JP2004242397A - Power facility for emergency motor of power generation plant - Google Patents

Power facility for emergency motor of power generation plant Download PDF

Info

Publication number
JP2004242397A
JP2004242397A JP2003027051A JP2003027051A JP2004242397A JP 2004242397 A JP2004242397 A JP 2004242397A JP 2003027051 A JP2003027051 A JP 2003027051A JP 2003027051 A JP2003027051 A JP 2003027051A JP 2004242397 A JP2004242397 A JP 2004242397A
Authority
JP
Japan
Prior art keywords
emergency
power
voltage
bus
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003027051A
Other languages
Japanese (ja)
Other versions
JP4055189B2 (en
Inventor
Masashi Sugiyama
政司 杉山
Yukihiro Katayama
幸弘 片山
Toshiya Morita
俊也 守田
Hirohisa Satomi
弘久 里見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003027051A priority Critical patent/JP4055189B2/en
Publication of JP2004242397A publication Critical patent/JP2004242397A/en
Application granted granted Critical
Publication of JP4055189B2 publication Critical patent/JP4055189B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Stand-By Power Supply Arrangements (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable the use of an induction motor of standards of measure, by substituting an inexpensive induction motor for an expensive DC motor and adopting a DC booster (chopper booster). <P>SOLUTION: In a power system within a power station comprising a high-voltage AC bus 5, which supplies power to an in-station auxiliary machine located inside a power station in a power plant, an emergency diesel generator 11, which is connected to the high-voltage bus and supplies AC power at the loss of the external power of the plant, a low-voltage AC bus 1 connected via a step-down transformer 3 from the high-voltage AC bus; and a DC power facility 24 which is connected to the low-voltage bus and comprises a charger 13, a storage battery 15, and a DC bus 14, a DC booster 20 connected to the charger is provided, and a plurality of inverters 18 are connected via a bus 19 for power supply to an emergency motor to the DC booster; and emergency induction motors 34 are installed separately for each inverter, and each emergency induction motor is supplied with power from each inverter in emergency situations of the plant. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、発電プラント用の非常用電動機用電源設備に係り、特に、全交流電源喪失時及び外部電源喪失時の非常用ディーゼル発電機起動までの間に運転を要求される発電プラントにおける非常用電動機の電源設備に関する。
【0002】
【従来の技術】
従来の原子力発電所の所内電源設備の概略を図6に示す。プラント通常運転時、原子炉33で発生した蒸気を主タービン29に送ることにより発電機8を回転させ、発電する。発電機8で発生した電力は、発電機負荷開閉器7を介して主変圧器9で昇圧された後、主変圧器用遮断器10を介して外部に送電される。一方、発電機負荷開閉器7を介して所内変圧器6で降圧された後に、常用高圧母線5、非常用高圧母線4、更に降圧変圧器3で降圧された後に非常用低圧母線受電遮断器2、非常用低圧母線1を介して各々の母線に接続されている所内負荷に給電する。
一方、発電機8の停止時は、発電機負荷開閉器7を開放することにより、外部電源系より主変圧器用遮断器10、主変圧器9を介して前記と同様に各々の所内負荷に給電する。
また、系統事故発生等に伴い、発電機8、外部電源とも給電能力を失う外部電源喪失事象時には、非常用高圧母線4に接続される非常用ディーゼル発電設備11が始動し、この時に運転が必要となる所内負荷に給電を行う。更に外部電源喪失時における非常用ディーゼル発電設備11の起動失敗等の重畳事象が発生した場合は、発電プラントは全交流電源喪失となるので、直流電源設備24の蓄電池15より運転が必要となる負荷に給電される。
直流電源設備24は、蓄電池15以外に直流電源設備用受電遮断器12、充電器13、直流母線14、蓄電池用遮断器16、蓄電池出力用電流計17及び直流負荷等から構成されている。直流電源設備24は、プラント通常運転時は非常用低圧母線1より給電されており、充電器13は交流電源を直流電源に変換し、蓄電池15を浮動充電すると共に、直流母線14を介してプラント通常運転時に直流電源を必要とする制御機器に電源を供給する。このとき、蓄電池15の入出力電流は、蓄電池15の出力側にある蓄電池出力用電流計17により常時監視されている。
直流電源設備24に接続される負荷の代表的なものとして、発電機非常用油ポンプ25、及び原子力発電所においては原子炉隔離時冷却設備(RCIC)のRCICポンプ用電動弁38等がある。
従来、非常用油ポンプ25等及び原子力発電所における原子炉隔離時冷却設備のRCICポンプ用電動弁38等に使用される駆動電動機は、直流電源に接続されるため直流電動機35を使用している。直流電動機35は、蓄電池放電電流を制限することを目的に始動抵抗器32を備えている。始動抵抗器32は3ないしは4つの抵抗タップを備えており、直流電動機35の回路に直列に挿入して直流電動機35に印加される電圧を始動抵抗器32で分圧させることにより、直流電動機35の始動電流を制限する。始動抵抗器32の最大抵抗値は、直流電動機35の始動時に流れる電流を定格電流の3倍程度(最大出力電流値)に抑制する様に値を選定している。始動抵抗器32が最大抵抗抵抗値において直流電動機35の電流が定格電流まで下がると、始動抵抗器32のタップを下げて始動抵抗器32の抵抗値を順次小さくする。以後この動作を繰り返し、始動抵抗器32の抵抗値が0になると、直流電動機35に全電圧が印加されることとなる。
一方、直流電動機35は、下記(1)式で示されるように、端子電圧により回転速度が変化する。
N=k×E/Φ=k×(V−RaIa)/Φ (1)
ここで、N:回転速度、E:逆起電圧、V:端子電圧、Φ:各極の磁束
Ra:電機子抵抗、Ia:電気子電流、k:比例定数
蓄電池15は、放電時間とともに電圧が最大値(充電器出力電圧と同等)から放電終止電圧まで低下するため、前記(1)式に従い、蓄電池15に接続される直流電動機35はその回転速度が変化することとなる。一方、ポンプ等の負荷は、回転速度の2乗トルク特性負荷であるため、回転速度が変化すると、負荷トルクが変化し、これに伴い必要となる電流も変化する。この結果、事故発生直後等の様な蓄電池放電直後の電圧低下時や放電終止電圧近傍における直流電動機35の電流と直流電動機サーベイランス試験(プラント通常時に待機している非常用機器の健全性確認試験)等浮動充電中の電圧となる時の直流電動機35の電流が相違し、直流電動機35の電気的保護の整定が困難となるとともに、直流電圧が高いサーベイランス試験時等に直流電動機35が過負荷傾向となるなどの問題があった。
また、直流電動機35は、誘導電動機34に比べ、構造が複雑なため、コスト大、保守作業大という問題もあった。
【0003】
このような課題を解決した公知例としては、例えば特許文献1「発電プラントの非常用電源装置」がある。本公知例は、従来直流電動機を用いていた用途に直流交流逆変換装置(インバータ)と誘導電動機を適用するものである。しかし、本公知例では、蓄電池が放電することによる電圧の低下を補正するために、直流交流逆変換装置(インバータ)の制御が複雑となる。また、発電プラントに適用される直流電源設備は制御用の電源でもある為、蓄電池の電圧を任意に設定することが困難である。一方、直流交流逆変換装置(インバータ)は、その直流−交流変換により入力される直流電圧以上の波高値をもつ交流は作り出せないため、設置された蓄電池の電圧に適合した定格電圧をもつ誘導電動機を適用する必要性から、標準規格の誘導電動機の適用が困難となり、誘導電動機を適用するメリットを活かしにくいといった問題もあった。
【0004】
【特許文献1】
特開2001−238368号公報
【0005】
【発明が解決しようとする課題】
本発明の課題は、高価な直流電動機から安価な誘導電動機に変更すると共に、直流昇圧装置(チョッパ昇圧装置)を採用して標準規格の誘導電動機の使用を可能とすることにある。
【0006】
【課題を解決するための手段】
上記課題を解決するために、発電プラントの発電所内の充電器、蓄電池及び直流母線からなる直流電源設備から構成される非常用電動機用電源設備において、充電器に接続される直流昇圧装置と、直流から交流に変換する逆変換装置とを設け、プラント非常時に逆変換装置から給電される非常用誘導電動機を備える。
ここで、直流昇圧装置に非常用電動機給電用母線を介して複数の非常用誘導電動機を接続すると共に、各々の非常用誘導電動機ごとに逆変換装置を設置し、プラント非常時に各々の逆変換装置から各々の非常用誘導電動機に給電する。
ここで、直流昇圧装置に一組の逆変換装置を接続し、一組の逆変換装置に非常用電動機給電用母線を介して複数の非常用誘導電動機を接続し、プラント非常時に一組の逆変換装置から複数の非常用誘導電動機に給電する。
また、発電プラントの発電所内の充電器、蓄電池及び直流母線からなる直流電源設備から構成される非常用電動機用電源設備において、充電器に接続される直流から交流に変換する逆変換装置と、逆変換装置に接続する昇圧変圧器とを設け、昇圧変圧器に非常用電動機給電用母線を介して複数の非常用誘導電動機を接続し、プラント非常時に逆変換装置で交流に変換した後に昇圧変圧器によって非常用誘導電動機が求める電圧まで昇圧する。
【0007】
【発明の実施の形態】
以下、本発明の実施形態を図面を用いて説明する。
図1は、本発明による発電プラント用の非常用電動機用電源設備の一実施形態を示す。
図1において、通常運転時は、原子炉33で発生した蒸気を主タービン29に送ることにより発電機8を回転させ、発電する。発電機8で発生した電力は、発電機負荷開閉器7を介して主変圧器9で昇圧された後、主変圧器用遮断器10を介して外部に送電される。一方、発電機負荷開閉器7を介して所内変圧器6で降圧された後に、常用高圧母線5、非常用高圧母線4、更に降圧変圧器3で降圧された後に非常用低圧母線受電遮断器2、非常用低圧母線1を介して各々の所内負荷に給電する。
一方、発電機8の停止時は、発電機負荷開閉器7を開放することにより、外部電源系より主変圧器遮断器10、主変圧器9を介して前記と同様に各々の所内負荷に給電する。
また、系統事故発生等に伴い、発電機8、外部電源とも給電能力を失う外部電源喪失時には、非常用高圧母線4に接続される非常用ディーゼル発電設備11が始動し、運転が必要となる所内負荷に給電を行う。更に、この外部電源喪失時における非常用ディーゼル発電設備11の起動失敗等の重畳事象の発生した場合は、全交流電源喪失となり、直流電源設備24の蓄電池15より運転が必要である負荷に給電する。
直流電源設備24は、蓄電池15以外に直流電源設備用受電遮断器12、充電器13、直流母線14、蓄電池用遮断器16、蓄電池出力用電流計17及び直流負荷から構成されている。直流電源設備24は、プラント通常運転時は非常用低圧母線1より給電されており、充電器13は、交流電源を直流電源に変換し、蓄電池15を浮動充電すると共に、直流母線14を介してプラント通常運転時に直流電源を必要とする制御機器に電源を供給する。このとき、蓄電池15の入出力電流は、蓄電池15出力側にある蓄電池出力用電流計17により常時監視されている。
一方、全交流電源喪失時等には、この蓄電池15から蓄電池用遮断器16、直流母線14、直流昇圧装置(チョッパ昇圧装置)20、非常用電動機給電用母線19、直流交流逆変換装置(インバータ)18を介して非常用の負荷である誘導電動機(IM)34に電源を供給する。この非常用負荷の代表的なものとして、非常用油ポンプ25及び原子力発電所においては原子炉隔離時冷却設備(RCIC)のRCICポンプ用電動弁38等がある。
本実施形態では、直流交流逆変換装置(インバータ)18を採用することにより、原子炉隔離時冷却設備の弁駆動用電動機、非常用油ポンプの駆動電動機として従来適用していた直流電動機(DCM)35に代わり誘導電動機(IM)34を適用することができる。さらに、直流昇圧装置(チョッパ昇圧装置)20を用いることにより、標準規格の誘導電動機(IM)34を使用することが可能となる。
【0008】
ここで、図3を用いて直流電源設備24の負荷の一つである非常用油ポンプ25について説明する。
非常用油ポンプ25は、発電機軸受21及び主タービン29の軸受に対する給油を行う。図1においては非常用油ポンプ25から発電機8への給油の流れを示している。
発電機軸受21に対する給油について、プラント通常運転時、発電機8の各軸受21及び主タービン29の軸受には主油ポンプ22(タービン軸直結駆動方式)によって油タンク30より給油するが、主タービン29の始動停止時には、主油ポンプ22では吐出圧と油量が不十分となるので、補助油ポンプ23により発電機軸受21及び主タービン29軸受への給油を補助する。また、非常時には、主タービン29の回転速度が低下することにより、主油ポンプ22だけでは油量が不十分となる。この時は、交流電動機駆動の補助油ポンプ23により不足分の油を補給する。また、外部電源喪失により交流電動機駆動の補助油ポンプ23が起動できない場合、軸受21の損傷を防ぐため財産保護用として直流電動機駆動の非常用油ポンプ25を設け、軸受油圧が低下した場合に自動始動させるようにしている。ここで、非常用ディーゼル発電機11が始動し、補助油ポンプ23に電源が供給されると、発電機各軸受21の給油は補助油ポンプ23が担うことになり、非常用ポンプ25は停止する。これらの動作の詳細を図4に示した。
【0009】
また、図2を用いて直流電源設備24の負荷の一つである原子炉隔離時冷却設備について説明する。
この設備は、原子炉過渡事象時に原子炉33が主タービン29と隔離されても、引き続き冷却水を原子炉33に供給し、燃料の冷却を行うことを目的に設置している。非常時には、直流電源設備24より非常用の負荷であるRCICポンプ用電動弁38に給電を行う。これにより、原子炉33の崩壊熱により発生した蒸気によって駆動されるRCICタービン26、サプレッションチェンバ28より給水するRCICポンプ27及び冷却材の注入を制御するRCICポンプ用電動弁38の制御を行うことが可能となり、交流電源喪失時にも原子炉33への冷却材注入が可能となっている。
【0010】
次に、本発明の直流交流逆変換装置(インバータ)18の制御について、図5を用いて説明する。図5は、図1の非常用電動機用電源設備(抜粋)を構成する機器の電圧波形を示す。
図1において、直流昇圧装置(チョッパ昇圧装置)20及び直流交流逆変換装置(インバータ)18に接続される誘導電動機34は、始動時に定格電流の数倍の電流(始動電流)が流れる。従って、直流交流逆変換装置(インバータ)18は、誘導電動機34を始動する際、低電圧/低周波数を誘導電動機34に入力し、誘導電動機34の始動電流を極力小さくするとともに、その後、電圧/周波数一定状態にて誘導電動機34を定格回転速度に昇速させる制御を適用する。これにより、直流昇圧装置(チョッパ昇圧装置)20及び直流交流逆変換装置(インバータ)18を駆動する誘導電動機34に見合った容量とすることができる。
【0011】
次に、直流昇圧装置(チョッパ昇圧装置)20の制御について、図5を用いて説明する。
蓄電池15の出力電圧は、図5に示すように、蓄電池の特性により放電直後は充電電圧相当であったものが、放電時間とともに放電終止電圧まで低下する。また、本蓄電池は、図1にあるように他のDC制御負荷等の電源でもあるため、非常用電動機に合わせて任意に電圧を設定することはできない。
一方、直流交流逆変換装置(インバータ)18は、交直流変換の特性により入力される直流電圧以上の波高値を持つ交流電圧に変換することはできない。従って、放電終止電圧にあわせて出力電圧(非常用電動機の入力電圧)を決定しなければならない。
そこで、本実施形態では、直流交流逆変換装置(インバータ)18の入力側に直流昇圧装置(チョッパ昇圧装置)20を設ける。また、蓄電池電圧の低下を補償することを目的に、直流昇圧装置(チョッパ昇圧装置)20の出力側にて電圧を検知し、直流昇圧装置(チョッパ昇圧装置)20の出力電圧を制御する定電圧制御装置(AVR)36を設置する。定電圧制御装置(AVR)36は、常時直流昇圧装置(チョッパ昇圧装置)20の出力電圧と設定値(直流交流逆変換装置18入力電圧)との差分を検知することにより、直流昇圧装置(チョッパ昇圧装置)20の昇圧率を制御することになる。従って、蓄電池電圧が低下した場合にも、直流交流逆変換装置(インバータ)18の入力電圧は常時一定に保つことが可能となる。
また、直流昇圧装置(チョッパ昇圧装置)20の昇圧率は、蓄電池15の放電終止電圧と接続される非常電動機の定格電圧より設定する。即ち、蓄電池15の充電電圧が260V、放電終止電圧が220V、非常用電動機の定格電圧として200Vの電動機を適用するとすれば、下式より、直流昇圧装置(チョッパ昇圧装置)20の昇圧率は、1.1倍(放電直後)〜1.3倍(放電終止電圧)となる。
<放電直後>

Figure 2004242397
よって、約1.1倍にて定格電圧200Vに対応可能
<放電終止電圧時点>
Figure 2004242397
よって、約1.3倍にて定格電圧200Vに対応可能
【0012】
図7は、本発明の他の実施形態を示す。
本実施形態は、図1に対して一組の直流昇圧装置(チョッパ昇圧装置)20、直流交流逆変換装置(インバータ)18によって複数の誘導電動機34、34’を運転、制御するものである。
これにより、図1の構成に対し、直流昇圧装置(チョッパ昇圧装置)20、直流交流逆変換装置(インバータ)18の台数を少なくすることができる。
しかしながら、誘導電動機34は、起動時、定格電流の数倍(5〜7倍)の始動電流が流れることから、直流交流逆変換装置(インバータ)18にて誘導電動機34を起動する場合、前述した様に、低電圧/低周波数で起動し、その後、電圧/周波数一定にて昇速していく必要があるが、接続される誘導電動機34の起動タイミンク゛が異なる場合、直流交流逆変換装置(インバータ)18の制御が複雑になる。即ち、直流交流逆変換装置(インバータ)18の制御によって一台の誘導電動機34を起動する場合は、低周波数(数Hz:始動周波数)から電圧/周波数一定制御により、誘導電動機34の始動電流を抑えることができるが、誘導電動機34が運転している時に、他の誘導電動機34’を始動する為に、誘導電動機34’の誘導電動機受電遮断器37を投入すると、誘導電動機34’には定格電圧が印加され、定格電流の数倍の始動電流が流れ、接続線の電圧低下による他の運転している誘導電動機34への影響、もしくは、直流交流逆変換装置(インバータ)18が過電流状態となり、トリップする事象が発生する可能性がある。
この為、運転している誘導電動機34の周波数を一旦始動周波数まで下げ、改めて誘導電動機34’の誘導電動機受電遮断器37を投入し、誘導電動機34’を始動させる必要がある。
以上の説明の様に、いずれにしても、本実施形態の場合は、接続される負荷(誘導電動機34、34’)の運転条件(起動/停止等)が同一の場合が望ましい。
【0013】
図8は、本発明の他の実施形態を示す。
本実施形態は、図1および図7に示す直流昇圧装置(チョッパ昇圧装置)20に代えて直流交流逆変換装置18の出力側に昇圧変圧器31を用いた。
本実施形態は、直流昇圧装置(チョッパ昇圧装置)20を用いることなく、誘導電動機34が必要とする電圧まで昇圧することができる。
しかし、前述した様に、蓄電池15は、放電直後から放電終止の間で放電電圧が変化するため、この変化分を直流交流逆変換装置(インバータ)18で吸収する必要がある。即ち、放電終止電圧の時に、直流交流逆変換装置(インバータ)18の定格電圧が出力できる様、放電直後の電圧時には直流交流逆変換装置(インバータ)18の出力を絞る制御方式とする。また、前述した様に、誘導電動機34は低周波数/低電圧で始動しなければ、大きな始動電流が流れてしまうが、低周波数領域で昇圧変圧器31を適用すると、昇圧変圧器31が飽和してしまい、直流交流逆変換装置(インバータ)18を介して変圧器過大な励磁電流が流れてしまう。これを防ぐには、より飽和しにくい(鉄芯断面の大きな)昇圧変圧器31を使用しなければならない等の問題がある。
【0014】
【発明の効果】
以上説明したように、本発明によれば、高価で、且つメンテナンスが困難な直流電動機の使用に代えて、安価で、且つメンテナンスが容易な誘導電動機を使用することができ、さらには、標準規格の誘導電動機を使用することができる。
また、従来必要であった蓄電池の容量低減のための始動抵抗器の設置が不要となり、電源設備としての経済的効果の向上を図ることができる。
また、直流交流逆変換装置(インバータ)のV/f一定制御の適用により、電動機始動時の電流を小さくすることが可能となり、結果として蓄電池の容量を低減することができる。
【図面の簡単な説明】
【図1】本発明による発電プラント用の非常用電動機用電源設備の一実施形態
【図2】原子炉隔離時冷却系の系統構成図
【図3】発電機の系統構成図
【図4】タービン油ポンプの運転シーケンス図
【図5】本発明の非常用電動機用電源設備(抜粋)を構成する機器の電圧波形図
【図6】従来の原子力発電所非常用電動機用電源設備
【図7】本発明の他の実施形態
【図8】本発明の他の実施形態
【符号の説明】
1…非常用低圧母線、2…非常用低圧母線受電遮断器、3…降圧変圧器、4…非常用高圧母線、5…常用高圧母線、6…所内変圧器、7…発電機負荷開閉器、8…発電機、9…主変圧器、10…主変圧器用遮断器、11…非常用ディーゼル発電設備、12…直流電源設備用受電遮断器、13…充電器、14…直流母線、15…蓄電池、16…蓄電池用遮断器、17…蓄電池出力用電流計、18…直流交流逆変換装置(インバータ)、19…非常用電動機給電用母線、20…直流昇圧装置(チョッパ昇圧装置)、21…発電機軸受、22…主油ポンプ、23…補助油ポンプ、24…直流電源設備、25…非常用油ポンプ、26…RCICタービン、27…RCICポンプ、28…サプレッションチャンバ、29…主タービン、30…油タンク、31…昇圧変圧器、32…始動抵抗器、33…原子炉、34…誘導電動機、35…直流電動機、36…定電圧制御装置(AVR)、37…誘導電動機受電遮断器、38…RCICポンプ用電動弁[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a power plant for an emergency motor for a power plant, and more particularly to a power plant that requires operation until the start of an emergency diesel generator when all AC power is lost and when external power is lost. The present invention relates to a power supply system for an electric motor.
[0002]
[Prior art]
FIG. 6 shows an outline of a power supply facility in a conventional nuclear power plant. During normal operation of the plant, the steam generated in the reactor 33 is sent to the main turbine 29 to rotate the generator 8 to generate power. The power generated by the generator 8 is boosted by the main transformer 9 via the generator load switch 7 and then transmitted to the outside via the main transformer circuit breaker 10. On the other hand, after being stepped down by the in-house transformer 6 via the generator load switch 7, the voltage is stepped down by the service high-voltage bus 5, the emergency high-voltage bus 4, and further by the step-down transformer 3, and then the emergency low-voltage bus power receiving circuit breaker 2 Power is supplied to the in-house load connected to each bus via the emergency low-voltage bus 1.
On the other hand, when the generator 8 is stopped, by opening the generator load switch 7, power is supplied from the external power supply system to each local load through the main transformer circuit breaker 10 and the main transformer 9 in the same manner as described above. I do.
In addition, in the event of an external power loss event in which both the generator 8 and the external power supply lose power supply capacity due to the occurrence of a system accident or the like, the emergency diesel power generation equipment 11 connected to the emergency high-voltage bus 4 starts, and operation is required at this time. Power is supplied to the in-house load. Further, when a superimposed event such as failure of the startup of the emergency diesel power generation equipment 11 when the external power supply is lost occurs, the power generation plant loses all the AC power supply. Power is supplied to
The DC power supply 24 includes a power receiving circuit breaker 12, a charger 13, a DC bus 14, a storage battery breaker 16, a storage battery output ammeter 17, a DC load, and the like, in addition to the storage battery 15. The DC power supply 24 is supplied with power from the emergency low-voltage bus 1 during normal operation of the plant. The charger 13 converts an AC power supply into a DC power supply, float-charges the storage battery 15, and powers the plant via the DC bus 14. Supply power to control equipment that requires DC power during normal operation. At this time, the input / output current of the storage battery 15 is constantly monitored by the storage battery output ammeter 17 on the output side of the storage battery 15.
Representative loads connected to the DC power supply 24 include a generator emergency oil pump 25 and, in a nuclear power plant, an RCIC pump motor-operated valve 38 of a reactor isolation cooling facility (RCIC).
Conventionally, the drive motor used for the emergency oil pump 25 and the like and the RCIC pump electric valve 38 of the cooling system for the nuclear power plant when the reactor is isolated uses the DC motor 35 because it is connected to a DC power supply. . The DC motor 35 includes a starting resistor 32 for the purpose of limiting the discharge current of the storage battery. The starting resistor 32 has three or four resistance taps. The starting resistor 32 is inserted in series with the circuit of the DC motor 35 and the voltage applied to the DC motor 35 is divided by the starting resistor 32 so that the DC motor 35 Limit the starting current of the motor. The maximum resistance value of the starting resistor 32 is selected such that the current flowing when the DC motor 35 is started is suppressed to about three times the rated current (maximum output current value). When the current of the DC motor 35 decreases to the rated current at the maximum resistance value of the starting resistor 32, the tap of the starting resistor 32 is lowered to gradually reduce the resistance value of the starting resistor 32. Thereafter, this operation is repeated, and when the resistance value of the starting resistor 32 becomes 0, the entire voltage is applied to the DC motor 35.
On the other hand, the rotation speed of the DC motor 35 changes according to the terminal voltage, as shown by the following equation (1).
N = k × E / Φ = k × (V-RaIa) / Φ (1)
Here, N: rotation speed, E: counter electromotive voltage, V: terminal voltage, Φ: magnetic flux of each pole Ra: armature resistance, Ia: armature current, k: proportional constant Since the voltage drops from the maximum value (equivalent to the charger output voltage) to the discharge end voltage, the rotation speed of the DC motor 35 connected to the storage battery 15 changes according to the above equation (1). On the other hand, the load of the pump and the like is a load having a square torque characteristic of the rotation speed. Therefore, when the rotation speed changes, the load torque changes, and accordingly, the required current also changes. As a result, the current of the DC motor 35 and the DC motor surveillance test at the time of the voltage drop immediately after the discharge of the storage battery such as immediately after the occurrence of an accident and the vicinity of the discharge end voltage (test for confirming the soundness of the emergency equipment standing by at the normal time of the plant) The current of the DC motor 35 at the time of the voltage during the constant floating charging is different, making it difficult to settle the electrical protection of the DC motor 35, and the DC motor 35 tends to overload during a high DC voltage surveillance test. And so on.
In addition, the DC motor 35 has a problem that the cost is large and the maintenance work is large because the structure is more complicated than the induction motor 34.
[0003]
As a known example that solves such a problem, there is, for example, Patent Document 1 “Emergency power supply device for power plant”. In this known example, a DC / AC inverter (inverter) and an induction motor are applied to applications in which a DC motor is conventionally used. However, in the known example, the control of the DC / AC inverter (inverter) is complicated in order to correct the voltage drop due to the discharge of the storage battery. Further, since the DC power supply equipment applied to the power plant is also a control power supply, it is difficult to arbitrarily set the voltage of the storage battery. On the other hand, a DC-AC inverter (inverter) cannot generate an AC having a peak value higher than the DC voltage input by the DC-AC conversion, and therefore has an induction motor having a rated voltage suitable for the voltage of the installed storage battery. Therefore, there is a problem that it is difficult to apply a standard-standard induction motor because of the necessity of applying the induction motor, and it is difficult to take advantage of the application of the induction motor.
[0004]
[Patent Document 1]
JP 2001-238368 A
[Problems to be solved by the invention]
An object of the present invention is to change an expensive DC motor to an inexpensive induction motor, and to use a DC booster (chopper booster) to enable use of a standard induction motor.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, a power booster connected to a charger, a DC booster connected to a charger, and a DC booster connected to a charger in a power plant of a power plant, a DC power supply including a storage battery and a DC bus. And an inverter that converts the power into AC power, and an emergency induction motor that is fed from the inverter in the event of a plant emergency.
Here, a plurality of emergency induction motors are connected to the DC booster via an emergency motor power supply bus, and an inverter is installed for each emergency induction motor. Supplies power to each emergency induction motor.
Here, a set of inverters is connected to the DC booster, and a plurality of emergency induction motors are connected to the set of inverters via an emergency motor power supply bus. Power is supplied from the converter to a plurality of emergency induction motors.
Also, in an emergency motor power supply system including a DC power supply system including a charger, a storage battery, and a DC bus in a power plant of a power plant, an inverter for converting DC to AC connected to the charger, and an inverter. A step-up transformer connected to the converter is provided, and a plurality of emergency induction motors are connected to the step-up transformer via an emergency motor power supply bus. As a result, the voltage is raised to the voltage required by the emergency induction motor.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an embodiment of a power supply system for an emergency motor for a power plant according to the present invention.
In FIG. 1, during normal operation, the generator 8 is rotated by sending steam generated in the nuclear reactor 33 to the main turbine 29 to generate power. The power generated by the generator 8 is boosted by the main transformer 9 via the generator load switch 7 and then transmitted to the outside via the main transformer circuit breaker 10. On the other hand, after being stepped down by the in-house transformer 6 via the generator load switch 7, the voltage is stepped down by the service high-voltage bus 5, the emergency high-voltage bus 4, and further by the step-down transformer 3, and then the emergency low-voltage bus power receiving circuit breaker 2 , Power is supplied to each in-house load via the emergency low-voltage bus 1.
On the other hand, when the generator 8 is stopped, by opening the generator load switch 7, power is supplied from the external power supply system to each local load via the main transformer breaker 10 and the main transformer 9 in the same manner as described above. I do.
In addition, in the event of a system accident or the like, the generator 8 and the external power supply lose the power supply capability. When the external power supply is lost, the emergency diesel power generation equipment 11 connected to the emergency high-voltage bus 4 is started and the operation is required. Supply power to the load. Further, when a superimposed event such as failure of the startup of the emergency diesel power generation equipment 11 at the time of the external power loss occurs, the entire AC power supply is lost, and power is supplied from the storage battery 15 of the DC power supply equipment 24 to the load that requires operation. .
The DC power supply 24 includes a power receiving circuit breaker 12, a charger 13, a DC bus 14, a storage battery breaker 16, a storage battery output ammeter 17, and a DC load, in addition to the storage battery 15. The DC power supply 24 is supplied with power from the emergency low-voltage bus 1 during normal operation of the plant, and the charger 13 converts an AC power supply into a DC power supply, float-charges the storage battery 15, and via the DC bus 14. Power is supplied to control equipment that requires DC power during normal operation of the plant. At this time, the input / output current of the storage battery 15 is constantly monitored by the storage battery output ammeter 17 on the output side of the storage battery 15.
On the other hand, when all AC power is lost, the storage battery 15 is connected to the battery breaker 16, the DC bus 14, the DC booster (chopper booster) 20, the emergency motor power supply bus 19, and the DC / AC inverter (inverter). ) 18 to supply power to an induction motor (IM) 34 which is an emergency load. Typical examples of the emergency load include an emergency oil pump 25 and, in a nuclear power plant, an electric valve 38 for an RCIC pump of a reactor isolation cooling system (RCIC).
In the present embodiment, a DC motor (DCM), which has been conventionally applied as a valve driving motor of a cooling system at the time of reactor isolation and a driving motor of an emergency oil pump, by employing a DC / AC inverter (inverter) 18. An induction motor (IM) 34 can be applied instead of 35. Further, the use of the DC booster (chopper booster) 20 makes it possible to use an induction motor (IM) 34 of a standard specification.
[0008]
Here, the emergency oil pump 25 which is one of the loads of the DC power supply equipment 24 will be described with reference to FIG.
The emergency oil pump 25 supplies oil to the generator bearing 21 and the bearing of the main turbine 29. FIG. 1 shows a flow of refueling from the emergency oil pump 25 to the generator 8.
Regarding oil supply to the generator bearings 21, during normal operation of the plant, the bearings 21 of the generator 8 and the bearings of the main turbine 29 are oiled from the oil tank 30 by the main oil pump 22 (turbine shaft direct drive system). When the start and stop of the engine 29 are stopped, the discharge pressure and the oil amount of the main oil pump 22 become insufficient, so that the auxiliary oil pump 23 assists the oil supply to the generator bearing 21 and the main turbine 29 bearing. In an emergency, the rotational speed of the main turbine 29 is reduced, so that the amount of oil is insufficient with the main oil pump 22 alone. At this time, the shortage of oil is supplied by the auxiliary oil pump 23 driven by the AC motor. Further, when the auxiliary oil pump 23 driven by the AC motor cannot be started due to the loss of the external power supply, an emergency oil pump 25 driven by a DC motor is provided to protect the property in order to prevent damage to the bearing 21. I'm trying to start. Here, when the emergency diesel generator 11 starts and power is supplied to the auxiliary oil pump 23, the auxiliary oil pump 23 plays a role in refueling the bearings 21 of the generator, and the emergency pump 25 stops. . The details of these operations are shown in FIG.
[0009]
In addition, the cooling equipment at the time of reactor isolation, which is one of the loads of the DC power supply equipment 24, will be described with reference to FIG.
This equipment is provided for the purpose of continuously supplying the cooling water to the reactor 33 and cooling the fuel even if the reactor 33 is isolated from the main turbine 29 during the reactor transient event. In an emergency, the DC power supply 24 supplies power to the RCIC pump motor valve 38, which is an emergency load. Thereby, it is possible to control the RCIC turbine 26 driven by the steam generated by the decay heat of the reactor 33, the RCIC pump 27 that supplies water from the suppression chamber 28, and the RCIC pump electric valve 38 that controls the injection of the coolant. This allows the coolant to be injected into the reactor 33 even when the AC power is lost.
[0010]
Next, control of the DC / AC inverter (inverter) 18 of the present invention will be described with reference to FIG. FIG. 5 shows voltage waveforms of equipment constituting the emergency motor power supply equipment (excerpt) of FIG.
In FIG. 1, an induction motor 34 connected to a DC booster (chopper booster) 20 and a DC / AC inverter (inverter) 18 flows a current (starting current) several times the rated current at startup. Therefore, when starting the induction motor 34, the DC / AC inverter (inverter) 18 inputs a low voltage / low frequency to the induction motor 34 to reduce the starting current of the induction motor 34 as much as possible. Control for increasing the speed of the induction motor 34 to the rated rotational speed in a state where the frequency is constant is applied. Thus, the capacity can be adjusted to the capacity of the induction motor 34 that drives the DC booster (chopper booster) 20 and the DC / AC inverter (inverter) 18.
[0011]
Next, control of the DC booster (chopper booster) 20 will be described with reference to FIG.
As shown in FIG. 5, the output voltage of the storage battery 15, which was equivalent to the charging voltage immediately after discharging due to the characteristics of the storage battery, decreases to the discharge end voltage with the discharging time. Further, since the present storage battery is also a power source for other DC control loads as shown in FIG. 1, the voltage cannot be arbitrarily set according to the emergency motor.
On the other hand, the DC / AC inverter (inverter) 18 cannot convert the AC voltage having a peak value equal to or higher than the input DC voltage due to the characteristics of the AC / DC conversion. Therefore, the output voltage (input voltage of the emergency motor) must be determined according to the discharge end voltage.
Therefore, in this embodiment, a DC booster (chopper booster) 20 is provided on the input side of the DC / AC inverter (inverter) 18. Further, for the purpose of compensating for a drop in the storage battery voltage, a constant voltage for detecting the voltage at the output side of the DC booster (chopper booster) 20 and controlling the output voltage of the DC booster (chopper booster) 20. A control device (AVR) 36 is installed. The constant voltage controller (AVR) 36 detects the difference between the output voltage of the DC booster (chopper booster) 20 and the set value (the input voltage of the DC / AC inverting converter 18) at all times. The boosting rate of the boosting device 20 is controlled. Therefore, even when the storage battery voltage decreases, the input voltage of the DC / AC inverter (inverter) 18 can be kept constant at all times.
The boosting rate of the DC booster (chopper booster) 20 is set based on the rated voltage of the emergency motor connected to the discharge end voltage of the storage battery 15. That is, assuming that a charge voltage of the storage battery 15 is 260 V, a discharge end voltage is 220 V, and a rated voltage of the emergency motor is 200 V, a boosting rate of the DC boosting device (chopper boosting device) 20 becomes It becomes 1.1 times (immediately after discharge) to 1.3 times (discharge end voltage).
<Immediately after discharge>
Figure 2004242397
Therefore, it is possible to support the rated voltage of 200 V at about 1.1 times <discharge end voltage>
Figure 2004242397
Therefore, it is possible to support a rated voltage of 200 V at about 1.3 times.
FIG. 7 shows another embodiment of the present invention.
In the present embodiment, a plurality of induction motors 34 and 34 'are operated and controlled by a pair of a DC booster (chopper booster) 20 and a DC / AC inverter (inverter) 18 with respect to FIG.
Thus, the number of DC boosters (chopper boosters) 20 and DC / AC inverters (inverters) 18 can be reduced as compared with the configuration of FIG.
However, when the induction motor 34 is started, a starting current several times (5 to 7 times) the rated current flows at the time of starting. As described above, it is necessary to start at a low voltage / low frequency and then increase the speed at a constant voltage / frequency. However, if the starting timing of the connected induction motor 34 is different, the DC / AC inverter (inverter) ) The control of 18 becomes complicated. That is, when starting one induction motor 34 under the control of the DC / AC inverter (inverter) 18, the starting current of the induction motor 34 is controlled by the voltage / frequency constant control from a low frequency (several Hz: starting frequency). Although it can be suppressed, when the induction motor 34 'is turned on and the induction motor power receiving circuit breaker 37 of the induction motor 34' is turned on to start another induction motor 34 ', the rated value of the induction motor 34' A voltage is applied, a starting current several times the rated current flows, and an influence on the other induction motor 34 due to a voltage drop in the connection line, or a DC / AC inverter (inverter) 18 is in an overcurrent state. And a tripping event may occur.
For this reason, it is necessary to once lower the frequency of the operating induction motor 34 to the starting frequency, turn on the induction motor power receiving circuit breaker 37 of the induction motor 34 ', and start the induction motor 34'.
As described above, in any case, in the case of the present embodiment, it is desirable that the connected load (the induction motors 34, 34 ') have the same operating conditions (start / stop, etc.).
[0013]
FIG. 8 shows another embodiment of the present invention.
In this embodiment, a step-up transformer 31 is used on the output side of the DC / AC inverting device 18 instead of the DC step-up device (chopper step-up device) 20 shown in FIGS.
In the present embodiment, the voltage can be boosted to the voltage required by the induction motor 34 without using the DC booster (chopper booster) 20.
However, as described above, since the discharge voltage of the storage battery 15 changes between immediately after the discharge and the end of the discharge, the change must be absorbed by the DC / AC inverter (inverter) 18. In other words, the control method is such that the output of the DC / AC inverter (inverter) 18 is reduced at the voltage immediately after the discharge so that the rated voltage of the DC / AC inverter (inverter) 18 can be output at the discharge end voltage. As described above, if the induction motor 34 does not start at a low frequency / low voltage, a large starting current will flow. However, when the step-up transformer 31 is applied in a low frequency region, the step-up transformer 31 is saturated. As a result, an excessive excitation current flows through the transformer via the DC / AC inverter (inverter) 18. In order to prevent this, there is a problem that the step-up transformer 31 which is less likely to be saturated (having a large iron core cross section) must be used.
[0014]
【The invention's effect】
As described above, according to the present invention, an inexpensive and easy-to-maintain induction motor can be used instead of an expensive and difficult-to-maintain DC motor. Can be used.
Further, it is not necessary to install a starting resistor for reducing the capacity of the storage battery, which is conventionally required, and the economical effect as the power supply equipment can be improved.
Further, by applying the V / f constant control of the DC / AC inverter (inverter), the current at the time of starting the motor can be reduced, and as a result, the capacity of the storage battery can be reduced.
[Brief description of the drawings]
FIG. 1 is an embodiment of a power supply system for an emergency motor for a power plant according to the present invention. FIG. 2 is a system configuration diagram of a cooling system at the time of reactor isolation. FIG. 3 is a system configuration diagram of a generator. FIG. Operation sequence diagram of oil pump [Fig. 5] Voltage waveform diagram of equipment constituting power supply equipment for emergency motor of the present invention (excerpt) [Fig. 6] Power supply equipment for emergency motor of conventional nuclear power plant [Fig. 7] FIG. 8 shows another embodiment of the present invention.
DESCRIPTION OF SYMBOLS 1 ... Emergency low-voltage bus, 2 ... Emergency low-voltage bus power receiving circuit breaker, 3 ... Step-down transformer, 4 ... Emergency high-voltage bus, 5 ... Regular high-voltage bus, 6 ... Internal transformer, 7 ... Generator load switch, 8 ... Generator, 9 ... Main transformer, 10 ... Breaker for main transformer, 11 ... Emergency diesel power generation equipment, 12 ... Receiving breaker for DC power supply equipment, 13 ... Charger, 14 ... DC bus, 15 ... Storage battery , 16: battery circuit breaker, 17: storage battery output ammeter, 18: DC / AC inverter (inverter), 19: emergency motor power supply bus, 20: DC booster (chopper booster), 21: power generation Machine bearings, 22: Main oil pump, 23: Auxiliary oil pump, 24: DC power supply equipment, 25: Emergency oil pump, 26: RCIC turbine, 27: RCIC pump, 28: Suppression chamber, 29: Main turbine, 30 ... Oil tank, DESCRIPTION OF SYMBOLS 1 ... Step-up transformer, 32 ... Starting resistor, 33 ... Reactor, 34 ... Induction motor, 35 ... DC motor, 36 ... Constant voltage control device (AVR), 37 ... Induction motor receiving circuit breaker, 38 ... For RCIC pump Electric valve

Claims (7)

発電プラントにおける発電所内の所内補機に給電する高圧交流母線と、前記高圧母線に接続され、プラント外部電源喪失時に交流電源を供給する非常用ディーゼル発電機と、前記高圧交流母線より降圧変圧器を介して接続される低圧交流母線と、前記低圧母線に接続され、充電器、蓄電池及び直流母線からなる直流電源設備から構成される発電所所内電源システムにおいて、前記充電器に接続される直流昇圧装置と、直流から交流に変換する逆変換装置とを設け、プラント非常時に前記逆変換装置から給電される非常用誘導電動機を備えることを特徴とする発電プラント用の非常用電動機用電源設備。A high-voltage AC bus that supplies power to auxiliary equipment in a power plant in a power plant, an emergency diesel generator that is connected to the high-voltage bus and supplies AC power when the power supply outside the plant is lost, and a step-down transformer from the high-voltage AC bus. DC power booster connected to the charger in a power plant in-plant power supply system connected to the low-voltage AC bus connected through the low-voltage bus, and connected to the low-voltage bus, and configured by a DC power supply facility including a charger, a storage battery, and a DC bus And an inverter for converting a direct current to an alternating current, and an emergency induction motor fed from the inverter when the plant is in an emergency. 請求項1において、前記直流昇圧装置に非常用電動機給電用母線を介して複数の前記非常用誘導電動機を接続すると共に、前記各々の非常用誘導電動機ごとに前記逆変換装置を設置し、プラント非常時に前記各々の逆変換装置から前記各々の非常用誘導電動機に給電することを特徴とする発電プラント用の非常用電動機用電源設備。2. The plant according to claim 1, wherein a plurality of the emergency induction motors are connected to the DC booster via an emergency motor power supply bus, and the inverter is installed for each of the emergency induction motors. Power supply equipment for an emergency motor for a power plant, wherein power is sometimes supplied from the respective inverters to the respective emergency induction motors. 請求項1において、前記直流昇圧装置に一組の前記逆変換装置を接続し、前記一組の逆変換装置に非常用電動機給電用母線を介して複数の前記非常用誘導電動機を接続し、プラント非常時に前記一組の逆変換装置から複数の前記非常用誘導電動機に給電することを特徴とする発電プラント用の非常用電動機用電源設備。2. The plant according to claim 1, wherein a set of the inverters is connected to the DC booster, and the plurality of emergency induction motors are connected to the set of inverters via an emergency motor power supply bus. A power supply system for an emergency motor for a power plant, wherein power is supplied to the plurality of emergency induction motors from the set of inverters in an emergency. 請求項1から請求項3のいずれかにおいて、前記逆変換装置の制御方式として電圧/周波数一定制御を適用し、前記逆変換装置から給電される前記非常用誘導電動機の始動電流を小さくすることを特徴とする発電プラント用の非常用電動機用電源設備。The method according to any one of claims 1 to 3, wherein a constant voltage / frequency control is applied as a control method of the inverter, and a starting current of the emergency induction motor supplied from the inverter is reduced. Power supply equipment for emergency motors for power plants. 請求項1から請求項3のいずれかにおいて、前記直流昇圧装置と前記逆変換装置との組み合わせにより、前記逆変換装置から給電される前記非常用誘導電動機が要求する電圧を出力し、前記非常用誘導電動機として標準規格の誘導電動機を用いることを特徴とする発電プラント用の非常用電動機用電源設備。The voltage according to any one of claims 1 to 3, wherein a voltage required by the emergency induction motor fed from the inverter is output by a combination of the DC booster and the inverter. Power supply equipment for an emergency motor for a power plant, wherein a standard induction motor is used as the induction motor. 請求項1から請求項3のいずれかにおいて、前記直流昇圧装置に定電圧制御装置を接続し、前記蓄電池の放電による電圧変動を補正し、前記逆変換装置への入力電圧を定電圧給電することを特徴とする発電プラント用の非常用電動機用電源設備。The method according to any one of claims 1 to 3, wherein a constant voltage controller is connected to the DC booster to correct a voltage fluctuation due to discharging of the storage battery, and to supply a constant voltage to an input voltage to the inverter. Power supply equipment for an emergency motor for a power plant. 発電プラントにおける発電所内の所内補機に給電する高圧交流母線と、前記高圧母線に接続され、プラント外部電源喪失時に交流電源を供給する非常用ディーゼル発電機と、前記高圧交流母線より降圧変圧器を介して接続される低圧交流母線と、前記低圧母線に接続され、充電器、蓄電池及び直流母線からなる直流電源設備から構成される発電所所内電源システムにおいて、前記充電器に接続される直流から交流に変換する逆変換装置と、前記逆変換装置に接続する昇圧変圧器とを設け、前記昇圧変圧器に非常用電動機給電用母線を介して複数の前記非常用誘導電動機を接続し、プラント非常時に前記逆変換装置で交流に変換した後に前記昇圧変圧器によって前記非常用誘導電動機が求める電圧まで昇圧することを特徴とする発電プラント用の非常用電動機用電源設備。A high-voltage AC bus that supplies power to auxiliary equipment in a power plant in a power plant, an emergency diesel generator that is connected to the high-voltage bus and supplies AC power when the power supply outside the plant is lost, and a step-down transformer from the high-voltage AC bus. And a low-voltage AC bus connected through the power supply system connected to the low-voltage bus, and configured from a DC power supply system including a charger, a storage battery, and a DC bus. An inverter and a step-up transformer connected to the inverter are provided, and a plurality of emergency induction motors are connected to the step-up transformer via an emergency motor power supply bus. After converting to AC by the inverter, boosting to a voltage required by the emergency induction motor by the step-up transformer, for a power plant. Power supply equipment for emergency motor.
JP2003027051A 2003-02-04 2003-02-04 Power supply for emergency motors for power plants Expired - Lifetime JP4055189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003027051A JP4055189B2 (en) 2003-02-04 2003-02-04 Power supply for emergency motors for power plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003027051A JP4055189B2 (en) 2003-02-04 2003-02-04 Power supply for emergency motors for power plants

Publications (2)

Publication Number Publication Date
JP2004242397A true JP2004242397A (en) 2004-08-26
JP4055189B2 JP4055189B2 (en) 2008-03-05

Family

ID=32954898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003027051A Expired - Lifetime JP4055189B2 (en) 2003-02-04 2003-02-04 Power supply for emergency motors for power plants

Country Status (1)

Country Link
JP (1) JP4055189B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102195334A (en) * 2011-05-20 2011-09-21 中国广东核电集团有限公司 Method and system for improving reliability of emergency power supplies of nuclear power plant
CN102255377A (en) * 2011-05-20 2011-11-23 中国广东核电集团有限公司 Method and system for supplying emergency power supply to nuclear power station
CN103427470A (en) * 2012-05-16 2013-12-04 中国广东核电集团有限公司 Method for supplying emergency power source by nuclear power plant and movable type storage battery energy storage system
CN103441567A (en) * 2013-08-02 2013-12-11 中国核电工程有限公司 Emergency electrical power supply system and power supply method related to nuclear power station passive system
WO2014130123A2 (en) * 2012-12-04 2014-08-28 Nuscale Power, Llc Managing electrical power for a nuclear reactor system
CN111162530A (en) * 2020-01-14 2020-05-15 北京金茂绿建科技有限公司 Power access system for accessing generator outlet to peak regulation facility
CN113659701A (en) * 2021-08-20 2021-11-16 广东鑫钻节能科技股份有限公司 Intelligent air compression station electric energy supply system and supply method thereof
WO2024001673A1 (en) * 2022-06-29 2024-01-04 华能罗源发电有限责任公司 Thermal power energy storage black start system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104198951B (en) * 2014-08-19 2019-01-15 中广核工程有限公司 The reliability verification method of nuclear power station 380V moving emergency power supply
CN104198952B (en) * 2014-08-19 2019-01-15 中广核工程有限公司 The reliability verification method of nuclear power station 6.6kV moving emergency power supply

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102195334A (en) * 2011-05-20 2011-09-21 中国广东核电集团有限公司 Method and system for improving reliability of emergency power supplies of nuclear power plant
CN102255377A (en) * 2011-05-20 2011-11-23 中国广东核电集团有限公司 Method and system for supplying emergency power supply to nuclear power station
CN103427470A (en) * 2012-05-16 2013-12-04 中国广东核电集团有限公司 Method for supplying emergency power source by nuclear power plant and movable type storage battery energy storage system
WO2014130123A2 (en) * 2012-12-04 2014-08-28 Nuscale Power, Llc Managing electrical power for a nuclear reactor system
WO2014130123A3 (en) * 2012-12-04 2014-11-06 Nuscale Power, Llc Managing electrical power for a nuclear reactor system
CN103441567A (en) * 2013-08-02 2013-12-11 中国核电工程有限公司 Emergency electrical power supply system and power supply method related to nuclear power station passive system
CN111162530A (en) * 2020-01-14 2020-05-15 北京金茂绿建科技有限公司 Power access system for accessing generator outlet to peak regulation facility
CN111162530B (en) * 2020-01-14 2023-09-19 北京金茂绿建科技有限公司 Power access system for generator outlet to access peak shaving facility
CN113659701A (en) * 2021-08-20 2021-11-16 广东鑫钻节能科技股份有限公司 Intelligent air compression station electric energy supply system and supply method thereof
CN113659701B (en) * 2021-08-20 2024-03-19 广东鑫钻节能科技股份有限公司 Intelligent air compression station electric energy supply system and supply method thereof
WO2024001673A1 (en) * 2022-06-29 2024-01-04 华能罗源发电有限责任公司 Thermal power energy storage black start system

Also Published As

Publication number Publication date
JP4055189B2 (en) 2008-03-05

Similar Documents

Publication Publication Date Title
US8427116B2 (en) Starting/generating system with multi-functional circuit breaker
US10554148B2 (en) Device and method for premagnetization of a power transformer in a converter system
CN106067695B (en) Power distribution system
CN106208071B (en) Hybrid AC and DC distribution system and method of use
WO2015183353A1 (en) Electric power generation and distribution for islanded or weakly-connected systems
JPH10164899A (en) Step-up and step-down chopper method stop type excitation system for synchronous generator
US10784802B2 (en) Generator starter of a turbomachine with asynchronous multi-winding electric machine
JP4055189B2 (en) Power supply for emergency motors for power plants
EP3457556A1 (en) Methods for operating electrical power systems
Käsemann et al. Pulsed power supply system of the ASDEX upgrade Tokamak research facility
US20160181909A1 (en) Electric unit for a pump-storage power plant
EP2045910B1 (en) Starter/generator system with control to address a voltage rise
US20100321968A1 (en) Load fault handling for switched reluctance or induction type machines
EP3644485B1 (en) Control of an electrical power system responsive to sensing a ground fault
US10790770B2 (en) Methods for operating electrical power systems
US20170237383A1 (en) Method and power converter unit for operating a generator
JP4455715B2 (en) Emergency power unit for power plant
US9673741B2 (en) System for supplying electrical power to a load and corresponding power supply method
JP5409197B2 (en) Secondary excitation type power generation system
CN101509959B (en) Low power frequency changer dragged 2MW electric generator test method
RU2422977C1 (en) Method of ac motor soft start
CN109274300B (en) Starting and excitation system and method for gas turbine generator set
CN109617476B (en) High-voltage direct-current system of multifunctional switched reluctance generator
JP2013034276A (en) Electric power unit and nuclear reactor control rod control apparatus using the same
JP6453107B2 (en) Power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070330

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071130

R150 Certificate of patent or registration of utility model

Ref document number: 4055189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

EXPY Cancellation because of completion of term