JP3636112B2 - High-tensile hot-rolled steel sheet and high-tensile plated steel sheet with excellent bake hardenability - Google Patents

High-tensile hot-rolled steel sheet and high-tensile plated steel sheet with excellent bake hardenability Download PDF

Info

Publication number
JP3636112B2
JP3636112B2 JP2001238968A JP2001238968A JP3636112B2 JP 3636112 B2 JP3636112 B2 JP 3636112B2 JP 2001238968 A JP2001238968 A JP 2001238968A JP 2001238968 A JP2001238968 A JP 2001238968A JP 3636112 B2 JP3636112 B2 JP 3636112B2
Authority
JP
Japan
Prior art keywords
steel sheet
less
tensile
ferrite phase
bake hardenability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001238968A
Other languages
Japanese (ja)
Other versions
JP2003049242A (en
Inventor
真次郎 金子
才二 松岡
敬 坂田
和正 藤生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001238968A priority Critical patent/JP3636112B2/en
Publication of JP2003049242A publication Critical patent/JP2003049242A/en
Application granted granted Critical
Publication of JP3636112B2 publication Critical patent/JP3636112B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車の構造部材や足周り部材等の使途に供して好適な高張力熱延鋼板および高張力めっき鋼板に関し、特に耐常温時効性の劣化を招くことなしに焼付硬化性の一層の向上を図ろうとするものである。
なお、本発明でいう焼付硬化性の向上とは、加工−焼付塗装後の降伏強さだけでなく、引張り強さの向上をも意味する。
【0002】
【従来の技術】
特開平4−74824 号公報には、Nを多量に含有した鋼を、フェライトとマルテンサイトを主体とする複合組織とすることからなる焼付硬化型高張力熱延鋼板の製造方法が提案されている。
しかしながら、上記の技術は、鋼中Nのみによって加工−塗装焼付処理後の引張強さを増加させようとするものであるが、あまりに多量のNの添加は現実的でなく、またこの技術では、耐常温時効性への配慮がなされていないため、耐常温時効性が劣化するという問題を残していた。
【0003】
また、特開2000−297350号公報には、結晶粒の微細化および固溶Nの量、存在形態を制御することによって、焼付硬化性と耐常温時効性を改善した熱延鋼板が提案されている。
しかしながら、この技術を用いて焼付硬化性のさらなる向上を図ろうとすると、結晶粒を一層微細化するか、固溶N量をさらに増大させる必要があるが、結晶粒をさらに微細化することは現実的ではなく、また固溶Nを増加させることは常温時効による延性の劣化を招くことから、この技術による改善には限界があった。
【0004】
【発明が解決しようとする課題】
本発明は、上記の問題を有利に解決するもので、結晶粒を一層の微細化や固溶N量のさらなる増大などの必要なしに、焼付硬化性を一層向上させ、しかも耐常温時効性にも優れた高張力熱延鋼板および高張力めっき鋼板を提案することを目的とする。
【0005】
【課題を解決するための手段】
さて、発明者らは、上記の目的を達成すべく鋭意研究を行った結果、鋼の成分組成だけでなく、その組織を適正に制御することによって、耐常温時効性の劣化を招くことなしに、焼付硬化性の著しい向上が達成されることの知見を得た。
本発明は、上記の知見に立脚するものである。
【0006】
すなわち、本発明の要旨構成は次のとおりである。
1.質量%で
C:0.05〜0.12%、
Si:0.5 %以下、
Mn:1.2 〜3.0 %、
P:0.05%以下、
Al:0.001 〜0.1 %および
N:0.005 〜0.02%
を含有し、残部はFeおよび不可避的不純物の組成になり、鋼組織が、低温変態フェライト相とポリゴナルフェライト相を含む複合組織であり、しかも低温変態フェライト相の組織全体に対する割合が面積率で50%超で、かつ低温変態フェライト相とポリゴナルフェライト相の2相の平均結晶粒径が8μm 以下であることを特徴とする焼付硬化性に優れた高張力熱延鋼板。
【0007】
2.上記1において、鋼板が、さらに質量%で
Cr:1.0 %以下、
Mo:1.0 %以下および
Ni:1.0 %以下
のうちから選んだ1種または2種以上を含有する組成になることを特徴とする焼付硬化性に優れた高張力熱延鋼板。
【0008】
3.上記1または2において、鋼板が、さらに質量%で
Ti:0.1 %以下および
Nb:0.1 %以下
のうちから選んだ1種または2種を含有する組成になることを特徴とする焼付硬化性に優れた高張力熱延鋼板。
【0009】
4.上記1〜3のいずれかにおいて、鋼板表面に、めっき層を形成したことを特徴とする焼付硬化性に優れた高張力めっき鋼板。
【0010】
【発明の実施の形態】
以下、本発明を具体的に説明する。
また、本発明において、鋼板の成分組成を上記の範囲に限定した理由について説明する。なお、成分に関する「%」表示は特に断らない限り質量%(mass%)を意味するものとする。
C:0.05〜0.12%
Cは、鋼の強度を増加させるだけでなく、結晶粒の粗大化を抑制するためにも有用な元素であるが、含有量が0.05%に満たないとその添加効果に乏しく、一方0.12%を超えると溶接性が劣化するので、C量は0.05〜0.12%の範囲に限定した。
【0011】
Si:0.5 %以下
Siは、固溶強化により鋼の強度を増加させる元素であり、必要な強度に応じて適宜含有量を調整する。しかしながら、含有量が 0.5%を超えると加工性を劣化させるだけでなく、低温変態フェライトの生成を阻害するので、Si量は 0.5%以下に限定した。
【0012】
Mn:1.2 〜3.0 %
Mnは、固溶強化元素であり、高強度鋼板を得るための基本的構成元素である。また、低温変態フェライトの生成にも有効に寄与する。しかしながら、含有量が1.2 %に満たないとその添加効果に乏しく、一方 3.0%を超えると加工性が劣化するだけでなく、溶接性にも悪影響を与えるので、Mn量は 1.2〜3.0 %の範囲に限定した。
【0013】
P:0.05%以下
Pは、鋼の強度を増加させる元素であり、必要に応じて適宜含有量を調整する。しかしながら、含有量が0.05%を超えると溶接性が劣化し、またPが粒界に偏析して粒界割れを発生するおそれが生じ、さらには低温変態フェライトの生成をも阻害するので、P量は0.05%以下に限定した。
【0014】
Al:0.001 〜0.1 %
Alは、脱酸剤として有用な元素であり、鋼の脱酸のためには少なくとも 0.001%の含有を必要とするが 0.1%を超えると表面性状が劣化するだけでなく、所定量の固溶Nの確保が難しくなるので、Alは 0.001〜0.1 %の範囲で含有させるものとした。
【0015】
N:0.005 〜0.02%
Nは、本発明において特に重要な元素であり、鋼中に固溶して加工−塗装焼付処理後の降伏強さおよび引張強さを増加させるのに有効に作用する。この目的のためには、0.005 %以上のNの含有を必要とするが、0.02%を超えると内部欠陥の発生率が高くなるだけでなく、連続鋳造時にスラブ割れなどが多発するようになる。そこで、N量は 0.005〜0.02%の範囲に限定した。より好ましくは 0.007〜0.02%の範囲である。
【0016】
以上、必須成分について説明したが、本発明では、その他にも以下に述べる元素を適宜含有させることができる。
Cr:1.0 %以下、Mo:1.0 %以下およびNi:1.0 %以下のうちから選んだ1種または2種以上
Cr,MoおよびNiはいずれも、固溶強化により鋼の強度上昇に有効に寄与するだけでなく、オーステナイトを安定化する作用により、熱間圧延において低温変態フェライト相を形成し易くする効果がある。この効果を得るためには、Cr,Mo,Niの含有量はそれぞれ 0.1%以上とすることが好ましい。しかしながら、いずれも含有量が1.0 %を超えるとかえって低温変態フェライト相の生成を阻害するので、それぞれ1.0 %以下で含有させるものとした。
【0017】
Ti:0.1 %以下およびNb:0.1 %以下のうちから選んだ1種または2種
TiおよびNbはそれぞれ、炭化物、窒化物を形成することによって、強度および靱性の向上に寄与する。この効果を得るためには、Ti, Nbの含有量はそれぞれ0.01%以上とすることが好ましい。しかしながら、いずれも含有量が 0.1%を超えると固溶Nを窒化物として固定してしまい、却って焼付硬化性を低下させるので、それぞれ 0.1%以下で含有させるものとした。
【0018】
以上、必須成分および選択成分について説明したが、本発明では、成分組成範囲を上記の範囲に調整するだけでは不十分で、その組織および粒径も併せて規定する必要がある。
低温変態フェライト相とポリゴナルフェライト相を含む複合組織になり、しかも低温変態フェライト相の全組織に対する面積率V(αB ) :50%超え
ここでいう低温変態フェライトαB は、通常の意味のフェライト(ポリゴナルフェライト:αP )とは区別され、低温域(概ね 500℃以下)において生成するフェライトで、ベイニティックフェライトあるいは上部ベイナイトのことを意味する。この組織は、本発明において特に重要で、高い焼付硬化性を担うものである。
焼付硬化は、鋼中の侵入型固溶元素(C,N)が鋼中の転位を固着し、転位の運動に対する抵抗力が高くなることにより強度が高くなる現象である。低温変態フェライト組織内では、元々転位密度が高くなっているためにその効果が促進され、固着された転位が塑性変形時の転位の運動の抵抗として働くために、極めて高い焼付硬化性を示すようになる。
【0019】
C:0.08%, Si:0.2 %, Mn:2.3 %, P:0.01%, Al:0.015 %およびN:0.013 %を含有し、残部はFeおよび不可避的不純物の組成になる鋼片を、種々の条件で熱間圧延して熱延鋼板とした。これらの熱延鋼板から、低温変態フェライト相を含む鋼組織を有するもの選び出し、さらに平均結晶粒径が8μm 以下のグループと平均結晶粒径が10〜15μm のグループに分類した。
各々のグループについて、低温変態フェライト相が焼付け硬化量に及ぼす影響について調べた結果を図1に示す。なお、焼付処理条件は、予歪量:5%、時効処理:170 ℃×20分とした。
同図に示したとおり、低温変態フェライト相を全組織に対する面積率で50%を超えて含有させ、かつ平均結晶粒径を8μm 以下とすることにより、100 MPa 以上の優れた焼付け硬化量ΔTSが安定して得られている。
【0020】
上記した低温変態フェライト相以外は、実質的にポリゴナルフェライト相からなるが、一部マルテンサイト相やパーライト相が混入する場合がある。
しかしながら、これらの混入相があまりに多くなると所期した効果を得ることが難しくなるので、これらの相は面積率で10%以下に抑制することが好ましい。すなわち、上記した低温変態フェライト相とポリゴナルフェライト相の2相の面積率の合計を90%以上とすることが好ましい。
【0021】
低温変態フェライト相とポリゴナルフェライト相の2相の平均結晶粒径が8μm以下
本発明でいう平均結晶粒径とは、低温変態フェライト相(αB ) とポリゴナルフェライト相(αP ) の2相の平均結晶粒径のことであり、この平均結晶粒径を8μm 以下に制限することが重要である。
図1にも示したとおり、平均結晶粒径を8μm 以下とすることによって、製品板の焼付け硬化量(ΔTS)を格段に向上させることができる。
この点、平均結晶粒径が8μm を超える10〜15μm の場合には、さほどの引張強さの上昇は望めなかった。
ここに、結晶粒を微細にすることにより固溶Nの存在位置としての粒界面積が増大するが、粒界中に存在する固溶Nは室温においては安定で拡散できないため、耐常温時効性の劣化が抑制される。この点、平均結晶粒径が8μm を超えるとこの効果は著しく減少する。
【0022】
上記のような構成にすることにより、高い焼付硬化性が得られる理由については、次のように考えられる。
焼付硬化は、予加工されたときに生じる可動転位と固溶Nとの相互作用により、可動転位が固溶Nによって固着されるために生じるものであるが、その際、結晶粒が微細化され、結晶粒界が増加すると、同一歪み量だけ加工されても、可動転位は高密度に分布するようになる。また、低温変態フェライト組織は予加工を加える前からあらかじめ多量の可動転位を含んでおり、予加工後の転位密度も高密度になるため、高い焼付硬化性を呈するようになるものと考えられる。
【0023】
次に、本発明鋼の好適製造条件について説明する。
上記の好適成分組成に調整した鋼を、転炉などで溶製し、連続鋳造法等でスラブとする。この鋼素材を、高温状態のまま、あるいは冷却したのち、加熱炉に装入して後、熱間圧延を施して熱延板としたのち、所定の温度でコイルに巻き取る。
ここに、スラブ加熱温度は1000〜1300℃程度とするのが好ましい。というのは、加熱温度が1000℃に満たないと熱延板中に十分な量のNを固溶状態で残存させるのが難しく、一方1300℃を超えると加熱時のオーステナイト粒が粗大化し、平均結晶粒径を8μm 以下にすることが難しくなるからである。
【0024】
次に、熱間圧延を行うが、この熱間圧延に際しては、仕上圧延出側温度(FDTと記す)を(Ar3+10℃)〜(Ar3+100 ℃)程度とするのが好ましい。
というのは、FDT が(Ar3+10℃)を下回ると仕上圧延温度が低くなりすぎて組織が不均一となり、一部に加工組織が残留したりして、プレス成形時に種々の不具合を発生する危険性が高まり、一方 FDTが(Ar3+100 ℃)を超えると結晶粒の微細化、固溶N量が確保できなくなるからである。
【0025】
上記の熱間圧延終了後、引き続く冷却工程を厳密に管理することによって、面積率で50%超の低温変態フェライト相を生成させる。
例えば、以下に述べるような方法によって、面積率で50%超の低温変態フェライト相を生成させることができる。
すなわち、熱間圧延完了後 0.2秒以内に 200℃/s以上の速度で冷却を開始し、400 〜500 ℃にて冷却を停止してから直ちに巻き取り、その後 300℃までの温度域を1℃/s以下で徐冷する。
【0026】
上記のようにして得られた熱延鋼板は、各種めっき用原板として好適であるので、必要に応じて各種のめっき処理を施すことができる。
ここに、めっさの種類としては、電気亜鉛めっき、溶融亜鉛めっき、電気錫めっき、電気クロムめっきおよび電気ニッケルめっき等が挙げられるが、本発明ではいずれのめっき処理も有利に適用することができる。
【0027】
【実施例】
表1に示す成分組成になる溶鋼を、小型溶解炉で溶製し、粗圧延により板厚:40mmのシートバーとした。ついで、1250℃に加熱後、圧延終了温度:890 ℃の条件下に3パスの熱間圧延を施して板厚:1.5 mmに仕上げ、引き続きガス冷却を行い、 600〜200 ℃の範囲の特定の温度に1h保持した後、放冷することにより、種々の組織を有する熱延鋼板を作製した。なお、一部については溶融亜鉛めっき処理を施した。
得られた熱延鋼板およびめっき鋼板について、組織試験、引張試験、焼付硬化性試験および常温時効性試験を行った。
【0028】
なお、鋼組織は、熱延鋼板の圧延方向と直角な方向の断面のナイタールによる腐食現出組織の拡大像によって調査した。
引張試験は、熱延鋼板の圧延方向と直角な方向からJIS 5号引張試験片を採取し、歪速度:10-3/sの条件で実施した。
焼付硬化性試験は、引張試験と同じく、熱延鋼板の圧延方向と直角な方向からJIS 5号引張試験片を採取し、予歪付与後時効処理を施し、歪速度:10-3/sの条件で実施した。なお、焼付処理条件は、予歪量:5%、時効処理条件:170 ℃×20分とした。
そして、焼付け硬化量BHおよび引張り強さの増加代ΔTSはそれぞれ、次式
BH=(時効後の降伏応力)−(時効処理前の予変形応力)
ΔTS=(時効後の引張強さ)−(熱延ままの引張強さ)
によって求めた。
常温時効性試験は、50℃,400 hの時効処理を施したのち、圧延方向と直角の方向からJIS 5号引張試験片を採取し、歪速度:10-3/sで引張試験を実施し、伸びEIA を測定し、時効処理前の伸びEIとの差、△El=El−EIA で評価した。なお、得られたΔElが 2.0%以下であれば、常温時効性は問題ないといえる。
得られた結果を表2に示す。
【0029】
【表1】

Figure 0003636112
【0030】
【表2】
Figure 0003636112
【0031】
表2から明らかなように、本発明に従い、所定の成分調整を行った上で、面積率で低温変態フェライト相を50%を超えて含有し、かつ平均結晶粒径が8μm 以下の鋼組織とすることにより、焼付け硬化量が格段に高く、また耐常温時効性も良好な高張力熱延鋼板および高張力めっき鋼板を得ることができた。
【0032】
【発明の効果】
かくして、本発明によれば、自動車の内板部品に使用して好適な、焼付硬化性に格段に優れ、また耐常温時効性も良好な高張力熱延鋼板および高張力めっき鋼板を安定して得ることができる。
【図面の簡単な説明】
【図1】 製品板の焼付け硬化量(ΔTS)に及ぼす低温変態フェライト相の影響を、鋼板の平均結晶粒径をパラメータとして示した図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-tensile hot-rolled steel sheet and a high-tensile-plated steel sheet that are suitable for use in automobile structural members, leg members, and the like, and in particular, it is possible to further enhance bake hardenability without causing deterioration in normal temperature aging resistance. It is intended to improve.
The improvement in bake hardenability as used in the present invention means not only the yield strength after work-baking coating but also the improvement in tensile strength.
[0002]
[Prior art]
Japanese Laid-Open Patent Publication No. 4-74824 proposes a method for producing a bake-hardening type high-tensile hot-rolled steel sheet comprising making a steel containing a large amount of N a composite structure mainly composed of ferrite and martensite. .
However, the above technique is intended to increase the tensile strength after the processing-paint baking process only by N in the steel, but it is not practical to add too much N, and in this technique, Since no consideration was given to room temperature aging resistance, there was a problem that room temperature aging resistance deteriorated.
[0003]
Japanese Patent Application Laid-Open No. 2000-297350 proposes a hot-rolled steel sheet with improved bake hardenability and room temperature aging resistance by controlling the refinement of crystal grains, the amount of solute N, and the presence form. Yes.
However, in order to further improve the bake hardenability using this technique, it is necessary to further refine crystal grains or further increase the amount of solute N. However, further refinement of crystal grains is a reality. In addition, increasing the solute N causes deterioration of ductility due to normal temperature aging, so there is a limit to the improvement by this technique.
[0004]
[Problems to be solved by the invention]
The present invention advantageously solves the above problems, and further improves the bake hardenability without the need for further refinement of crystal grains or further increase in the amount of dissolved N, and at the same time resistance to room temperature aging. Another object is to propose a high-tensile hot-rolled steel sheet and a high-tensile plated steel sheet.
[0005]
[Means for Solving the Problems]
Now, as a result of intensive studies to achieve the above object, the inventors have not only caused the deterioration of normal temperature aging resistance by appropriately controlling not only the composition of steel but also its structure. The inventors have obtained knowledge that a marked improvement in bake hardenability is achieved.
The present invention is based on the above findings.
[0006]
That is, the gist configuration of the present invention is as follows.
1. C: 0.05 to 0.12% by mass%
Si: 0.5% or less,
Mn: 1.2-3.0%
P: 0.05% or less,
Al: 0.001 to 0.1% and N: 0.005 to 0.02%
The balance is Fe and inevitable impurities, and the steel structure is a composite structure including a low-temperature transformation ferrite phase and a polygonal ferrite phase, and the ratio of the low-temperature transformation ferrite phase to the whole structure is an area ratio. A high-strength hot-rolled steel sheet having excellent bake hardenability, characterized by an average crystal grain size of more than 50% and a low-temperature transformed ferrite phase and a polygonal ferrite phase having an average crystal grain size of 8 μm or less.
[0007]
2. In the above 1, the steel plate is further in mass%.
Cr: 1.0% or less,
Mo: 1.0% or less and
Ni: A high-strength hot-rolled steel sheet with excellent bake hardenability characterized by having a composition containing one or more selected from 1.0% or less.
[0008]
3. In the above 1 or 2, the steel plate is further in mass%.
Ti: 0.1% or less and
Nb: A high-strength hot-rolled steel sheet excellent in bake hardenability characterized by having a composition containing one or two selected from 0.1% or less.
[0009]
4). The high tension plated steel sheet having excellent bake hardenability, wherein a plating layer is formed on the steel sheet surface in any one of the above 1-3.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described.
In the present invention, the reason why the component composition of the steel sheet is limited to the above range will be described. In addition, unless otherwise indicated, "%" display regarding a component shall mean the mass% (mass%).
C: 0.05-0.12%
C is an element useful not only for increasing the strength of the steel but also for suppressing the coarsening of crystal grains. However, if the content is less than 0.05%, the effect of addition is poor, while 0.12% is added. If it exceeds, the weldability deteriorates, so the C content is limited to the range of 0.05 to 0.12%.
[0011]
Si: 0.5% or less
Si is an element that increases the strength of steel by solid solution strengthening, and the content is appropriately adjusted according to the required strength. However, if the content exceeds 0.5%, not only the workability is deteriorated but also the formation of low-temperature transformation ferrite is inhibited, so the Si content is limited to 0.5% or less.
[0012]
Mn: 1.2-3.0%
Mn is a solid solution strengthening element and a basic constituent element for obtaining a high-strength steel sheet. It also contributes effectively to the production of low-temperature transformation ferrite. However, if the content is less than 1.2%, the effect of addition is poor. On the other hand, if it exceeds 3.0%, not only does the workability deteriorate, but also the weldability is adversely affected, so the Mn content is in the range of 1.2 to 3.0%. Limited to.
[0013]
P: 0.05% or less P is an element that increases the strength of steel, and the content is appropriately adjusted as necessary. However, if the content exceeds 0.05%, the weldability deteriorates, and P may segregate at the grain boundaries to cause intergranular cracking, and further inhibits the formation of low-temperature transformation ferrite. Was limited to 0.05% or less.
[0014]
Al: 0.001 to 0.1%
Al is an element useful as a deoxidizer, and it needs to contain at least 0.001% for deoxidation of steel. However, if it exceeds 0.1%, not only the surface properties deteriorate but also a predetermined amount of solid solution. Since it is difficult to secure N, Al is included in the range of 0.001 to 0.1%.
[0015]
N: 0.005 to 0.02%
N is a particularly important element in the present invention, and effectively acts to increase the yield strength and tensile strength after solid-solution in steel and after the work-paint baking process. For this purpose, it is necessary to contain 0.005% or more of N. However, if it exceeds 0.02%, not only the occurrence rate of internal defects increases, but also slab cracks occur frequently during continuous casting. Therefore, the N content is limited to a range of 0.005 to 0.02%. More preferably, it is 0.007 to 0.02% of range.
[0016]
Although the essential components have been described above, in the present invention, other elements described below can be appropriately contained.
One or more selected from Cr: 1.0% or less, Mo: 1.0% or less, and Ni: 1.0% or less
All of Cr, Mo and Ni not only contribute to increasing the strength of the steel by solid solution strengthening, but also have the effect of facilitating the formation of a low-temperature transformation ferrite phase in hot rolling by stabilizing austenite. . In order to obtain this effect, the Cr, Mo, and Ni contents are each preferably 0.1% or more. However, in any case, if the content exceeds 1.0%, the formation of the low-temperature transformation ferrite phase is inhibited. Therefore, each content is assumed to be 1.0% or less.
[0017]
One or two selected from Ti: 0.1% or less and Nb: 0.1% or less
Ti and Nb contribute to the improvement of strength and toughness by forming carbide and nitride, respectively. In order to obtain this effect, the Ti and Nb contents are each preferably 0.01% or more. However, if the content exceeds 0.1%, the solid solution N is fixed as a nitride, and the bake hardenability is reduced. Therefore, each content is 0.1% or less.
[0018]
As described above, the essential component and the selected component have been described. However, in the present invention, it is not sufficient to adjust the component composition range to the above range, and the structure and particle size thereof must also be specified.
Are complex tissues including low-temperature transformation ferrite phase and polygonal ferrite phase, yet the area ratio to the total organization of the low-temperature transformation ferrite phase V (α B): 50% greater than the low-temperature transformation ferrite alpha B here, the ordinary meaning It is distinct from ferrite (polygonal ferrite: α P ), and is a ferrite formed in a low temperature range (approximately 500 ° C. or lower) and means bainitic ferrite or upper bainite. This structure is particularly important in the present invention, and is responsible for high bake hardenability.
Bake hardening is a phenomenon in which the strength increases when interstitial solid solution elements (C, N) in the steel fix the dislocations in the steel and the resistance to the movement of the dislocations increases. In the low-temperature transformation ferrite structure, the effect is accelerated because the dislocation density is originally high, and the fixed dislocations act as resistance to the movement of dislocations during plastic deformation, so that they exhibit extremely high bake hardenability. become.
[0019]
Steel slabs containing C: 0.08%, Si: 0.2%, Mn: 2.3%, P: 0.01%, Al: 0.015% and N: 0.013%, with the balance being Fe and inevitable impurities. A hot-rolled steel sheet was formed by hot rolling under conditions. From these hot-rolled steel sheets, those having a steel structure containing a low-temperature transformation ferrite phase were selected, and further classified into a group having an average crystal grain size of 8 μm or less and a group having an average crystal grain size of 10-15 μm.
FIG. 1 shows the results of examining the influence of the low temperature transformation ferrite phase on the bake hardening amount for each group. The baking treatment conditions were pre-strain amount: 5%, aging treatment: 170 ° C. × 20 minutes.
As shown in the figure, by including the low-temperature transformation ferrite phase in an area ratio exceeding 50% with respect to the entire structure and making the average crystal grain size 8 μm or less, an excellent bake hardening amount ΔTS of 100 MPa or more can be obtained. Obtained stably.
[0020]
Other than the above-described low-temperature transformation ferrite phase, it is substantially composed of a polygonal ferrite phase, but a part of the martensite phase or pearlite phase may be mixed.
However, if these mixed phases become too large, it is difficult to obtain the desired effect. Therefore, it is preferable to suppress these phases to 10% or less in terms of area ratio. That is, the total area ratio of the two phases of the low-temperature transformation ferrite phase and the polygonal ferrite phase is preferably 90% or more.
[0021]
The average crystal grain size of the two phases of the low temperature transformation ferrite phase and the polygonal ferrite phase is 8 μm or less. The average crystal grain size referred to in the present invention is the two of the low temperature transformation ferrite phase (α B ) and the polygonal ferrite phase (α P ). It is the average crystal grain size of the phase, and it is important to limit this average crystal grain size to 8 μm or less.
As shown in FIG. 1, by setting the average crystal grain size to 8 μm or less, the bake hardening amount (ΔTS) of the product plate can be remarkably improved.
In this respect, when the average crystal grain size is 10 to 15 μm exceeding 8 μm, a significant increase in tensile strength cannot be expected.
Here, by making the crystal grains finer, the grain boundary area as the location of the solid solution N increases, but the solid solution N present in the grain boundary is stable at room temperature and cannot be diffused. Deterioration of is suppressed. In this respect, when the average crystal grain size exceeds 8 μm, this effect is remarkably reduced.
[0022]
The reason why high bake hardenability can be obtained by using the above configuration is considered as follows.
Bake hardening occurs because the movable dislocations are fixed by the solid solution N due to the interaction between the movable dislocations and the solid solution N that are produced when pre-processing, and at that time, the crystal grains are refined. When the grain boundaries increase, even when the same amount of strain is processed, movable dislocations are distributed with high density. Further, the low-temperature transformation ferrite structure contains a large amount of movable dislocations before the pre-processing, and the dislocation density after the pre-processing becomes high, so that it is considered that the bake hardenability is exhibited.
[0023]
Next, preferred production conditions for the steel of the present invention will be described.
The steel adjusted to the above-mentioned preferred component composition is melted in a converter or the like and is made into a slab by a continuous casting method or the like. After this steel material is kept in a high temperature state or cooled, it is charged into a heating furnace and then hot rolled to form a hot-rolled sheet, which is then wound around a coil at a predetermined temperature.
Here, the slab heating temperature is preferably about 1000 to 1300 ° C. This is because if the heating temperature is less than 1000 ° C, it is difficult to leave a sufficient amount of N in the hot-rolled sheet in a solid solution state. On the other hand, if the heating temperature exceeds 1300 ° C, the austenite grains during heating become coarse, and the average This is because it becomes difficult to make the crystal grain size 8 μm or less.
[0024]
Next, hot rolling is performed. In this hot rolling, it is preferable to set the finish rolling outlet temperature (denoted as FDT) to about (Ar 3 + 10 ° C.) to (Ar 3 + 100 ° C.).
This is because if the FDT is below (Ar 3 + 10 ° C), the finish rolling temperature becomes too low and the structure becomes non-uniform, and part of the processed structure remains, causing various problems during press forming. This is because the danger increases and, on the other hand, if FDT exceeds (Ar 3 + 100 ° C.), refinement of crystal grains and the amount of solute N cannot be secured.
[0025]
After the above hot rolling is completed, the subsequent cooling process is strictly controlled to generate a low temperature transformation ferrite phase having an area ratio of more than 50%.
For example, a low temperature transformation ferrite phase having an area ratio of more than 50% can be generated by the method described below.
That is, cooling is started at a rate of 200 ° C / s or more within 0.2 seconds after completion of hot rolling, the cooling is stopped at 400 to 500 ° C, and immediately wound up, and then the temperature range up to 300 ° C is 1 ° C. Slowly cool at / s or less.
[0026]
Since the hot-rolled steel sheet obtained as described above is suitable as various plating original plates, various plating treatments can be performed as necessary.
Here, examples of the types of plating include electrogalvanizing, hot dip galvanizing, electrotin plating, electrochromic plating, and electronickel plating. In the present invention, any plating treatment can be advantageously applied. it can.
[0027]
【Example】
Molten steel having the composition shown in Table 1 was melted in a small melting furnace, and rough rolled to obtain a sheet bar having a thickness of 40 mm. Then, after heating to 1250 ° C, hot rolling of 3 passes under the condition of rolling end temperature: 890 ° C, finishing to a plate thickness: 1.5 mm, followed by gas cooling, a specified range of 600-200 ° C After maintaining at the temperature for 1 h, the hot-rolled steel sheet having various structures was produced by allowing to cool. In addition, a part was hot dip galvanized.
The obtained hot rolled steel sheet and plated steel sheet were subjected to a structure test, a tensile test, a bake hardenability test, and a normal temperature aging test.
[0028]
In addition, the steel structure was investigated by the enlarged image of the corrosion appearance structure by the nital of the cross section of the direction orthogonal to the rolling direction of a hot-rolled steel plate.
In the tensile test, JIS No. 5 tensile test specimens were collected from a direction perpendicular to the rolling direction of the hot-rolled steel sheet, and the tensile test was performed under the condition of strain rate: 10 −3 / s.
In the bake hardenability test, JIS No. 5 tensile test specimens were sampled from the direction perpendicular to the rolling direction of the hot-rolled steel sheet and subjected to aging treatment after pre-straining, and the strain rate was 10 -3 / s. Conducted under conditions. The baking treatment conditions were a pre-strain amount of 5% and an aging treatment condition of 170 ° C. × 20 minutes.
The bake hardening amount BH and the increase margin of tensile strength ΔTS are respectively expressed by the following formulas BH = (yield stress after aging) − (predeformation stress before aging treatment)
ΔTS = (Tensile strength after aging) − (Tensile strength as hot rolled)
Sought by.
In the normal temperature aging test, after aging treatment at 50 ° C for 400 h, a JIS No. 5 tensile test piece was taken from the direction perpendicular to the rolling direction, and a tensile test was performed at a strain rate of 10 -3 / s. measures the elongation EI a, the difference between the elongation EI before aging treatment was evaluated by △ El = El-EI a. If the obtained ΔEl is 2.0% or less, it can be said that there is no problem with room temperature aging.
The obtained results are shown in Table 2.
[0029]
[Table 1]
Figure 0003636112
[0030]
[Table 2]
Figure 0003636112
[0031]
As is apparent from Table 2, the steel structure containing the low-temperature transformation ferrite phase with an area ratio of more than 50% and an average crystal grain size of 8 μm or less after adjusting the predetermined components according to the present invention. By doing so, it was possible to obtain a high-tensile hot-rolled steel sheet and a high-tensile plated steel sheet that have a markedly high bake hardening amount and good room temperature aging resistance.
[0032]
【The invention's effect】
Thus, according to the present invention, it is possible to stably produce a high-tensile hot-rolled steel sheet and a high-tensile plated steel sheet that are suitable for use in automobile inner plate parts, have excellent bake hardenability, and have good room temperature aging resistance. Can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing the influence of a low-temperature transformation ferrite phase on the bake hardening amount (ΔTS) of a product plate, using the average crystal grain size of the steel plate as a parameter.

Claims (4)

質量%で
C:0.05〜0.12%、
Si:0.5 %以下、
Mn:1.2 〜3.0 %、
P:0.05%以下、
Al:0.001 〜0.1 %および
N:0.005 〜0.02%
を含有し、残部はFeおよび不可避的不純物の組成になり、鋼組織が、低温変態フェライト相とポリゴナルフェライト相を含む複合組織であり、しかも低温変態フェライト相の組織全体に対する割合が面積率で50%超で、かつ低温変態フェライト相とポリゴナルフェライト相の2相の平均結晶粒径が8μm 以下であることを特徴とする焼付硬化性に優れた高張力熱延鋼板。
C: 0.05 to 0.12% by mass%
Si: 0.5% or less,
Mn: 1.2-3.0%
P: 0.05% or less,
Al: 0.001 to 0.1% and N: 0.005 to 0.02%
The balance is Fe and inevitable impurities, and the steel structure is a composite structure including a low-temperature transformation ferrite phase and a polygonal ferrite phase, and the ratio of the low-temperature transformation ferrite phase to the entire structure is an area ratio. A high-strength hot-rolled steel sheet excellent in bake hardenability, characterized by having an average crystal grain size of more than 50% and a low-temperature transformed ferrite phase and a polygonal ferrite phase having an average crystal grain size of 8 μm or less.
請求項1において、鋼板が、さらに質量%で
Cr:1.0 %以下、
Mo:1.0 %以下および
Ni:1.0 %以下
のうちから選んだ1種または2種以上を含有する組成になることを特徴とする焼付硬化性に優れた高張力熱延鋼板。
In Claim 1, a steel plate is further in mass%.
Cr: 1.0% or less,
Mo: 1.0% or less and
Ni: A high-strength hot-rolled steel sheet with excellent bake hardenability characterized by having a composition containing one or more selected from 1.0% or less.
請求項1または2において、鋼板が、さらに質量%で
Ti:0.1 %以下および
Nb:0.1 %以下
のうちから選んだ1種または2種を含有する組成になることを特徴とする焼付硬化性に優れた高張力熱延鋼板。
In Claim 1 or 2, a steel plate is further in mass%.
Ti: 0.1% or less and
Nb: A high-strength hot-rolled steel sheet excellent in bake hardenability characterized by having a composition containing one or two selected from 0.1% or less.
請求項1〜3のいずれかにおいて、鋼板表面に、めっき層を形成したことを特徴とする焼付硬化性に優れた高張力めっき鋼板。The high-tensile plated steel sheet excellent in bake hardenability according to any one of claims 1 to 3, wherein a plating layer is formed on the steel sheet surface.
JP2001238968A 2001-08-07 2001-08-07 High-tensile hot-rolled steel sheet and high-tensile plated steel sheet with excellent bake hardenability Expired - Fee Related JP3636112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001238968A JP3636112B2 (en) 2001-08-07 2001-08-07 High-tensile hot-rolled steel sheet and high-tensile plated steel sheet with excellent bake hardenability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001238968A JP3636112B2 (en) 2001-08-07 2001-08-07 High-tensile hot-rolled steel sheet and high-tensile plated steel sheet with excellent bake hardenability

Publications (2)

Publication Number Publication Date
JP2003049242A JP2003049242A (en) 2003-02-21
JP3636112B2 true JP3636112B2 (en) 2005-04-06

Family

ID=19069799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001238968A Expired - Fee Related JP3636112B2 (en) 2001-08-07 2001-08-07 High-tensile hot-rolled steel sheet and high-tensile plated steel sheet with excellent bake hardenability

Country Status (1)

Country Link
JP (1) JP3636112B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4580157B2 (en) 2003-09-05 2010-11-10 新日本製鐵株式会社 Hot-rolled steel sheet having both BH property and stretch flangeability and manufacturing method thereof
JP5348071B2 (en) 2010-05-31 2013-11-20 Jfeスチール株式会社 High strength hot rolled steel sheet and method for producing the same
MX2014003718A (en) 2011-09-30 2014-07-14 Nippon Steel & Sumitomo Metal Corp High-strength galvannealed steel sheet of high bake hardenability, high-strength alloyed galvannealed steel sheet, and method for manufacturing same.
ES2663995T3 (en) * 2012-06-26 2018-04-17 Nippon Steel & Sumitomo Metal Corporation High strength hot rolled steel sheet and process to produce it

Also Published As

Publication number Publication date
JP2003049242A (en) 2003-02-21

Similar Documents

Publication Publication Date Title
JP4644076B2 (en) High strength thin steel sheet with excellent elongation and hole expansibility and manufacturing method thereof
JP4843982B2 (en) High-rigidity and high-strength steel sheet and manufacturing method thereof
JP5245259B2 (en) High strength steel sheet with excellent ductility and method for producing the same
KR100881048B1 (en) High-rigidity high-strength thin steel sheet and method for producing same
JP5457840B2 (en) High strength cold-rolled steel sheet with excellent elongation and stretch flangeability
US8465600B2 (en) High-strength steel sheet having excellent workability
WO2013114850A1 (en) Hot-dip galvanized steel sheet and production method therefor
KR20120114411A (en) Method of producing high-strength steel plates with excellent ductility and plates thus produced
JP2007138262A (en) High strength cold rolled steel sheet reduced in dispersion in mechanical characteristic, and its manufacturing method
JP4193315B2 (en) High strength steel sheet and high strength galvanized steel sheet with excellent ductility and low yield ratio, and methods for producing them
JP3698046B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and plating property and method for producing the same
JP4506434B2 (en) High strength steel plate with excellent rigidity and method for producing the same
JPH10306316A (en) Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
JP4661002B2 (en) High tensile hot-rolled steel sheet excellent in bake hardenability and ductility and method for producing the same
JP4867177B2 (en) High tensile hot rolled steel sheet excellent in bake hardenability and formability and method for producing the same
JP2007239097A (en) Method for manufacturing hot rolled steel sheet for high-strength cold rolled steel sheet
JP4085809B2 (en) Hot-dip galvanized cold-rolled steel sheet having an ultrafine grain structure and excellent stretch flangeability and method for producing the same
JP4259132B2 (en) High-tensile hot-rolled steel sheet and high-tensile plated steel sheet excellent in bake hardenability and ductility, and methods for producing them
JP3540134B2 (en) High strength hot rolled steel sheet and method for producing the same
JP3636112B2 (en) High-tensile hot-rolled steel sheet and high-tensile plated steel sheet with excellent bake hardenability
JP2004323925A (en) Strain aging hardening type steel sheet having excellent cold elongation deterioration resistance, cold delayed aging property and low temperature bake hardenability, and its production method
JP3168665B2 (en) Hot-rolled high-strength steel sheet with excellent workability and its manufacturing method
JP2023543410A (en) High-strength thick hot-rolled steel sheet with excellent elongation ratio and method for manufacturing the same
JP2002226937A (en) Cold rolled steel sheet and plated steel sheet capable of increasing strength by heat treatment after forming and method for producing the same
JP4781563B2 (en) High strength hot-rolled steel sheet with excellent bake hardenability and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees