JP5409197B2 - Secondary excitation type power generation system - Google Patents

Secondary excitation type power generation system Download PDF

Info

Publication number
JP5409197B2
JP5409197B2 JP2009196217A JP2009196217A JP5409197B2 JP 5409197 B2 JP5409197 B2 JP 5409197B2 JP 2009196217 A JP2009196217 A JP 2009196217A JP 2009196217 A JP2009196217 A JP 2009196217A JP 5409197 B2 JP5409197 B2 JP 5409197B2
Authority
JP
Japan
Prior art keywords
secondary excitation
power generation
thyristor
rotor
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009196217A
Other languages
Japanese (ja)
Other versions
JP2011050167A (en
Inventor
光 目黒
洋満 酒井
誠二 田中
孝二郎 山下
良平 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009196217A priority Critical patent/JP5409197B2/en
Publication of JP2011050167A publication Critical patent/JP2011050167A/en
Application granted granted Critical
Publication of JP5409197B2 publication Critical patent/JP5409197B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電力系統の擾乱に対応した二次励磁型発電システムに関する。   The present invention relates to a secondary excitation power generation system corresponding to disturbances in a power system.

電力系統の擾乱により二次励磁型発電機の回転子巻線に過大な電流が発生し電力変換器に過大な電流が流れ込み電力変換器にストレスがかかる。このため、従来技術では〔特許文献1〕や〔特許文献2〕が示しているように電力変換器のストレスを軽減するため、クローバ回路内のサイリスタをオンし、回転子巻線の過大な電流をクローバ回路内のサイリスタに流すことで対処していた。   Due to the disturbance of the power system, an excessive current is generated in the rotor winding of the secondary excitation generator, an excessive current flows into the power converter, and the power converter is stressed. For this reason, in the prior art, as shown in [Patent Document 1] and [Patent Document 2], in order to reduce the stress of the power converter, a thyristor in the crowbar circuit is turned on, and an excessive current of the rotor winding Was dealt with by flowing the thyristor in the crowbar circuit.

特開平11−18486号公報Japanese Patent Laid-Open No. 11-18486 特開2007−244136号公報JP 2007-244136 A

従来の技術では、クローバ回路内のサイリスタがオンした後、回転子が回転を継続すると残留磁束により回転子巻線に電圧が励起されサイリスタがオンを継続する。サイリスタがオンを継続すると二次励磁型発電機の回転子巻線が短絡されているため、回転子側変換器が運転できないため二次励磁型発電機は発電することができなかった。   In the conventional technique, after the thyristor in the crowbar circuit is turned on, when the rotor continues to rotate, a voltage is excited in the rotor winding by the residual magnetic flux, and the thyristor continues to be turned on. When the thyristor continued to be on, the rotor winding of the secondary excitation generator was short-circuited, and the rotor-side converter could not be operated, so the secondary excitation generator could not generate power.

本発明の目的は、サイリスタがオンした後、二次励磁型発電システムが発電できるようにする手段を提供することにある。   An object of the present invention is to provide means for enabling a secondary excitation type power generation system to generate power after a thyristor is turned on.

上記課題を達成するために、本発明は二次励磁型発電機の回転子側の巻線に回転子側の変換器が接続され、該変換器に並列にダイオードを通してサイリスタを接続した二次励磁型発電システムにおいて、前記サイリスタを点弧した後、前記二次励磁型発電機の回転を停止することを特徴とするものである。   In order to achieve the above object, the present invention provides a secondary excitation in which a rotor-side converter is connected to the rotor-side winding of a secondary excitation generator, and a thyristor is connected in parallel to the converter through a diode. In the type power generation system, after the thyristor is ignited, the rotation of the secondary excitation generator is stopped.

更に、本発明は二次励磁型発電システムにおいて、前記二次励磁型発電機に接続された風車に対して、該風車の翼ピッチを変化させて前記二次励磁型発電機の回転を停止することを特徴とするものである。   Furthermore, in the secondary excitation type power generation system according to the present invention, for the wind turbine connected to the secondary excitation type generator, the rotation of the secondary excitation type generator is stopped by changing the blade pitch of the wind turbine. It is characterized by this.

本発明によれば、回転子巻線の過大な電流をクローバ回路により逃がした後で、発電を再開することができる。   According to the present invention, power generation can be resumed after an excessive current in the rotor winding is released by the crowbar circuit.

実施例1の風力発電装置の回路構成の説明図。1 is an explanatory diagram of a circuit configuration of a wind turbine generator according to Embodiment 1. FIG. 実施例2の風力発電装置の回路構成の説明図。Explanatory drawing of the circuit structure of the wind power generator of Example 2. FIG. 実施例3の風力発電装置の回路構成の説明図。Explanatory drawing of the circuit structure of the wind power generator of Example 3. FIG. 実施例4の風力発電装置の回路構成の説明図。Explanatory drawing of the circuit structure of the wind power generator of Example 4. FIG. 実施例5の風力発電装置の回路構成の説明図。Explanatory drawing of the circuit structure of the wind power generator of Example 5. FIG.

本発明の電力変換器では、クローバ回路内のサイリスタがオンした後、二次励磁型発電機の回転子を停止させ、サイリスタに流れる電流を低減し、サイリスタをオフすることで、二次励磁発電システムが発電できるようにする。以下、本発明の実施例の詳細を図を用いて説明する。   In the power converter according to the present invention, after the thyristor in the crowbar circuit is turned on, the rotor of the secondary excitation generator is stopped, the current flowing to the thyristor is reduced, and the thyristor is turned off, so that the secondary excitation power generation Enable the system to generate electricity. Details of the embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の実施例1の構成を示す回路図である。ここでは風力用の発電機を例に説明するが、揚水発電等その他の用途にも適用可能である。   FIG. 1 is a circuit diagram showing a configuration of a first embodiment of the present invention. Here, a wind power generator will be described as an example, but it can also be applied to other uses such as pumped-storage power generation.

まずは、図1の発電電力を出力する回路および装置について説明する。風力発電機は、二次励磁型の発電機で、二次励磁型発電機9の固定子側の巻線は、外部信号で開閉可能な例えば固定子側の遮断器2に接続される。また遮断器2は変換器側の遮断器3と電力系統1に接続される。遮断器3は例えばY結線された変換器側のコンデンサ5および変換器側のリアクトル4を介して系統側の電力変換器6の交流側に接続される。系統側の電力変換器6の直流側は平滑コンデンサを介して回転子側の電力変換器7の直流側に接続される。回転子側の電力変換器7の交流側は、回転子側のリアクトル8を介して二次励磁型の発電機9の回転子巻線に接続される。   First, the circuit and device for outputting the generated power in FIG. 1 will be described. The wind power generator is a secondary excitation generator, and the stator side winding of the secondary excitation generator 9 is connected to, for example, the stator side circuit breaker 2 that can be opened and closed by an external signal. The circuit breaker 2 is connected to the circuit breaker 3 on the converter side and the power system 1. The circuit breaker 3 is connected to the AC side of the power converter 6 on the system side through a converter-side capacitor 5 and a converter-side reactor 4 that are Y-connected, for example. The DC side of the power converter 6 on the system side is connected to the DC side of the power converter 7 on the rotor side through a smoothing capacitor. The AC side of the rotor-side power converter 7 is connected to the rotor winding of the secondary excitation generator 9 via the rotor-side reactor 8.

また前記回転子側の電力変換器7の交流側に並列に整流器10の交流側が接続され、整流器10の直流側はサイリスタ11に接続される。二次励磁型発電機9の回転子は、ギアやクラッチなどを介して風力発電用の風車20に接続されており、風の力を受けて回転する。系統側の電力変換器6と回転子側の電力変換器7は、例えば、電力半導体のスイッチング素子(GTO,IGBT,パワーMOSFETなど)を用いて構成されており、それぞれ、交流を直流、直流を交流に変換する機能を備えている。   The AC side of the rectifier 10 is connected in parallel to the AC side of the power converter 7 on the rotor side, and the DC side of the rectifier 10 is connected to the thyristor 11. The rotor of the secondary excitation generator 9 is connected to a wind turbine 20 for wind power generation via a gear, a clutch, and the like, and rotates by receiving wind force. The power converter 6 on the system side and the power converter 7 on the rotor side are configured using, for example, power semiconductor switching elements (GTO, IGBT, power MOSFET, etc.). It has a function to convert to alternating current.

次に、発明が解決しようとする課題で述べたサイリスタ11がオンを継続する原因について説明する。電力系統の擾乱により二次励磁型発電機9の回転子巻線に過大な電流が発生し回転子側の電力変換器7に過大な電流が流れ込み回転子側の電力変換器7にストレスがかかる。回転子側の電力変換器7のストレスを軽減するため、クローバ回路内のサイリスタ11をオンし回転子巻線の過大な電流をサイリスタ11に流す。サイリスタ11をオンすると同時に固定子側の遮断器2を開放し、二次励磁型発電機9を電力系統1から切り離すが、二次励磁型発電機9の固定子の鉄心には残留磁束が残るため、二次励磁型発電機9の回転子が回転していると二次励磁型発電機9の回転子巻線には電圧が励起される。二次励磁型発電機9の回転子巻線の電圧が整流器10を介してサイリスタ11に電圧が印加されるため、二次励磁型発電機9が回転を継続するとサイリスタ11がオンを継続する。   Next, the reason why the thyristor 11 described in the problem to be solved by the invention continues to be turned on will be described. Due to the disturbance of the power system, an excessive current is generated in the rotor winding of the secondary excitation generator 9, an excessive current flows into the power converter 7 on the rotor side, and stress is applied to the power converter 7 on the rotor side. . In order to reduce the stress of the power converter 7 on the rotor side, the thyristor 11 in the crowbar circuit is turned on, and an excessive current of the rotor winding is passed through the thyristor 11. At the same time that the thyristor 11 is turned on, the circuit breaker 2 on the stator side is opened, and the secondary excitation generator 9 is disconnected from the power system 1, but residual magnetic flux remains in the iron core of the stator of the secondary excitation generator 9. Therefore, when the rotor of the secondary excitation generator 9 is rotating, a voltage is excited in the rotor winding of the secondary excitation generator 9. Since the voltage of the rotor winding of the secondary excitation generator 9 is applied to the thyristor 11 via the rectifier 10, the thyristor 11 continues to be turned on when the secondary excitation generator 9 continues to rotate.

次に、本発明の実施例1で二次励磁発電システムが発電を再開できるようにする構成を説明する。サイリスタ11がオンを継続する原因は、二次励磁型発電機9が回転を継続していることにある。よって、サイリスタ11がオフするために、例えば、風車20の回転を風車20の翼に風を受けないよう翼のピッチを変化することで二次励磁型発電機9の回転子の回転を停止させて、回転子巻線に励起される電圧を低減し、サイリスタに流れる電流がサイリスタの保持電流以下にしてサイリスタ11がオフすることで、回転子側の電力変換器7を運転できるようにして、二次励磁発電システムが発電を再開できるように制御する。   Next, a configuration that allows the secondary excitation power generation system to resume power generation in Embodiment 1 of the present invention will be described. The reason why the thyristor 11 continues to be on is that the secondary excitation generator 9 continues to rotate. Therefore, in order to turn off the thyristor 11, for example, the rotation of the rotor of the secondary excitation generator 9 is stopped by changing the pitch of the blade so that the rotation of the windmill 20 does not receive wind on the blade of the windmill 20. Thus, the voltage excited in the rotor winding is reduced, the current flowing through the thyristor is made equal to or lower than the holding current of the thyristor, and the thyristor 11 is turned off, so that the power converter 7 on the rotor side can be operated, Control so that the secondary excitation power generation system can resume power generation.

図2は本発明の実施例2の構成を示す回路図である。実施例1と同様に風力用の発電機を例に説明するが、揚水発電等その他の用途にも適用可能である。   FIG. 2 is a circuit diagram showing the configuration of Embodiment 2 of the present invention. A wind power generator will be described as an example in the same manner as in the first embodiment, but it can also be applied to other uses such as pumped-storage power generation.

まずは、図1と図2の構成の相違点を説明する。図2は図1の構成に回転子側短絡用の接触器12が追加されている点が異なる。   First, differences between the configurations of FIGS. 1 and 2 will be described. FIG. 2 differs from the configuration of FIG. 1 in that a contactor 12 for short-circuiting the rotor is added.

次に、本発明の実施例2の二次励磁発電システムが発電を再開できるようにする構成を説明する。二次励磁型発電機9の回転子が回転していると二次励磁型発電機9の回転子巻線には電圧が励起されるが、二次励磁型発電機9の回転子巻線の電圧が整流器10を介してサイリスタ11に電圧が印加されるため、サイリスタ11がオンを継続する。そこで、回転子側短絡用の接触器12で二次励磁型発電機9の回転子巻線を短絡することで、サイリスタ11に印加される電圧を低減し、サイリスタに流れる電流がサイリスタの保持電流以下にしてサイリスタ11がオフすることで、回転子側の電力変換器7を運転できるようにして、二次励磁発電システムが発電を再開できるよう制御する。   Next, a configuration that enables the secondary excitation power generation system according to the second embodiment of the present invention to resume power generation will be described. When the rotor of the secondary excitation generator 9 is rotating, a voltage is excited in the rotor winding of the secondary excitation generator 9, but the rotor winding of the secondary excitation generator 9 Since the voltage is applied to the thyristor 11 via the rectifier 10, the thyristor 11 continues to be turned on. Therefore, the voltage applied to the thyristor 11 is reduced by short-circuiting the rotor winding of the secondary excitation generator 9 with the contactor 12 for short-circuiting on the rotor side, and the current flowing through the thyristor is reduced to the holding current of the thyristor. In the following, the thyristor 11 is turned off, so that the power converter 7 on the rotor side can be operated, and control is performed so that the secondary excitation power generation system can resume power generation.

このように、実施例2では、二次励磁型発電機9の回転子を停止させることなく、二次励磁発電システムが発電を再開できる利点を有する。   As described above, the second embodiment has an advantage that the secondary excitation power generation system can resume power generation without stopping the rotor of the secondary excitation generator 9.

図3は本発明の実施例3の構成を示す回路図である。実施例1と同様に風力用の発電機を例に説明するが、揚水発電等その他の用途にも適用可能である。   FIG. 3 is a circuit diagram showing a configuration of Embodiment 3 of the present invention. A wind power generator will be described as an example in the same manner as in the first embodiment, but it can also be applied to other uses such as pumped-storage power generation.

まずは、図1と図3の構成の相違点を説明する。図3は図1の構成に整流器切離用接触器13が追加されている点が異なる。   First, differences between the configurations of FIGS. 1 and 3 will be described. FIG. 3 is different from the configuration of FIG. 1 in that a rectifier disconnecting contactor 13 is added.

次に、本発明の実施例3の二次励磁発電システムが発電を再開できるようにする構成を説明する。整流器切離用の接触器13で二次励磁型発電機9の回転子巻線から整流器10とサイリスタ11から切り離すことで、サイリスタ11に印加される電圧を低減するし、サイリスタ11がオフすることで、回転子側の電力変換器7を運転できるようにして、二次励磁発電システムが発電を再開できるよう制御する。   Next, a configuration that enables the secondary excitation power generation system according to the third embodiment of the present invention to resume power generation will be described. By separating the rectifier 10 and the thyristor 11 from the rotor winding of the secondary excitation generator 9 with the contactor 13 for separating the rectifier, the voltage applied to the thyristor 11 is reduced and the thyristor 11 is turned off. Thus, the rotor-side power converter 7 can be operated so that the secondary excitation power generation system can resume power generation.

実施例3も実施例2同様に、二次励磁型発電機9の回転子を停止させることなく、二次励磁発電システムが発電を再開できる利点を有する。   Similarly to the second embodiment, the third embodiment has an advantage that the secondary excitation power generation system can resume power generation without stopping the rotor of the secondary excitation generator 9.

図4は本発明の実施例4の構成を示す回路図である。実施例1と同様に風力用の発電機を例に説明するが、揚水発電等その他の用途にも適用可能である。   FIG. 4 is a circuit diagram showing the configuration of Embodiment 4 of the present invention. A wind power generator will be described as an example in the same manner as in the first embodiment, but it can also be applied to other uses such as pumped-storage power generation.

まずは、図1と図4の構成の相違点を説明する。図4は図1の構成に転流回路14が追加されている点が異なる。   First, differences between the configurations of FIGS. 1 and 4 will be described. FIG. 4 is different from the configuration of FIG. 1 in that a commutation circuit 14 is added.

次に、本発明の実施例4の二次励磁発電システムが発電を再開できるようにする構成を説明する。サイリスタ11に流れる電流を全て転流回路14側に流し、サイリスタ11がオフすることで、回転子側の電力変換器7を運転できるようにして、二次励磁発電システムが発電を再開できるよう制御する。   Next, a configuration that enables the secondary excitation power generation system according to the fourth embodiment of the present invention to resume power generation will be described. All current flowing through the thyristor 11 is passed to the commutation circuit 14 side, and the thyristor 11 is turned off so that the power converter 7 on the rotor side can be operated, and control is performed so that the secondary excitation power generation system can resume power generation. To do.

実施例4も実施例2同様に、二次励磁型発電機9の回転子を停止させることなく、二次励磁発電システムが発電を再開できる利点を有する。   Similarly to the second embodiment, the fourth embodiment has an advantage that the secondary excitation power generation system can restart the power generation without stopping the rotor of the secondary excitation generator 9.

図5は、実施例5の構成を示す回路図である。実施例1と同様に風力用の発電機を例に説明するが、揚水発電等、その他の用途にも適用可能である。   FIG. 5 is a circuit diagram showing a configuration of the fifth embodiment. A wind power generator will be described as an example in the same manner as in the first embodiment, but it can also be applied to other uses such as pumped-storage power generation.

まずは、図1と図5の構成の相違点を説明する。図5は図1の構成に系統側の電力変換器6と回転子側の電力変換器7の直流側から放電抵抗15を介してクローバ回路のサイリスタ11に並列に接続されたエネルギー消費装置16が追加されている点が異なる。   First, differences between the configurations of FIGS. 1 and 5 will be described. FIG. 5 shows an energy consuming device 16 connected in parallel to the thyristor 11 of the crowbar circuit from the DC side of the power converter 6 on the system side and the power converter 7 on the rotor side through the discharge resistor 15 in the configuration of FIG. Differences are added.

次に、本発明の実施例5の構成,動作を説明する。停止時に系統側の電力変換器6と回転子側の電力変換器7間の直流側にある平滑コンデンサ17の電荷を放電するために、放電抵抗15を介してサイリスタ11またはエネルギー消費装置16を動作させて平滑コンデンサ17の電荷を放電させる。サイリスタ11をオンさせて平滑コンデンサ17の電荷を放電した場合、実施例1のように二次励磁型発電機9の回転子を停止させることにより、サイリスタ11をオフする必要がある。しかしながら、エネルギー消費装置16で平滑コンデンサ17の電荷を放電した場合、エネルギー消費装置16内のスイッチング素子18にパイポーラトランジスタ,IGBT,パワーMOSFETなどの自己消弧型スイッチング素子を用いている場合は、スイッチング素子18に印加される電圧に関係なくスイッチング素子18をオフすることができるため、二次励磁型発電機9の回転子を停止させることなく、二次励磁型発電システムが発電を再開することを実現できる。   Next, the configuration and operation of Embodiment 5 of the present invention will be described. In order to discharge the electric charge of the smoothing capacitor 17 on the DC side between the power converter 6 on the system side and the power converter 7 on the rotor side during the stop, the thyristor 11 or the energy consuming device 16 is operated via the discharge resistor 15. Thus, the electric charge of the smoothing capacitor 17 is discharged. When the charge of the smoothing capacitor 17 is discharged by turning on the thyristor 11, it is necessary to turn off the thyristor 11 by stopping the rotor of the secondary excitation generator 9 as in the first embodiment. However, when the charge of the smoothing capacitor 17 is discharged by the energy consuming device 16, when a self-extinguishing type switching element such as a bipolar transistor, IGBT, or power MOSFET is used as the switching element 18 in the energy consuming device 16, Since the switching element 18 can be turned off regardless of the voltage applied to the switching element 18, the secondary excitation type power generation system can restart power generation without stopping the rotor of the secondary excitation type generator 9. Can be realized.

本発明の二次励磁型発電システムは、風力用の発電機システム以外にも、揚水発電システム等その他の二次励磁型発電機を利用した発電システムに適用可能である。   The secondary excitation type power generation system of the present invention can be applied to a power generation system using other secondary excitation type generators such as a pumped storage power generation system in addition to a wind power generator system.

1 電力系統
2 固定子側遮断器
3 変換器側遮断器
4 変換器側リアクトル
5 変換器側コンデンサ
6 系統側の電力変換器
7 回転子側の電力変換器
8 回転子側リアクトル
9 二次励磁型発電機
10 整流器
11 サイリスタ
12 回転子側短絡用接触器
13 整流器切離用接触器
14 転流回路
15 放電抵抗
16 エネルギー消費装置
17 平滑コンデンサ
18 スイッチング素子
DESCRIPTION OF SYMBOLS 1 Electric power system 2 Stator side circuit breaker 3 Converter side circuit breaker 4 Converter side reactor 5 Converter side capacitor 6 System side power converter 7 Rotor side power converter 8 Rotor side reactor 9 Secondary excitation type Generator 10 Rectifier 11 Thyristor 12 Rotor side short-circuit contactor 13 Rectifier disconnecting contactor 14 Commutation circuit 15 Discharge resistor 16 Energy consumption device 17 Smoothing capacitor 18 Switching element

Claims (2)

二次励磁型発電機の回転子側の巻線に回転子側の変換器が接続され、前記二次励磁型発電機の固定子側の巻線に電力系統から切り離すための遮断器が接続され、該変換器に並列にダイオードを通してサイリスタを接続した二次励磁型発電システムにおいて、前記サイリスタを点弧にするに伴って前記遮断器を開放し、前記サイリスタを点弧した後、前記固定子の鉄心に残る残留磁束に抗して、前記回転子巻線に励起される電圧が低減されて前記サイリスタに流れる電流が保持電流以下になるように前記二次励磁型発電機の回転を停止することを特徴とする二次励磁型発電システム。 A rotor-side converter is connected to the rotor-side winding of the secondary excitation generator, and a circuit breaker for disconnecting from the power system is connected to the stator-side winding of the secondary excitation generator. In a secondary excitation type power generation system in which a thyristor is connected in parallel to the converter through a diode, the circuit breaker is opened as the thyristor is ignited, and after the thyristor is ignited , The rotation of the secondary excitation generator is stopped so that the voltage excited in the rotor winding is reduced against the residual magnetic flux remaining in the iron core so that the current flowing through the thyristor is less than the holding current. Secondary excitation type power generation system characterized by 請求項1の二次励磁型発電システムにおいて、 前記二次励磁型発電機に接続された風車に対して、該風車の翼ピッチを変化させて前記二次励磁型発電機の回転を停止することを特徴とする二次励磁型発電システム。 The secondary excitation power generation system according to claim 1, wherein the rotation of the secondary excitation generator is stopped by changing a blade pitch of the wind turbine with respect to the wind turbine connected to the secondary excitation generator. Secondary excitation type power generation system characterized by
JP2009196217A 2009-08-27 2009-08-27 Secondary excitation type power generation system Expired - Fee Related JP5409197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009196217A JP5409197B2 (en) 2009-08-27 2009-08-27 Secondary excitation type power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009196217A JP5409197B2 (en) 2009-08-27 2009-08-27 Secondary excitation type power generation system

Publications (2)

Publication Number Publication Date
JP2011050167A JP2011050167A (en) 2011-03-10
JP5409197B2 true JP5409197B2 (en) 2014-02-05

Family

ID=43835939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009196217A Expired - Fee Related JP5409197B2 (en) 2009-08-27 2009-08-27 Secondary excitation type power generation system

Country Status (1)

Country Link
JP (1) JP5409197B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102957163A (en) * 2011-08-23 2013-03-06 台达电子企业管理(上海)有限公司 Direct-current chopper and direct-current chopping method for doubly-fed induction generator system
US20130057227A1 (en) * 2011-09-01 2013-03-07 Ingeteam Technology, S.A. Method and apparatus for controlling a converter
CN105071430B (en) * 2015-07-22 2018-09-18 天津瑞能电气有限公司 Inhibit the method that Crowbar circuits damage in double-fed fan motor unit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06245597A (en) * 1993-02-12 1994-09-02 Toshiba Corp Overvoltage protecting device
JPH11215896A (en) * 1998-01-22 1999-08-06 Mitsubishi Electric Corp Overvoltage suppressing device of variable speed generator-motor
JP4365394B2 (en) * 2006-09-20 2009-11-18 株式会社日立製作所 Wind power generation system and operation method thereof

Also Published As

Publication number Publication date
JP2011050167A (en) 2011-03-10

Similar Documents

Publication Publication Date Title
Nøland et al. Excitation system technologies for wound-field synchronous machines: Survey of solutions and evolving trends
Jlassi et al. Multiple open-circuit faults diagnosis in back-to-back converters of PMSG drives for wind turbine systems
US9837824B2 (en) Connection system for power generation system with DC output
US9577557B2 (en) Turbine-generator system with DC output
JP5967299B2 (en) Power conversion apparatus and control method thereof
JP5672301B2 (en) Wind power generation system and control method for wind power generation system
JP6755388B2 (en) Drive device for multi-group multi-phase rotary electric machine
CN104040171A (en) Wind power generating system
US9088150B2 (en) Overvoltage clipping device for a wind turbine and method
Catuogno et al. Fault-tolerant inverter for power flow control in variable-speed four-wire permanent-magnet generators
Leng et al. Smart grid connection of an induction motor using a three-phase floating h-bridge system as a series compensator
JP5331662B2 (en) Converter for power generated by natural energy
JP5409197B2 (en) Secondary excitation type power generation system
JP5008751B2 (en) Power supply
CN113162354A (en) Brushless electric excitation synchronous generator with wide rotating speed range
Pallantla et al. Comparison and evaluation of the different brushless excitation topologies for synchronous machines-A literature survey
EP3644485B1 (en) Control of an electrical power system responsive to sensing a ground fault
CN105207334B (en) System for supplying power to a load and corresponding power supply method
JP2015126608A (en) Vehicle power control device
Samoylenko et al. Semiconductor power electronics for synchronous distributed generation
Gwóźdź et al. Generator with modulated magnetic flux for wind turbines
EP3308438B1 (en) Fault current enhancement for energy resources with power electronic interface
Chakraborty et al. A new series of brushless and permanent magnetless synchronous machines
JP6453107B2 (en) Power generation system
Nikouie et al. Operation under fault conditions of the stacked polyphase bridges converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131105

LAPS Cancellation because of no payment of annual fees