JP2004240909A - 画像処理装置及び画像処理方法 - Google Patents
画像処理装置及び画像処理方法 Download PDFInfo
- Publication number
- JP2004240909A JP2004240909A JP2003031964A JP2003031964A JP2004240909A JP 2004240909 A JP2004240909 A JP 2004240909A JP 2003031964 A JP2003031964 A JP 2003031964A JP 2003031964 A JP2003031964 A JP 2003031964A JP 2004240909 A JP2004240909 A JP 2004240909A
- Authority
- JP
- Japan
- Prior art keywords
- image
- template
- images
- correlation value
- weighting factor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Closed-Circuit Television Systems (AREA)
- Editing Of Facsimile Originals (AREA)
- Image Analysis (AREA)
Abstract
【解決手段】2画像間の相関を求める画像処理装置であって、一方の画像21(テンプレート)を2つ以上の画像領域に分割するための座標情報に基づいて、分割画像領域毎に重み係数を設定する。2画像(テンプレート21と被照合画像23)を構成する画素のデータから相関演算に用いる要素項を演算する。要素項は重み係数により重み付けされる。重み付け要素項から前記2画像の相関値が算出される。
【選択図】 図1
Description
【発明の属する技術分野】
本発明は、画像処理装置、特に2画像間の相関を求める画像処理装置及び画像処理方法に関する。
【0002】
【従来の技術】
近年、デジタルカメラ,ビデオカメラ等の撮像装置、画像処理に用いるマイクロプロセッサ,FPGAなどを搭載した演算装置が高性能化している。それに伴い、撮像装置で撮影した画像の中の特徴物を抽出する画像処理が可能となり、このような画像処理機能を有する装置を搭載した応用システムが実用化されている。
【0003】
例えば、車番認識機能を搭載した渋滞監視システム、顔認識機能を搭載した防犯装置などがそれにあたる。
【0004】
このような特徴物の画像抽出は、抽出対象となる特徴物の画像を、画像照合用のテンプレートとして登録しておき、そのテンプレートと一致する画像を、撮影した画像(入力画像)の中から探索することにより行われる。このような方法はパターンマッチング法と呼ばれている。
【0005】
具体的には、テンプレートと同サイズの画像領域を入力画像から被照合画像として取り出し、テンプレートと被照合画像の各画素の輝度値を比較して、両者の一致度を求める。通常は、被照合画像は、入力画像より小さいために、入力画像の始点から終点まで1画素単位で被照合画像(走査領域)をずらしていき、各被照合画像ごとにテンプレートと比較(照合)して両者の一致度を求め、最も一致度の高い被照合画像を選び出す。
【0006】
テンプレートを利用して画像の一致度を求める手法としては、単純に画像間の輝度比較を行う輝度差分法、各画素の座標を極座標系に変換し、極座標上での形状により線図形を認識するハフ変換法、画像を標準偏差を用いて正規化した後に画像間の相関を求める正規化相関法などが提案されている。
【0007】
この中でも正規化相関法は、画像抽出が必要とされる環境で発生しやすい「環境光変動による画像間の輝度変動」に影響されない手法として広く利用されている。
【0008】
正規化相関法は、相関係数を利用して画像間の一致度を算出するものである。相関係数R(x,y)は、被照合画像の輝度平均値をf(xy)ave、テンプレートの輝度平均値をtaveとすると、次式のように定義される。
【0009】
【数1】
【0010】
ここで、f(y+m、x+n)は被照合画像の輝度値、t(m、n)はテンプレートの輝度値、x,yは被照合画像の座標値、m,nはテンプレートの座標値である。
【0011】
相関係数は、テンプレートの画像サイズM×N画素の範囲で、被照合画像とテンプレートの間で求められる。
【0012】
この相関係数は、画像の平均値成分を合わせ、平均値からの分散を正規化している。相関係数R(x,y)は、比較される2画像間の相関が高ければ1.0に近づき、低ければ−1.0に近づく。
【0013】
相関係数は、画像の平均値成分の違いや平均値からのデータ分散値の差の違いによる影響を受けないので、テンプレートと入力画像を撮影した照明条件が異なる場合においても有効に機能する特徴を有している。
【0014】
しかし、従来の正規化相関法は、比較する画像間の各画素の一致度を均一、すなわち重み付けすることなく累積して相関値を求める手法であるため、入力画像(サーチ対象画像)内にテンプレートに類似する画像(以下、「類似画像」と称する)が含まれている場合には、入力画像の画質の変動により誤検出することもある。
【0015】
このような誤検出は、画像間の相関を求める場合に、比較すべき画素について全て均一に一致度を計算していることから生じている。
【0016】
特に、テンプレートと類似画像を比較する場合に、比較すべき画素が、画像内の差分(差異)のある画像領域(以下、「差分領域」とする)に含まれている場合でも、差分のない画像領域に含まれている場合であっても、均一に一致度を計算すると次のような問題が生じる。
【0017】
例えば、サーチ対象となる入力画像中に、テンプレートと本来一致すべき被照合画像(すなわち、画質劣化などのノイズ要素がなければテンプレートと同一であるべき画像で、ここでは「同一画像」とする)と、それに類似する被照合画像(ここでは「類似画像」とする)がある場合について述べる。同一画像と類似画像の差が小さく、すなわち画像面積に対して画像同士の差分のある領域(差分領域)の占める割合が小さい場合は、両者の相関値が非常に似た値になる。その結果、入力画像が、撮像装置の特性や撮影環境の変化が原因で画質劣化した場合には、その画質劣化が影響して、類似画像の方が同一画像よりも、テンプレートとの一致度が高くなって、誤検出が発生することもあった。
【0018】
このような正規化相関法の問題を解決する手法として、テンプレートマスク手法と特開2000−342558号公報に開示された手法がある。
【0019】
テンプレートマスク手法では、テンプレートに対して同一の画像及び類似画像に共通して含まれている領域に、マスクを施し、その領域の相関値計算を行わない。それによって、背景のような領域が相関値に与える影響を無くしている。
【0020】
これに対して、特開2000−342558号公報に開示されている画像処理方法は、同一被写体を時間的にずらして撮像した2画像を位置合わせする場合に、両者の相対的な位置ずれを、両画像の類似度(一致度;相関値)から検出して位置ずれを修正する技術である。
【0021】
この技術は、2画像の一方の画像を複数の領域に分割し、分割された画像領域(部分領域)毎に、もう一方の画像内の対応する領域との類似度(部分領域類似度)を求める。その後に、各部分領域類似度を、各部分領域に対して設定された重み係数を用いて重み付けを行うことにより、2画像間の全体の類似度(相関値)を求めている。この手法は、テンプレートとそれと比較すべき画像との間の差分のある画像領域の重み付けを大きく、それ以外の画像領域の重み付けを小さく設定して、両画像の相関値を求めることにより、特徴領域の大小に関わらず、精度の高いテンプレートマッチングが実現できる。
【特許文献1】特開2000−342558号公報
【発明が解決しようとする課題】
上記した従来技術において、特開2000−342558号公報に開示されている画像処理方法は、精度の高い相関値を算出できるが、画像の分割数によって、演算処理量、回路規模が増加する。
【0022】
本発明の目的は、上記したような比較すべき画像を複数画像に分割して画像領域に重み付けを行う画像処理方式において、正規化相関の演算処理量と回路規模を増加させることなく、パターンマッチング精度を高めることにある。
【0023】
【課題を解決するための手段】
本発明は、基本的には、相関値を求める2画像の一方の画像(テンプレート)を、複数画像に分割して画像領域に重み付けを行う画像処理方式を採用する。
【0024】
その特徴とするところは、従来の重み付け画像処理〔分割された部分領域ごとの要素項演算(相関値演算に用いる要素データ)→各部分領域ごとの類似度(相関値)演算→各部分領域類似度の重み付け演算及びそれらの和の演算〕と手順の異なる演算処理方式を提案する。すなわち、本発明は、相関値演算に先立って、相関値演算に用いる要素データ(要素項或いは要素)演算の過程で、要素項或いは要素に部分領域(テンプレートの分割領域)の重み係数を用いて重み付けし(重み付け要素データ演算)、その重み付け要素データを用いて相関値演算をするものである。その利点は、実施例の項で説明する。
【0025】
【発明の実施の形態】
図1は、本発明に係る画像処理装置の基本的原理を示す説明図である。
【0026】
図1(a)は、画像処理装置に入力した撮像画像(入力画像;サーチ対象画像となる画像)20の一例である。その画像の中には、本来の画像(ここでは、数字図形により示している)と、ノイズ(点状の模様で示す)とが混在しているものとする。ここでは、符号の23(仮想線で囲む領域)が探索すべき画像(図1(b)に示すテンプレート21と一致する画像)である。仮想線で囲む領域23すなわちテンプレート21と同サイズの領域を、入力画像20中の1回あたりの走査領域とする。走査領域は、入力画像20中を始点から終点まで1画素単位で順次移動させていく。
【0027】
図1(b)は、本発明の画像処理装置100の概念図とテンプレート21を示すものである。テンプレート21は、2以上に分割され(ここでは、一例として3つに分割されたものを表示する)、各分割領域に応じた重み係数を、分割した座標情報に基づいて設定している。
【0028】
図1の例では、▲1▼2画像(一方の画像はテンプレート21、もう一方の画像は走査領域23の被照合画像)の平均輝度値と、2画像を構成する画素の輝度値とから要素データ(例えば正規化相関演算に用いる要素項或いは要素)を算出すると共に、要素データに各分割領域の重み係数を用いて重み付けを行う。
【0029】
ここでは、正規化相関演算に用いる要素項演算は、3つの要素項演算1,2,3を使用するものを例示している。例えば、要素項演算1は、後述する数式5の要素項S1を演算し、要素項演算2は、数式6の要素項S2を演算し、要素項3は数式7の要素項S3を演算する。なお、要素項S1は、後述する数式2の正規化相関演算式の分子をなし、要素項S2,S3は、同じく数式2の分母をなしている。要素項の数或いは要素の数、及びそれに対応する演算部の数は、相関演算式の種類によって様々であるので、その数は、限定されるものではない。
▲2▼そして、算出された重み付け要素データ(要素項或いは要素)を用いて相関演算を行うことにより、2画像間の相関値(一致度;類似度)が算出される。
【0030】
図1の例では、入力画像20内の領域23(テンプレート21と同サイズ領域で入力画像20中を1画素単位で移動していく)を走査する過程で、座標情報に基づいて、対応するテンプレート21の分割領域の重み係数が選択される。すなわち、領域23を走査する過程で、重み係数は、対応する分割領域に応じて切り替わる。
【0031】
図1(a)において、テンプレート21と最も類似する画像は、同一画像23を除けば、仮想枠線23´の領域で囲まれた画像であり、この類似画像23´とテンプレート21とで最も差別化を強調したい分割領域は、21´の領域(図1(b)参照)であるので、領域21´の重み係数をその他の分割領域よりも大きくしてある。
【0032】
図2に、本発明の比較例を示す。この例は、図1と同様の2画像間の相関を求める場合に、特開2000−342558号公報の考えを導入させたものである。この場合には、入力画像中の走査は、テンプレートを分割して(分割されたテンプレートをA,B,Cとする)、被照合画像も、それぞれのテンプレートA,B,Cに対応して分けて、次のような相関演算処理を行う。▲1▼被照合画像と各テンプレートA,B,Cとの相関演算に用いる要素項演算1,2,3(図1の要素項演算1,2,3に対応するもの)と、▲2▼それに基づく相関演算を、テンプレートA,B,Cごとに個別に行う(この時点では、重み付けは行われていない)。▲3▼その後に各相関値を重み付けし、各重み付け相関値の和を演算して全体の相関値Rを求める。
【0033】
上記説明および図1,2の説明からも明らかなように、本発明によれば、要素データ(要素項或いは要素)演算と相関値演算を、比較例に比べて処理量を少なくして実行することができ、正規化相関の演算処理量と回路規模の減少を図り、しかも、パターンマッチング精度を高精度に維持することができる。
【0034】
【実施例】
以下、本発明の画像処理装置に係る実施例について、図3以降の図面により説明する。
(実施例1)
図3は、本発明の第1実施例のブロック図であり、基本的には、図1の実施例と変わるものではない。
【0035】
本実施例における画像処理装置100は、重み係数設定部10と、要素項演算部11と、相関値演算部12とで構成される。
【0036】
画像処理装置は、撮像した画像をサーチ対象の画像20として入力する。また、サーチ対象画像20と照合するための画像を、テンプレート21として入力する。
【0037】
テンプレート21は、2つ以上の画像領域に分割され(詳細は後述する)、この分割した座標情報に基づいて、重み係数設定部10に分割領域毎の重み係数が設定される。
【0038】
要素項演算部(要素データ演算部)11は、照合すべき2画像、すなわちテンプレート21とサーチ対象画像20内からピックアップした走査画像(詳細は後述する)23との画素データ(例えば、輝度値)から2画像間の相関値演算に用いる要素項を算出し、かつ、この要素項に重み係数を用いて重み付けを行うことにより、重み付け要素項を算出する。
【0039】
相関値演算部12は、重み付けされた要素項に基づき前記2画像間の相関値を演算する。
【0040】
サーチ対象画像20の一例を図4(a)に示し、テンプレート21の一例を図4(b)に示す。サーチ対象画像20は、テンプレート21と同一の画像とその他の画像(類似画像など)を含むものであり、テンプレート21より面積が広い。
【0041】
このサーチ対象画像20の中を走査することにより、テンプレート21と照合すべき画像(被照合画像;走査画像)23を取り出す。この走査は、1回あたりの走査領域23をテンプレート21と同サイズにして、その走査領域23をサーチ対象画像20の始点Stから終点Edまで1画素単位で移動させていく。
【0042】
画像処理装置100は、上記走査で得られた各走査領域23の画像を、テンプレート21とパターンマッチング処理して、最も一致度の高い走査領域の位置を検出する画像位置検出部(画像探索機能)17を有する。
【0043】
重み係数設定部10は、サーチ対象画像20の走査の過程で、対応する分割領域(テンプレート)の重み係数を座標情報13によって選択する機能を有し、重み係数選択部とも称される。すなわち、重み係数は、サーチ対象画像20の走査過程で走査点の位置に応じて、座標情報13に基づき自動的に変更される。
【0044】
演算処理装置100は、上記構成をなすことにより、数式2に示す演算処理を行うものである。
【0045】
【数2】
【0046】
数式2は、基本的には数式1と同様の正規化相関法により定義されるものであるが、相関係数R(x,y)を求めるに際に、各要素項が重み係数C(m,n)により重み付けされている点が異なる。
【0047】
ここで、重み係数C(m,n)を設定する理由を、図4〜図7を参照して説明する。
【0048】
図4(c)は、図4(a)のサーチ対象画像20について、テンプレート21を用いて、従来例の数式1の正規化相関係数演算により求めたパターンマッチング結果22を示している。
【0049】
図4(a)のサーチ対象画像20の中には、テンプレート21に一致する1つの画像と、これに類似する3つの画像が含まれている。
【0050】
これらの画像を取り出したものを図5に示す。図5(a)がテンプレート21と一致する画像(以下、「一致画像」と称する)30、図5(b)〜(c)がテンプレートに類似した画像31,32,33である。
【0051】
図4(c)は数式1の正規化相関演算式を用いて、図4(a)のサーチ対象画像20中の各画像領域30〜33(図5参照)のテンプレート21に対する一致度を示したものである。図4(c)によると、テンプレート21と一致する領域が大きいほど相関値が高くなっているのが分かる。
【0052】
数式1の正規化相関演算式では、各画素の一致度が均一に計算されている。テンプレート21とサーチ対象画像20内の走査画像23との画質が全く一致しているのであれば、この均一さが悪く働くことはない。
【0053】
しかしながら、撮影環境や、撮像装置の特性の問題により、サーチ対象画像20もしくはテンプレート21に画質劣化が生じた場合、この均一さが原因で類似画像31,32,33と一致画像30の相関係数の大小関係が逆転してしまうことがある。
【0054】
例えば図6(a)のようにサーチ対象画像20にまだらな影40が映りこんだ場合には、図6(b)に示すように、テンプレート21に最も類似した画像33とテンプレート21の差分(差異)41よりも、一致画像30に影が移りこんだ画像42とテンプレート21との差分43の方が大きくなり、図6(c)のように相関値の大小関係が逆転してしまう。パターンマッチングに利用するサーチ対象画像は画質が変化しやすい環境で取得される場合が多く、図6(a)に示すような例は珍しくない。
【0055】
このような逆転現象をなくすために、テンプレート21(一致画像30)の中で類似画像と差分のある領域(以下、「差分画像」とする。)については、その他の領域よりも、その差分を強調するために、その他の領域から分けて(すなわち、テンプレート21の領域を分割して)、重み係数C(m,n)を領域単位、もしくは画素単位で座標情報を伴って設定する。図7は、テンプレート21を、類似画像33に対して差分の大きい領域51と差分のない(或いは差分の小さい)領域50とに分割したものである。
【0056】
座標情報13は、図7に示すような差分領域51とそれ以外の画像領域50を分割するためのものである。また、差分領域の形状が楕円や、三角形などの形状の場合は、数式による座標情報でもよいし、差分画像とその他の画像を判別するための選択情報を画像化したものでもよい。また、2つ以上の差分領域があっても同様であり、各領域に対して重み係数を設定することができる。座標情報の入力方法および、領域分割数についてはこれを限定しない。
【0057】
図10にテンプレートの設定、テンプレートの分割、及び分割領域での重み係数設定方法を示す。
【0058】
図10において、情報処理装置70は、本発明の画像処理装置100を搭載している。情報処理装置70には、画像入力装置76、ディスプレイ77、情報入力装置78が接続されている。
【0059】
一例として、画像入力装置76はビデオカメラ等の撮像装置、情報入力装置78はマウスである。
【0060】
情報処理装置70は、ビデオカメラ76で撮影した画像20をサーチ対象画像として入力し、ディスプレイ77に出力する。画像20はテンプレート設定画面80に映し出される。
【0061】
オペレータは、テンプレート設定画面80を参照しながら画像20の中から、マウス78(テンプレート設定機能)を利用してテンプレート21を指定する。ここでは、画像30をテンプレート21として指定する。情報処理装置70は、指定されたテンプレート21をRAM73(図9)に格納(登録)し、また、分割領域設定画面(差分領域設定画面)81にテンプレート21を表示する。サーチ対象画像(入力画像)20とテンプレート21は、ディスプレイ77の一画面に表示される。換言すれば、テンプレート設定画面80と分割領域設定画面81は一画面に表示される。
【0062】
オペレータは、分割領域設定画面81中のテンプレート21の中にマウス78を走査しながら、テンプレート21の中に分割領域50,51を設定する。この分割領域50,51は、重み係数を設定するために形成されるものである。ここでは、領域51は、類似画像33との間で差分を生じさせる領域であるので、差分領域と称することもある。上記のようにマウス78,情報処理装置70,分割領域設定画面81は、テンプレートの領域を分割する機能としての役割もなす。
【0063】
分割領域50,51が設定されると、情報処理装置70は分割領域の座標情報をRAM(記憶機能)73に格納する。
【0064】
このようにして、テンプレート21の設定と、テンプレート21の中に分割領域の設定が座標を伴って可能となる。テンプレート21と分割領域の表示および格納の処理は、プログラムにより実行でき、そのプログラムは、図9に示すように、情報処理装置70のRAM73、もしくはROM74に格納される。この処理プログラムは、CPU71のソフトウェア処理にて実行することができる。
【0065】
次に分割領域への重み係数C(m,n)の設定方法について説明する。
【0066】
重み係数設定のひとつの例として、差分領域51の重み係数を任意に設定すると、そのほかの領域50の重み係数も、差分領域51との面積の割合に基づいて設定される方法を提案する。その演算式を数式3に示す。
【0067】
【数3】
【0068】
ここで、Twidth*Theigtは、テンプレート21のサイズ、Fwidth*Fheigtは、差分領域51のサイズで、座標情報13から求めることができる。Caは差分領域51の重み係数、Cdは差分領域以外の重み係数である。
【0069】
差分領域51の重み係数Caを任意に設定することにより、テンプレート21と差分領域51の面積比率から、差分領域以外の画像の重み係数Cdを求めることができる。これにより、差分領域の面積が小さくても差分領域の一致度を強調することができる。
【0070】
重み係数設定部(重み係数選択部)10は、サーチ対象画像20の走査領域(被照合画面)23を走査する時に、対応するテンプレート21の座標(m,n)が差分領域51にあるか否か座標情報13に基づき判断して、重み係数Cd,Caを切り替えて要素項演算部11に出力する(重み係数選択機能)。
【0071】
【数4】
If((m、n)が差分画像座標内) C(m,n)=Ca
Else C(m,n)=Cd
重み係数の設定については任意であり、差分領域51を強調できるようなものであればこれを限定しない。なお、Ca=Cbの場合は、重み付けを行わない相関値演算を行うことができる。また、画像の分割数についても限定しない。強調したい画像順に大きい重みをつけることにより、目的を達成できる。
【0072】
次に要素項演算部11について説明する。
【0073】
要素項演算部11は、テンプレート21を構成する画素の輝度値と、被照合画像23を構成する画素の輝度値とから、相関値計算を行うための要素データ(要素項)を求め、これに重み係数設定部10により選択された重み係数を要素データに掛けて、重み付け要素データを算出する。
【0074】
ここで、サーチ対象画像20およびテンプレート21は、既述の画像入力装置76から得てもよいし、そのほか、予め撮影した画像を情報処理装置70のRAM73に登録しておいてもよい。
【0075】
図8に要素項演算部(要素項演算機能)11の詳細を示したブロック図を示す。
【0076】
図8においては、まず、画像平均値演算部61、62で、テンプレート21と被照合画像23の輝度平均値f(xy)ave,taveを求める。次に要素項演算部63,64,65が、重み係数選択部10からの重み係数C(m,n)と、上記2画像21,23の輝度平均値f(xy)ave,taveおよび輝度データとから、数式5,6,7に示す演算を、それぞれ要素項演算部63,64,65にて行うことにより、重み付け要素項(S1,S2,S3)を生成する。
【0077】
【数5】
【0078】
【数6】
【0079】
【数7】
【0080】
ここで、S1,S2,S3は、重み付けされた要素データ(重み付け要素項)で、数式2に示す各要素項を示している。それぞれの式からC(m,n)で重み付けしているデータが各画素の要素データである。重み付け要素データB(S1,S2,S3)は、相関値演算部12に出力される。
【0081】
相関値演算部(相関値演算機能)12は要素項演算部11からの重み付け要素データB(S1、S2,S3)から数式8に示す演算を行い、2画像間の相関値データ16を求める。
【0082】
【数8】
【0083】
数8式は、数2式と同様のものである。
【0084】
要素項演算部63,64,65は、要素項演算処理が加算,乗算,引算よりなるので、ハードウェアの回路で構成することが可能であるが、相関値演算部12は、相関値演算処理にルート計算及び割り算が入るので、処理能力をアップさせるためには、ソフトウェア(計算プログラム)で構成するのが好ましい。また、要素項演算及び相関値のいずれもソフトウェアで構成することも可能である。
【0085】
本実施例の画像処理装置100は、図9(a)に示すように、例えば、ビデオカメラ等の画像入力装置76、キーボード、マウス等の情報入力装置78およびCRT等の信号出力装置(ここでは、ディスプレイ)77が接続された情報処理制御装置70に、ハードウェアとして搭載することができる。
【0086】
情報処理制御装置70は、CPU、ASIC、メモリ、画像と情報信号の入力および信号出力インターフェースで構成されている。CPU71は、画像データの入力制御や、画像処理装置100の制御を行う。信号入力IF(インターフェース)72は、画像入力装置76からの画像データおよび情報入力装置78からの画像処理に利用するデータを、情報制御装置70に入力する。RAM73は、入力した画像データおよび画像処理に関するデータの蓄積や画像処理結果の保存を行う。ROM74は、画像処理で扱うパラメータや画像処理プログラムを格納する。画像処理装置100は、既述したように対比すべき2画像間の相関処理を行う。信号出力IF75は、画像処理結果をディスプレイ77に出力する。
【0087】
画像処理装置100は、既述したブロックで構成されたASICであるが、FPGAなどのハードウェアであってもよい。
【0088】
信号入力IF72は、USB、IEEE1394、セントロニクスやメモリカード、PCI、Ethernet(登録商標)などインターフェースであり、画像入力装置76からの画像データ、および情報入力装置78からのデータを情報制御装置70に入力する。
【0089】
RAM73はSDRAM,SRAM、DRAMやメモリカード、ハードディスクなどであり、画像データの蓄積や、画像処理に利用するパラメータの格納を行うものである。ROM74は、Flash ROMなど、画像処理装置100で扱うパラメータやCPU71で使用する制御プログラムなどを格納するものである。信号出力IF75はUSB、IEEE1394、セントロニクスやメモリカード、PCI、Ethernet(登録商標)などのインターフェースであり、画像処理結果を信号出力装置77に出力するものである。
【0090】
また、本発明の画像形成装置100は、図9(b)に示すように、例えば、情報処理制御装置700にソフトウェアとして搭載することができる。
【0091】
情報制御装置700は、CPU、メモリ、画像と情報信号の入力および信号出力インターフェースで構成されている。具体的には、CPU701は、画像信号の入力の制御や画像処理装置100の機能をソフトウェア処理で実行する。信号入力IF702は、画像入力装置76からの画像データおよび、情報入力装置78からの画像処理データを入力する。RAM703は、入力した画像データおよび情報入力装置78からのデータの蓄積や画像処理結果の保存を行う。ROM704は、画像処理で扱うパラメータや画像処理装置100の機能をソフトウェア処理で実現するための画像処理プログラムを格納する。信号出力IF705は、画像処理結果をディスプレイ77に出力するで構成されている。
【0092】
図9(b)の信号入力IF、信号出力IFについては、図9(a)に示したものと同様のため、その説明を省略し、CPU701,RAM703、ROM704について具体的に説明する。
【0093】
CPU701は、プログラムに従い、画像処理及び画像入力制御に関するソフトウェア処理を行う。RAM703は、SDRAM,SRAM、DRAMやメモリカード、ハードディスクなどの画像データの蓄積や、演算パラメータの保存を行うものである。
【0094】
ROM74は、Flash ROMなどの、画像処理装置100で扱う演算パラメータやCPU71で使用する制御プログラムおよび、本発明の画像処理装置100の機能をソフトウェア処理で実現するための画像処理プログラムなどを格納する。
【0095】
以上説明したように、本発明の画像処理装置100はハードウェア、ソフトウェアで実現することができる。前述の実施例1及び後述の実施例2,3にハードウェア、実施例4にソフトウェアでの実現例を示す。
【0096】
本実施例によれば、撮影環境や撮影装置の特性の変化に伴いサーチ対象画像20の画質変動に対しても、良好な相関結果を得ることができ、入力画像の中から所定の画像を、類似画像に惑わされることなく精度良く検出することができ、画像探索、画像の位置検出等の精度を高めることができる。しかも、正規化相関の演算処理量と回路規模を増加させることなく、パターンマッチング制度を高めることができる。
〔実施例2〕
次に、本発明の第2実施例を図11により説明する。
【0097】
本実施例は、サーチ対象画像が撮影装置から逐次入力される場合のパターンマッチング処理に適した画像処理装置を提案するものである。
【0098】
図11の画像処理装置900は、実施例1の画像処理装置100の要素項演算部11および相関値演算部12の構成を、要素演算部90及び相関値演算部91に変更したものである。重み係数設定部10については、実施例1と同様であるので、その説明を省略する。また、その他の構成も実施例1と共通する。
【0099】
本実施例は、相関値演算部91が数式9に示す相関値演算処理を行うことにより、2画像間の相関値を求めるものである。
【0100】
【数9】
【0101】
M*N;相関値を求めるテンプレート15のサイズ(M;横幅の画素数
N;縦幅の画素数)
m,n;テンプレートの座標系
x+M;横幅のオフセット
y+N;縦幅のオフセット
上記式において、重み係数C(m,n)は、既述した数式3,4より求める。
【0102】
要素演算部90は、要素項を構成する要素を演算する要素演算部92,93,94よりなる。
【0103】
要素演算部92にて要素Scff,Scf,Sf、要素演算部94にてSctt,Sct,St、要素演算部93にてScftを画素毎に計算し、相関値演算部91に出力する。
【0104】
被照合画像(サーチ対象画像)23およびテンプレート21は、図10に示す画像入力装置76から得てもよいし、予め撮影した画像を情報処理装置70のRAM73に登録しておいてもよい。ただし、テンプレート21については、相関値を求める毎に変化しないので、テンプレートの要素項Sctt,Sct,Stは、予め情報処理装置70のRAM73,ROM74に搭載することも可能である。
【0105】
相関値演算部91は、要素項演算部90からのScff,Scf,Sf,Sctt,Sct,St,Scftから数式9を利用して画像の相関値16を求める。
【0106】
本実施例も、図1同様の効果を奏することができる。さらに、画像処理装置900では、画像の輝度平均値を利用する演算処理を、相関値部91に含む構成にしたので、相関値演算前に画像の輝度平均値を求める演算が不要となる。したがって、被照合画像(サーチ対象画像)23およびテンプレート21が逐次入力され、相関値16を逐次出力するような場合にも対応することができる。
〔実施例3〕
図12は、本発明の第3実施例に係る画像処理装置1000のブロック図である。本実施例は、重み係数設定部(重み係数選択部)10に入力する重み係数に関する座標情報13を、画像から自動的に求める機能を提案する。
【0107】
ここでは、テンプレート21を抽出した画像、もしくはテンプレートが含まれる画像をサンプル画像1001とする。類似候補検出部1002は、サンプル画像1001とテンプレート21との相関値を求め、サンプル画像中の相関値の高い画像(テンプレートに類似する画像で「類似画像」とする)を1つ以上検出する。画像比較部1003は、テンプレート21と前記類似画像間の輝度差分を求め、差分の生じた領域を差分画像として抽出し、差分画像の座標情報12を重み係数設定部10に転送する。重み係数設定部10は、前記座標情報12から各画素および画像領域毎に重み係数を生成する。画像処理装置100の要素項演算部11、相関値演算部12の構成は、既述した実施例1,2同様である。
【0108】
以下、類似候補検出部1002と、画像比較部1003について詳細を説明する。
【0109】
類似候補検出部1002は、サンプル画像1001とテンプレート21との相関演算を行う。ここでの相関演算は、従来例に示した正規化相関係数演算、もしくは数式2、数式9を利用した相関演算である。
【0110】
テンプレート21と一致しないが、相関値が高い画像は、テンプレート21の類似画像といえる。このような類似画像を、例えば相関値の高い順からn番目といったような決定方法で相関結果から一つ以上求め、その類似画像の座標値cを画像比較部1002に出力する。
【0111】
図13にサンプル画像から差分画像を検出する例を示す。
【0112】
図13(a)がサンプル画像1001、図13(b)がテンプレート21である。図13(c)がサンプル画像1001とテンプレート21の相関結果1102を示している。ここでは、図面の視認性を考慮して、便宜上、テンプレートと一致した画像1104と、その次に相関結果が高かった画像1103の2点のみを示している。このような相関結果から、画像1103はテンプレートの類似画像であることがわかる。
【0113】
画像比較部1003では、類似候補検出部1002からの類似画像1103の座標情報cから、類似画像1103とテンプレート21の2画像間の輝度差分を求め、差分領域の座標情報12を生成するものである。図14に輝度差分による差分領域の設定例を示す。差分画像1105の領域、もしくは差分画像1105を含む領域を、重み付け設定用の座標平面(テンプレート21の座標平面に相当する)1106に差分領域(差分画像)1107として設定する。この設定により、座標平面1106は、差分領域1107とその周囲の差分のない領域1108とに分割され、この差分領域1107に重み係数を与えておけば、オペレータの関与を必要とせず、重み付けを行った相関値16を求めることができる。
【0114】
以上説明した実施例1〜3は、本発明の画像処理装置の少なくとも一部を、ASIC、FPGAなどのハードウェア処理での実現する例である。
【0115】
このような画像処理装置100、900、1000の機能は、図9(b)で示した情報処理装置700上のソフトウェア処理によっても実現することもできる。すなわち、情報処理装置700のCPU701などのプロセッサによって、実施例1〜3までの本発明の画像処理装置100,900,1000と同様なソフトウェア処理を実行することができる。以下、本発明の画像形成装置の機能をソフトウェア処理により実現する方法について説明する。
〔実施例4〕
実施例1〜3で説明した画像処理装置100,900,1000の機能をソフトウェアで実現するためのフローチャートを、図15、図16、図17に示す。
【0116】
このソフトウェアは、情報処理装置700のRAM703,またはROM704に格納されており、CPU701によって演算される。それぞれのフローチャートについて以下説明する。
【0117】
図15に示すフローチャートは、実施例1で示した画像処理装置100の演算を実行するものである。まずテンプレート21と、サーチ対象画像20から切り出した被照合画像23とを入力し(ステップS1)、それぞれの画像を構成する輝度の総和を演算する(ステップS2)。次に輝度の総和を、画像を構成する画素数で割り、それぞれの画像の輝度平均値を求める(ステップS3)。
【0118】
次にテンプレートと被照合画像を入力し(ステップS4)、この2画像の画素位置および差分画像(分割領域)の座標情報より重み計算を行って、画素位置に適合する重み係数を求める(ステップS5)。次にテンプレートと被照合画像の輝度値と、それぞれの画像の輝度平均値と、重み係数から重み付け要素項演算を行う(ステップS6)。
【0119】
次に被照合画像内の要素項演算の総和を求め(ステップS6)、相関値演算を行う(ステップS8)。このような相関値演算は、次のようにして行われる。サーチ対象画像内で、テンプレートと同サイズの走査を始点から終点まで走査領域を1画素単位でずらしていって行い、各走査領域の被照合画像とテンプレートとの相関値を求める。すなわち、サーチ対象画像内で走査により得られたすべての被照合画像について相関値演算を行う。
【0120】
図16に示すフローチャートは、実施例2で示した画像処理装置900の演算を実行するものである。
【0121】
テンプレート21と、サーチ対象画像20内の走査画像(被照合画像)23を入力後(ステップS1)、テンプレートと被照合画像の画素位置および差分画像(分割領域)の座標情報より重み計算を行って、画素位置に適合する重み係数を求める(ステップS2)。次にテンプレートと被照合画像の画素データと重み係数から要素項演算(要素データ演算)を行う(ステップS3)。被照合画像内の要素項演算の総和を求め(ステップS4)、相関値演算を行う(ステップS5)。サーチ対象画像内のすべての被照合画像について相関値演算を行う。
【0122】
図17に示すフローチャートは実施例3で示した画像処理装置1000の演算を実行するものである。
【0123】
テンプレート21と、サンプル画像1001を入力後(ステップS1)、この2画像間の相関値係数演算を行う(ステップS2)。サンプル画像内のすべての被照合画像(テンプレートと同サイズの走査画像)について相関値演算を行い、相関値の高い画像を類似画像として検出する(ステップS3)。サンプル画像1001にはテンプレートと一致する画像が含まれているので、2番目に相関値の高い画像を類似画像とする。ただし、類似画像を設定する順位は限定したものではない。次にテンプレート21と類似画像の輝度差分を画素毎に計算して輝度差分画像を生成し、前記輝度差分画像から前記輝度差分画像(分割領域)を含む座標情報12を求める(ステップS4)。次に、テンプレート21と、被照合画像23と、差分画像(分割領域)の座標情報12とから、図15、図16のフローチャートに示した演算処理を行う。
【0124】
以上示したように実施例1〜3で示した本発明の画像処理装置100,900,1000はソフトウェアでも実現できる。また、実施例1で示したテンプレート21と差分画像(分割画像)の設定方法と同様に、前記画像の表示および格納を行うプログラムを情報処理装置700のRAM703、もしくはROM704に格納しておき、CPU701のソフトウェア処理にて実行することができる。また、実施例1〜3に示した画像処理装置100,900,1000の相関値演算部12,91は平方根、除算を利用するため、ハードウェアで実現する場合は規模が大きくなる。本発明の画像処理装置はハードウェア、ソフトウェアでも実現可能であるから、相関値演算はソフトウェア、そのほかの演算をハードウェアとすることにより、ハードウェアの回路規模の増加を防ぐことができる。
【0125】
【発明の効果】
本発明によれば、2画像の相関値を、演算処理量と回路規模を増加させることなく、精度良く求めることができる。
【図面の簡単な説明】
【図1】本発明の基本原理を示す説明図。
【図2】本発明の比較例を示す説明図。
【図3】本発明の実施例1に係る画像処理装置を示すブロック図。
【図4】画像間の相関値を利用したパターンマッチングの一例を示す説明図。
【図5】サーチ対象画像に含まれるテンプレートの類似画像を示した図。
【図6】サーチ対象画像の画質が変動した例を示した説明図。
【図7】テンプレートの分割例を示した説明図。
【図8】実施例1の要素項演算部の詳細を示したブロック図。
【図9】本発明の画像処理装置を搭載する情報処理装置を示したブロック図。
【図10】テンプレート設定、および差分領域の設定例を示した図。
【図11】実施例2に係わる画像処理装置のブロック図。
【図12】実施例3画像処理装置を示したブロック図。
【図13】テンプレートの類似画像を検出する例を示した図。
【図14】テンプレートと類似画像から差分領域を求める例を示した図。
【図15】実施例1の画像処理装置の機能を示したフローチャート。
【図16】実施例2の画像処理装置の機能を示したフローチャート。
【図17】実施例3の画像処理装置の機能を示したフローチャート。
【符号の説明】
100…画像処理装置、10…重み係数設定部、11…要素項演算部、12…相関値演算部、13…座標情報、20…サーチ対象画像、21…テンプレート、23…被照合画像、30…一致画像、31〜33…類似画像、61…画像平均演算部1、62…画像平均演算部、63〜64…要素項演算部、70…情報処理装置、71…CPU、76…画像入力装置、77…ディスプレイ、78…情報入力装置、700…情報処理装置、701…CPU、80…テンプレート設定画面、81…サーチ対象画像、82…差分領域設定画面、900…画像処理装置、90…要素項演算部、91…相関値演算部、92〜94…要素演算部、1000…画像処理装置、1001…サンプル画像、1002…類似候補検出部、1003…画像比較部、1100…サンプル画像、1101…テンプレート、1102…相関値。
Claims (11)
- 2画像間の相関を求める画像処理装置において、
一方の画像を2つ以上の画像領域に分割し、この分割した画像領域の座標情報に基づいて分割画像領域毎に重み係数を設定する重み係数設定部と、前記2画像を構成する画素のデータから2画像間の相関値演算に用いる要素データを算出し、この要素データに前記重み係数を用いて重み付けを行うことにより、重み付け要素データを算出する要素データ演算部と、前記重み付け要素データに基づき前記2画像間の相関値を演算する相関値演算部と、を備えることを特徴とする画像処理装置。 - 画像を入力する機能と、入力した画像に含まれる一部の画像を照合用の画像(以下、「テンプレート」と称する)として登録するテンプレート設定機能と、前記入力画像の中を走査し、この走査は、1回あたりの走査領域を前記テンプレートと同サイズにして、その走査領域を前記入力画像の始点から終点まで1画素単位で移動させていき、各走査領域の画像を前記テンプレートとパターンマッチング処理して最も一致度の高い走査領域の位置を検出する画像探索機能と、を備える画像処理装置であって、
前記テンプレートを重み係数を伴って2つ以上の画像領域に分割する画像分割機能と、前記重み係数の座標情報を記憶し、前記入力画像の中の走査時に、走査に対応する前記テンプレートの分割領域の重み係数を、走査領域の座標情報に基づき選択する重み係数選択機能と、前記テンプレートと前記各走査領域の画像(以下、「走査画像」と称する)との画素データ及び選択された重み係数から前記テンプレートと前記走査画像間の相関値演算に用いる要素項或いは要素を重み付けして算出する要素項或いは要素演算機能と、この重み付けした要素項或いは要素に基づき前記テンプレートと前記各走査領域の画像間の相関値を演算する相関値演算機能と、を備えることを特徴とする画像処理装置。 - 前記要素データ,前記要素項或いは要素は、相関値を求める画像の平均輝度値と、前記画像を構成する画素の輝度値とから算出した値である請求項1又は2記載の画像処理装置。
- 前記重み係数は、前記一方の画像或いは前記テンプレートの各分割領域における強調度を示す係数よりなる請求項1又は2記載の画像処理装置。
- 前記入力画像の中には、前記テンプレートと一致する画像とその他の画像とが含まれており、前記テンプレートの各分割領域に重み係数を設定する場合には、前記その他の画像に対して差異を強調したい分割領域の重み係数を、他の分割領域よりも大きくするように設定してなる請求項2記載の画像処理装置。
- 前記要素データ演算部、前記要素項或いは要素演算機能は、ハード的な回路で構成し、前記相関値演算部或いは相関値演算機能は、計算プログラムにより構成した請求項1又は2記載の画像処理装置。
- 相関値を求める2画像を一画面に表示し、オペレータの操作により画面中の一方の画像に重み係数を設定するための分割領域を形成できるように構成した請求項1記載の画像処理装置。
- 前記入力画像を表示するディスプレイを有し、このディスプレイの画面に表示される入力画像を画像操作して、入力画像と一緒に前記テンプレートを同一画面に表示できる構成とし、さらに、画面表示されたテンプレートの中を重み係数設定のために画像操作により分割領域形成を設定可能にした請求項2記載の画像処理装置。
- 2画像間の相関値を求める画像処理方法であって、相関を求める2画像を入力するステップと、前記2画像を構成する輝度の総和をそれぞれ演算するステップと、輝度の総和から輝度平均値を求めるステップと、相関を求める一方の画像の画素位置に重み係数を設定するステップと、前記2画像の輝度平均値と前記重み係数から相関値演算に用いる要素項或いは要素演算を行うステップと、前記要素項或いは要素演算結果の総和を求めるステップと、相関値の演算を行うステップとを有する画像処理方法。
- 入力した画像(以下、「入力画像」とする)の中から特定した一部の画像を探索することにより、その特定画像の位置を検出する画像処理方法において、
前記入力画像を画像処理用ディスプレイの画面に表示するステップと、画面表示された前記入力画像を通して探索対象の画像を特定し、その特定画像を照合用の画像(以下、「テンプレート」と称する)として登録するステップと、前記テンプレートを複数の領域に分割し、分割した各領域の重み係数を座標情報に基づいて設定するステップと、前記入力画像の中を走査し、この走査は、1回あたり走査領域を前記テンプレートと同サイズにして、その走査領域を前記入力画像の始点から終点まで1画素単位で移動させていき、この走査の時に、各走査領域に対応する前記分割した領域の重み係数を座標情報によって選択するステップと、前記テンプレートと前記各走査領域の画像間の画素データ及び選択された重み係数から前記2画像間の相関値演算に用いる要素項或いは要素を重み付けして算出するステップと、この重み付けした要素項或いは要素に基づき前記2画像間の相関値を演算するステップと、相関値の最も高い走査領域の位置を座標情報から検出するステップと、を含むことを特徴とする画像処理方法。 - 前記テンプレートの分割された領域に重み係数を設定するステップは、前記テンプレートと前記入力画像とをパターンマッチング処理して、前記入力画像の中からテンプレートに類似する画像(以下「類似画像」と称する)を検出し、テンプレートと類似画像との輝度差分の顕著な領域(以下、「差分領域」とする)を求め、この差分領域の座標情報に基づいて前記テンプレートを分割し重み係数を設定するようにした請求項10記載の画像処理方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003031964A JP2004240909A (ja) | 2003-02-10 | 2003-02-10 | 画像処理装置及び画像処理方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003031964A JP2004240909A (ja) | 2003-02-10 | 2003-02-10 | 画像処理装置及び画像処理方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004240909A true JP2004240909A (ja) | 2004-08-26 |
Family
ID=32958364
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003031964A Withdrawn JP2004240909A (ja) | 2003-02-10 | 2003-02-10 | 画像処理装置及び画像処理方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004240909A (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007094962A (ja) * | 2005-09-30 | 2007-04-12 | Seiko Epson Corp | 画像内に表現された被写体の特定 |
JP2008186150A (ja) * | 2007-01-29 | 2008-08-14 | Hitachi Ltd | テンプレートマッチング装置及び方法 |
CN100463002C (zh) * | 2006-12-07 | 2009-02-18 | 北京航空航天大学 | 基于像素跳跃的图像匹配方法 |
JP2009157766A (ja) * | 2007-12-27 | 2009-07-16 | Nippon Telegr & Teleph Corp <Ntt> | 顔認識装置、顔認識方法、顔認識プログラムおよびそのプログラムを記録した記録媒体 |
JP2009166323A (ja) * | 2008-01-15 | 2009-07-30 | Sigumakkusu Kk | 射出成形機監視装置 |
JP2009223818A (ja) * | 2008-03-18 | 2009-10-01 | Toyota Motor Corp | 画像処理装置 |
US8019164B2 (en) | 2007-01-29 | 2011-09-13 | Hitachi High-Technologies Corporation | Apparatus, method and program product for matching with a template |
-
2003
- 2003-02-10 JP JP2003031964A patent/JP2004240909A/ja not_active Withdrawn
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007094962A (ja) * | 2005-09-30 | 2007-04-12 | Seiko Epson Corp | 画像内に表現された被写体の特定 |
JP4735168B2 (ja) * | 2005-09-30 | 2011-07-27 | セイコーエプソン株式会社 | 画像内に表現された被写体の特定 |
CN100463002C (zh) * | 2006-12-07 | 2009-02-18 | 北京航空航天大学 | 基于像素跳跃的图像匹配方法 |
JP2008186150A (ja) * | 2007-01-29 | 2008-08-14 | Hitachi Ltd | テンプレートマッチング装置及び方法 |
US8019164B2 (en) | 2007-01-29 | 2011-09-13 | Hitachi High-Technologies Corporation | Apparatus, method and program product for matching with a template |
JP2009157766A (ja) * | 2007-12-27 | 2009-07-16 | Nippon Telegr & Teleph Corp <Ntt> | 顔認識装置、顔認識方法、顔認識プログラムおよびそのプログラムを記録した記録媒体 |
JP2009166323A (ja) * | 2008-01-15 | 2009-07-30 | Sigumakkusu Kk | 射出成形機監視装置 |
JP2009223818A (ja) * | 2008-03-18 | 2009-10-01 | Toyota Motor Corp | 画像処理装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108009543B (zh) | 一种车牌识别方法及装置 | |
KR101247147B1 (ko) | 디지털 영상 획득 장치에서의 얼굴 탐색 및 검출 | |
JP5699788B2 (ja) | スクリーン領域検知方法及びシステム | |
US8019164B2 (en) | Apparatus, method and program product for matching with a template | |
CN110084260B (zh) | 一种训练多图案识别和配准工具模型的半监督方法 | |
JP4521235B2 (ja) | 撮影画像の変化抽出装置及び方法 | |
TW201419169A (zh) | 物體識別裝置、物體識別方法及程式產品 | |
US10721431B2 (en) | Method for estimating a timestamp in a video stream and method of augmenting a video stream with information | |
CN108369739B (zh) | 物体检测装置和物体检测方法 | |
US20090208102A1 (en) | Image processing device and storage medium storing image processing program | |
US20210272272A1 (en) | Inspection support apparatus, inspection support method, and inspection support program for concrete structure | |
US20090207260A1 (en) | Image pickup apparatus and image pickup method | |
US20190042869A1 (en) | Image processing apparatus and control method therefor | |
JP6405124B2 (ja) | 検査装置、検査方法およびプログラム | |
WO2009085173A1 (en) | System and method for performing multi-image training for pattern recognition and registration | |
JP2011165170A (ja) | 対象物検出装置及びプログラム | |
JP6585793B2 (ja) | 検査装置、検査方法およびプログラム | |
JP2018036901A (ja) | 画像処理装置、画像処理方法および画像処理プログラム | |
JP2004240909A (ja) | 画像処理装置及び画像処理方法 | |
WO2020158726A1 (ja) | 画像処理装置、画像処理方法、及びプログラム | |
JP6028972B2 (ja) | 画像処理装置、画像処理方法および画像処理プログラム | |
CN117218633A (zh) | 一种物品检测方法、装置、设备及存储介质 | |
JP2005352543A (ja) | テンプレートマッチング装置 | |
JP2009272870A (ja) | 画像処理装置、画像処理方法、及び画像処理プログラム | |
CN108280815B (zh) | 一种面向监控场景结构的几何校正方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060808 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061010 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20061010 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061205 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070205 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070403 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20070529 |