JP2004238687A - High-tension hot-rolled steel sheet and high-tension plated steel sheet which are excellent in bake hardenability and ductility and their production methods - Google Patents

High-tension hot-rolled steel sheet and high-tension plated steel sheet which are excellent in bake hardenability and ductility and their production methods Download PDF

Info

Publication number
JP2004238687A
JP2004238687A JP2003029418A JP2003029418A JP2004238687A JP 2004238687 A JP2004238687 A JP 2004238687A JP 2003029418 A JP2003029418 A JP 2003029418A JP 2003029418 A JP2003029418 A JP 2003029418A JP 2004238687 A JP2004238687 A JP 2004238687A
Authority
JP
Japan
Prior art keywords
steel sheet
less
temperature
ductility
ferrite phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003029418A
Other languages
Japanese (ja)
Other versions
JP4259132B2 (en
Inventor
Shinzo Uchimaki
信三 内牧
Takashi Ishikawa
孝 石川
Shinjiro Kaneko
真次郎 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003029418A priority Critical patent/JP4259132B2/en
Publication of JP2004238687A publication Critical patent/JP2004238687A/en
Application granted granted Critical
Publication of JP4259132B2 publication Critical patent/JP4259132B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-tension hot-rolled steel sheet and a high-tension plated steel sheet which are excellent in non-aging property at room temperature whose bake hardenability and ductility can be improved without further decreasing the crystal grain size or increasing the amount of solid solution N. <P>SOLUTION: The high-tension hot-rolled steel sheet has a composition comprising, by mass, 0.05-0.15% C, ≤0.5% Si, 1.2-3.0% Mn, 0.05-1.0% Mo, ≤0.05% P, 0.001-0.1% Al, 0.005-0.02% N and the balance being Fe and unavoidable impurities and has a steel structure comprising, by area, 10-50% low-temperature transformed ferrite phase and the balance substantially being polygonal ferrite phase. The average crystal grain size of the two phases, i.e. the low-temperature transformed ferrite phase and the polygonal ferrite phase, is ≤8 μm. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、自動車の構造部材や足周り部材等の使途に供して好適な高張力熱延鋼板および高張力めっき鋼板ならびにそれらの製造方法に関し、特に焼付硬化性および延性の有利な向上を図ろうとするものである。
なお、本発明でいう焼付硬化性の向上とは、加工−焼付塗装後の降伏強さだけでなく、引張り強さの向上をも意味する。また、延性の向上とは、同一強度レベルで見た時の伸びの向上、すなわちいわゆる強度−延性バランス(TS×El)の向上を意味する。
【0002】
【従来の技術】
特許文献1には、Nを多量に含有した鋼を、熱間圧延したのち、350 ℃以下まで急冷して巻き取ることからなる焼付硬化型高張力熱延鋼板の製造方法が提案されている。
しかしながら、上記の技術で製造された熱延鋼板は、フェライトとマルテンサイトを主体とする複合組織を有し、N添加により焼付硬化性を付与する技術であり、加工−塗装焼付処理後の引張強さは増加するものの、耐常温時効性への配慮がないため、耐常温時効性が劣化するという問題を残していた。
【0003】
また、特許文献2には、結晶粒の微細化および固溶Nの量、存在形態を制御することによって、焼付硬化性と耐常温時効性を改善した熱延鋼板が提案されている。
しかしながら、この技術を用いて焼付硬化性のさらなる向上を図ろうとすると、結晶粒を一層微細化するか、固溶N量をさらに増大させる必要があるが、結晶粒をさらに微細化することは現実的ではなく、また固溶Nを増加させることは常温時効による延性の劣化を招くことから、この技術による改善には限界があった。
【0004】
【特許文献1】
特開平4−74824 号公報
【特許文献2】
特開2000−297350号公報
【0005】
【発明が解決しようとする課題】
本発明は、上記した特許文献2に開示の技術の改良に係わり、結晶粒を一層の微細化や固溶N量のさらなる増大などの必要なしに、焼付硬化性および延性を一層向上させ、しかも耐常温時効性にも優れた高張力熱延鋼板および高張力めっき鋼板を、それらの有利な製造方法と共に提案することを目的とする。
【0006】
【課題を解決するための手段】
さて、発明者らは、上記の目的を達成すべく鋭意研究を行った結果、鋼の成分組成を所定の範囲に調整した上で、鋼板の製造工程を厳密に管理し、熱延鋼板の組織を適正な組成に制御することによって、耐常温時効性の劣化なしに、焼付硬化性および延性の著しい向上が達成されることの知見を得た。
本発明は、上記の知見に立脚するものである。
【0007】
すなわち、本発明の要旨構成は次のとおりである。
1.質量%で
C:0.05〜0.15%、
Si:0.5 %以下、
Mn:1.2 〜3.0 %、
Mo:0.05〜1.0 %、
P:0.05%以下、
Al:0.001 〜0.1 %および
N:0.005 〜0.02%
を含有し、残部はFeおよび不可避的不純物の組成になり、低温変態フェライト相が面積率で10〜50%で、かつ残部が実質的にポリゴナルフェライト相の鋼組織を有し、しかも上記の低温変態フェライト相とポリゴナルフェライト相の2相の平均結晶粒径が8μm 以下であることを特徴とする焼付硬化性および延性に優れた高張力熱延鋼板。
【0008】
2.上記1において、鋼板が、さらに質量%で
Cr:1.0 %以下および
Ni:1.0 %以下
のうちから選んだ1種または2種を含有する組成になることを特徴とする焼付硬化性および延性に優れた高張力熱延鋼板。
【0009】
3.上記1または2において、鋼板が、さらに質量%で
Ti:0.1 %以下および
Nb:0.1 %以下
のうちから選んだ1種または2種を含有する組成になることを特徴とする焼付硬化性および延性に優れた高張力熱延鋼板。
【0010】
4.上記1〜3のいずれかにおいて、鋼板表面に、めっき層を形成したことを特徴とする焼付硬化性および延性に優れた高張力めっき鋼板。
【0011】
5.質量%で
C:0.05〜0.15%、
Si:0.5 %以下、
Mn:1.2 〜3.0 %、
Mo:0.05〜1.0 %、
P:0.05%以下、
Al:0.001 〜0.1 %および
N:0.005 〜0.02%
を含有する組成になる鋼素材を、1000〜1300℃に加熱し、ついで粗圧延後、仕上圧延出側温度:(Ar+10℃)〜(Ar+100 ℃)の条件で仕上圧延を終了したのち、1.7 秒以内に50℃/s以上の速度で 750〜600 ℃の温度域まで冷却し、この温度域に3〜15秒間保持したのち、20℃/s以上の速度で冷却し、 500〜250 ℃の温度で巻き取ることを特徴とする焼付硬化性および延性に優れた高張力熱延鋼板の製造方法。
【0012】
なお、この製造方法に用いる鋼素材としては、上記したC:0.05〜0.15%、Si:0.5 %以下、Mn:1.2 〜3.0 %、Mo:0.05〜1.0 %以下、P:0.05%以下、Al:0.001 〜0.1 %およびN:0.005 〜0.02%を含有し、残部はFeおよび不可避的不純物の組成になるものであっても、鋼中にさらに、Cr:1.0 %以下およびNi:1.0 %以下のうちから選んだ1種または2種を含有し、残部はFeおよび不可避的不純物の組成になるもの、および/またはさらに鋼中に、Ti:0.1 %以下およびNb:0.1 %以下のうちから選んだ1種または2種を含有し、残部はFeおよび不可避的不純物の組成になるものであっても良い。
【0013】
6.上記5において、巻取り後、鋼板表面にめっき処理を施すことを特徴とする焼付硬化性および延性に優れた高張力めっき鋼板の製造方法。
【0014】
【発明の実施の形態】
以下、本発明を具体的に説明する。
また、本発明において、鋼板の成分組成を上記の範囲に限定した理由について説明する。なお、成分に関する「%」表示は特に断らない限り質量%(mass%)を意味するものとする。
C:0.05〜0.15%
Cは、鋼の強度を増加させるだけでなく、結晶粒の粗大化を抑制するためにも有用な元素であるが、含有量が0.05%に満たないとその添加効果に乏しく、一方0.15%を超えると溶接性が劣化するので、C量は0.15%以下とする必要があり、より好ましくは0.12%以下とする。
【0015】
Si:0.5 %以下
Siは、固溶強化により鋼の強度を増加させる元素であり、必要な強度に応じて適宜含有量を調整できる。しかしながら、含有量が 0.5%を超えると加工性を劣化させるだけでなく、低温変態フェライトの生成を阻害するので、Si量は 0.5%以下に限定した。
【0016】
Mn:1.2 〜3.0 %
Mnは、固溶強化元素であり、高強度鋼板を得るための基本的構成元素である。また、低温変態フェライトの生成にも有効に寄与する。しかしながら、含有量が1.2 %に満たないとその添加効果に乏しく、一方 3.0%を超えると加工性が劣化するだけでなく、溶接性にも悪影響を与えるので、Mn量は 1.2〜3.0 %の範囲に限定した。
【0017】
Mo:0.05〜1.0 %
Moは、固溶強化により鋼の強度上昇に有効に寄与するだけでなく、オーステナイトを安定化する作用により、熱間圧延において低温変態フェライト相を形成し易くして、熱間圧延後、冷却を開始するまでの時間に余裕を持たせる効果がある。しかしながら、含有量が0.05%に満たないと、その添加効果に乏しく、一方1.0 %を越えると低温フェライト相の生成を阻害してしまう為、0.05〜1.0 %に限定する。さらに、Moの含有量は、好ましくは0.1 超〜0.5 %、より好ましくは0.20%以下とすることが推奨される。
【0018】
P:0.05%以下
Pは、鋼の強度を増加させる元素であり、必要に応じて適宜含有量を調整する。しかしながら、含有量が0.05%を超えると溶接性が劣化し、またPが粒界に偏析して粒界割れを発生するおそれが生じ、さらには低温変態フェライトの生成をも阻害するので、P量は0.05%以下に限定した。
【0019】
Al:0.001 〜0.1 %
Alは、脱酸剤として有用な元素であり、鋼の脱酸のためには少なくとも 0.001%の含有を必要とするが 0.1%を超えると表面性状が劣化するだけでなく、所定量の固溶Nの確保が難しくなるので、Alは 0.001〜0.1 %の範囲で含有させるものとした。
【0020】
N:0.005 〜0.02%
Nは、本発明において特に重要な元素であり、鋼中に固溶して加工−塗装焼付処理後の降伏強さおよび引張強さを増加させるのに有効に作用する。この目的のためには、0.005 %以上のNの含有を必要とするが、0.02%を超えると内部欠陥の発生率が高くなるだけでなく、連続鋳造時にスラブ割れなどが多発するようになる。そこで、N量は 0.005〜0.02%の範囲に限定した。より好ましくは 0.007〜0.02%の範囲である。
【0021】
以上、必須成分について説明したが、本発明では、その他にも以下に述べる元素を適宜含有させることができる。
Cr:1.0 %以下およびNi:1.0 %以下のうちから選んだ1種または2種以上
CrおよびNiはいずれも、固溶強化により鋼の強度上昇に有効に寄与するだけでなく、オーステナイトを安定化する作用により、熱間圧延において低温変態フェライト相を形成し易くする効果がある。この効果を得るためには、CrおよびNiの含有量はそれぞれ 0.1%以上とすることが好ましい。しかしながら、いずれも含有量が 1.0%を超えるとかえって低温変態フェライト相の生成を阻害するので、それぞれ 1.0%以下で含有させるものとした。
【0022】
Ti:0.1 %以下およびNb:0.1 %以下のうちから選んだ1種または2種
TiおよびNbはそれぞれ、炭化物、窒化物を形成することによって、強度および靱性の向上に有効に寄与する。この効果を得るためには、Ti, Nbの含有量はそれぞれ0.01%以上とすることが好ましい。しかしながら、いずれも含有量が 0.1%を超えると固溶Nを窒化物として固定してしまい、却って焼付硬化性を低下させるので、それぞれ 0.1%以下で含有させるものとした。
以上、必須成分および選択成分について説明したが、上記した成分以外の残部は、Feおよび不可避的不純物である。
【0023】
また、本発明では、成分組成範囲を上記の範囲に調整するだけでは不十分で、その組織および粒径も併せて規定する必要がある。
低温変態フェライト相の面積率V(α ) :10〜50%
ここでいう低温変態フェライトα は、通常の意味のフェライト(ポリゴナルフェライト:α )とは区別され、低温域(概ね 500℃以下)において生成するフェライトで、ベイニティックフェライトあるいは上部ベイナイトのことを意味する。この組織は、本発明において特に重要で、高い焼付硬化性を担うものである。
焼付硬化は、鋼中の侵入型固溶元素(C,N)が鋼中の転位を固着し、転位の運動に対する抵抗力が高くなることにより強度が高くなる現象である。低温変態フェライト組織内では、元々転位密度が高くなっているためにその効果が促進され、固着された転位が塑性変形時の転位の運動の抵抗として働くために、極めて高い焼付硬化性を示すようになる。
そして、この組織により、焼付け硬化の向上を効果的に生ぜしめるためには、面積率V(α ) で少なくとも10%の低温変態フェライトを必要とする。しかしながら、50%を超えると相対的にポリゴナルフェライトの量が低減して延性が劣化するので、本発明では低温変態フェライト相の量は面積率V(α ) で10〜50%の範囲に限定した。
【0024】
低温変態フェライト相以外は、実質的にポリゴナルフェライト相からなる。このように、低温変態フェライト以外をポリゴナルフェライトとすることにより、延性の著しい向上を図ることができる。
なお、上記した低温変態フェライト相、ポリゴナルフェライト相以外の相としては、マルテンサイト相やパーライト相が生成する場合があるが、これらの相があまりに多くなると所期した効果を得ることが難しくなるので、これらの相は面積率で10%以下に抑制することが好ましい。
すなわち、上記した低温変態フェライト相とポリゴナルフェライト相の2相の面積率の合計を90%以上とすることが好ましい。
【0025】
低温変態フェライト相とポリゴナルフェライト相の2相の平均結晶粒径が8μm以下
ここでいう平均結晶粒径とは、低温変態フェライト相(α ) とポリゴナルフェライト相(α ) の2相の平均結晶粒径のことであり、この平均結晶粒径を8μm 以下に制限することが重要である。
図1に、後述する表1中の鋼種Aについて、平均結晶粒径が8μm 以下のものと10〜15μm のものについて、低温変態フェライト相の面積率と製品板の焼付け硬化量(ΔTS)との関係について調べた結果を示すが、同図に示したとおり、平均結晶粒径が8μm を超える10〜15μm の場合には、平均結晶粒径8μm 以下の場合程の引張強さの上昇は望めない。
なお、結晶粒を微細にすることによって固溶Nの存在位置としての粒界面積が増大するが、粒界中に存在する固溶Nは室温においては安定で拡散できないため、常温時効性の劣化が抑制される。この点、平均結晶粒径が8μm を超えるとこの効果は著しく減少する。
【0026】
上記のような構成にすることにより、高い焼付硬化性が得られる理由については、以下のように考えられる。
焼付硬化は、予加工されたときに生じる可動転位と固溶Nとの相互作用により、可動転位が固溶Nによって固着されるために生じるものであるが、その際、結晶粒が微細化され、結晶粒界が増加すると、同一歪み量だけ加工されても、可動転位は高密度に分布するようになる。また、低温変態フェライト組織は予加工を加える前からあらかじめ多量の可動転位を含んでおり、予加工後の転位密度も高密度になるため、高い焼付硬化性を呈するようになるものと考えられる。
【0027】
次に、本発明の製造条件を前記のように限定した理由について説明する。
鋼素材加熱温度(スラブ加熱温度):1000〜1300℃
熱延板で所望の固溶Nを確保するためには、熱間圧延前の加熱時に窒化物を溶解させておく必要がある。しかしながら、鋼素材であるスラブの加熱温度が1000℃に満たないと熱延板中に固溶状態で所望量のNを残存させるのが難しく、一方1300℃を超えると加熱時のオーステナイト粒が粗大化し、平均結晶粒径を8μm以下にすることが困難となる。従って、スラブ加熱温度は1000〜1300℃の範囲に限定した。より好ましくは、1100〜1250℃の範囲である。
なお、加熱後のスラブをシートバーとする粗圧延は、常法に従って行えば良い。
【0028】
仕上圧延出側温度:(Ar+10℃)〜(Ar+100 ℃)
仕上圧延では、鋼板の組織を均一かつ微細に整えるために、仕上圧延出側温度(FDT と記す)を(Ar+10℃)〜(Ar+100 ℃)の範囲に制御する必要がある。というのは、FDT が(Ar+10℃)を下回ると仕上圧延温度が低くなりすぎて組織が不均一となり、一部に加工組織が残留したりして、プレス成形時に種々の不具合を発生する危険性が高まり、一方 FDTが(Ar+100 ℃)を超えると結晶粒の微細化が困難になる。
【0029】
圧延後の冷却:仕上圧延終了後、1.7 秒以内に50℃/s以上の速度で 750〜600 ℃の温度域まで冷却し、この温度域に3〜15秒間保持したのち、20℃/s以上の速度で巻取り温度まで冷却する
仕上圧延を行ったのち、1.7 秒以内に冷却を開始しないと、結晶粒が粗大になるだけでなく、低温フェライト相の形成が困難となり、またNが析出して固溶Nの確保が困難となるので、冷却開始時間は仕上圧延終了後 1.7 秒以内とした。なお、ここでは、Moの含有によって、オーステナイトを安定化することにより、低温フェライト相の形成が容易になるため、仕上圧延終了後 1.7 秒以内という、ある程度の余裕を持って冷却に供することができる。
【0030】
また、その時の、冷却速度が50℃/s未満では、冷却中に結晶粒が成長し微細化が困難になると共に、Nが析出し固溶Nの確保が難しくなるので、冷却速度は50℃/s以上の強冷却とした。
そして、 750〜600 ℃の温度域まで冷却するが、この理由は、この温度域で特にポリゴナルフェライト変態が促進され、著しい延性の向上が期待できるからである。しかしながら、この温度域での保持時間が3秒未満ではポリゴナルフェライトの生成量が不足してその効果が望めず、一方15秒を超えるとフェライト粒が粗大化するだけでなく、ポリゴナルフェライトの量が多くなりすぎて、その後に十分な量の低温変態フェライトを確保することが難しくなり、所期したほどの焼付硬化量が得られなくなるので、 750〜600 ℃の温度域での保持時間は3〜15秒の範囲に限定した。
【0031】
なお、この温度域での保持処理は、一定温度に維持するいわゆる保定処理でも、また20℃/s未満程度の速度で冷却するいわゆる徐冷処理でも、いずれでもよい。
さらに、その後、巻取り温度までの冷却速度を20℃/s以上としたのは、冷却速度が20℃/sに満たないと、さらなるポリゴナルフェライトの成長により、所定の低温変態フェライト相分率の確保が困難になるからである。
【0032】
巻取り温度:500 〜250 ℃
上記の制御冷却後、 500〜250 ℃の温度範囲で巻き取る。というのは、巻取り温度が 500℃より高い場合には、所定量の低温変態フェライト相を得るのが難しくなるだけでなく、結晶粒径の微細化が達成されず、一方巻取り温度が 250℃より低い場合には、マルテンサイトなどのより低温の変態相が支配的となり、やはり所望の低温変態フェライト相を得るのが困難になるからである。
【0033】
図2に、上記した本発明に従う、冷却曲線を示す。
同図に示したとおり、本発明では、ポリゴナルフェライト相のノーズの近傍まで急冷したのち、ポリゴナルフェライト相の生成温度域に一定時間保持して、所定量のポリゴナルフェライト相を生成させたのち、低温変態フェライト相の生成温度域まで冷却し、この温度域で巻き取ることによって所定量の低温変態フェライト相を生成させるのである。
【0034】
上記のようにして得られた熱延鋼板は、各種めっき用原板として好適であるので、必要に応じて各種のめっき処理を施すことができる。
ここに、めっさの種類としては、電気亜鉛めっき、溶融亜鉛めっき、電気錫めっき、電気クロムめっきおよび電気ニッケルめっき等が挙げられるが、本発明ではいずれのめっき処理も有利に適用することができる。
【0035】
【実施例】
表1に示す成分組成になる溶鋼を、転炉で溶製し、連続鋳造によりスラブとしたのち、表2に示す条件で熱間圧延を施して、熱延鋼板とした。なお、一部については巻き取り後溶融亜鉛めっき処理を施した。
得られた熱延鋼板およびめっき鋼板について、組織試験、引張試験、焼付硬化性試験および常温時効性試験を行った。
【0036】
なお、鋼組織は、熱延鋼板の圧延方向と直角な方向の断面のナイタールによる腐食現出組織の拡大像によって調査した。
引張試験は、熱延鋼板の圧延方向に対し直角の方向からJIS 5号引張試験片を採取し、歪速度:10−3/sの条件で実施した。
焼付硬化性試験は、引張試験と同じく、熱延鋼板の圧延方向に対し直角な方向からJIS 5号引張試験片を採取し、予歪付与後時効処理を施し、歪速度:10−3/sの条件で実施した。なお、焼付処理条件は、予歪量:5%、時効処理条件:170 ℃×20分とした。
そして、焼付け硬化量BHおよび引張り強さの増加代ΔTSはそれぞれ、次式
BH=(時効後の降伏応力)−(時効処理前の予変形応力)
ΔTS=(時効後の引張強さ)−(熱延ままの引張強さ)
によって求めた。
常温時効性試験は、50℃,400 hの時効処理を施したのち、圧延方向に対し直角の方向からJIS 5号引張試験片を採取し、歪速度:10−3/sで引張試験を実施し、伸びEl を測定し、時効処理前の伸び(熱延ままの伸び)Elとの差、ΔEl=El−El で評価した。なお、得られたΔElが 2.0%以下であれば、常温時効性は問題ないといえる。
得られた結果を表3に示す。
【0037】
【表1】

Figure 2004238687
【0038】
【表2】
Figure 2004238687
【0039】
【表3】
Figure 2004238687
【0040】
表3から明らかなように、本発明に従い、所定の成分調整をした上で、鋼組織を低温変態フェライト相が面積率で10〜50%含有する組織とすることにより、強度−延性バランスが 16000 MPa・%以上と、同一強度レベルで見た時の延性に優れ、またBH 100 MPa以上、ΔTS 90 MPa 以上、ΔEl 1.5%以下の、焼付硬化性および耐常温時効性に優れた高張力熱延鋼板および高張力めっき鋼板を得ることができた。
【0041】
【発明の効果】
かくして、本発明によれば、自動車の内板部品等に使用して好適な、焼付硬化性および延性に優れ、また耐常温時効性も良好な高張力熱延鋼板および高張力めっき鋼板を安定して得ることができる。
【図面の簡単な説明】
【図1】製品板の焼付け硬化量(ΔTS)に及ぼす低温変態フェライト相の影響を、鋼板の平均結晶粒径をパラメータとして示した図である。
【図2】本発明に従う冷却曲線を示した模式図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-strength hot-rolled steel sheet and a high-strength plated steel sheet suitable for use in structural members and undercarriage members of automobiles, and a method for producing the same, and particularly to an advantageous improvement in bake hardenability and ductility. Is what you do.
The improvement in bake hardenability in the present invention means not only the yield strength after processing and bake coating, but also the improvement in tensile strength. The improvement in ductility means an improvement in elongation when viewed at the same strength level, that is, an improvement in a so-called strength-ductility balance (TS × El).
[0002]
[Prior art]
Patent Document 1 proposes a method of manufacturing a bake hardening type high-tensile hot-rolled steel sheet, which comprises hot rolling a steel containing a large amount of N, and then rapidly cooling the steel to 350 ° C. or lower.
However, the hot-rolled steel sheet manufactured by the above technique has a composite structure mainly composed of ferrite and martensite, and is a technique of imparting bake hardenability by adding N, and has a tensile strength after processing-paint baking treatment. Although the hardness increases, there is a problem that the room temperature aging resistance is deteriorated because there is no consideration for the room temperature aging resistance.
[0003]
Patent Document 2 proposes a hot-rolled steel sheet having improved bake hardenability and normal-temperature aging resistance by controlling the refinement of crystal grains and the amount and existence form of solute N.
However, in order to further improve the bake hardenability using this technique, it is necessary to further refine the crystal grains or further increase the amount of solute N. However, it is actually difficult to further refine the crystal grains. However, since increasing the amount of solute N causes deterioration of ductility due to aging at ordinary temperature, there is a limit to the improvement by this technique.
[0004]
[Patent Document 1]
JP-A-4-74824 [Patent Document 2]
JP 2000-297350 A
[Problems to be solved by the invention]
The present invention relates to the improvement of the technology disclosed in Patent Document 2 described above, and further improves bake hardenability and ductility without necessitating further refinement of crystal grains and further increase in the amount of solute N, and It is an object of the present invention to propose a high-strength hot-rolled steel sheet and a high-strength plated steel sheet which are also excellent in aging resistance at normal temperature, together with their advantageous production methods.
[0006]
[Means for Solving the Problems]
By the way, the present inventors have conducted intensive research to achieve the above object, and as a result, after adjusting the composition of steel to a predetermined range, strictly control the manufacturing process of the steel sheet, the structure of the hot-rolled steel sheet It has been found that by controlling the composition to an appropriate composition, remarkable improvements in bake hardenability and ductility can be achieved without deterioration of the aging resistance at room temperature.
The present invention is based on the above findings.
[0007]
That is, the gist configuration of the present invention is as follows.
1. C: 0.05 to 0.15% by mass%,
Si: 0.5% or less,
Mn: 1.2 to 3.0%,
Mo: 0.05 to 1.0%,
P: 0.05% or less,
Al: 0.001 to 0.1% and N: 0.005 to 0.02%
And the remainder has a composition of Fe and unavoidable impurities, the low-temperature transformed ferrite phase has an area ratio of 10 to 50%, and the balance substantially has a steel structure of a polygonal ferrite phase. A high-tensile hot-rolled steel sheet excellent in bake hardenability and ductility, characterized in that the average crystal grain size of two phases of a low-temperature transformed ferrite phase and a polygonal ferrite phase is 8 μm or less.
[0008]
2. The bake hardenability according to 1 above, wherein the steel sheet further has a composition containing one or two selected from among Cr: 1.0% or less and Ni: 1.0% or less by mass%. High tensile strength hot rolled steel sheet with excellent ductility.
[0009]
3. The printing according to 1 or 2, wherein the steel sheet further has a composition containing one or two selected from Ti: 0.1% or less and Nb: 0.1% or less by mass%. High tension hot rolled steel sheet with excellent curability and ductility.
[0010]
4. In any one of the above items 1 to 3, a high-strength plated steel sheet excellent in bake hardenability and ductility, wherein a plated layer is formed on the surface of the steel sheet.
[0011]
5. C: 0.05 to 0.15% by mass%,
Si: 0.5% or less,
Mn: 1.2 to 3.0%,
Mo: 0.05 to 1.0%,
P: 0.05% or less,
Al: 0.001 to 0.1% and N: 0.005 to 0.02%
Is heated to 1000 to 1300 ° C., and after rough rolling, finish rolling is finished under the conditions of finish rolling exit temperature: (Ar 3 + 10 ° C.) to (Ar 3 + 100 ° C.). After that, it is cooled to a temperature range of 750 to 600 ° C. at a speed of 50 ° C./s or more within 1.7 seconds, kept at this temperature range for 3 to 15 seconds, and then cooled at a speed of 20 ° C./s or more, A method for producing a high-tensile hot-rolled steel sheet excellent in bake hardenability and ductility, wherein the steel sheet is wound at a temperature of 500 to 250 ° C.
[0012]
The steel material used in this production method is as described above: C: 0.05 to 0.15%, Si: 0.5% or less, Mn: 1.2 to 3.0%, Mo: 0.05 to 1.0% or less, P: 0.05% or less, Al: 0.001 to 0.1%, and N: 0.005 to 0.02%, with the balance being Fe and inevitable impurities. However, the steel further contains one or two selected from among Cr: 1.0% or less and Ni: 1.0% or less, with the balance being the composition of Fe and unavoidable impurities. And / or further contained in the steel one or two selected from among Ti: 0.1% or less and Nb: 0.1% or less, with the balance being Fe and unavoidable impurities. It may be.
[0013]
6. 5. The method for producing a high-strength plated steel sheet excellent in bake hardenability and ductility according to the above item 5, wherein the surface of the steel sheet is plated after winding.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described specifically.
In the present invention, the reason for limiting the component composition of the steel sheet to the above range will be described. In addition, "%" display about a component shall mean the mass% (mass%) unless there is particular notice.
C: 0.05-0.15%
C is an element that is useful not only for increasing the strength of the steel but also for suppressing the coarsening of crystal grains. However, if the content is less than 0.05%, the effect of adding C is poor. If it exceeds .15%, the weldability deteriorates, so the C content needs to be 0.15% or less, more preferably 0.12% or less.
[0015]
Si: 0.5% or less Si is an element that increases the strength of steel by solid solution strengthening, and its content can be appropriately adjusted according to the required strength. However, if the content exceeds 0.5%, not only does the workability deteriorate, but also the formation of low-temperature transformed ferrite is hindered, so the Si content was limited to 0.5% or less.
[0016]
Mn: 1.2 to 3.0%
Mn is a solid solution strengthening element and is a basic constituent element for obtaining a high strength steel sheet. It also effectively contributes to the formation of low-temperature transformed ferrite. However, when the content is less than 1.2%, the effect of the addition is poor. On the other hand, when the content exceeds 3.0%, not only the workability is deteriorated, but also the weldability is adversely affected. It was limited to the range of 2 to 3.0%.
[0017]
Mo: 0.05 to 1.0%
Mo not only effectively contributes to increasing the strength of steel by solid solution strengthening, but also stabilizes austenite, thereby facilitating the formation of a low-temperature transformed ferrite phase in hot rolling, and cooling after hot rolling. This has the effect of allowing time to start. However, if the content is less than 0.05%, the effect of the addition is poor. On the other hand, if the content exceeds 1.0%, the formation of a low-temperature ferrite phase is hindered, so that the content is limited to 0.05 to 1.0%. I do. Further, it is recommended that the content of Mo be preferably more than 0.1 to 0.5%, more preferably 0.20% or less.
[0018]
P: 0.05% or less P is an element that increases the strength of steel, and its content is appropriately adjusted as necessary. However, if the content exceeds 0.05%, the weldability deteriorates, P may segregate at the grain boundaries, causing the generation of grain boundary cracks, and further inhibits the formation of low-temperature transformed ferrite. The P content was limited to 0.05% or less.
[0019]
Al: 0.001 to 0.1%
Al is an element that is useful as a deoxidizing agent. To deoxidize steel, it is necessary to contain at least 0.001%, but if it exceeds 0.1%, not only the surface properties deteriorate, but also Since it is difficult to secure a fixed amount of dissolved N, Al is contained in the range of 0.001 to 0.1%.
[0020]
N: 0.005 to 0.02%
N is a particularly important element in the present invention, and works effectively to increase the yield strength and tensile strength after the work-paint baking treatment by forming a solid solution in steel. For this purpose, the content of N is required to be not less than 0.005%, but if it exceeds 0.02%, not only the occurrence rate of internal defects is increased, but also slab cracks and the like occur frequently during continuous casting. Become like Therefore, the N content is limited to the range of 0.005 to 0.02%. More preferably, it is in the range of 0.007 to 0.02%.
[0021]
As described above, the essential components have been described. However, in the present invention, other elements described below can be appropriately contained.
One or more of Cr and Ni selected from Cr: 1.0% or less and Ni: 1.0% or less not only effectively contribute to the increase in the strength of steel by solid solution strengthening, but also The effect of stabilizing austenite has an effect of easily forming a low-temperature transformed ferrite phase in hot rolling. To obtain this effect, the contents of Cr and Ni are each preferably set to 0.1% or more. However, in any case, if the content exceeds 1.0%, the formation of the low-temperature transformed ferrite phase is hindered, so that each content is set to 1.0% or less.
[0022]
One or two selected from Ti: 0.1% or less and Nb: 0.1% or less Ti and Nb form carbides and nitrides, respectively, thereby effectively contributing to improvement in strength and toughness. I do. In order to obtain this effect, the contents of Ti and Nb are each preferably set to 0.01% or more. However, when the content exceeds 0.1%, solid solution N is fixed as a nitride, and on the contrary, the bake hardenability is lowered. Therefore, each content is set to 0.1% or less.
As described above, the essential components and the optional components have been described, but the balance other than the above components is Fe and inevitable impurities.
[0023]
In the present invention, it is not sufficient to simply adjust the component composition range to the above range, and it is necessary to also specify the structure and particle size.
Low-temperature transformed ferrite phase area ratio V (α B ): 10 to 50%
Low-temperature transformation ferrite alpha B here is ferrite usual meanings: the (polygonal ferrite alpha P) are distinguished, in ferrite produced in a low temperature range (approximately 500 ° C. or less), the bainitic ferrite or upper bainite Means that. This structure is particularly important in the present invention and is responsible for high bake hardenability.
Bake hardening is a phenomenon in which interstitial solid solution elements (C, N) in steel fix dislocations in the steel, and the strength increases due to an increase in resistance to the movement of the dislocations. In the low-temperature transformation ferrite structure, the effect is promoted because the dislocation density is originally high, and the fixed dislocation acts as a resistance to the movement of the dislocation during plastic deformation, so that it exhibits extremely high bake hardenability. become.
In order to effectively improve bake hardening due to this structure, low-temperature transformed ferrite having an area ratio V (α B ) of at least 10% is required. However, if it exceeds 50%, the amount of polygonal ferrite is relatively reduced and ductility is deteriorated. Therefore, in the present invention, the amount of the low-temperature transformed ferrite phase is in the range of 10 to 50% in terms of area ratio V (α B ). Limited.
[0024]
Except for the low-temperature transformation ferrite phase, it substantially consists of a polygonal ferrite phase. As described above, by using polygonal ferrite other than low-temperature transformation ferrite, remarkable improvement in ductility can be achieved.
In addition, as a phase other than the above-mentioned low-temperature transformation ferrite phase and polygonal ferrite phase, a martensite phase or a pearlite phase may be generated, but it becomes difficult to obtain a desired effect when these phases become too large. Therefore, it is preferable that these phases be suppressed to an area ratio of 10% or less.
That is, it is preferable that the total area ratio of the two phases of the low-temperature transformed ferrite phase and the polygonal ferrite phase be 90% or more.
[0025]
The average crystal grain size of the low-temperature transformed ferrite phase and the polygonal ferrite phase is 8 μm or less. The average crystal grain size referred to herein is the two phases of the low-temperature transformed ferrite phase (α B ) and the polygonal ferrite phase (α P ). It is important to limit this average crystal grain size to 8 μm or less.
FIG. 1 shows the relationship between the area ratio of the low-temperature transformed ferrite phase and the bake hardening amount (ΔTS) of the product plate for steel type A in Table 1 described below, which has an average crystal grain size of 8 μm or less and 10 to 15 μm. As shown in the figure, when the average crystal grain size is more than 8 μm and 10 to 15 μm, the increase in tensile strength is not expected as in the case where the average crystal grain size is 8 μm or less. .
It should be noted that the grain boundary area as an existing position of solid solution N is increased by making the crystal grains fine, but the solid solution N existing in the grain boundary is stable at room temperature and cannot be diffused. Is suppressed. In this regard, when the average crystal grain size exceeds 8 μm, this effect is significantly reduced.
[0026]
The reason why high bake hardenability is obtained by adopting the above configuration is considered as follows.
Bake hardening occurs because mobile dislocations are fixed by solid solution N due to interaction between mobile dislocations and solid solution N generated during pre-processing. At this time, crystal grains are refined. When the crystal grain boundaries increase, the mobile dislocations are distributed at a high density even if the processing is performed by the same amount of strain. Further, it is considered that the low-temperature transformed ferrite structure contains a large amount of mobile dislocations before the pre-working is performed, and the dislocation density after the pre-working is also high, so that a high bake hardenability is exhibited.
[0027]
Next, the reason why the manufacturing conditions of the present invention are limited as described above will be described.
Steel material heating temperature (slab heating temperature): 1000-1300 ° C
In order to secure the desired solid solution N in the hot rolled sheet, it is necessary to dissolve the nitride at the time of heating before hot rolling. However, if the heating temperature of the steel slab is less than 1000 ° C., it is difficult to leave a desired amount of N in a solid solution state in the hot-rolled sheet, while if it exceeds 1300 ° C., the austenite grains during heating are coarse. It is difficult to reduce the average crystal grain size to 8 μm or less. Therefore, the slab heating temperature was limited to the range of 1000 to 1300 ° C. More preferably, it is in the range of 1100 to 1250 ° C.
The rough rolling using the heated slab as a sheet bar may be performed according to a conventional method.
[0028]
Finish rolling exit side temperature: (Ar 3 + 10 ° C.) to (Ar 3 + 100 ° C.)
In finish rolling, in order to arrange the structure of the steel sheet uniformly and finely, it is necessary to control the finish-rolling exit side temperature (referred to as FDT) in a range of (Ar 3 + 10 ° C.) to (Ar 3 + 100 ° C.). That is, when the FDT is lower than (Ar 3 + 10 ° C.), the finish rolling temperature becomes too low, the structure becomes non-uniform, and a partially processed structure remains, and various problems occur during press forming. The danger increases. On the other hand, when the FDT exceeds (Ar 3 + 100 ° C.), it becomes difficult to refine the crystal grains.
[0029]
Cooling after rolling: After finishing rolling, the steel sheet is cooled to a temperature range of 750 to 600 ° C. within 1.7 seconds at a speed of 50 ° C./s or more, and maintained at this temperature range for 3 to 15 seconds. If the finish rolling is performed to cool the film to the winding temperature at a speed of s or more, and if the cooling is not started within 1.7 seconds, not only the crystal grains become coarse, but also it becomes difficult to form a low-temperature ferrite phase. Since N precipitates and it becomes difficult to secure solid solution N, the cooling start time is set to 1.7 seconds or less after finishing rolling. Here, since the formation of low-temperature ferrite phase is facilitated by stabilizing austenite by the inclusion of Mo, it is necessary to provide cooling with a certain margin of 1.7 seconds or less after finish rolling. Can be.
[0030]
If the cooling rate at that time is less than 50 ° C./s, the crystal grains grow during cooling, making it difficult to make finer, and N precipitates to make it difficult to secure solid solution N. Therefore, the cooling rate is 50 ° C. / S or more.
Then, it is cooled to a temperature range of 750 to 600 ° C., because the transformation of polygonal ferrite is particularly promoted in this temperature range, and a remarkable improvement in ductility can be expected. However, if the holding time in this temperature range is less than 3 seconds, the amount of polygonal ferrite generated is insufficient and the effect cannot be expected. On the other hand, if it exceeds 15 seconds, not only the ferrite grains are coarsened, but also Since the amount becomes too large, it becomes difficult to secure a sufficient amount of low-temperature transformed ferrite thereafter, and the desired amount of bake hardening cannot be obtained. Therefore, the holding time in the temperature range of 750 to 600 ° C. The range was limited to 3 to 15 seconds.
[0031]
The holding process in this temperature range may be a so-called holding process for maintaining a constant temperature, or a so-called slow cooling process for cooling at a rate of less than about 20 ° C./s.
Further, after that, the cooling rate to the winding temperature was set to 20 ° C./s or more because if the cooling rate was less than 20 ° C./s, the growth of polygonal ferrite further increased the predetermined low-temperature transformed ferrite phase fraction. This is because it becomes difficult to secure the information.
[0032]
Winding temperature: 500-250 ° C
After the above-mentioned controlled cooling, winding is performed in a temperature range of 500 to 250 ° C. When the winding temperature is higher than 500 ° C., not only is it difficult to obtain a predetermined amount of a low-temperature transformed ferrite phase, but also a reduction in the crystal grain size is not achieved. If the temperature is lower than 0 ° C., a lower-temperature transformation phase such as martensite becomes dominant, and it is also difficult to obtain a desired low-temperature transformation ferrite phase.
[0033]
FIG. 2 shows a cooling curve according to the invention described above.
As shown in the figure, in the present invention, after quenching to the vicinity of the nose of the polygonal ferrite phase, a predetermined amount of the polygonal ferrite phase was generated by holding the polygonal ferrite phase in the generation temperature range for a certain period of time. Thereafter, the ferrite is cooled to a temperature range where a low-temperature transformed ferrite phase is formed, and is wound in this temperature range to generate a predetermined amount of a low-temperature transformed ferrite phase.
[0034]
The hot-rolled steel sheet obtained as described above is suitable as an original plate for various platings, and can be subjected to various plating treatments as necessary.
Here, examples of the type of plating include electro-galvanizing, hot-dip galvanizing, electro-tin plating, electro-chromium plating, and electro-nickel plating. In the present invention, any plating process can be advantageously applied. it can.
[0035]
【Example】
Molten steel having the component composition shown in Table 1 was melted in a converter and slab was formed by continuous casting, and then hot-rolled under the conditions shown in Table 2 to obtain a hot-rolled steel sheet. Note that a part was subjected to a hot-dip galvanizing treatment after winding.
The obtained hot-rolled steel sheet and plated steel sheet were subjected to a structure test, a tensile test, a bake hardening test, and a normal-temperature aging test.
[0036]
In addition, the steel structure was investigated by the enlarged image of the corrosion appearance structure by nital in the cross section in the direction perpendicular to the rolling direction of the hot-rolled steel sheet.
In the tensile test, a JIS No. 5 tensile test piece was sampled from a direction perpendicular to the rolling direction of the hot-rolled steel sheet, and the test was performed at a strain rate of 10 −3 / s.
In the bake hardening test, as in the tensile test, a JIS No. 5 tensile test piece was sampled from a direction perpendicular to the rolling direction of the hot-rolled steel sheet, subjected to aging treatment after prestraining, and a strain rate of 10 −3 / s It carried out on condition of. The baking conditions were pre-strain: 5% and aging conditions: 170 ° C. × 20 minutes.
The bake hardening amount BH and the increase in the tensile strength ΔTS are respectively expressed by the following formula: BH = (yield stress after aging) − (pre-deformation stress before aging treatment)
ΔTS = (tensile strength after aging)-(tensile strength as hot rolled)
Asked by.
In the room temperature aging test, after performing aging treatment at 50 ° C. for 400 hours, a JIS No. 5 tensile test piece was sampled from a direction perpendicular to the rolling direction, and a tensile test was performed at a strain rate of 10 −3 / s. Then, the elongation El A was measured, and the difference from the elongation before elongation treatment (elongation as hot rolled) El, ΔEl = El−El A, was evaluated. If the obtained ΔEl is 2.0% or less, it can be said that normal-temperature aging is not a problem.
Table 3 shows the obtained results.
[0037]
[Table 1]
Figure 2004238687
[0038]
[Table 2]
Figure 2004238687
[0039]
[Table 3]
Figure 2004238687
[0040]
As is clear from Table 3, after the steel composition is adjusted to a predetermined composition according to the present invention, and the steel structure is a structure containing a low-temperature transformed ferrite phase in an area ratio of 10 to 50%, the strength-ductility balance is 16,000. MPa ·% or more, excellent ductility when viewed at the same strength level, and high tensile strength excellent in bake hardenability and normal temperature aging resistance of 100 MPa or more, ΔTS 90 MPa or more, and ΔEl 1.5% or less. A hot rolled steel sheet and a high-strength plated steel sheet were obtained.
[0041]
【The invention's effect】
Thus, according to the present invention, it is possible to stably produce a high-strength hot-rolled steel sheet and a high-strength plated steel sheet which are suitable for use as an inner plate part of an automobile, have excellent baking hardenability and ductility, and also have good aging resistance at ordinary temperature. Can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing the effect of a low-temperature transformed ferrite phase on the bake hardening amount (ΔTS) of a product sheet using the average crystal grain size of a steel sheet as a parameter.
FIG. 2 is a schematic diagram showing a cooling curve according to the present invention.

Claims (6)

質量%で
C:0.05〜0.15%、
Si:0.5 %以下、
Mn:1.2 〜3.0 %、
Mo:0.05〜1.0 %、
P:0.05%以下、
Al:0.001 〜0.1 %および
N:0.005 〜0.02%
を含有し、残部はFeおよび不可避的不純物の組成になり、低温変態フェライト相が面積率で10〜50%で、かつ残部が実質的にポリゴナルフェライト相の鋼組織を有し、しかも上記の低温変態フェライト相とポリゴナルフェライト相の2相の平均結晶粒径が8μm 以下であることを特徴とする焼付硬化性および延性に優れた高張力熱延鋼板。
C: 0.05 to 0.15% by mass%,
Si: 0.5% or less,
Mn: 1.2 to 3.0%,
Mo: 0.05 to 1.0%,
P: 0.05% or less,
Al: 0.001 to 0.1% and N: 0.005 to 0.02%
And the remainder has a composition of Fe and unavoidable impurities, the low-temperature transformed ferrite phase has an area ratio of 10 to 50%, and the balance substantially has a steel structure of a polygonal ferrite phase. A high-tensile hot-rolled steel sheet excellent in bake hardenability and ductility, characterized in that the average crystal grain size of two phases of a low-temperature transformed ferrite phase and a polygonal ferrite phase is 8 μm or less.
請求項1において、鋼板が、さらに質量%で
Cr:1.0 %以下および
Ni:1.0 %以下
のうちから選んだ1種または2種を含有する組成になることを特徴とする焼付硬化性および延性に優れた高張力熱延鋼板。
2. The bake hardening according to claim 1, wherein the steel sheet further has a composition containing one or two selected from among Cr: 1.0% or less and Ni: 1.0% or less by mass%. High-strength hot-rolled steel sheet with excellent ductility and ductility.
請求項1または2において、鋼板が、さらに質量%で
Ti:0.1 %以下および
Nb:0.1 %以下
のうちから選んだ1種または2種を含有する組成になることを特徴とする焼付硬化性および延性に優れた高張力熱延鋼板。
3. The steel sheet according to claim 1, wherein the steel sheet further has a composition containing one or two selected from Ti: 0.1% or less and Nb: 0.1% or less by mass%. High tensile hot rolled steel sheet with excellent bake hardenability and ductility.
請求項1〜3のいずれかにおいて、鋼板表面に、めっき層を形成したことを特徴とする焼付硬化性および延性に優れた高張力めっき鋼板。4. A high-strength plated steel sheet according to any one of claims 1 to 3, wherein a plated layer is formed on the surface of the steel sheet, and which is excellent in bake hardenability and ductility. 質量%で
C:0.05〜0.15%、
Si:0.5 %以下、
Mn:1.2 〜3.0 %、
Mo:0.05〜1.0 %、
P:0.05%以下、
Al:0.001 〜0.1 %および
N:0.005 〜0.02%
を含有する組成になる鋼素材を、1000〜1300℃に加熱し、ついで粗圧延後、仕上圧延出側温度:(Ar+10℃)〜(Ar+100 ℃)の条件で仕上圧延を終了したのち、1.7 秒以内に50℃/s以上の速度で 750〜600 ℃の温度域まで冷却し、この温度域に3〜15秒間保持したのち、20℃/s以上の速度で冷却し、 500〜250 ℃の温度で巻き取ることを特徴とする焼付硬化性および延性に優れた高張力熱延鋼板の製造方法。
C: 0.05 to 0.15% by mass%,
Si: 0.5% or less,
Mn: 1.2 to 3.0%,
Mo: 0.05 to 1.0%,
P: 0.05% or less,
Al: 0.001 to 0.1% and N: 0.005 to 0.02%
Was heated to 1000 to 1300 ° C., and after rough rolling, finish rolling was finished under the conditions of finish rolling exit temperature: (Ar 3 + 10 ° C.) to (Ar 3 + 100 ° C.). After that, it is cooled to a temperature range of 750 to 600 ° C. at a speed of 50 ° C./s or more within 1.7 seconds, kept at this temperature range for 3 to 15 seconds, and cooled at a speed of 20 ° C./s or more A method for producing a high-tensile hot-rolled steel sheet having excellent bake hardenability and ductility, wherein the steel sheet is wound at a temperature of 500 to 250 ° C.
請求項5において、巻取り後、鋼板表面にめっき処理を施すことを特徴とする焼付硬化性および延性に優れた高張力めっき鋼板の製造方法。6. The method for producing a high-strength plated steel sheet according to claim 5, wherein the surface of the steel sheet is plated after winding.
JP2003029418A 2003-02-06 2003-02-06 High-tensile hot-rolled steel sheet and high-tensile plated steel sheet excellent in bake hardenability and ductility, and methods for producing them Expired - Fee Related JP4259132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003029418A JP4259132B2 (en) 2003-02-06 2003-02-06 High-tensile hot-rolled steel sheet and high-tensile plated steel sheet excellent in bake hardenability and ductility, and methods for producing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003029418A JP4259132B2 (en) 2003-02-06 2003-02-06 High-tensile hot-rolled steel sheet and high-tensile plated steel sheet excellent in bake hardenability and ductility, and methods for producing them

Publications (2)

Publication Number Publication Date
JP2004238687A true JP2004238687A (en) 2004-08-26
JP4259132B2 JP4259132B2 (en) 2009-04-30

Family

ID=32956602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003029418A Expired - Fee Related JP4259132B2 (en) 2003-02-06 2003-02-06 High-tensile hot-rolled steel sheet and high-tensile plated steel sheet excellent in bake hardenability and ductility, and methods for producing them

Country Status (1)

Country Link
JP (1) JP4259132B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1666623A1 (en) * 2003-09-24 2006-06-07 Nippon Steel Corporation Hot rolled steel sheet for working
JP2007247049A (en) * 2006-03-20 2007-09-27 Nippon Steel Corp High strength hot rolled steel sheet having excellent stretch-flanging property
JP2007247046A (en) * 2006-03-20 2007-09-27 Nippon Steel Corp High strength steel sheet having excellent balance in strength and ductility
JP2011144425A (en) * 2010-01-15 2011-07-28 Jfe Steel Corp High-tension hot-rolled steel sheet having high baking hardenability and excellent formability for extension flange and method for manufacturing the same
JP2011241456A (en) * 2010-05-20 2011-12-01 Sumitomo Metal Ind Ltd Hot-dip-plated hot-rolled steel sheet and method of manufacturing the same
JP2012055950A (en) * 2010-09-10 2012-03-22 Jfe Steel Corp Method for manufacturing hot rolled steel strip, and facility for cooling hot rolled steel strip

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101406561B1 (en) * 2012-12-20 2014-06-27 주식회사 포스코 High strength hot rolled steel sheet having excellent impact toughness and method for manufacturing the same
CN111074149A (en) * 2019-12-14 2020-04-28 舞阳钢铁有限责任公司 Large-thickness high-toughness low-carbon equivalent ultra-wide S355J2 steel plate and production method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1666623A1 (en) * 2003-09-24 2006-06-07 Nippon Steel Corporation Hot rolled steel sheet for working
EP1666623A4 (en) * 2003-09-24 2006-11-29 Nippon Steel Corp Hot rolled steel sheet for working
US7381478B2 (en) 2003-09-24 2008-06-03 Nippon Steel Corporation Hot rolled steel sheet for processing and method for manufacturing the same
JP2007247049A (en) * 2006-03-20 2007-09-27 Nippon Steel Corp High strength hot rolled steel sheet having excellent stretch-flanging property
JP2007247046A (en) * 2006-03-20 2007-09-27 Nippon Steel Corp High strength steel sheet having excellent balance in strength and ductility
JP4528275B2 (en) * 2006-03-20 2010-08-18 新日本製鐵株式会社 High-strength hot-rolled steel sheet with excellent stretch flangeability
JP4575893B2 (en) * 2006-03-20 2010-11-04 新日本製鐵株式会社 High strength steel plate with excellent balance of strength and ductility
JP2011144425A (en) * 2010-01-15 2011-07-28 Jfe Steel Corp High-tension hot-rolled steel sheet having high baking hardenability and excellent formability for extension flange and method for manufacturing the same
JP2011241456A (en) * 2010-05-20 2011-12-01 Sumitomo Metal Ind Ltd Hot-dip-plated hot-rolled steel sheet and method of manufacturing the same
JP2012055950A (en) * 2010-09-10 2012-03-22 Jfe Steel Corp Method for manufacturing hot rolled steel strip, and facility for cooling hot rolled steel strip

Also Published As

Publication number Publication date
JP4259132B2 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP4998757B2 (en) Manufacturing method of high strength steel sheet with excellent deep drawability
US8465600B2 (en) High-strength steel sheet having excellent workability
JP5270274B2 (en) High strength cold-rolled steel sheet with excellent elongation and stretch flangeability
JP6846522B2 (en) High-strength cold-rolled steel sheets with excellent yield strength, ductility, and hole expansion properties, hot-dip galvanized steel sheets, and methods for manufacturing these.
JP5488129B2 (en) Cold rolled steel sheet and method for producing the same
JP2005336610A (en) High strength and high ductility steel sheet for can and method for production thereof
JP5239562B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP2009084687A (en) High-strength steel sheet for can manufacturing and method for manufacturing the same
JP2019512608A (en) High strength cold rolled steel sheet excellent in yield strength and ductility, plated steel sheet, and manufacturing method thereof
JP2009102715A (en) High-strength hot-dip galvanized steel sheet superior in workability and impact resistance, and manufacturing method therefor
JP5456026B2 (en) High-strength steel sheet, hot-dip galvanized steel sheet with excellent ductility and no cracks at the edge, and manufacturing method thereof
JP6221424B2 (en) Cold rolled steel sheet and method for producing the same
JP4661002B2 (en) High tensile hot-rolled steel sheet excellent in bake hardenability and ductility and method for producing the same
JP5280795B2 (en) Method for producing high-strength cold-rolled steel sheet with excellent mechanical property stability
JP4259132B2 (en) High-tensile hot-rolled steel sheet and high-tensile plated steel sheet excellent in bake hardenability and ductility, and methods for producing them
JP2004018911A (en) High-tensile strength cold-rolled steel plate having excellent elongation property and elongation-flanging property, and method for manufacturing the same
JP4325223B2 (en) Ultra-high-strength cold-rolled steel sheet having excellent bake hardenability and manufacturing method thereof
JP2004018912A (en) High-tensile strength cold-rolled steel plate excellent in elongation and stretch-flanging property and method for manufacturing the same
JP2004211126A (en) Galvanized cold-rolled steel sheet having ultrafine granular structure and excellent stretch-flanging, and its production method
JP4168750B2 (en) Method for producing hot-dip galvanized cold-rolled steel sheet with an ultrafine grain structure and excellent fatigue properties
JP5310920B2 (en) High strength cold-rolled steel sheet with excellent aging resistance and seizure hardening
JP3840901B2 (en) Cold-rolled steel sheet, plated steel sheet, and method for producing cold-rolled steel sheet having excellent strength increasing ability by heat treatment after forming
JP3636112B2 (en) High-tensile hot-rolled steel sheet and high-tensile plated steel sheet with excellent bake hardenability
JP2007092154A (en) Method for manufacturing ultrahigh-strength cold-rolled steel sheet superior in formability
JP3168665B2 (en) Hot-rolled high-strength steel sheet with excellent workability and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees