JP2004238692A - Method and device for blowing pulverized fine coal into blast furnace - Google Patents

Method and device for blowing pulverized fine coal into blast furnace Download PDF

Info

Publication number
JP2004238692A
JP2004238692A JP2003029844A JP2003029844A JP2004238692A JP 2004238692 A JP2004238692 A JP 2004238692A JP 2003029844 A JP2003029844 A JP 2003029844A JP 2003029844 A JP2003029844 A JP 2003029844A JP 2004238692 A JP2004238692 A JP 2004238692A
Authority
JP
Japan
Prior art keywords
pulverized coal
coal
blast furnace
preheating
preheating temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003029844A
Other languages
Japanese (ja)
Inventor
Ryota Murai
亮太 村井
Michitaka Sato
道貴 佐藤
Akinori Murao
明紀 村尾
Kazuya Goto
和也 後藤
Tatsuro Ariyama
達郎 有山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003029844A priority Critical patent/JP2004238692A/en
Publication of JP2004238692A publication Critical patent/JP2004238692A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for blowing pulverized fine coal into a blast furnace with which the necessary lowest limit of preheating temperature to various kinds of coals can be given without raising the cost or bringing about operational trouble. <P>SOLUTION: In the method for blowing the pulverized fine coal into the blast furnace, blowing the preheated pulverized fine coal as an auxiliary fuel from a tuyere, in accordance with volatile matter content in the coal, the preheating temperature of the pulverized fine coal is adjusted. Many amounts of the pulverized fine coals can be blown into the blast furnace and large effect to the low cost and the stable operation in the blast furnace are obtained. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、高炉への微粉炭吹き込み操業に関する。特に燃焼性を向上することにより多量の微粉炭を安定して吹き込むことを可能にするものである。
【0002】
【従来の技術】
近年、高炉において羽口からの補助燃料吹き込みが盛んに行われてきている。特に微粉炭は高価なコークスの使用量低減、およびコークス炉の寿命延長につながるため、溶銑の製造コストを低下させうる手段として注目されている。
【0003】
上記の理由から、微粉炭多量吹き込みの急速な普及・進歩はめざましいものがある。最近では「材料とプロセス11(1998)p834」に見られるように月間微粉炭吹き込み比で266kg/Tを記録する超多量吹き込み高炉も出現してきている。
【0004】
ただし、上記の吹き込み記録は高品位の原燃料を用いるか、微粉炭燃焼の促進のために、送風中の酸素濃度を高くする等の特別な操業条件の下で達成されたものであり、通常の高炉操業条件では、微粉炭吹き込み量は150kg/T乃至200kg/T程度にとどまっている。
【0005】
高品位の原燃料の使用や、送風中への酸素の富化は、銑鉄製造コストの上昇をまねくため、高価なコークスに比較して安価な微粉炭を用いることによって得られるコストメリットを相殺し、場合によっては逆に製造コストの上昇を引き起こすことがある。
【0006】
したがって、高品位の原燃料の使用や、酸素の富化量を増加させずに、多量にかつ安価に高炉へ微粉炭を吹き込む方法が望まれている。
【0007】
上記の欠点を克服するために、特許文献1(先行技術)に開示された技術がある。先行技術によれば微粉炭を200℃以上に予熱して吹き込むことにより微粉炭の燃焼性を向上することができる。微粉炭は予熱により熱分解し、爆裂・細粒化する。さらに熱分解ガス放出の痕跡がチャー(チャー:残留する炭素を主成分とする固体)に残り、チャーが多孔質となるために微粉炭の燃焼率が向上するというものである。
【0008】
【特許文献1】特開平4−354810号公報
【0009】
【発明が解決しようとする課題】
先行技術には、石炭を200℃以上に予熱するという技術が示されているのみで、石炭の種類に関する記述が一切無い。最近では微粉炭用の石炭として多種多様なものが用いられてきており、その燃焼性もさまざまである。発明者らの試験によれば予熱温度150℃で効果を発現する石炭もあれば、250℃まで予熱が必要な石炭もあり、必要予熱温度は必ずしも200℃と限らないとの結果を得ている。
【0010】
150℃の予熱温度で良い石炭を200℃まで予熱するのは予熱のために要する熱エネルギーを無駄にし、銑鉄製造コストの上昇につながる。
【0011】
一方、250℃まで予熱が必要な石炭を200℃までしか予熱しない場合、燃焼性が向上せず、炉頂からのチャーが放出される。チャーすなわち炭素分が高炉内で有効に利用されずに排出されることから、その分コークスを上昇させなければならない。このため、これもコスト上昇につながり好ましくないと言える。
【0012】
またチャーが高炉から排出されず高炉内に蓄積する場合には、高炉内の粉率が上昇し、したがって通気性が悪化し、高炉の操業を不調にする恐れがある。
【0013】
本発明は、上記のような問題点を改善するためになされたもので、コストの上昇や操業不調をもたらすことなく、様々の種類の石炭について必要最低限の予熱温度を与えることのできる高炉への微粉炭吹き込み方法を提供することを目的とする。
【0014】
【課題を解決するための手段】
発明者らは、種々の石炭をさまざまな温度で予熱し燃焼試験を実施し、その試験結果を解析することにより、石炭の揮発分含有量と必要予熱温度にある関係のあることを見出した。
【0015】
すなわち、本発明は使用する石炭の揮発分に応じて予熱温度を調節することを特徴とし、本発明によれば、微粉炭を高炉に多量吹き込むことが可能となり、高炉の低コスト安定操業に多大な効果を奏する。
【0016】
また本発明の好ましい態様は、石炭の揮発分含有量が多くなるにしたがって、微粉炭の予熱温度を低くすることを特徴とする。
【0017】
より定量的には、微粉炭の予熱温度を、
【数2】
Tc=a・VM+b・VM+c ・・・(1)
ただし
Tc:必要予熱温度(℃)
VM:微粉炭の揮発分含有量(mass%)
a,b,c:定数
に調節することにより微粉炭の燃焼性を改善し、多量吹き込みを可能とする。
【0018】
【発明の実施の形態】
まず本発明の技術上の意義について説明する。
【0019】
発明者らは、予熱による石炭の燃焼性改善は、熱分解ガス放出の痕跡がチャー(チャー:残留する炭素を主成分とする固体)に残り、チャーが多孔質となることに起因するとの先行技術の知見に基づき、種々の実験をおこなった。実験を通して、揮発分含有量の多い石炭では、より低温で燃焼性改善効果が発現することを見出した。
【0020】
高揮発分炭で低温でも効果が発現するのは、石炭中の官能基に関係があると考えた。図1に石炭の構造図を模式的に示す。石炭は非常に複雑な有機高分子化合物であるが、複数の芳香環に水酸基、カルボキシル基等の官能基を持つ構造と考えられている。
【0021】
この官能基は芳香環に比較して熱分解温度が低い。また官能基は高揮発分炭で多く、低揮発分炭では少ないことが知られている(参考文献:例えばD.W.Van Krevelen:COAL,Typology−Physics−Chemistry−Constitution,Elsevier,Amsterdam,(1993)p,259)。すなわち高揮発分炭では比較的低温で官能基が脱離し、石炭を多孔質に改質するのに対し、低揮発分では高温で芳香環が分解し、炭化水素を放出するまで石炭の改質が生じないことが推定される。
【0022】
石炭の熱分解反応はいわゆるアレニウス型の反応速度式でまとめられている(2式)。
【0023】
【数3】
k=A・exp(−E/RT) ・・・(2)
ただし、k:石炭熱分解(揮発分放出)の反応速度定数(1/sec)
A:頻度因子(1/sec)
E:活性化エネルギー(kcal/mol)
R:気体定数(kcal/(mol・K))
T:反応温度(K)
【0024】
官能基の脱離反応として2つの水酸基から脱水が生じる反応と芳香環が分解して炭化水素が発生する反応の頻度因子および活性化エネルギーを、表1に示す。(参考文献:C.Y.Wen, E.StanleyLee編:Coal Conversion Technology, Addison−Wesley Publishing Company, Inc. Massachusetts,(1979)p.77)。
【0025】
【表1】

Figure 2004238692
【0026】
図2に表1の数値を用いて作成した温度−熱分解速度定数図を示す。熱分解生成物の内、官能基の脱離に由来する脱水反応では、より低温から反応が生ずることがわかる。すなわち官能基量の多い高揮発分炭ではより低温から熱分解生成物が発生し、表面改質が生じることが示唆される。
【0027】
発明者らは、種々の石炭について予熱前後の燃焼性を調査しその特性を定性的に図3のようにまとめた。燃焼率変化を予熱後燃焼率から予熱前燃焼率を差し引いたものと定義すると高揮発分炭ほど低い温度から予熱効果が現れた。この予熱効果を定量化するために燃焼率変化5%を実現するために必要な予熱温度と揮発分含有量との関係を調査した。結果を表2に示す。燃焼率変化5%を選んだ理由は、図3のように、燃焼率変化は5%上昇までは急激で、5%を超えると上昇率は飽和する傾向にあり、実質的に予熱による効果の上限は5%と考えられることによる。
【0028】
【表2】
Figure 2004238692
【0029】
表2の結果から揮発分含有量と必要予熱温度の関係を図示すると、図4を得る。最小自乗法により近似式を導出すると、必要予熱温度は、
【数4】
Tc=0.03・VM−7.57・VM+438 ・・・(3)
ただし
Tc:必要予熱温度(℃)
VM:微粉炭の揮発分含有量(mass%)
と求めることができる。
【0030】
次に、この発明の、高炉内への固体燃料吹き込み方法の一実施態様を、図面を参照しながら説明する。
【0031】
以下、図5により本発明の実施の形態を説明する。図5は、高炉羽口部の断面図であり、羽口1は高炉鉄皮4および耐火物5を貫通して設置されている。高炉の送風は送風支管2および羽口1を介して高炉内に送り込まれる。高炉送風は、羽口1前のコークスを燃焼し、レースウェイ3と呼ばれる燃焼領域を形成する。微粉炭は微粉炭搬送ライン7により搬送され、送風支管2を貫通して設置した吹き込み用ランス6を介して高炉内に吹き込まれる。羽口1およびランス6は高炉1基あたり複数設置されているため、微粉炭は分配器8により分岐されそれぞれの羽口1に吹き込まれる。
【0032】
微粉炭搬送ライン7の途中に、予熱手段としての微粉炭予熱設備9を設置し所定の温度まで微粉炭を予熱する。図5には例として電熱線10による予熱方法を示したが、微粉炭と熱交換のできるものであれば特に熱源の指定はなく、望ましくは通常廃棄している熱(たとえば溶融銑鉄や溶融スラグの顕熱など)を用いる。ここで、使用する石炭の揮発分に応じて予熱温度を調節することを特徴とし、より定量的には石炭の予熱温度を、(Tc=0.03・VM−7.57・VM+438)℃に調節することにより微粉炭の燃焼性を改善し、多量吹き込みを可能とする(VM:石炭の揮発分含有量mass%)。石炭の温度調節は、例えば石炭の揮発分に応じて予熱温度を計算するコンピュータ、及びコンピュータが計算した所定の予熱温度に微粉炭がなるように微粉炭予熱設備9を制御する制御装置により行われる。これらコンピュータ及び制御装置が温度調節手段を構成する。
【0033】
【実施例】
次に、この発明の効果を実証するための試験を行った。以下、この試験方法および試験結果を、図面を参照しながら説明する。
【0034】
図6は、高炉の羽口近傍を模した微粉炭燃焼試験用の反応炉を示す断面図であり、11は、反応炉本体、12は、反応炉本体11に設けられた羽口、13は、羽口12に接続されたブローパイプ、14は、ブローパイプ13内に挿入された微粉炭吹込み用ランス、15は、反応炉本体11内に充填されたコークス、16は、ブローパイプ13に形成された微粉炭採取プローブ用孔であり、ランス14の先端から400mmの位置にそれぞれ設けられている。17は、ブローパイプ13から反応炉本体11内に吹き込まれる熱風、18は、羽口12先端に形成されたレースウェイ、19は、反応炉本体11からの排ガスを示す。
【0035】
このような反応炉本体11内に充填されたコークス15に熱風を吹き込んだ。この熱風は、ブローパイプ13の上流側からLPGを空気によって燃焼させ、更に、酸素を混合して得られた、高炉におけると同様な酸素濃度のものであった。そして、微粉炭をブローパイプ13内に吹き込んだ。微粉炭は貯蔵ホッパー20から吹込みランス14に至るまでの間に、ヒータ21で所定温度に予熱して吹き込んだ。実際の予熱温度は熱電対22により測定した。そして、微粉炭採取プローブ用孔16に微粉炭採取プローブを挿入して、燃焼過程の微粉炭をサンプリングし、分析して、微粉炭の燃焼率を各予熱温度毎に調べた。燃焼率の定義は、(4)式に示すように、可燃分の消費率として計算した。このときの試験条件を表3に示し、試験設備諸元を表4に示す。
【0036】
【数5】
Figure 2004238692
【0037】
【表3】
Figure 2004238692
【0038】
【表4】
Figure 2004238692
【0039】
このようにして行った種々の石炭について予熱温度を変化させ、燃焼率を測定した。
【0040】
【表5】
Figure 2004238692
【0041】
表5は石炭Aを用いた実施例を示す。本発明にしたがい予熱温度を265℃としたところ燃焼率は5.1%上昇した(実施例1)。予熱温度200℃とすると燃焼率上昇効果は得られなかった(比較例1)。比較例2のように予熱温度を300℃まで上昇させても実施例1と効果は変わらなかった。この場合、微粉炭燃焼率の向上効果は実施例と同等であるものの、予熱に必要な熱量を多く必要とする。定性的に効果を表現すると表5の最下行のようになる。
【0042】
【表6】
Figure 2004238692
【0043】
表6は石炭Cを用いた実施例を示す。石炭Cは揮発分含有量が多く、低い予熱温度でも微粉炭の燃焼率が向上する。本発明にしたがい予熱温度を171℃としたところ燃焼率は5.2%上昇した(実施例2)。従来技術にしたがい予熱温度200℃とすると燃焼率上昇効果は得られたが、実施例2と効果は変わらなかった。この場合も、予熱に必要な熱量を多く必要とすることから、本発明の方が優れていると言える。
【0044】
【発明の効果】
以上、上記のように、微粉炭を予熱して高炉に吹き込む方法において、石炭の種類(揮発分含有量)に応じ、予熱温度を適正に制御することにより、微粉炭の燃焼率を向上させることができ、安定して微粉炭多量吹き込みを行うことができる。このため、銑鉄製造コストの削減に多大な効果を奏することができた。
【図面の簡単な説明】
【図1】石炭の構造図(模式図)。
【図2】温度−熱分解速度定数の関係を示すグラフ。
【図3】予熱前後の燃焼性の特性を定性的に示すグラフ。
【図4】揮発分含有量と必要予熱温度の関係を示すグラフ。
【図5】高炉羽口部の断面図。
【図6】高炉の羽口近傍を模した微粉炭燃焼試験用の反応炉を示す断面図。
【符号の説明】
1…羽口
2…送風支管
3…レースウェイ
6…吹き込み用ランス
7…微粉炭搬送ライン
8…分配器
9…微粉炭予熱設備(予熱手段)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a pulverized coal injection operation into a blast furnace. Particularly, it is possible to stably inject a large amount of pulverized coal by improving the combustibility.
[0002]
[Prior art]
BACKGROUND ART In recent years, auxiliary fuel has been actively blown from tuyeres in blast furnaces. In particular, pulverized coal has attracted attention as a means that can reduce the production cost of hot metal, because it reduces the amount of expensive coke used and extends the life of the coke oven.
[0003]
For the above reasons, the rapid spread and progress of the pulverized coal injection has been remarkable. Recently, as shown in “Materials and Process 11 (1998) p834”, an ultra-high volume blast furnace that records a pulverized coal injection rate of 266 kg / T per month has also appeared.
[0004]
However, the above injection record was achieved under special operating conditions such as using high-grade raw fuel or increasing the oxygen concentration during blowing to promote pulverized coal combustion. Under the blast furnace operating conditions described above, the pulverized coal injection amount is only about 150 kg / T to 200 kg / T.
[0005]
The use of high-grade raw fuel and the enrichment of oxygen in the blast increase the cost of pig iron production, thus offsetting the cost advantage of using pulverized coal, which is cheaper than expensive coke. In some cases, on the contrary, the production cost may be increased.
[0006]
Therefore, there is a demand for a method of injecting pulverized coal into a blast furnace in a large amount and at low cost without using high-grade raw fuel or increasing the amount of enrichment of oxygen.
[0007]
In order to overcome the above drawbacks, there is a technique disclosed in Patent Document 1 (prior art). According to the prior art, the combustibility of the pulverized coal can be improved by preheating and pulverizing the pulverized coal to 200 ° C. or higher. Pulverized coal is thermally decomposed by preheating, exploding and finer. Furthermore, traces of pyrolysis gas release remain in the char (char: a solid mainly composed of residual carbon), and the char becomes porous, so that the burning rate of pulverized coal is improved.
[0008]
[Patent Document 1] Japanese Patent Application Laid-Open No. 4-354810
[Problems to be solved by the invention]
The prior art only discloses a technique of preheating coal to 200 ° C. or higher, but does not describe any kind of coal. Recently, a wide variety of coals for pulverized coal have been used, and their combustibility also varies. According to the inventors' tests, some coals exhibit an effect at a preheating temperature of 150 ° C., while others require preheating up to 250 ° C., and the required preheating temperature is not necessarily limited to 200 ° C. .
[0010]
Preheating coal, which is good at a preheating temperature of 150 ° C., to 200 ° C. wastes heat energy required for preheating and leads to an increase in pig iron production costs.
[0011]
On the other hand, when the coal which needs to be preheated to 250 ° C. is preheated only to 200 ° C., the combustibility is not improved, and the char is discharged from the furnace top. Since char or carbon is discharged without being effectively used in the blast furnace, coke must be raised accordingly. For this reason, it can be said that this also leads to an increase in cost and is not preferable.
[0012]
In addition, when the char is not discharged from the blast furnace and accumulates in the blast furnace, the powder rate in the blast furnace increases, and thus the air permeability deteriorates, and there is a possibility that the operation of the blast furnace may be malfunctioned.
[0013]
The present invention has been made to solve the above-mentioned problems, and has been made to provide a blast furnace that can provide a minimum preheating temperature necessary for various types of coal without increasing costs or causing a malfunction. An object of the present invention is to provide a pulverized coal injection method.
[0014]
[Means for Solving the Problems]
The inventors preheated various coals at various temperatures, performed a combustion test, and analyzed the test results to find out that there is a relationship between the volatile content of the coal and the required preheating temperature.
[0015]
That is, the present invention is characterized in that the preheating temperature is adjusted according to the volatile matter of the coal to be used. According to the present invention, it becomes possible to inject a large amount of pulverized coal into the blast furnace, which greatly reduces the cost of the blast furnace for stable operation. Effect.
[0016]
Further, a preferred embodiment of the present invention is characterized in that the preheating temperature of the pulverized coal is lowered as the volatile matter content of the coal increases.
[0017]
More quantitatively, the preheating temperature of pulverized coal is
(Equation 2)
Tc = a.VM 2 + b.VM + c (1)
Where Tc is the required preheating temperature (° C)
VM: volatile matter content of pulverized coal (mass%)
a, b, c: By adjusting the constants, the combustibility of pulverized coal is improved, and a large amount of pulverized coal can be injected.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
First, the technical significance of the present invention will be described.
[0019]
The inventors have argued that the improvement in the combustibility of coal by preheating is due to the fact that traces of pyrolysis gas release remain in char (char: a solid mainly composed of residual carbon) and the char becomes porous. Various experiments were performed based on the technical knowledge. Through experiments, it has been found that coal having a high volatile content exhibits a combustibility improving effect at lower temperatures.
[0020]
We believe that the effect of high volatile coal at low temperatures was related to the functional groups in the coal. FIG. 1 schematically shows a structural diagram of coal. Coal is a very complicated organic high molecular compound, and is considered to have a structure in which a plurality of aromatic rings have a functional group such as a hydroxyl group or a carboxyl group.
[0021]
This functional group has a lower thermal decomposition temperature than the aromatic ring. It is also known that the functional groups are high in high volatile coal and low in low volatile coal (for example, reference: DW Van Krevelen: COAL, Typology-Physics-Chemistry-Constitution, Elsevier, Amsterdam, ( 1993) p, 259). In other words, high volatile coal removes functional groups at relatively low temperatures and reforms the coal to be porous, while low volatile coal decomposes aromatic rings at high temperatures and modifies the coal until hydrocarbons are released. Is not expected to occur.
[0022]
The thermal decomposition reaction of coal is summarized by a so-called Arrhenius-type reaction rate equation (Equation 2).
[0023]
[Equation 3]
k = A · exp (−E / RT) (2)
Here, k is the reaction rate constant (1 / sec) of coal pyrolysis (volatile matter release).
A: Frequency factor (1 / sec)
E: Activation energy (kcal / mol)
R: gas constant (kcal / (mol · K))
T: Reaction temperature (K)
[0024]
Table 1 shows frequency factors and activation energies of a reaction in which dehydration occurs from two hydroxyl groups as a functional group elimination reaction and a reaction in which an aromatic ring is decomposed to generate a hydrocarbon. (Reference: CY Wen, E. Stanley Lee, Ed .: Coal Conversion Technology, Addison-Wesley Publishing Company, Inc. Massachusetts, (1979) p. 77).
[0025]
[Table 1]
Figure 2004238692
[0026]
FIG. 2 shows a temperature-thermal decomposition rate constant diagram prepared using the numerical values in Table 1. It can be seen that, among the thermal decomposition products, in the dehydration reaction resulting from the elimination of the functional group, the reaction occurs at a lower temperature. That is, it is suggested that in the case of highly volatile coal having a large amount of functional groups, pyrolysis products are generated from a lower temperature and surface modification occurs.
[0027]
The inventors investigated the combustibility of various coals before and after preheating, and qualitatively summarized the characteristics as shown in FIG. If the change in the combustion rate was defined as the difference between the preheating rate and the preheating rate, the higher the coal content, the lower the preheating effect. In order to quantify this preheating effect, the relationship between the preheating temperature and the volatile matter content required to realize a change in the combustion rate of 5% was investigated. Table 2 shows the results. The reason why the change in the combustion rate was 5% was that, as shown in FIG. 3, the change in the combustion rate was sharp until it increased by 5%, and the rate of increase tended to be saturated when it exceeded 5%. The upper limit is based on what is considered to be 5%.
[0028]
[Table 2]
Figure 2004238692
[0029]
FIG. 4 shows the relationship between the volatile content and the required preheating temperature based on the results shown in Table 2. Deriving the approximate expression by the least squares method, the required preheating temperature is
(Equation 4)
Tc = 0.03 · VM 2 −7.57 · VM + 438 (3)
Where Tc is the required preheating temperature (° C)
VM: volatile matter content of pulverized coal (mass%)
You can ask.
[0030]
Next, an embodiment of the method of blowing solid fuel into a blast furnace according to the present invention will be described with reference to the drawings.
[0031]
Hereinafter, an embodiment of the present invention will be described with reference to FIG. FIG. 5 is a cross-sectional view of the tuyere portion of the blast furnace, and the tuyere 1 is installed so as to penetrate through the blast furnace shell 4 and the refractory 5. Ventilation of the blast furnace is sent into the blast furnace via the ventilation branch pipe 2 and the tuyere 1. The blast furnace blast burns coke in front of the tuyere 1 and forms a combustion area called a raceway 3. The pulverized coal is transported by the pulverized coal transport line 7 and is blown into the blast furnace through a blowing lance 6 installed through the blower branch pipe 2. Since a plurality of tuyeres 1 and lances 6 are provided for one blast furnace, pulverized coal is branched by distributor 8 and blown into each tuyere 1.
[0032]
Pulverized coal preheating equipment 9 as preheating means is installed in the middle of the pulverized coal transport line 7 to preheat the pulverized coal to a predetermined temperature. FIG. 5 shows a preheating method using the heating wire 10 as an example. However, as long as it can exchange heat with pulverized coal, there is no particular designation of a heat source, and it is preferable to dispose of normally discarded heat (for example, molten pig iron or molten slag). Sensible heat). Here, the preheating temperature is adjusted according to the volatile matter of the coal to be used, and more specifically, the preheating temperature of the coal is set to (Tc = 0.03 · VM 2 −7.57 · VM + 438) ° C. By adjusting the amount to, the flammability of the pulverized coal is improved, and a large amount of fuel can be blown (VM: volatile matter content of coal: mass%). The temperature control of the coal is performed by, for example, a computer that calculates the preheating temperature according to the volatile matter of the coal, and a control device that controls the pulverized coal preheating facility 9 so that the pulverized coal becomes a predetermined preheating temperature calculated by the computer. . The computer and the control device constitute a temperature control unit.
[0033]
【Example】
Next, tests for verifying the effects of the present invention were performed. Hereinafter, the test method and test results will be described with reference to the drawings.
[0034]
FIG. 6 is a cross-sectional view showing a reactor for a pulverized coal combustion test simulating the vicinity of a tuyere of a blast furnace, 11 is a reactor main body, 12 is a tuyere provided in the reactor main body 11, and 13 is a tuyere. , A blow pipe connected to the tuyere 12, 14 is a lance for blowing pulverized coal inserted into the blow pipe 13, 15 is coke filled in the reactor main body 11, 16 is a blow pipe 13 The formed pulverized coal sampling probe hole is provided at a position 400 mm from the tip of the lance 14. Reference numeral 17 denotes hot air blown into the reactor main body 11 from the blow pipe 13, reference numeral 18 denotes a raceway formed at the tip of the tuyere 12, and reference numeral 19 denotes exhaust gas from the reactor main body 11.
[0035]
Hot air was blown into the coke 15 filled in the reactor main body 11. This hot air had the same oxygen concentration as that in the blast furnace, obtained by burning LPG with air from the upstream side of the blow pipe 13 and further mixing oxygen. Then, pulverized coal was blown into the blow pipe 13. The pulverized coal was preheated to a predetermined temperature by the heater 21 and then blown from the storage hopper 20 to the blowing lance 14. The actual preheating temperature was measured by the thermocouple 22. Then, the pulverized coal sampling probe was inserted into the pulverized coal sampling probe hole 16 to sample and analyze the pulverized coal during the combustion process, and the combustion rate of the pulverized coal was checked for each preheating temperature. The definition of the combustion rate was calculated as the consumption rate of combustibles as shown in equation (4). The test conditions at this time are shown in Table 3, and the specifications of the test equipment are shown in Table 4.
[0036]
(Equation 5)
Figure 2004238692
[0037]
[Table 3]
Figure 2004238692
[0038]
[Table 4]
Figure 2004238692
[0039]
The preheating temperature was changed for the various coals thus performed, and the combustion rates were measured.
[0040]
[Table 5]
Figure 2004238692
[0041]
Table 5 shows an example using coal A. When the preheating temperature was set at 265 ° C. according to the present invention, the combustion rate increased by 5.1% (Example 1). When the preheating temperature was 200 ° C., the effect of increasing the combustion rate was not obtained (Comparative Example 1). Even when the preheating temperature was increased to 300 ° C. as in Comparative Example 2, the effect was not different from that of Example 1. In this case, although the effect of improving the pulverized coal combustion rate is equivalent to that of the embodiment, a large amount of heat is required for preheating. The effect is qualitatively expressed as shown in the bottom row of Table 5.
[0042]
[Table 6]
Figure 2004238692
[0043]
Table 6 shows an example using coal C. Coal C has a high volatile content, and the combustion rate of pulverized coal is improved even at a low preheating temperature. When the preheating temperature was set at 171 ° C. according to the present invention, the combustion rate increased by 5.2% (Example 2). When the preheating temperature was set to 200 ° C. according to the prior art, the effect of increasing the combustion rate was obtained, but the effect was not different from that of Example 2. Also in this case, the present invention is superior because a large amount of heat is required for preheating.
[0044]
【The invention's effect】
As described above, in the method of preheating and pulverizing pulverized coal into the blast furnace as described above, the combustion rate of pulverized coal is improved by appropriately controlling the preheating temperature in accordance with the type of coal (volatile content). And a large amount of pulverized coal can be stably blown. For this reason, a great effect was able to be achieved in reducing pig iron production costs.
[Brief description of the drawings]
FIG. 1 is a structural diagram (schematic diagram) of coal.
FIG. 2 is a graph showing a relationship between a temperature and a thermal decomposition rate constant.
FIG. 3 is a graph qualitatively showing flammability characteristics before and after preheating.
FIG. 4 is a graph showing a relationship between a volatile content and a required preheating temperature.
FIG. 5 is a sectional view of a tuyere part of a blast furnace.
FIG. 6 is a sectional view showing a reactor for a pulverized coal combustion test simulating the vicinity of a tuyere of a blast furnace.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Tuyere 2 ... Blower pipe 3 ... Raceway 6 ... Blowing lance 7 ... Pulverized coal transfer line 8 ... Distributor 9 ... Pulverized coal preheating equipment (preheating means)

Claims (4)

羽口部から補助燃料として予熱した微粉炭を吹き込む高炉への微粉炭吹き込み方法において、
石炭の揮発分含有量に応じて、微粉炭の予熱温度を調節することを特徴とする高炉への微粉炭吹き込み方法。
In the method of injecting pulverized coal into the blast furnace, which injects preheated pulverized coal from the tuyere as auxiliary fuel,
A method for injecting pulverized coal into a blast furnace, wherein a preheating temperature of the pulverized coal is adjusted according to a volatile matter content of the coal.
石炭の揮発分含有量が多くなるにしたがって、微粉炭の予熱温度を低くすることを特徴とする請求項1に記載の高炉への微粉炭吹き込み方法。The method for blowing pulverized coal into a blast furnace according to claim 1, wherein the preheating temperature of the pulverized coal is lowered as the volatile matter content of the coal increases. 微粉炭の予熱温度が、
Figure 2004238692
ただし
Tc:必要予熱温度(℃)
VM:微粉炭の揮発分含有量(mass%)
a,b,c:定数
であることを特徴とする高炉への予熱微粉炭の吹き込み方法。
The preheating temperature of pulverized coal is
Figure 2004238692
Where Tc is the required preheating temperature (° C)
VM: volatile matter content of pulverized coal (mass%)
a, b, c: a method of injecting preheated pulverized coal into a blast furnace, characterized by being constants.
羽口部から補助燃料として予熱した微粉炭を吹き込む高炉への微粉炭吹き込み装置において、
微粉炭を予熱する予熱手段と、
石炭の石炭の揮発分含有量に応じて、微粉炭の予熱温度を調節する温度調節手段とを備えることを特徴とする高炉への微粉炭吹き込み装置。
In the pulverized coal injection device into the blast furnace that injects pulverized coal preheated from the tuyere as auxiliary fuel,
A preheating means for preheating the pulverized coal,
A pulverized coal blowing apparatus for a blast furnace, comprising: temperature control means for controlling a preheating temperature of pulverized coal in accordance with a volatile content of coal.
JP2003029844A 2003-02-06 2003-02-06 Method and device for blowing pulverized fine coal into blast furnace Pending JP2004238692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003029844A JP2004238692A (en) 2003-02-06 2003-02-06 Method and device for blowing pulverized fine coal into blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003029844A JP2004238692A (en) 2003-02-06 2003-02-06 Method and device for blowing pulverized fine coal into blast furnace

Publications (1)

Publication Number Publication Date
JP2004238692A true JP2004238692A (en) 2004-08-26

Family

ID=32956910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003029844A Pending JP2004238692A (en) 2003-02-06 2003-02-06 Method and device for blowing pulverized fine coal into blast furnace

Country Status (1)

Country Link
JP (1) JP2004238692A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007239014A (en) * 2006-03-08 2007-09-20 Nippon Steel Corp Method for operating blast furnace
WO2013108768A1 (en) * 2012-01-18 2013-07-25 三菱重工業株式会社 Blast furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007239014A (en) * 2006-03-08 2007-09-20 Nippon Steel Corp Method for operating blast furnace
WO2013108768A1 (en) * 2012-01-18 2013-07-25 三菱重工業株式会社 Blast furnace
JPWO2013108768A1 (en) * 2012-01-18 2015-05-11 三菱重工業株式会社 Blast furnace equipment
US9556497B2 (en) 2012-01-18 2017-01-31 Mitsubishi Heavy Industries, Ltd. Blast furnace

Similar Documents

Publication Publication Date Title
JP5564056B2 (en) Blast furnace operating method and blast furnace equipment
US20060027043A1 (en) Method and apparatus for producing clean reducing gases from coke oven gas
JP4893136B2 (en) Blast furnace operation method using woody biomass
JP5824810B2 (en) Blast furnace operation method
JP5403027B2 (en) Blast furnace operating method and coke manufacturing method using woody biomass
CN100575505C (en) Utilize red Jiao to add the method for reducing gas in the hot direct reduced iron
JP6098765B2 (en) Method of injecting pulverized coal into oxygen blast furnace
JP6066461B2 (en) Waste gasification and melting apparatus and waste gasification and melting method
KR20120070300A (en) Method and apparatus for manufacturing partially-carbonized coal briquettes, and apparatus for manufacturing molten irons
JP2004238692A (en) Method and device for blowing pulverized fine coal into blast furnace
EP2460869B1 (en) Process for producing ferro coke
KR101322903B1 (en) Apparatus for manufacturing molten iron and method for manufacturing the same
CN113825845B (en) Method for operating a metallurgical furnace
KR102029315B1 (en) Method and device for reducing iron oxide-containing feedstocks
JP2002371307A (en) Method for recycling organic or hydrocarbon waste, and blast furnace facility suitable for recycling
JP2020020012A (en) Pig-iron manufacturing facility and method for manufacturing pig-iron using the same
JP2014190599A (en) Waste gasification melting equipment and waste gasification melting method
JPH04354810A (en) Method for blowing fine coal into blast furnace and device therefor
JP2009298909A (en) Utilizing method of pyrolysis char as carbonaceous material for sintering
WO2017043736A1 (en) Apparatus for decomposing tar, apparatus for producing molten iron, and method for producing molten iron
JP2003003172A (en) Method for improving coke
BR102022013105A2 (en) CHARCOAL COMPOSITION FOR USE IN STEEL PRODUCTION, SLAG FOAMING PROCESS IN STEEL PRODUCTION IN ELECTRIC ARC FURNACES AND USE OF A CHARCOAL COMPOSITION
JP2010038535A (en) Waste melting treatment method and waste melting treatment device
JP2002194359A (en) Method for dry quenching of coke
JP2010209448A (en) Method for manufacturing agglomerate containing carbonaceous material