方の開放空間に向かって伸張していくため、製氷皿11および突起部20には、通常の製氷皿11と同程度の力しかかからず、破損の危険性もない。すなわち開口部19の開口と突起部20の内容積の関係は氷の膨張に対しこれを制限する蓋が無く開かれており、面積や方向も氷の上の開放空間への伸びを制限するもので無いので信頼性の高い装置ができる。   In this process, the ice volume increases by about 10%. Therefore, if there is no open space where the increased volumetric ice can be extended, the ice tray 11 may be damaged by the pressure of volume expansion. In a structure in which a partition is provided in the ice tray 11 as in the ice tray 11 in the conventional example, pressure is applied to the partition, and the ice tray 11 is damaged therefrom. In the present invention, since the ice expands toward the open space above the ice tray 11 by the amount of volume expansion both in the ice tray 11 and in the protrusion 20, It is only as strong as the ice tray 11 and there is no risk of breakage. In other words, the relationship between the opening of the opening 19 and the internal volume of the protrusion 20 is open without a lid that restricts the expansion of ice, and the area and direction also limit the extension of the ice to the open space. Because it is not, a highly reliable device can be made.

製氷が終わると、離氷を行う。離氷のタイミングは、製氷皿11から離氷した氷が完全に凍結し、貯氷箱21に落下する際に製氷皿11からも突起部20からも水が落下してこない状態である。この状態が可能であれば、製氷皿11または突起部20に未凍結部が残っていても構わない。   When ice making is finished, the ice is removed. The timing of deicing is a state in which the ice deiced from the ice tray 11 is completely frozen and water does not fall from the ice tray 11 or the protrusion 20 when falling into the ice storage box 21. If this state is possible, an unfrozen portion may remain in the ice tray 11 or the protrusion 20.

離氷動作に移るタイミングは、温度センサ部18のサーミスタがあらかじめ製氷完了と確認できるある温度になったときである。ただし、このタイミングは給水開始や給水後温度センサ部18があらかじめ設定した温度検出時など、冷蔵庫内の任意の動作を基点に算出された所定時間経過後としてもよく、さらに、温度と時間双方を併用した動作によってもよい。このタイミング検知により、先に述べたように、駆動装置15およびストッパー17により製氷皿11に加えられる離氷のためのひねりにより氷が開口部19近傍で破断する。   The timing for moving to the deicing operation is when the thermistor of the temperature sensor unit 18 reaches a certain temperature at which it can be confirmed in advance that ice making is completed. However, this timing may be after the elapse of a predetermined time calculated based on an arbitrary operation in the refrigerator, such as at the start of water supply or at the time of temperature detection set in advance by the temperature sensor unit 18 after water supply. It is also possible to use a combined operation. By this timing detection, as described above, the ice breaks in the vicinity of the opening 19 due to the twist for deicing applied to the ice tray 11 by the driving device 15 and the stopper 17.

このとき、突起部20周囲は所定の温度以下になっていなくてはならない。所定の温度とは、突起部20の氷の周辺部が融解し、製氷皿11の氷に突起部20の氷が連結した状態で離氷する可能性を回避できる温度帯の上限値が望ましいがこれより低い温度であればよい。   At this time, the periphery of the protrusion 20 must be below a predetermined temperature. The predetermined temperature is preferably an upper limit value of a temperature range that can avoid the possibility that the peripheral portion of the ice of the protrusion 20 melts and the ice of the protrusion 20 is connected to the ice of the ice tray 11. The temperature may be lower than this.

また、製氷皿11の氷は開口部19近傍以外で破断することなく、且つ開口部19近傍で破断した後、速やかに落下する仕様をとる必要がある。まず、製氷皿11の側面が底面から上方に向けて外側に向けて十分な傾斜角度(例えば傾斜角度は鉛直方向に対し少なくとも10゜以上)の傾斜角度をとることである。また皿側面内部の氷と製氷皿の摩擦を最小限にすべく型磨きを十分にした金型(#2000レベル)にて成型することが望ましい。なお、この製氷皿11のような構造を取る場合、離氷トルクは現在一般的に自動製氷に用いられている製氷皿11から氷を離氷する際のトルクと殆ど変わらないので、従来例で示した製氷皿11のように高トルク化が必要な場合の新規部品追加などが不要で、寸法が変わること無く、且つ製造費用が上がらない。   In addition, it is necessary to take a specification that the ice in the ice tray 11 does not break outside the vicinity of the opening 19 and quickly drops after breaking near the opening 19. First, the side surface of the ice tray 11 has a sufficient inclination angle (for example, the inclination angle is at least 10 ° or more with respect to the vertical direction) from the bottom surface upward and outward. It is also desirable to mold with a mold (# 2000 level) that has been polished sufficiently to minimize the friction between the ice inside the dish and the ice tray. In the case of taking the structure of the ice tray 11, the ice removal torque is almost the same as the torque when the ice is removed from the ice tray 11 that is generally used for automatic ice making. Like the ice tray 11 shown, it is not necessary to add new parts when high torque is required, the dimensions are not changed, and the manufacturing cost is not increased.

このように開口部19近傍で破断するためには、図5(a)(b)(c)に示すように開口部19近傍に第1の氷生成部aで出来た氷と、第2の氷生成部bで出来た氷のセパレートを促進するような離氷促進リブ20aを突起部20内面又は製氷ブロック11bの底面に三角突起リブ11dを鉛直方向や水平方向に設けたりすると有効である。   In order to break in the vicinity of the opening 19 as described above, as shown in FIGS. 5A, 5B, and 5C, the ice formed by the first ice generating part a near the opening 19 and the second It is effective to provide a deicing promotion rib 20a that promotes the separation of ice produced by the ice generating part b on the inner surface of the protrusion part 20 or the bottom surface of the ice making block 11b and the triangular protrusion rib 11d in the vertical direction or the horizontal direction.

また製氷皿11の捻り角度を増やすことも離氷性の改善につながる。ただしこの場合は製氷皿11の捻りトルクを低減させなければ製氷皿11やフレーム16の製氷皿ストッパー17部などが繰返し捻りを実施することにより破損する可能性が増えてくる。
このような場合は捻りトルクを低減させるべく製氷皿11の肉厚を低減した仕様にすると有効である。
Increasing the twist angle of the ice tray 11 also leads to an improvement in deicing properties. However, in this case, unless the twisting torque of the ice tray 11 is reduced, the possibility that the ice tray 11 and the ice tray stopper 17 portion of the frame 16 will be damaged due to repeated twisting increases.
In such a case, it is effective to use a specification in which the thickness of the ice tray 11 is reduced in order to reduce the twisting torque.

捻りトルク低減のために製氷皿の肉厚低減は有効であるが、捻りの際に応力が発生する製氷皿外周形状などは肉厚を低減しなくてもある程度の効果は見込める。その際捻りトルクに影響を及ぼす第1生成部aの長手方向外周フランジ11eのみを薄肉化して製氷皿側ストッパー11aのある第1生成部の短手方向フランジ11fのみを通常肉厚とするか、又は製氷皿の各製氷ブロック11b壁部分の肉厚を前記製氷皿外周フランジ11e、11f部分より薄肉化しても有効である。   Although it is effective to reduce the thickness of the ice tray to reduce the twisting torque, a certain degree of effect can be expected without reducing the thickness of the ice tray outer peripheral shape or the like in which stress is generated during twisting. At that time, only the longitudinal outer peripheral flange 11e of the first generation part a that affects the twisting torque is thinned, and only the short direction flange 11f of the first generation part with the ice tray side stopper 11a is normally thickened. Alternatively, it is effective to make the wall thickness of each ice making block 11b wall portion of the ice tray smaller than that of the ice tray outer peripheral flanges 11e and 11f.

さらに製氷皿11を捻る駆動装置15の耐久寿命に問題なければ製氷皿11を複数回捻ることを行なえばされに離氷に有効である。このことにより一度目の離氷でもし氷が落下しなかったとしても複数回目では落下する確率は増えてくる。   Further, if there is no problem in the durability of the driving device 15 for twisting the ice tray 11, the ice tray 11 can be twisted a plurality of times and effective for deicing. As a result, even if the ice is removed for the first time, even if the ice does not fall, the probability that it will fall more than once will increase.

またこのような製氷皿11を反転させて捻り離氷させるとき、突起部20の内面側にて生成された氷は落下しない仕様をとる必要がある。まず、突起部20の側面が底面から上方に向けて外側に向けて必要最低限の傾斜角度(例えば10°以下の角度)をとるだけでなく図5のように突起部20内に三角リブ20a形状などを設けてある程度突起部内の氷を引掛り易くすることも有効である。この三角リブ20a形状の位置は各製氷ブロック11bのたわみ具合などを考慮して最適な位置や数量を配置する。   In addition, when such an ice tray 11 is inverted and twisted to remove ice, it is necessary to take specifications that the ice generated on the inner surface side of the protrusion 20 does not fall. First, the side face of the protrusion 20 takes not only a necessary minimum inclination angle (for example, an angle of 10 ° or less) from the bottom toward the outside, but also a triangular rib 20a in the protrusion 20 as shown in FIG. It is also effective to provide a shape or the like to easily catch the ice in the protrusion to some extent. As for the position of the triangular rib 20a shape, an optimal position and quantity are arranged in consideration of the degree of deflection of each ice making block 11b.

この離氷動作の後、給水し、次のサイクルの製氷工程に入るが、このとき、給水された水により突起部20内に残る氷は徐々に融解する。融解は、突起部20に残る氷上面のみでなく、側面からも水が徐々に回り込み、融解していくので、突起部20底まで十分に水が回り込むと、突起部20に残っていた氷は浮き上がり、製氷皿11に貯留されている水によって融解されながら混合していく。なお、このとき製氷皿11に貯留された水の表面が完全に凍結していなければ、気体成分は水面から放出されるため、次の製氷工程で白濁成分が大幅に増加することがない。   After this deicing operation, water is supplied and the ice making process of the next cycle is started. At this time, the ice remaining in the protrusion 20 is gradually melted by the supplied water. In the melting, not only the upper surface of the ice remaining on the protrusion 20 but also the water gradually flows from the side and melts. Therefore, when the water sufficiently flows to the bottom of the protrusion 20, the ice remaining on the protrusion 20 is It floats and mixes while being melted by the water stored in the ice tray 11. At this time, if the surface of the water stored in the ice tray 11 is not completely frozen, the gas component is released from the water surface, so that the cloudy component does not increase significantly in the next ice making step.

上記説明では、製氷皿11上方から冷却する方法について述べたが、次に突起部近傍にヒータなどの加熱手段22を備える構成を次に説明する。これにより、白濁部を形成する物質を確実に突起部20に追い込み、製氷皿11に透明氷を生成することができ、離氷後の給水時に突起部20の氷が製氷皿11の貯留水中に浮上するまでの時間を短縮できる。以下、図6〜図12に従い説明する。なお、以下の説明で、先の説明と等しいものに関しては説明を省略する。   In the above description, the method of cooling from above the ice tray 11 has been described. Next, a configuration in which the heating means 22 such as a heater is provided in the vicinity of the protrusion will be described. Thereby, the substance which forms a cloudiness part can be reliably driven into the projection part 20, and transparent ice can be produced | generated in the ice tray 11, and the ice of the projection part 20 in the water storage of the ice tray 11 at the time of water supply after deicing. Time to ascend can be shortened. Hereinafter, a description will be given with reference to FIGS. In the following description, the description that is the same as the previous description is omitted.

図6はこの発明にかかる製氷装置の説明図で(a)は側断面図、(b)は上面図、図7はこの発明の他の実施の形態にかかる製氷皿の横断面図、図8はこの発明の他の実施の形態にかかる加熱手段(以下コードヒータと称す)の断面図、図9はこの発明にかかる製氷皿を上面から見て製氷皿下に設置したコードヒーターを透視した図、図10はこの発明にかかるコードヒータの固定図、図11はこの発明にかかる製氷工程のフローチャート、図12はこの発明にかかる製氷工程のタイムチャートである。   6A and 6B are explanatory views of an ice making device according to the present invention, in which FIG. 6A is a side sectional view, FIG. 7B is a top view, FIG. 7 is a transverse sectional view of an ice making tray according to another embodiment of the present invention, and FIG. FIG. 9 is a cross-sectional view of a heating means (hereinafter referred to as a code heater) according to another embodiment of the present invention, and FIG. 9 is a perspective view of the code heater installed under the ice tray when the ice tray according to the present invention is viewed from above. 10 is a fixed diagram of the cord heater according to the present invention, FIG. 11 is a flowchart of the ice making process according to the present invention, and FIG. 12 is a time chart of the ice making process according to the present invention.

ニクロム線26などの発熱体を、シリコンゴムなどで被覆したコードヒータ22を製氷皿11の下側に設け、図9に示すように、製氷皿11の各製氷ブロック毎に設けられた突起部20の間に密着するように設置している。コードヒータ22は、低温でもひび割れたりしない耐寒性のある部材でかつ離氷時の製氷皿11ひねりに追随できる柔軟性を持つ部材、例えばシリコン材等で形成されている必要がある。また、コードヒータ22をなるべくコンパクトに設置するために、図9に示すように最大でも製氷皿11の側面外周程度と非常に短い長さにしており、発熱密度が高くても変質しない部材であることも必要である。ただし、このコードヒータ22は、製氷室5が十分に冷却されておらず、かつ給水もない空焼き状態でも製氷皿11を含む冷蔵庫本体1のあらゆる部材を変形・故障させないものであり、二重絶縁されているなど、安全面でも十分な信頼性を持つ。   A cord heater 22 in which a heating element such as a nichrome wire 26 is covered with silicon rubber or the like is provided below the ice tray 11, and as shown in FIG. 9, a protrusion 20 provided for each ice making block of the ice tray 11. It is installed in close contact between the two. The cord heater 22 needs to be formed of a cold-resistant member that does not crack even at low temperatures and a flexible member that can follow the twisting of the ice tray 11 during deicing, such as a silicon material. Further, in order to install the cord heater 22 as compactly as possible, the length is as short as the outer circumference of the side surface of the ice tray 11 at most as shown in FIG. 9, and the member does not change even if the heat generation density is high. It is also necessary. However, the cord heater 22 does not cause any deformation or failure of the members of the refrigerator body 1 including the ice tray 11 even when the ice making chamber 5 is not sufficiently cooled and is baked without water supply. It has sufficient reliability in terms of safety, such as being insulated.

このコードヒータ22は、ガラス芯などにニクロム線26などの発熱体を巻き付けてその外郭に例えばシリコンなどを被覆した一般的一重被膜27のコードヒータ22、さらに外周に例えばシリコン等の第2被覆28を設けた二重絶縁28仕様のコードヒータ22である。この二重絶縁構造を採用することによりもしエンドユーザが直接コードヒータ22に触れても安全を確保することができる。また、被覆材料を難燃性の高い材質、例えば塩化ビニール又はシリコン等とすることにより燃焼をより困難にさせる等の安全性をより向上させるものである。   The cord heater 22 includes a general single coat 27 cord heater 22 in which a heating element such as a nichrome wire 26 is wound around a glass core and the outer shell is coated with, for example, silicon. This is a cord heater 22 having double insulation 28 specifications. By adopting this double insulation structure, safety can be ensured even if the end user directly touches the cord heater 22. Moreover, the safety | security which makes combustion more difficult by making a coating material into a highly flame-retardant material, for example, a vinyl chloride, a silicon | silicone, etc. is improved more.

このコードヒータ22を製造する際には、上述の一重被覆27のコードヒータ22を金型内にセットして二重被覆28を成形しても良いが工数増によるコストupになってしまうだけでなく、成形の際に一重被覆27ヒータ22の位置がバラついてしまい、必要な肉厚すなわち絶縁距離を安定して確保することが困難である。   When manufacturing the cord heater 22, the cord heater 22 of the single coating 27 described above may be set in the mold to form the double coating 28, but this only increases the cost due to an increase in the number of steps. In addition, the position of the single covering 27 heater 22 varies during molding, and it is difficult to stably secure a necessary thickness, that is, an insulation distance.

そこで一重被覆27コードヒータ22を押出し成形により二重被覆28を成形する方法で行うと一重被覆27の位置が安定するだけでなく成形に対する段取りも不要で生産能力も向上しコストダウンを図ることができる。   Therefore, when the single coating 27 cord heater 22 is formed by extrusion molding, the double coating 28 is formed, so that not only the position of the single coating 27 is stabilized, but also the setting up for molding is unnecessary, the production capacity is improved, and the cost is reduced. it can.

また、このコードヒータ22の製氷皿への固定方法について述べる。各製氷ブロックに設けられた突起部20の間にはさみ込んで固定すると一つのコードヒータ22で2つの突起部20に熱を加えることができる。この際上述突起部20間にはさみ込むだけの固定方法であると突起部20間寸法のバラツキやコードヒータ22寸法のバラツキにより突起間から外れて落下してしまう恐れがある。そこでこのコードヒータ22下部にカバー23を設けるとより安全である。またこのコードヒータ22の固定方法は製氷皿11にツメ片20b設けて固定しても良いが、製氷皿11裏面にネジ固定用のボス24を設けてネジ25固定とした方がより安定した固定となる。但しネジ25を固定する際に製氷皿11捻りトルクが大きくなってしまわないようにボス24形状をカバー23よりも突出させてネジ25固定してもヒータカバー23がある程度可能なようにしておくと良い。   A method for fixing the cord heater 22 to the ice tray will be described. When sandwiched between the protrusions 20 provided in each ice making block and fixed, heat can be applied to the two protrusions 20 by one cord heater 22. At this time, if the fixing method is to insert the protrusions 20 between the protrusions 20, the protrusions 20 may be dropped from the protrusions due to variations in the dimensions between the protrusions 20 or the dimensions of the cord heater 22. Therefore, it is safer to provide a cover 23 below the cord heater 22. The cord heater 22 may be fixed by providing the claw piece 20b on the ice tray 11 and fixing it, but it is more stable if the screw boss 24 is provided on the back of the ice tray 11 and the screw 25 is fixed. It becomes. However, when the screw 25 is fixed, the heater cover 23 can be made to some extent even if the boss 24 shape protrudes from the cover 23 and the screw 25 is fixed so that the twisting torque of the ice tray 11 does not increase. good.

またこのヒータカバー23の形状を工夫することにより透明度の向上にもつながる。例えば氷の出来が早くもう少しコードヒータ22の発熱を有効に使いたい製氷ブロック11b周辺はヒータカバー23を延長して覆い、逆に製氷時間を早くしたい製氷ブロック11bの周辺のカバー形状は抹消して各製氷ブロック11bに適した形状にすることにより、より安定した透明度の氷が生成可能となる。 Further, devising the shape of the heater cover 23 leads to improvement of transparency. For example, the ice making block 11b around the ice making block 11b where the ice is quickly formed and the heat generated by the code heater 22 is to be used more effectively is covered with the heater cover 23, and the cover shape around the ice making block 11b where the ice making time is to be accelerated is erased. By making the shape suitable for each ice making block 11b, ice with more stable transparency can be generated.

また、図10(a)に示すように製氷皿11の突起部20をコードヒータ22巾寸法よりも大きめに設置しておき、各製氷ブロック11b毎に勘合を調整するリブ20bの位置や数を設定する。このことによりコードヒータ22自体は均一な発熱温度であっても各製氷ブロック11b毎に発熱量を調整することが可能となる。   Further, as shown in FIG. 10 (a), the protruding portion 20 of the ice tray 11 is set larger than the width of the cord heater 22, and the position and number of ribs 20b for adjusting the fitting for each ice making block 11b are set. Set. As a result, even if the code heater 22 itself has a uniform heat generation temperature, the heat generation amount can be adjusted for each ice making block 11b.

さらに、図10(b)に示すように製氷皿11下部の突起部20形状を3本以上設け、この突起部20間に前記加熱手段であるコードヒータ22を這わせるように蛇行装着させることによっても各製氷ブロック11毎の発b熱量を変化させることが可能である。   Further, as shown in FIG. 10B, by providing three or more protrusions 20 at the lower part of the ice tray 11 and attaching the cord heater 22 as the heating means between the protrusions 20 in a meandering manner. It is also possible to change the amount of heat generated by each ice making block 11.

上述のように設置されたコードヒータ22は、連続通電でもよいが、図11、図12に示すように給水後から、一定期間通電し、その後断電することで、使用するエネルギー量を低減し製氷速度を上げても透明度の高い氷を得ることができる。 The cord heater 22 installed as described above may be continuously energized. However, as shown in FIGS. 11 and 12, the energization is performed for a certain period after water supply, and then the power is cut off, thereby reducing the amount of energy used. Even if the ice making speed is increased, highly transparent ice can be obtained.

図11、図12で示した制御方法に沿って、コードヒータ22の制御動作を含む製氷動作について説明する。ステップ1にて図12のごとく給水用電磁弁を通電させて給水ポンプを一定時間動作させ定められた水量を製氷皿11に給水する。ステップ1で行われた給水完了直後にステップ2でヒータ22に通電が開始される。これにより、前回のサイクルで突起部20に内蔵され残された氷は水の供給と加熱により解かされ、不純物などや貴方が製氷皿11全体に広がり一部は開放面から放出される。ステップ3で、温度センサ部18の出力が、実験などによって求められた製氷皿11内の水の凍結と相関のある値をもとに設定された所定の温度Ta、例えば−1度より低い温度に達するまで一定量の通電を行う。所定の温度Taに達したらステップ4でヒータを断電する。このとき、製氷皿11には透明氷が形成されているが、突起部20の水はまだ未凍結部が残っている状態である。コードヒータ22が断電し加熱を停止することで突起部20の中の未凍結部は急速に凍結する。これは突起部20に熱供給が無くなり、冷蔵庫の製氷室5環境を形成する冷気にさらされるためである。   The ice making operation including the control operation of the cord heater 22 will be described along the control method shown in FIGS. In step 1, as shown in FIG. 12, the water supply solenoid valve is energized, the water supply pump is operated for a certain period of time, and the determined amount of water is supplied to the ice tray 11. Immediately after the completion of the water supply performed in step 1, energization of the heater 22 is started in step 2. As a result, the ice remaining in the protrusion 20 in the previous cycle is melted by supplying and heating water, and impurities and you spread throughout the ice tray 11 and a part is released from the open surface. In step 3, the output of the temperature sensor 18 is a predetermined temperature Ta set based on a value correlated with the freezing of the water in the ice tray 11 obtained by experiments or the like, for example, a temperature lower than −1 degree. A certain amount of power is applied until the value is reached. When the predetermined temperature Ta is reached, the heater is turned off in step 4. At this time, transparent ice is formed on the ice tray 11, but the water of the protrusion 20 is still in an unfrozen portion. When the cord heater 22 is disconnected and the heating is stopped, the unfrozen portion in the protrusion 20 is rapidly frozen. This is because the protrusion 20 loses heat supply and is exposed to the cold air forming the ice making room 5 environment of the refrigerator.

ステップ5で、温度センサ部18の出力が、実験などによって求められた突起部20内の水の凍結と相関のある値をもとに設定された所定の温度Tbに到達したと判断されると、ステップ6から始まる離氷工程に移る。ステップ6で離氷用駆動装置15が正転し、製氷皿11を反転させていき、ステップ7で時間tr経過するまで正転方向に動作し続ける。このとき、製氷皿11側のストッパー11aがフレーム側ストッパ−17に押しつけられ皿がひねられ、捩れることによる開口部19にかかる応力で製氷皿11と突起部20の氷が分断し、製氷皿11の氷は貯氷箱21に落下する。ステップ8で駆動装置15が逆転し、製氷皿11を元の位置に向けて回転させ、ステップ9で時間tr経過するまで逆転方向に動作し続け、ステップ10で製氷皿11が元の位置に戻り、駆動装置15が停止する。この離氷時には突起部20の中の氷はそのまま残ることになる。ステップ11で、貯氷箱21が満氷であるかどうか検知し、この給水、製氷、離氷を行う工程が1サイクルの製氷工程であり、満氷になるまでステップ1に戻り製氷動作サイクルを繰り返す。   When it is determined in step 5 that the output of the temperature sensor unit 18 has reached a predetermined temperature Tb set based on a value correlated with the freezing of the water in the projection 20 obtained by experiments or the like. Then, the process proceeds to the de-icing process starting from step 6. In step 6, the ice removing drive device 15 rotates in the normal direction to reverse the ice tray 11, and continues to operate in the normal direction until the time tr elapses in step 7. At this time, the stopper 11a on the ice tray 11 side is pressed against the frame-side stopper 17, the tray is twisted, and the ice on the ice tray 11 and the protrusion 20 is divided by the stress applied to the opening 19 due to twisting, and the ice tray 11 ice falls into the ice storage box 21. In step 8, the driving device 15 reversely rotates and rotates the ice tray 11 toward the original position. In step 9, it continues to operate in the reverse direction until time tr elapses, and in step 10, the ice tray 11 returns to the original position. Then, the driving device 15 stops. At the time of this ice removal, the ice in the protrusion 20 remains as it is. In step 11, it is detected whether or not the ice storage box 21 is full of ice, and the process of supplying water, making ice, and removing ice is a one-cycle ice making process. The process returns to step 1 until the ice is full and the ice making operation cycle is repeated. .

またこのコードヒータ22を氷の離氷時直前に通電させることにより製氷皿11を暖めて氷と製氷皿11を離しておき離氷させることも透明氷ならず通常氷の製氷皿11からの離氷改善につなげることも可能である。   In addition, when the cord heater 22 is energized immediately before the ice is de-iced, the ice tray 11 is warmed to separate the ice and the ice tray 11 from the ice tray 11 to separate the ice from the ice tray 11 instead of the transparent ice. It can also lead to ice improvement.

なお、コードヒータ22の通電タイミングを給水完了直後としたが、突起部20に流入した水が凍結し始めないうちに通電開始できるタイミングがあればいつでもよく、例えば、給水開始と同時に、または、温度センサ部18で検出される温度が所定温度に到達したとき、または、これらのタイミングから所定の時間が経過したときなどであってもよい。   It should be noted that the energization timing of the cord heater 22 is set immediately after the completion of the water supply, but any time can be used as long as there is a timing at which the energization can be started before the water that has flowed into the protrusion 20 begins to freeze. It may be when the temperature detected by the sensor unit 18 reaches a predetermined temperature, or when a predetermined time elapses from these timings.

突起部20への加熱を停止するコードヒータ22の断電タイミングに関しても同様で、温度センサ部18で検出される温度が所定温度に到達したとき以外にも、製氷皿11に供給された水がほぼ凍結し、突起部20には未凍結部が多く残る状態で断電できるタイミングであればいつでもよく、例えば、上述のヒータ22の通電開始タイミングから所定時間経過後、または上述のコードヒータ22の通電開始タイミングから所定時間経過後に温度センサ部18で検出される温度が所定温度に到達したときなどであってもよい。   The same applies to the disconnection timing of the cord heater 22 that stops the heating of the protrusion 20, and the water supplied to the ice tray 11 is not limited to when the temperature detected by the temperature sensor 18 reaches a predetermined temperature. Any timing can be used as long as it can be disconnected when the protrusion 20 is frozen and a large number of unfrozen portions remain in the protrusion 20. For example, after a predetermined time has elapsed from the start of energization of the heater 22, or the cord heater 22 It may be when the temperature detected by the temperature sensor unit 18 reaches a predetermined temperature after a predetermined time has elapsed from the energization start timing.

また、製氷中のコードヒータ22の通電量を一定としたが、これを任意に変化させてもよい。例えば、冷蔵庫の圧縮機オンオフなどによる、冷却量の増減に伴ってコードヒータ22の通電量を増減させることで、透明度に影響なく製氷スピードを早めつつ製氷時の消費電力量を低減できる。また、製氷皿11への冷気吹き付けがなくなるデフロスト時に通電量を低減又は断電することでも、やはり透明度に影響なく製氷スピードを早めつつ製氷時の消費電力量を低減できる。   Moreover, although the energization amount of the cord heater 22 during ice making is made constant, this may be arbitrarily changed. For example, by increasing / decreasing the energization amount of the cord heater 22 as the cooling amount increases / decreases due to the compressor on / off of the refrigerator, the power consumption during ice making can be reduced while increasing the ice making speed without affecting the transparency. In addition, reducing the amount of energization or de-energizing at the time of defrosting when no cold air is blown onto the ice tray 11 can also reduce the power consumption during ice making while increasing the ice making speed without affecting the transparency.

この発明にかかわる冷蔵庫は、複数の製氷ブロックに区画され水を貯留し製氷する一重構造の製氷皿において、前期製氷ブロック毎に氷生成部を複数設けた製氷皿11を搭載し氷の透明部と白濁部を分離させてエンドユーザに透明な氷を提供することが可能な製氷装置である。これにより従来の冷蔵庫に設けられていた製氷装置と同程度の構造と寸法でエネルギーもほとんど増やさずに透明な氷を得ることができる。   The refrigerator according to the present invention is a single-structure ice tray that is partitioned into a plurality of ice making blocks to store water and make ice, and is equipped with an ice making tray 11 provided with a plurality of ice generating portions for each ice making block, This is an ice making device capable of providing transparent ice to the end user by separating the cloudy part. As a result, transparent ice can be obtained with almost the same structure and dimensions as an ice making apparatus provided in a conventional refrigerator, with little increase in energy.

この発明の実施の形態1における製氷装置が適用された家庭用冷凍冷蔵庫を正面の扉を除いた場合の状態で示す正面断面図である。It is front sectional drawing which shows the state at the time of remove | excluding the front door to the domestic refrigerator-freezer to which the ice making apparatus in Embodiment 1 of this invention was applied. この発明の実施の形態1における製氷装置を示し、(a)は側断面図、(b)は上面図である。The ice making device in Embodiment 1 of this invention is shown, (a) is a sectional side view, (b) is a top view. この発明の実施の形態1における製氷装置の上面図である。It is a top view of the ice making apparatus in Embodiment 1 of this invention. この発明の実施の形態1における製氷装置の横断面図である。It is a cross-sectional view of the ice making device in Embodiment 1 of this invention. この発明の実施の形態1における他の製氷装置を示し、(a)、(b)は製氷皿の横断面図、(c)は製氷皿を一部切欠いて、かつ要部を拡大して示す上面図である。Fig. 2 shows another ice making device according to Embodiment 1 of the present invention, in which (a) and (b) are cross-sectional views of the ice tray, and (c) is a partially cutaway view of the ice tray and an enlarged main part. It is a top view. この発明の実施の形態1における他の製氷装置を示す側断面図である。It is a sectional side view which shows the other ice making apparatus in Embodiment 1 of this invention. この発明の実施の形態1における他の製氷装置を示す拡大横断面図である。It is an expansion cross-sectional view which shows the other ice making apparatus in Embodiment 1 of this invention. この発明の実施の形態1における他の加熱装置を装着示す分解斜視図である。It is a disassembled perspective view which mounts | wears with the other heating apparatus in Embodiment 1 of this invention. この発明の実施の形態1における製氷装置を示す底面図である。It is a bottom view which shows the ice making apparatus in Embodiment 1 of this invention. この発明の実施の形態1における他の製氷装置に加熱装置の配置図を示す要部拡大図である。It is a principal part enlarged view which shows the layout of a heating apparatus in the other ice making apparatus in Embodiment 1 of this invention. この発明の実施の形態1における製氷工程のフローを説明する図である。It is a figure explaining the flow of the ice making process in Embodiment 1 of this invention. この発明の実施の形態1における製氷工程のタイムチャートを説明する図である。It is a figure explaining the time chart of the ice making process in Embodiment 1 of this invention.

符号の説明Explanation of symbols

1 冷蔵庫本体、 5 製氷室、 11 製氷皿、 11a 製氷皿側ストッパー、 11b 製氷ブロック、 11c 切り欠き溝、 11d 三角突起リブ、 11e 長手方向外周フランジ、 11f 短手方向外周フランジ、 12 給水タンク、 13 給水配管、 15 駆動装置、 16 フレーム、 17 フレーム側ストッパー、 18 温度センサ部、 19 開口部、 20 突起部、 20a 離氷促進リブ、 20b ツメ片、 21 貯氷箱、 22 コードヒーター、 23 カバー、 24 ボス、 25 ネジ、 26 ニクロム線、 27 一重目被覆、28 二重目被覆。   DESCRIPTION OF SYMBOLS 1 Refrigerator main body, 5 Ice making chamber, 11 Ice tray, 11a Ice tray side stopper, 11b Ice making block, 11c Notch groove, 11d Triangular protrusion rib, 11e Longitudinal outer periphery flange, 11f Short direction outer periphery flange, 12 Water supply tank, 13 Water supply piping, 15 driving device, 16 frame, 17 frame side stopper, 18 temperature sensor part, 19 opening part, 20 protrusion part, 20a de-icing promotion rib, 20b claw piece, 21 ice storage box, 22 code heater, 23 cover, 24 Boss, 25 Screws, 26 Nichrome wire, 27 First coating, 28 Double coating.

Claims (12)

区画された複数の製氷ブロックに給水をそれぞれ貯留し冷気を受けて製氷を行うとともにひねりを与えられ生成された氷が離氷する製氷皿と、前記製氷皿に区画され、冷気を受けて製氷が促進される製氷ブロックである第1の氷生成部と、前記第1の氷生成部と一体に設けられ、前記第1の氷生成部と開口部にて前記給水が連通し前記第1の氷生成部より冷気を受ける影響を少なくして製氷を遅らせられる第2の氷生成部と、を備え、前記第1の氷生成部にて生成された氷が前記製氷皿から分離しやすいように前記製氷皿の各製氷ブロックの部分の肉厚を前記製氷皿外周のフランジ部分より薄肉化して製氷皿の捻りトルクを低減するようにしたことを特徴とする製氷装置。 Water is stored in each of the divided ice making blocks to receive cold air to make ice, and a twist is applied to the ice making tray that separates the generated ice. A first ice generating unit which is an ice making block to be promoted, and the first ice generating unit are provided integrally with the first ice generating unit, and the water supply is communicated with the first ice generating unit and the opening. comprising a second ice generating unit to reduce the influence received cool air from the generator is delayed ice, and the like ice generated in the first ice generating unit is easily separated from the ice tray An ice making apparatus characterized in that the wall thickness of each ice making block of the ice making tray is made thinner than the flange portion on the outer periphery of the ice making tray to reduce the twisting torque of the ice making tray . 記製氷皿から分離しやすいように製氷皿複数回捻りを加えることを特徴とする請求項1に記載の製氷装置。 Ice making device according to claim 1, characterized in that the addition of multiple twisting the ice tray for easy separation from the previous SL ice tray. 記製氷皿の各製氷ブロックに給水が行き渡るように製氷ブロック間に設けた切り欠き溝の底面を斜めにしたことを特徴とする請求項1または請求項2に記載の製氷装置。 Ice making device according to claim 1 or claim 2, characterized in that the notch bottom surface of the groove which is provided between the ice making blocks as water is spread to each ice making block before Symbol ice tray and diagonally. 記製氷皿の各製氷ブロックに給水が行き渡るように製氷ブロック間に設けた切り欠き溝を複数本配置したことを特徴とする請求項1乃至請求項3のいずれかに記載の製氷装置。 Ice making device according to any one of claims 1 to 3, characterized in that before SL with the notched groove water is provided between the ice making blocks to spread over the respective ice blocks of the ice tray and a plurality of placement. 区画された複数の製氷ブロックに給水をそれぞれ貯留し冷気を受けて製氷を行うとともに生成された氷が離氷可能な製氷皿と、前記製氷皿に区画され、冷気を受けて製氷が促進される製氷ブロックである第1の氷生成部と、前記第1の氷生成部と一体に設けられ前記第1の氷生成部と開口部にて前記給水が連通し前記第1の氷生成部より製氷を遅らせる様に加熱手段にて加熱される第2の氷生成部と、を備え、前記加熱手段を前記第2の氷生成部間に挟みこんでカバーにより固定するようにしたことを特徴とする製氷装置。 Water is stored in each of a plurality of partitioned ice making blocks and ice is made by receiving cold air, and the generated ice is separated from the ice making tray, and the ice making tray is partitioned to receive ice to promote ice making. A first ice generating unit, which is an ice making block, and the first ice generating unit are provided integrally with the first ice generating unit, and the water supply is communicated with the first ice generating unit and the opening to make ice from the first ice generating unit. A second ice generating unit heated by heating means so as to delay the heating means, and the heating means is sandwiched between the second ice generating units and fixed by a cover. Ice making equipment. 前記加熱手段は、ヒーターの被覆を2重にして二重絶縁したものであることを特徴とする請求項記載の製氷装置。 6. The ice making apparatus according to claim 5 , wherein the heating means is a double insulation with a double heater coating. 前記加熱手段は、ヒーターの被覆を難燃性の材料にて絶縁したものであることを特徴とする請求項記載の製氷装置。 7. The ice making device according to claim 6 , wherein the heating means is a heater insulative coated with a flame retardant material. 区画された複数の製氷ブロックに給水をそれぞれ貯留し冷気を受けて製氷を行うとともに生成された氷が離氷可能な製氷皿と、前記製氷皿に区画され、冷気を受けて製氷が促進される製氷ブロックである第1の氷生成部と、前記第1の氷生成部と一体に設けられ前記第1の氷生成部と開口部にて前記給水が連通し前記第1の氷生成部より製氷を遅らせる様に加熱手段にて加熱されて白濁部を形成する物質が追い込まれる突起部を形成する第2の氷生成部とを備え、前記加熱手段を第2の氷生成部の突起部間に挟み込み、前記加熱手段の前記第2の氷生成部への接触面積を調整する調整リブにて接触固定し、前記加熱手段の接触面積を増減させて発熱量を調整することが可能なようにしたことを特徴とする製氷装置。 Water is stored in each of a plurality of partitioned ice making blocks, and ice is made by receiving cold air, and the generated ice is separated from the ice making tray, and the ice making tray is partitioned to receive ice to promote ice making. A first ice generating unit, which is an ice making block, and the first ice generating unit are integrated with the first ice generating unit, and the water supply is communicated with the first ice generating unit and the opening to make ice from the first ice generating unit. And a second ice generating part that forms a projection part into which a substance that forms a cloudy part is driven by the heating means, and the heating means is disposed between the protrusions of the second ice generating part. It is possible to adjust the heat generation amount by increasing and decreasing the contact area of the heating means by sandwiching and fixing with the adjustment rib that adjusts the contact area of the heating means to the second ice generation unit . it shall be the features of the made-icing system. 前記突起部を各製氷ブロックごとに複数本設けて、前記突起部間に加熱手段を蛇行装着させて各製氷ブロックの発熱量を調整することが可能なことを特徴とする請求項5乃至8のいずれかに記載の製氷装置。 Providing a plurality of said projections in each ice making blocks, according to claim 5 to 8, characterized in that which is capable of adjusting the heating value of the meandering mounted so with the ice block heating means between the protrusion The ice making device according to any one of the above. 前記開口部は前記開口部近傍の氷が前記機械力を受けて切断可能な寸法および形状とすることを特徴とする請求項1乃至9のいずれかに製氷装置。The ice making device according to any one of claims 1 to 9, wherein the opening is sized and shaped so that ice near the opening can be cut by receiving the mechanical force. 前記製氷皿がひねりを受けて前記開口部近傍で切断された前記第1の氷生成部で生成された氷が離氷することを特徴とする製氷装置。An ice making device characterized in that the ice produced by the first ice producing unit cut in the vicinity of the opening by the twisting of the ice making plate is deiced. 請求項1乃至11のいずれかに記載の製氷装置を備えたことを特徴とする請求項1乃至11のいずれかに冷蔵庫。A refrigerator according to any one of claims 1 to 11, comprising the ice making device according to any one of claims 1 to 11.
JP2003322561A 2003-09-16 2003-09-16 Ice making equipment, refrigerator Expired - Fee Related JP3852609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003322561A JP3852609B2 (en) 2003-09-16 2003-09-16 Ice making equipment, refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003322561A JP3852609B2 (en) 2003-09-16 2003-09-16 Ice making equipment, refrigerator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006171151A Division JP4197012B2 (en) 2006-06-21 2006-06-21 Freezer refrigerator

Publications (2)

Publication Number Publication Date
JP2005090801A JP2005090801A (en) 2005-04-07
JP3852609B2 true JP3852609B2 (en) 2006-12-06

Family

ID=34453869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003322561A Expired - Fee Related JP3852609B2 (en) 2003-09-16 2003-09-16 Ice making equipment, refrigerator

Country Status (1)

Country Link
JP (1) JP3852609B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071465A (en) * 2005-09-08 2007-03-22 Hitachi Appliances Inc Refrigerator
JP5014310B2 (en) * 2008-11-04 2012-08-29 三菱電機株式会社 Automatic ice making device and refrigerator equipped with the same
JP5342927B2 (en) * 2009-05-18 2013-11-13 シャープ株式会社 Ice making equipment
JP2011064372A (en) * 2009-09-16 2011-03-31 Sharp Corp Ice-making device for refrigerator-freezer
TWI425293B (en) 2011-01-18 2014-02-01 Flash module and image-capturing apparatus
EP2687795A4 (en) * 2011-03-16 2014-11-05 Sharp Kk Ice-making device for refrigerator/freezer
JP5746584B2 (en) * 2011-08-01 2015-07-08 シャープ株式会社 Ice making apparatus and control method thereof
JP5749607B2 (en) * 2011-09-01 2015-07-15 シャープ株式会社 refrigerator
US20150316306A1 (en) * 2012-12-10 2015-11-05 Daechang Co., Ltd. Icemaker
KR102154525B1 (en) * 2013-11-06 2020-09-10 엘지전자 주식회사 Ice tray
AU2017402441B2 (en) * 2017-03-08 2020-04-16 Mitsubishi Electric Corporation Automatic ice maker and freezer refrigerator
US11874045B2 (en) 2018-11-16 2024-01-16 Lg Electronics Inc. Ice maker and refrigerator
EP3653964A1 (en) * 2018-11-16 2020-05-20 LG Electronics Inc. Ice maker and refrigerator

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS568273U (en) * 1979-06-29 1981-01-24
JPS5816171A (en) * 1981-07-22 1983-01-29 株式会社日立製作所 Defroster
JPS62108766U (en) * 1985-12-26 1987-07-11
JPH02109979U (en) * 1989-02-14 1990-09-03
JPH0395375A (en) * 1989-09-08 1991-04-19 Hitachi Ltd Ice-making device
JPH04132378U (en) * 1991-05-23 1992-12-08 三菱電機株式会社 ice container
JPH06317372A (en) * 1993-05-07 1994-11-15 Matsushita Refrig Co Ltd Automatic icemaker
JPH0719685A (en) * 1993-07-07 1995-01-20 Matsushita Refrig Co Ltd Automatic ice-making equipment
JPH0949672A (en) * 1995-08-09 1997-02-18 Sharp Corp Ice making apparatus
JPH0979717A (en) * 1995-09-12 1997-03-28 Toshiba Corp Ice making device
JP2003106722A (en) * 2001-10-01 2003-04-09 Toshiba Corp Ice making tray structure in automatic ice making device
JP2003172563A (en) * 2001-12-05 2003-06-20 Sanyo Electric Co Ltd Ice-making device, and refrigerator-freezer having the device
JP3852607B2 (en) * 2003-03-24 2006-12-06 三菱電機株式会社 Ice making device, freezer refrigerator, ice making method

Also Published As

Publication number Publication date
JP2005090801A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
JP3852607B2 (en) Ice making device, freezer refrigerator, ice making method
JP3852609B2 (en) Ice making equipment, refrigerator
JP4140641B2 (en) Ice making equipment, refrigerator-freezer
CA2544486C (en) Ice-dispensing assembly mounted within a refrigerator compartment
US20080072610A1 (en) Apparatus and method for controlling operation of an icemaker
JP2006275510A5 (en)
JPH09269172A (en) Icemaker
US20080092567A1 (en) Ice maker with ice bin level control
US20080092569A1 (en) Cooling unit with multi-parameter defrost control
KR20190087237A (en) Ice making device
KR100772214B1 (en) Manufacturing apparatus and method for transparent ice
CN109997007B (en) Control method of water purifier
EP2097689A1 (en) Ice making system and method for ice making of refrigerator
JP4396767B2 (en) Freezer refrigerator
JP2008157619A (en) Ice making device and refrigerator-freezer
US20210032085A1 (en) Water purifier and method for controlling the same
JP4197012B2 (en) Freezer refrigerator
JP2006226615A (en) Refrigerator
JP2011185541A (en) Ice making device
US7062928B2 (en) Cooling apparatus and method
KR101507037B1 (en) Ice dispenser Housing for use of ice maker
JP4663425B2 (en) Automatic ice maker and refrigerator with automatic ice maker
JP2002195729A (en) Refrigerator
JPH01181047A (en) Ice making method for clear ice
KR20080001004A (en) Refrigerator and method for ice making using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060829

R151 Written notification of patent or utility model registration

Ref document number: 3852609

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees