【0001】
【発明の属する技術分野】
本発明は地下躯体のある建物の構築工法に関するものである。
【0002】
【従来の技術】
地下躯体のある建物の構築には施工の効率化と工期の短縮化を図るために、いわゆる逆打ち工法が使用されている。この逆打ち工法として、例えば特開2002−61213号公報の発明が知られている。この逆打ち工法は、従来の逆打ち工法よりもさらに工期の短縮を図るために、地下1階の床レベルまでの2次掘削をした後に、地下1階を飛ばして地下2階の梁下までを一気に3次掘削するものである。
【0003】
【特許文献1】
特開20002−61213号公報(図1)
【0004】
【発明が解決しようとする課題】
しかし、上記の逆打ち工法には下記のような問題があった。
(1)先行で構真柱工事を行うため施工精度が必要とされる
(2)べた基礎構造の建物には杭工事が必要となるため工期がかかる
(3)根切り工事と上部躯体工事とを並行して行うため広いスペースの1階施工ヤードが必要になる
(4)機械室の地下仕上工事と上部仕上工事とを同時に行う必要があるため、 これらの工事が錯綜する
【0005】
本発明はこれらの問題に鑑みてなされたものであり、その目的は、上部躯体よりも地下躯体が先に完了できる建物の構築工法を提供することである。
【0006】
【課題を解決するための手段】
以上の課題を解決するための建物の構築工法は、根切り底に地下躯体の基礎を構築した後、該基礎に、1節分の鉄骨を備えた仮設柱を建て込むとともに、該仮設柱に1階床を先行施工した後、該1階床からの上部躯体と、前記基礎からの地下躯体とを同時に建ち上げる構成である。
【0007】
仮設柱によって1階床が先行施工できるため、地下躯体と上部躯体とを同時に構築できる。また上部躯体よりも地下躯体の方が先に完成するため、地下躯体に機械室を早く構築できる。地下躯体が早く完了するため、仮設柱を、地上の4節分の鉄骨が負担できる程度にすることができる。
【0008】
【発明の実施の形態】
以下、本発明の建物の構築工法の実施の形態を図面に基づいて詳細に説明する。本工法は地下躯体と上部躯体とを同時に構築するものであり、地下3階の建物を対象として説明する。
【0009】
図1は地下躯体工事を示したものであり、山留壁1の構築にともなって根切りを行いつつ、前記の山留壁1を4段の切梁2、3、4、5で支持するとともに、施工ヤードとしての仮設構台6を構築する。そして、この根切り底に耐圧板コンクリートを打設して地下躯体7の基礎8を構築した後、4段目の切梁5を解体する。
【0010】
次に、図2に示すように、3段目の切梁4と仮設構台6の一部を解体するとともに、上部躯体10の構築を可能にするタワークレーン9を建て込む。
【0011】
次に、図3に示すように、1節分の鉄骨11、すなわち地下1階分と地上1階分の鉄骨を備えた仮設柱12を地下躯体7の基礎8上に建て込む。この仮設柱12は鉄骨柱であり、上部躯体10の4節分の鉄骨を支持できる程度のものである
。
【0012】
次に、図4に示すように、この仮設柱12に支持された1階床13を先行して施工する。この1階床13は先組工法の大梁と、PC梁の小梁と、デッキスラブの床とから構成されたものであり、これを中心にして地下躯体7と上部躯体10とを同時に構築する。
【0013】
次に、図5に示すように、地下3階のコンクリートと地上1階のコンクリートとを同時に打設して、地下2階のスラブ15と地上2階のスラブ16とを構築する。そして、地下2階のスラブ15の構築にともなって、2段目の切梁3の解体を行う。このように地下階と地上階との構築が同時にできるので、工期の短縮を図ることができる。
【0014】
次に、図6に示すように、上部躯体10の2節目の鉄骨17の建て方を行うとともに、地下2階のコンクリートを打設して地下1階のスラブ18を構築する。そして、地下1階のスラブ18の構築にともなって、1段目の切梁2の解体を行うとともに、タワークレーン9のクライミングをおこなう。これも上記と同じように鉄骨11、17の建て方と地下スラブ15の構築とが同時に行えるものである。次に、地下1階の柱19および壁のコンクリートを打設するとともに、上部躯体の3節目の鉄骨20の建て方を行って地下躯体7の構築を完了させる。
【0015】
このように上部躯体10の構築の完成前に地下躯体7の構築が完了するため、地下躯体7に機械室を設置する工事を行うことができる。また、その後の上部躯体10は通常の方法で順次構築する。
【0016】
また図7は本発明の工法と、従来の逆打ち工法の工期を比較したものである。これによると工期を大幅に短縮でき、上部躯体と地下躯体との工事の錯綜を避けることができ、かつ人工の短期間の集中を防ぐことができる。
【0017】
【発明の効果】
構真柱工事がないため鉄骨の建て方精度を確保することができる。
【0018】
地下躯体が上部躯体より早く完了するため、地下の仕上工事、特に機械室などの工事が早く着工でき、かつ受電にも有利になる。
【0019】
地下躯体の工事と上部躯体の工事とを同時に行うことができるので、狭い1階での施工スペースでも効率的な施工を行うことができる。
【0020】
地下躯体が早く完了するため、仮設鉄骨を、地上の4節分の鉄骨を負担できる程度にすることができる。これに対して、従来の逆打ち工法では8節分の鉄骨を負担させなければならなかった。
【図面の簡単な説明】
【図1】地下躯体工事の根切りを行った断面図である。
【図2】ターワクレーンの建て方と、構台の解体を行う断面図である。
【図3】仮設柱の建て方を行う断面図である。
【図4】1階の先行床のコンクリート打設をする断面図である。
【図5】地下3階の床のコンクリート打設をする断面図である。
【図6】地下躯体を構築した断面図である。
【図7】本発明の工法と従来の逆打ち工法との工期を比較した図である。
【符号の説明】
1 山留壁
2、3、4、5 切梁
6 仮設構台
7 地下躯体
8 基礎
9 タワークレーン
10 上部躯体
11、17、20 鉄骨
12 仮設柱
13 1階床
14 外壁
15、16、18 スラブ
19 地下1階の柱[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a construction method for a building having an underground skeleton.
[0002]
[Prior art]
In the construction of a building with an underground skeleton, a so-called reverse construction method is used in order to improve the efficiency of construction and shorten the construction period. For example, the invention of Japanese Unexamined Patent Application Publication No. 2002-61213 is known as the reverse driving method. In this reverse construction method, in order to further shorten the construction period than the conventional reverse construction method, after excavating to the floor level of the first basement floor, skip the first basement floor and go down to the beam under the second basement floor Is excavated at once.
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-61213 (FIG. 1)
[0004]
[Problems to be solved by the invention]
However, the above-mentioned reverse striking method has the following problems.
(1) Construction accuracy is required because pre-construction of straight pillars is performed ahead. (2) Buildings with a solid foundation structure require pile work, so it takes a construction period. (3) Rooting work and upper body construction work (4) It is necessary to perform the underground finishing work and the upper finishing work for the machine room at the same time, which complicates these works.
The present invention has been made in view of these problems, and an object of the present invention is to provide a construction method of a building in which an underground skeleton can be completed before an upper skeleton.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, a construction method of a building is to construct a foundation of an underground skeleton at a root bottom, and then build a temporary column having a steel frame for one node on the foundation, After the floor is pre-constructed, the upper frame from the first floor and the underground frame from the foundation are simultaneously built.
[0007]
Since the first floor can be pre-constructed with the temporary pillars, the underground skeleton and the upper skeleton can be simultaneously constructed. In addition, since the underground skeleton is completed before the upper skeleton, the machine room can be quickly constructed in the underground skeleton. Since the underground skeleton is completed quickly, the temporary pillars can be made small enough to bear the steel frames of four sections above the ground.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the building construction method of the present invention will be described in detail with reference to the drawings. In this method, an underground skeleton and an upper skeleton are simultaneously constructed, and a description will be given of a building on the third basement floor.
[0009]
FIG. 1 shows an underground skeleton construction, in which roots are cut along with the construction of the retaining wall 1, and the retaining wall 1 is supported by four-stage cut beams 2, 3, 4, and 5. At the same time, a temporary gantry 6 as a construction yard is constructed. Then, a pressure-resistant plate concrete is poured into the bottom of the root to construct the foundation 8 of the underground skeleton 7, and then the fourth-stage cut beam 5 is dismantled.
[0010]
Next, as shown in FIG. 2, the third stage beam 4 and a part of the temporary gantry 6 are dismantled, and a tower crane 9 that enables the construction of the upper skeleton 10 is built.
[0011]
Next, as shown in FIG. 3, a steel column 11 for one section, that is, a temporary column 12 having a steel frame for one basement floor and one floor above the ground is built on the foundation 8 of the basement body 7. The temporary column 12 is a steel column, which is capable of supporting the steel frame of the upper frame 10 for four nodes.
[0012]
Next, as shown in FIG. 4, the first floor 13 supported by the temporary pillars 12 is constructed in advance. The first floor 13 is composed of a girder of the pre-assembly method, a small girder of the PC beam, and a floor of the deck slab. The underground skeleton 7 and the upper skeleton 10 are simultaneously constructed around this floor. .
[0013]
Next, as shown in FIG. 5, concrete on the third basement floor and concrete on the first floor above the ground are simultaneously cast to construct a slab 15 on the second basement floor and a slab 16 on the second floor above the ground. Then, with the construction of the slab 15 on the second basement floor, the second stage beam 3 is dismantled. Thus, the construction of the basement floor and the ground floor can be performed at the same time, so that the construction period can be shortened.
[0014]
Next, as shown in FIG. 6, the steel frame 17 of the second joint of the upper frame 10 is built, and concrete of the second basement is cast to construct the slab 18 of the first basement. Then, along with the construction of the slab 18 on the first basement floor, the first stage beam 2 is dismantled and the tower crane 9 is climbed. Also in this case, the construction of the steel frames 11 and 17 and the construction of the underground slab 15 can be simultaneously performed in the same manner as described above. Next, the concrete of the pillar 19 and the wall of the first basement floor is poured, and the steel frame 20 of the third section of the upper skeleton is built, thereby completing the construction of the underground skeleton 7.
[0015]
As described above, since the construction of the underground skeleton 7 is completed before the construction of the upper skeleton 10 is completed, construction work for installing a machine room in the underground skeleton 7 can be performed. Further, the subsequent upper frame 10 is sequentially constructed by an ordinary method.
[0016]
FIG. 7 shows a comparison between the construction method of the present invention and the construction period of the conventional reverse construction method. According to this, the construction period can be significantly shortened, the construction of the upper skeleton and the underground skeleton can be prevented from being complicated, and the concentration of man-made short-term can be prevented.
[0017]
【The invention's effect】
Since there is no timber pillar construction, the accuracy of steel frame construction can be ensured.
[0018]
Since the underground skeleton is completed earlier than the upper skeleton, the underground finishing work, especially the construction of the machine room, etc. can be started earlier, and it is also advantageous for receiving power.
[0019]
Since the construction of the underground skeleton and the construction of the upper skeleton can be performed simultaneously, efficient construction can be performed even in the construction space on the narrow first floor.
[0020]
Since the underground skeleton is completed quickly, the temporary steel frame can be made to be able to bear the steel frame for four nodes above the ground. On the other hand, in the conventional reverse striking method, the steel frame for eight nodes had to be borne.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an underground skeleton under construction.
FIG. 2 is a sectional view showing how to build a turwa crane and dismantling a gantry.
FIG. 3 is a sectional view showing how to build a temporary pillar.
FIG. 4 is a cross-sectional view showing concrete casting of a preceding floor on the first floor.
FIG. 5 is a cross-sectional view of placing concrete on a third basement floor.
FIG. 6 is a sectional view showing an underground skeleton.
FIG. 7 is a diagram comparing the construction periods of the construction method of the present invention and the conventional reverse construction method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Retaining wall 2, 3, 4, 5 Cut beam 6 Temporary gantry 7 Underground frame 8 Foundation 9 Tower crane 10 Upper frame 11, 17, 20 Steel frame 12 Temporary column 13 First floor 14 Exterior wall 15, 16, 18 Slab 19 Underground Pillars on the first floor