JP2004237208A - Filter structure of solid-liquid separator - Google Patents

Filter structure of solid-liquid separator Download PDF

Info

Publication number
JP2004237208A
JP2004237208A JP2003028966A JP2003028966A JP2004237208A JP 2004237208 A JP2004237208 A JP 2004237208A JP 2003028966 A JP2003028966 A JP 2003028966A JP 2003028966 A JP2003028966 A JP 2003028966A JP 2004237208 A JP2004237208 A JP 2004237208A
Authority
JP
Japan
Prior art keywords
filter
solid
liquid separator
ring
filter structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003028966A
Other languages
Japanese (ja)
Inventor
Shinji Hori
晋司 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corona Kogyo Corp
Original Assignee
Corona Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corona Kogyo Corp filed Critical Corona Kogyo Corp
Priority to JP2003028966A priority Critical patent/JP2004237208A/en
Publication of JP2004237208A publication Critical patent/JP2004237208A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Filtration Of Liquid (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently dehydrate and filter a solid-liquid-mixed ground product such as perishables and impurities discharged from a home, an office or the like. <P>SOLUTION: An almost cylindrical layered filter 20 having a circular cross section on the inner peripheral surface is constituted by layering a plurality of ring-shaped members 11 each of which consists of, for example, a metal or a resin and the inner peripheral surface of each of which is made circular. A slit-shaped gap (equivalent to a water passage hole 23) having the prescribed distance, for example, is formed between the adjacent members 11 by placing a plurality of spaces 21 between the adjacent members 11 at the prescribed intervals. A plurality of grooved parts are formed beforehand on one end face side of each of the members 11 at the prescribed intervals. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば家庭,事業系から排出される生鮮品等の残飯,夾雑物等を粉砕し排水と共に脱水処理する固液分離機のフィルタ構造に関するものである。
関するものである。
【0002】
【従来の技術】
本発明は、先行技術調査を行うことなく、公知・公用の技術(家庭用,業務用のシンク(流し台)に用いられる固液分離機のフィルタ構造)をもとに開発した発明であるため、出願人が知っている先行技術が文献公知発明に該当しない。以下,公知・公用の固液分離機のフィルタ構造を説明する。
【0003】
近年の家庭用,業務用のシンク(流し台)においては、単に排水を排出するだけでなく、その排水と共に生鮮品等の残飯,夾雑物等を粉砕機,固液分離機により粉砕処理や脱水処理するものが知られている。
【0004】
図9は、一般的な粉砕機,固液分離機等を備えたシンクの概略説明図を示すものである。図9において、符号91は流し台を示すものであり、その流し台91の排出口91aから排出される生鮮品等の残飯,夾雑物等は排水と共に粉砕機92に投入され、所定の大きさに粉砕処理される。
【0005】
前記の粉砕処理された残飯,夾雑物等(以下、固液粉砕物と称する)は固液分離機93(詳細は後述する)に供給され、その固液粉砕物中の水分,油分,塩分等を脱水,濾過してから貯蔵タンク94に貯蔵される。この貯蔵タンク94においては、例えば貯蔵タンク94内を所定温度に保ち前記の脱水された粉砕物(以下、脱水粉砕物と称する)を撹拌機94a等により撹拌しながらバイオ分解することが可能なものを用いても良く、そのバイオ分解により発生する臭気等は例えばファン等を介して下水管へ排出することができる。なお、図9中の符号95a,95b,95cは、それぞれ粉砕機,固液分離機,貯蔵タンクの撹拌機94aを駆動するためのモータを示すものである。
【0006】
前記固液分離機93は、例えば図9に示すように固液粉砕物を圧縮しながら脱水する方式(プレス方式;図9はスクリュープレス方式)ものが知られている。図中符号96は略円柱状の軸心(シャフト)96aの外周面に対し羽96bが螺旋状に形成され、固液分離機の筐体97内に配置されたスクリューを示すものであり、その軸心96aの一端部(図9中では下方側の端部)にはモータ95bが接続され、前記スクリュー96が円心運動する。
【0007】
符号98は、横断面真円状の容器(円筒状の容器)から成り、その容器の側壁には複数個の通水孔98aが穿設され、前記スクリュー96の外周側を覆うように配置されたフィルタを示すものである。前記通水孔98aは、例えば円筒状のフィルタの外周面からパンチング等により孔,スリット等を穿設して形成される。または、例えば鋼線等を用いてメッシュ状の容器(以下、メッシュフィルタと称する)を構成することにより形成されている。
【0008】
符号99は、前記軸心96aの他端部(図9中では上方側の端部)に対し摺動自在(スクリュー96の軸方向へ摺動自在)に接続され、スクリュー96の円心運動を利用してフィルタ98内で脱水された脱水粉砕物を貯蔵タンク94方向へ排出するためのカッター(以下、排出用カッターと称する)である。この排出用カッター99には、例えば押圧部材(例えばバネ部材)99a,その押圧部材99aの伸縮力を調整することが可能な押圧調整部材99bが接続され、前記押圧部材99aの伸縮力を調整することにより脱水粉砕物中に残存する水分等を更に脱水することができる。
【0009】
なお、前記スクリュー96は、羽96bのピッチ幅,軸心96aの直径がそれぞれ均一なものを用いても良いが、例えばフィルタの一端側から他端側方向に対して、羽のピッチ幅を順次狭くしたもの(例えば、図9)や、軸心の直径を順次太くしたもの(例えば、後述する図3)を用いても良い。これにより、フィルタ98の一端側から他端側方向に対して、軸心96a,羽96b,フィルタ98で囲まれた領域の容積が順次小さくなり、その容積の減少に伴って脱水率,濾過率が上昇する。
【0010】
また、前記スクリュー96の羽96bの外径とフィルタ98の内径との間の距離は、例えば羽96bとフィルタ98とが互いに衝突して故障しない程度で限りなく短く(例えば、0〜数ミクロン程度に短く)し、固液粉砕物や脱水粉砕物が羽96bとフィルタ98との間の隙間から落下しないようにすることが好ましい。さらに、モータ95bの駆動やスクリュー96の円心運動等により該スクリュー96が揺動する場合には、その揺動によって羽96bとフィルタ98とが互いに衝突して故障しないように設定する必要がある。さらにまた、前記軸心96a,羽96b,フィルタ98の表面は、例えばエンボス加工することにより固液粉砕物,脱水粉砕物等が付着しないようすることが好ましい。
【0011】
前記のように構成された固液分離機93の一端側(図9では下方)から供給された固液粉砕物は、スクリュー96の円心運動によってフィルタ98内の他端側(図9では上方)に移動しながら圧縮され、その固液粉砕物中に含まれる水分等は搾取されフィルタ98の通水孔を介して外側に排出される。そして、水分等が搾取された脱水粉砕物は、固液分離機93の排出口(図9では、上方に位置する排出口)を介して貯蔵タンク94に貯蔵される。
【0012】
【発明が解決しようとする課題】
しかしながら、前記のようにパンチング等により通水孔が穿設されたフィルタ98の場合、そのパンチングの際にフィルタ98の容器に応力が加わえられたり、フィルタ98(特に、通水孔)の内周側に切り欠きや突出部が形成され易いため、所望の形状(例えば、スクリュー96の羽96bの外径等に応じて設計した形状)のフィルタ98を作製することが困難であった。
【0013】
その結果、前記のように例えばスクリュー96を用いたプレス方式のフィルタ構造の場合、例えば羽96bとフィルタ98との間の隙間が設計範囲を超えてしまい、その隙間を固液粉砕物や脱水粉砕物が通過(図9ではフィルタ98の下方に落下)し、フィルタ98内から排出されずに残存してしまう恐れがあった。また、羽96bとフィルタ98とが互いに衝突し、固液分離機の機能低下(例えば、スクリューの回転数の低下)により脱水率,濾過率が悪化するだけでなく、固液分離機93の各構成部材(例えば、フィルタ98,スクリュー96,モータ95b等)が破損する恐れが生じる。
【0014】
さらに、メッシュフィルタを用いた場合には、前記の通水孔を穿設したフィルタ98と比較して機械的強度が低くいため、脱水等により生じる応力(フィルタ内の内圧)でメッシュフィルタの形状が変形(塑性変形)し、前記のように固液分離機の機能低下により脱水率,濾過率が悪化し、固液分離機93の各構成部材の破損等が生じる。なお、従来のメッシュフィルタ等において、その厚さ(フィルタの内径と外径との差)を大きく設定して機械的強度を高くした場合には、所望の通水孔を形成することが困難(例えば、高コスト)になってしまう。
【0015】
本発明は前記課題に基づいてなされたものであり、プレス方式の固液分離機において、所望の形状のフィルタ(例えば、使用するスクリューに応じて設計された形状のフィルタおよび通水孔)を容易に構成し、脱水率,濾過率の向上および各構成部材の破損等の防止を図ると共に、高い機械的強度(フィルタ内の内圧に耐え得る強度)を付与することができる固液分離機のフィルタ構造を提供することにある。
【0016】
【課題を解決するための手段】
本発明は、前記課題の解決を図るために、請求項1記載の発明は、円筒状で側壁に複数個の通水孔が設けられた横断面円状のフィルターを有し、前記フィルタ内に導入された固液粉砕物を圧縮し前記通水孔を介して脱水,濾過する固液分離機のフィルタ構造において、前記フィルタは、内周面が真円状であるリング状部材を複数個積層して成り、各リング状部材間にはそれぞれ前記の複数個の通水孔(例えば、スリット状の通水孔)が形成されたことを特徴とする。
【0017】
請求項2記載の発明は、前記の各リング状部材の一端面側に、前記通水孔用の溝部が複数個形成されたことを特徴とする。
【0018】
請求項3記載の発明は、前記の各リング状部材の一端面側には溝部が複数個形成(例えば、複数個それぞれ所定間隔を隔てて形成)され、それら各溝部にスペーサを嵌合させることにより、前記の各スペーサ間に前記の通水孔がそれぞれ形成されたことを特徴とする。
【0019】
請求項4記載の発明は、前記の各リング状部材において、半円弧状で両端部に対し互いに嵌合可能な形状の溝部(嵌合用溝部),突出部(嵌合用突出部)が形成された2つの嵌合部材から成る(2つの嵌合部材における各々の溝部と突出部とを互いに嵌合させて成る)ことを特徴とする。
【0020】
請求項5記載の発明は、前記の各リング状部材における通水孔が位置する部分の厚さにおいて、外周側方向へ順次薄くなること(例えば、テーパー状であること)を特徴とする。
【0021】
請求項6記載の発明は、内周側の横断面が真円状で側壁に複数個の通水孔が設けられたフィルターを有し、前記フィルタ内に導入された固液粉砕物を圧縮し前記通水孔を介して脱水,濾過する固液分離機のフィルタ構造において、前記フィルタは、線状部材(例えば、ワイヤ)を螺旋状に巻回して成ることを特徴とする。
【0022】
請求項7記載の発明は、前記線状部材のピッチにおいて、前記線状部材の径よりも大きい、または同一であることを特徴とする。
【0023】
請求項8記載の発明は、前記フィルタ内に対し、略円柱状の軸心の外周面に羽を螺旋状に設けて成るスクリュー(例えば、フィルタの一端側から他端側方向に対して、羽のピッチ幅を順次狭くしたスクリューや、軸心の直径を順次太くしたスクリュー)が貫装されたことを特徴とする。
【0024】
請求項9記載の発明は、前記フィルタ内に対し、略円柱状の軸心の外周面に羽を螺旋状に設けて成るスクリューが貫装されると共に、その貫装されたスクリューの羽における螺旋方向(巻き方向)と線状部材の巻回方向とが同一であることを特徴とする。
【0025】
本発明によれば、プレス方式の固液分離機において、略円筒状で少なくとも内周側の横断面が真円状であるフィルタを容易に構成することができ、例えばフィルタ内に生じ得る応力(例えば、固液粉砕物を圧縮する際に生じる応力)に対抗可能な機械的強度を付与することができる。
【0026】
また、請求項1乃至5,8記載の発明のように、積層するリング状部材の個数を適宜選択することにより、種々の固液分離機の規格に応じたフィルタを容易に構成(すなわち、軸方向に対して所望の長さのフィルタを容易に構成)することができ、たとえフィルタの一部に破損等の不具合が生じても、フィルタ全体を交換する必要はなく、不具合が生じたリング状部材のみを交換することによりフィルタを修復できる。
【0027】
例えば、請求項1乃至5,8記載のフィルタにおいて金属から成るリング状部材用いる場合、そのリング状部材は所望厚さの金属薄板を略円環状に打ち抜く方法により作製することができるが、その金属薄板における打ち抜かれた部分の内側および周囲は不要な部分に相当(鉄屑に相当)する。一方、請求項4記載の発明によれば、金属薄板を略半円弧状に打ち抜くことにより作製できるため、前記略円環状に打ち抜く方法と比較して、その金属薄板を効率良く利用(鉄屑を減少)することができる。
【0028】
また、請求項5記載の発明のように、各リング状部材における通水孔が位置する部分の厚さを外周側方向へ順次薄くすることにより、固液粉砕物等による通水孔の目詰まりを抑制することが可能となる。
【0029】
さらに、請求項6乃至9記載の発明のように螺旋状のフィルタの場合、例えば固液粉砕物の圧縮の際に生じるフィルタ内の応力等が変化しても、そのフィルタは前記の応力変化等に応じて弾性変形(弾性変形後は、その弾性力により初期の形状に戻る)し易く、各構成部材の破損等の防止を図ることができる。この螺旋状のフィルタの場合、請求項7記載の発明のように線状部材のピッチを該線状部材の径よりも大きくすることにより、隣り合う線状部材間に螺旋状の通水孔が形成される。また、前記線状部材のピッチが該線状部材の径と同一の場合、固液粉砕物の圧縮の際に生じるフィルタ内の応力等により該フィルタが弾性変形して隣り合う線状部材間に隙間が形成されるように、前記フィルタのバネ特性を設定する。すなわち、前記の弾性変形によって形成される隣り合う線状部材間の隙間が、前記螺旋状の通水孔の役割を果たす。
【0030】
さらにまた、請求項8,9記載の発明のように、略円柱状の軸心の外周面に羽を螺旋状に設けて成るスクリューをフィルタ内に貫装することにより、そのフィルタ内に導入された固液粉砕物を脱水,濾過すると共に、その脱水,濾過された脱水粉砕物を順次フィルタ外へ排出することができる。
【0031】
加えて、請求項9記載の発明のように、例えば螺旋状の羽が形成されたスクリューによるプレス方式のフィルタ構造の場合、その螺旋状の羽における巻き方向と線状部材における巻回方向とを一致させることにより、例えば通水孔に目詰まりする固液粉砕物や脱水粉砕物は前記の巻き方向に沿って移動しながら螺旋フィルタ外へ排出され易くなる。
【0032】
【発明の実施の形態】
以下、本発明の実施の第1,第2形態における固液分離機のフィルタ構造を図面に基づいて詳細に説明する。なお、図9に示すものと同様なものは、同一符号等を用いて詳細な説明を省略する。
【0033】
[本実施の第1形態]
本実施の第1形態では、例えば金属(例えば、ステンレス(SUS304)),樹脂(例えば、ポリカーボネート)等から成り少なくとも内周面が真円状であるリング状部材を複数個積層することにより、略円筒状で少なくとも内周側の横断面が真円状であるフィルタ(以下、積層フィルタと称する)を構成する。前記の各リング状部材間には、例えばスリット状の隙間(すなわち、通水孔に相当する隙間)を複数個それぞれ所定間隔を隔てて形成する。前記の各隙間を形成するには、各リング状部材間に対して複数個のスペーサをそれぞれ所定間隔を隔てて介在させる方法がある。または、前記の各リング状部材の一端面側に対して、予め複数個の溝部をそれぞれ所定間隔を隔てて形成する方法がある。
【0034】
このように構成された積層フィルタ内に対し(例えば、積層フィルタの一端側から)、排水と共に粉砕処理された固液粉砕物を供給して、その固液粉砕物を積層フィルタ内にて圧縮(例えば、積層フィルタ内に配置させたスクリューの円心運動による圧縮)することにより水分,油分,塩分等を脱水,濾過し、通水孔となる隙間を介して排出する。
【0035】
本実施の第1形態のフィルタ構造によれば、リング状部材の内径と外径との差および厚さを調整することにより、例えば従来のメッシュフィルタと比較して機械的強度を向上できると共に、パンチング等を適用しなくとも例えばスクリューの形状に応じて設計された所望の形状(例えば、内周側の横断面が真円状)の積層フィルタおよび通水孔を容易に形成することができる(例えば、通水孔の内周側に切り欠きや突出部が形成されない)。このため、プレス式の固液分離機において、固液粉砕物の圧縮の際に積層フィルタ内に対して応力(トン単位の高圧)が生じても、その積層フィルタの形状変形を抑制でき、脱水率,濾過率の向上および各構成部材の破損等の防止を図ることができる。
【0036】
また、積層するリング状部材の個数,厚さ等を適宜選択することにより、種々の固液分離機の規格に応じた積層フィルタを容易に構成、すなわち軸方向に対して所望の長さの積層フィルタを容易に構成することができる。さらに、たとえ積層フィルタの一部に破損等の不具合が生じても、積層フィルタ全体を交換する必要はなく、不具合が生じたリング状部材のみを交換することにより積層フィルタを修復でき、ランニングコスト(修理コスト等)を低減できる。
【0037】
[本実施の第2形態]
本実施の第2形態では、例えば金属等の線状部材(例えば、ステンレス(SUS304)等から成るワイヤ)を用い、その線状部材が螺旋状に巻回されるように成形することにより、略円筒状で少なくとも内周側の横断面が真円状であるフィルタ(以下、螺旋フィルタと称する)を構成する。
【0038】
前記のように螺旋状に巻回される線状部材のピッチを少なくとも前記線状部材の径よりも大きく設定した場合、隣り合う線状部材間には隙間が形成され、この隙間によって前記螺旋フィルタには螺旋状の通水孔が形成される。また、前記の線状部材のピッチを該線状部材の径と同一に設定すると共に、固液粉砕物の圧縮の際に生じる螺旋フィルタ内の応力等により該螺旋フィルタが弾性変形して隣り合う線状部材間に隙間(極めて薄い隙間)が形成されるように、前記螺旋フィルタのバネ特性を設定した場合、その弾性変形によって形成される隙間が前記螺旋状の通水孔の役割を果たす。
【0039】
このように構成された螺旋フィルタ内に対し(例えば、螺旋フィルタの一端側から)、排水と共に粉砕処理された固液粉砕物を供給して、その固液粉砕物を螺旋フィルタ内にて圧縮(例えば、螺旋フィルタ内に配置させたスクリューの円心運動による圧縮)することにより水分,油分,塩分等を脱水,濾過し、通水孔となる隙間を介して排出する。
【0040】
本実施の第2形態のフィルタ構造によれば、線状部材を螺旋状に巻回し該線状部材のピッチ,バネ特性を螺旋フィルタの使用条件(例えば、螺旋フィルタ内に生じる内圧等)に応じて適宜設定することにより、例えばスクリューの形状に応じて設計された所望の形状の螺旋フィルタおよび通水孔(隣り合う線状部材間の隙間)を容易に形成することができ、前記の第1形態と同様に高い脱水率,濾過率が得られる。
【0041】
また、例えば固液粉砕物の圧縮の際に生じる螺旋フィルタ内の応力等が変化しても、その螺旋フィルタは前記の応力変化等に応じて弾性変形(弾性変形後は、その弾性力により初期の形状に戻る)し、各構成部材の破損等の防止を図ることができる。
【0042】
さらに、例えば螺旋状の羽が形成されたスクリューによるプレス方式のフィルタ構造の場合、その螺旋状の羽における巻き方向と螺旋フィルタの線状部材における巻き方向とを一致させることにより、例えば通水孔に目詰まりする固液粉砕物や脱水粉砕物は前記の巻き方向に沿って移動しながら螺旋フィルタ外へ排出されるため、それら固液粉砕物や脱水粉砕物の残存を抑制することができる。
【0043】
次に、本実施の第1,第2形態における固液分離機のフィルタ構造における第1〜第3実施例を詳細に説明する。なお、第2,第3実施例において、第1実施例と同様なものは詳細な説明を省略する。
【0044】
[第1実施例]
図1の概略説明図は、本実施の第1形態におけるフィルタ構造に用いられるリング状部材の第1実施例を示すものである。図1において、符号12は、内周面が真円状のリング状部材11の一端面側に対して複数個(図1中では4個)それぞれ所定間隔を隔てて設けられたスペーサ(後述のスペーサ)用の溝部(凹部)を示すものである。前記リング状部材11の各溝部12間の厚さは、例えば一端面側(図1では上面側)を外周側方向に順次薄くなるようにしてテーパー状にすることが好ましい。また、本第1実施例では、前記溝部12に対して、例えばボルト等の締結部材を貫装することが可能な形状の孔(以下、締結用孔と称する)13が穿設される。
【0045】
図2の概略説明図は、前記リング状部材11を複数個積層して固液分離機の積層フィルタを構成する方法を示すものである。なお、図1に示すものと同様なものには同一符号を付して、その詳細な説明を省略する。図2に示すように、複数個のリング状部材11を用いると共に、各リング状部材11の溝部12に対してスペーサ(図2では略矩形平板状のスペーサ)21を嵌合させる。
【0046】
なお、前記のようにスペーサ21を各リング状部材11の溝部12に嵌合させる構造の場合、そのスペーサ21の厚さは少なくとも前記溝部12に嵌合させた状態でスペーサ21の一部がリング状部材11の一端面から突出する程度(すなわち、目的とする通水孔の形状に応じた厚さ)とする。また、本第1実施例では、前記スペーサ21に対し前記溝部12の締結用孔13と同様の形状の締結用孔22が穿設される。
【0047】
前記のスペーサ21が嵌合された各リング状部材11を積層し、各々の締結用孔13,22にボルト等(図示省略)を貫装しナット等(図示省略)により締め付けて積層フィルタ20を構成する。これにより、各リング状部材11間における各スペーサ21間において、スリット状の隙間(スリット状で外周側方向に順次厚くなるテーパー状の隙間)、すなわち通水孔23が形成される。
【0048】
なお、各リング状部材11の締め付けを容易にするため、積層フィルタ20の両端には例えばフランジを用いても良い。また、前記のようにフランジを用いて各リング状部材11を積層して成る積層フィルタ(ユニット)20を複数個用い、各々のフランジを介して接合し互いに締め付けることにより積層しても良い。
【0049】
さらに、前記の通水孔23の厚さは固液分離機の規模に応じて設定する。例えば、内径89mm,外径103mmのリング状部材11を用いて家庭用の固液分離機を構成する場合、そのリング状部材11の内径側(および溝部12が位置する部分),外径側の厚さをそれぞれ3mm,1mmとし、スペーサ21の厚さを2.5mmとすることにより、各リング状部材11間に内径側,外径側の厚さがそれぞれ0.5mm,2.5mmの通水孔23を形成することができる。
【0050】
図3の概略説明図は、前記積層フィルタ20とスクリュー96を用いた固液分離機の構成例を示すものである。図3に示すように、積層フィルタ20の内周側に対して、直径が積層フィルタ20の内径より小さいまたは同一のスクリュー96を貫装することにより固液分離機を構成する。符号31は、内径が前記スクリュー96の外径よりも大きい円筒状で、側壁に複数個の通水孔31aを有し積層フィルタ20の一端側(図示下方側)に接続される固液粉砕物供給用アダプタを示すものであり、その供給用アダプタ31の外周側には供給口31bが形成される。
【0051】
符号32は、内径がスクリュー96の外径よりも大きい円筒状で積層フィルタ20の他端側(図示上方側)に接続される粉砕物排出用アダプタを示すものであり、その排出用アダプタ32の外周側には排出口32aが形成される。符号33は、リング状部材11,スペーサ21を締め付けるためのボルト等の締結部材を示すものである。
【0052】
このように構成された固液分離機において、粉砕機92から流動する固液粉砕物は前記供給口31bから積層フィルタ20内へ供給され、スクリュー96の円心運動により排出口32a方向に移動しながら圧縮され、その固液粉砕物中の水分等が脱水,濾過される。そして、脱水,濾過された脱水粉砕物は排出口32aを介して貯蔵タンク94へ排出される。
【0053】
[第2実施例]
図4の概略説明図は、本実施の第1形態におけるフィルタ構造に用いられるリング状部材の第2実施例を示すものである。図4において、符号42は、内周面が真円状のリング状部材41の一端面側に対して、複数個(図4中では4個)それぞれ所定間隔を隔てて設けられた通水孔用の溝部(凹部)を示すものである。なお、前記の各リング状部材41における各溝部42が位置する部分の厚さは、そのリング状部材41の外周側方向に順次薄くなるようにしてテーパー状にすることが好ましい。また、本第2実施例では、前記の各リング状部材41における各溝部42間に対してそれぞれ締結用孔43が穿設される。
【0054】
図5の概略説明図は、前記リング状部材41を複数個積層して固液分離機の積層フィルタを構成する方法を示すものである。図5に示すように、前記の溝部42が形成されたリング状部材41を複数個積層し、各々の締結用孔43にボルト等を貫装しナット等により締め付けて積層フィルタ50を構成することにより、各リング状部材41間の溝部42の位置において、スリット状の隙間(スリット状で外周側方向に順次厚くなるテーパー状の隙間)、すなわち通水孔51が形成される。
【0055】
[第3実施例]
図6の概略説明図は、本実施の第1形態におけるフィルタ構造に用いられるリング状部材の第3実施例を示すものである。図6において、符号61,62は、それぞれ半円弧状で両端部に嵌合用溝部61a,62a,嵌合用突出部61b,62bが形成された嵌合部材を示すものである。
【0056】
なお、前記溝部61a,62aと嵌合用突出部61b,62bとは、互いに嵌合可能な形状とする。また、前記の嵌合部材61,62は、図示するように各々の溝部61a,62aと突出部61b,62bとをそれぞれ互いに嵌合させることにより、内周面が真円状のリング状部材60を構成できる形状とする。さらに、前記の嵌合部材61,62の一端面側には、通水孔用の溝部(凹部)63が複数個(図6中では3個)それぞれ所定間隔を隔てて形成される。
【0057】
さらにまた、前記の各嵌合部材61,62における各溝部63が位置する部分の厚さは、それら嵌合部材61,62の外周側方向に順次薄くなるようにしてテーパー状にすることが好ましい。加えて、本第3実施例では、前記の各嵌合部材61,62における各溝部63間に対してそれぞれ締結用孔64が穿設される。
【0058】
図7の概略説明図は、前記嵌合部材61,62を複数個用いて固液分離機の積層フィルタを構成する方法を示すものである。図7に示すように、2個の嵌合部材61,62を用い各々の溝部61a,62aと突出部61b,62bとを互いに嵌合させて成るリング状部材60を複数個積層し、各々の締結用孔64にボルト等を貫装しナット等により締め付けて積層フィルタ70を構成することにより、各リング状部材60間の溝部63の位置において、スリット状の隙間(スリット状で外周側方向に順次厚くなるテーパー状の隙間)、すなわち通水孔71が形成される。
【0059】
なお、本第3実施例では各嵌合部材61,62に対して通水孔71用の溝部63を形成したが、例えば第1実施例のように複数個のスペーサ21を用い、それら各スペーサ21間にスリット状の通水孔22を形成した構成でも良い。
【0060】
[第4実施例]
図8の概略説明図は、本実施の第2形態におけるフィルタ構造に用いられる螺旋フィルタを示すものである。図8において、図80は、線状部材81を螺旋状に巻回して形成された略円筒状で少なくとも内周面の横断面が円状(例えば、真円状)である螺旋フィルタを示すものである。この螺旋フィルタは、例えば断面が略真円状で直径5〜6mmのワイヤ(ステンレス製のワイヤ等)から成る線状部材81を用い、平均外径95.5mm,内径90.5mm,有効巻数24回,総巻数26回にて螺旋状に巻回することにより形成される。
【0061】
このように形成された螺旋フィルタ80により、例えば図3の積層フィルタ20の替わりに適用し、その螺旋フィルタ80の内周側に対してスクリュー(直径が螺旋フィルタ80の内径より小さいまたは同一のスクリュー)96を貫装して固液分離機を構成する。そして、粉砕機92から流動する固液粉砕物は供給口31bから螺旋フィルタ80内へ供給され、スクリュー96の円心運動により排出口32a方向に移動しながら圧縮され、その固液粉砕物中の水分等が脱水,濾過される。その脱水,濾過された脱水粉砕物は排出口32aを介して貯蔵タンク94へ排出される。
【0062】
前記の固液粉砕物から脱水,濾過された水分は、螺旋状に巻回された線状部材81のピッチが該線状部材の径よりも大きい場合、その隣り合う線状部材81間の隙間を介して螺旋フィルタ80外へ排出される。また、前記の線状部材81のピッチが該線状部材81の径と同一で、固液粉砕物の圧縮の際に生じる螺旋フィルタ80内の応力等により該螺旋フィルタ80が弾性変形して隣り合う線状部材81間に隙間(極めて薄い隙間)が形成される場合、前記の脱水,濾過された水分は前記の弾性変形によって形成された隙間を介して螺旋フィルタ80外へ排出される。
【0063】
以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。
【0064】
例えば、第1〜第3実施例では、複数個のリング状部材間に対しスリット状で外周側方向に順次厚くなるテーパー状の通水孔を形成したが、リング状部材の機械的強度(例えば、積層フィルタ内の応力に対する強度)を損なわない程度であれば、通水孔の形状は適宜変更しても良い。
【0065】
また、第4実施例では、断面が略真円状の線状部材を用いたが、種々の断面形状の線状部材を用いても同様の作用効果が得られることは明らかである。
【0066】
さらに、本実施の第1,第2形態では、固液分離機のフィルタ内に対し、略円柱状の軸心の外周面に羽が螺旋状に形成されたスクリューを貫装した例を挙げたが、そのフィルタ内の固液粉砕物を圧縮して脱水,濾過することが可能な装置であれば適宜使用しても良い。
【0067】
さらにまた、本発明のフィルタに用いられるリング状部材,スペーサ,線状部材等は金属,樹脂等に限られず、所望の機械的強度を保つことができ固液粉砕物等による劣化を極力抑えることができる材料であれば、適宜使用しても良い。
【0068】
加えて、本実施の第1,第2形態では、一般家庭,事業系から排出される生鮮品等の残飯,夾雑物等を排水と共に処理する固液分離機の内容を挙げたが、例えば果物,野菜,納豆煮汁残渣,オカラ,使用済み茶葉,コーヒー絞り粕,焼酎絞り粕,鉱・植物油,揚げ油等を絞る工程(脱水,濾過工程)を有する加工食品業等に適用しても良い。
【0069】
【発明の効果】
以上示したとおり本発明によれば、プレス式の固液分離機のフィルタ構造において、所望の形状のフィルタ(例えば、使用するスクリューに応じて設計された形状のフィルタおよび通水孔)を容易に構成し、脱水率,濾過率の向上および各構成部材の破損等の防止を図ると共に、高い機械的強度(フィルタ内の内圧に耐え得る強度)を付与することができる。
【0070】
すなわち、固液分離機の規格に応じて機械的強度の高いフィルタを容易に構成することができ、例えば生鮮品,夾雑物等の固液粉砕物を効率良く脱水,濾過することが可能となる。
【図面の簡単な説明】
【図1】第1実施例におけるフィルタ構造に用いるリング状部材の概略説明図。
【図2】第1実施例における固液分離機のフィルタ構成例を示す概略説明図。
【図3】第1実施例における固液分離機の構成例を示す概略説明図。
【図4】第2実施例におけるフィルタ構造に用いるリング状部材の概略説明図。
【図5】第2実施例における固液分離機のフィルタ構成例を示す概略説明図。
【図6】第3実施例におけるフィルタ構造に用いるリング状部材の概略説明図。
【図7】第3実施例における固液分離機のフィルタ構成例を示す概略説明図。
【図8】第4実施例におけるフィルタ構造に用いる螺旋フィルタの概略説明図。
【図9】一般的な粉砕機,固液分離機等を備えたシンクの概略説明図。
【符号の説明】
11,41,60…リング状部材
12…溝部(スペーサ用)
13,22,43,64…締結用孔
20,50,70…積層フィルタ
23,51,71…通水孔
42,63…溝部(通水孔用)
61a,62a…嵌合用溝部
61b,62b…嵌合用突出部
80…螺旋フィルタ
81…線状部材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a filter structure of a solid-liquid separator for crushing leftovers, impurities and the like of perishables and the like discharged from homes and businesses, and performing dehydration treatment together with wastewater.
It is about.
[0002]
[Prior art]
The present invention is an invention developed based on well-known and publicly-known technologies (a filter structure of a solid-liquid separator used for a household or commercial sink (sink)) without conducting a prior art search. The prior art known by the applicant does not correspond to a known invention in the literature. Hereinafter, the filter structure of a known / public solid-liquid separator will be described.
[0003]
2. Description of the Related Art In recent home and commercial sinks, not only waste water is discharged, but also sewage and foreign substances such as fresh products are crushed and dewatered by a crusher and a solid-liquid separator together with the drainage. Is known.
[0004]
FIG. 9 is a schematic explanatory view of a sink provided with a general pulverizer, a solid-liquid separator, and the like. In FIG. 9, reference numeral 91 denotes a sink, and leftovers such as perishables and foreign substances discharged from the outlet 91a of the sink 91 are put into a crusher 92 together with drainage, and crushed to a predetermined size. It is processed.
[0005]
The above-mentioned pulverized slag, contaminants and the like (hereinafter referred to as solid-liquid pulverized matter) are supplied to a solid-liquid separator 93 (details will be described later), and the water, oil, salt, etc. Is dehydrated and filtered, and stored in a storage tank 94. The storage tank 94 is capable of biodegrading the dehydrated pulverized material (hereinafter, referred to as a dewatered pulverized material) while stirring the storage tank 94 at a predetermined temperature with a stirrer 94a or the like. The odor or the like generated by the biodegradation can be discharged to a sewer via a fan or the like. Reference numerals 95a, 95b, and 95c in FIG. 9 indicate motors for driving a pulverizer, a solid-liquid separator, and a stirrer 94a of a storage tank, respectively.
[0006]
As the solid-liquid separator 93, for example, a system (press system; FIG. 9 shows a screw press system) of dewatering while compressing a solid-liquid pulverized product as shown in FIG. 9 is known. In the figure, reference numeral 96 denotes a screw in which a blade 96b is formed in a spiral shape with respect to the outer peripheral surface of a substantially cylindrical axis (shaft) 96a, and is disposed in a housing 97 of the solid-liquid separator. A motor 95b is connected to one end (an end on the lower side in FIG. 9) of the shaft center 96a, and the screw 96 makes a circular motion.
[0007]
Reference numeral 98 denotes a container (cylindrical container) having a perfect circular cross section. A plurality of water holes 98a are formed in the side wall of the container, and are disposed so as to cover the outer peripheral side of the screw 96. FIG. The water passage hole 98a is formed, for example, by punching holes, slits and the like from the outer peripheral surface of a cylindrical filter. Alternatively, it is formed by forming a mesh-like container (hereinafter, referred to as a mesh filter) using a steel wire or the like.
[0008]
Reference numeral 99 is connected to the other end (the upper end in FIG. 9) of the shaft center 96a so as to be slidable (slidably in the axial direction of the screw 96), and to perform the center movement of the screw 96. This is a cutter (hereinafter, referred to as a discharge cutter) for discharging the dewatered and crushed material dehydrated in the filter 98 by using the storage tank 94. The discharge cutter 99 is connected to, for example, a pressing member (for example, a spring member) 99a and a pressing adjustment member 99b capable of adjusting the expansion and contraction force of the pressing member 99a, and adjusts the expansion and contraction force of the pressing member 99a. This makes it possible to further dehydrate water and the like remaining in the dehydrated and pulverized product.
[0009]
The screw 96 may have a uniform pitch width of the wings 96b and a uniform diameter of the shaft center 96a. For example, the pitch width of the wings may be sequentially changed from one end to the other end of the filter. A narrower one (for example, FIG. 9) or one in which the diameter of the axial center is gradually increased (for example, FIG. 3 described later) may be used. As a result, the volume of the region surrounded by the shaft center 96a, the blade 96b, and the filter 98 gradually decreases from one end side to the other end side of the filter 98, and as the volume decreases, the dehydration rate and the filtration rate increase. Rises.
[0010]
The distance between the outer diameter of the wing 96b of the screw 96 and the inner diameter of the filter 98 is as short as possible, for example, such that the wing 96b and the filter 98 do not collide with each other and fail (for example, about 0 to several microns). It is preferable that the solid-liquid pulverized material and the dewatered pulverized material do not fall from the gap between the blade 96b and the filter 98. Further, when the screw 96 swings due to the drive of the motor 95b or the center movement of the screw 96, it is necessary to set the blade 96b and the filter 98 so that they do not collide with each other due to the swing and fail. . Furthermore, it is preferable that the surfaces of the shaft center 96a, the wings 96b, and the filter 98 are, for example, embossed so that solid-liquid pulverized materials, dehydrated pulverized materials, and the like do not adhere.
[0011]
The solid-liquid pulverized material supplied from one end (lower in FIG. 9) of the solid-liquid separator 93 configured as described above is moved in the other end of the filter 98 (upper in FIG. ) Is compressed while moving, and the moisture and the like contained in the solid-liquid pulverized material are squeezed and discharged to the outside through the water holes of the filter 98. Then, the dehydrated and pulverized material from which water and the like have been extracted is stored in the storage tank 94 via the outlet of the solid-liquid separator 93 (in FIG. 9, the outlet located above).
[0012]
[Problems to be solved by the invention]
However, in the case of the filter 98 in which water holes are formed by punching or the like as described above, stress is applied to the container of the filter 98 at the time of punching, or the filter 98 (particularly, the water holes) is formed. Since notches and protrusions are easily formed on the peripheral side, it was difficult to produce a filter 98 having a desired shape (for example, a shape designed according to the outer diameter of the wing 96b of the screw 96).
[0013]
As a result, as described above, for example, in the case of a press filter structure using the screw 96, for example, the gap between the wing 96b and the filter 98 exceeds the design range, and the gap is formed by solid-liquid pulverization or dehydration pulverization. There is a risk that the object may pass (fall below the filter 98 in FIG. 9) and remain without being discharged from the filter 98. In addition, the blades 96b and the filter 98 collide with each other, and the function of the solid-liquid separator (for example, the rotation speed of the screw is reduced) not only deteriorates the dewatering rate and filtration rate, but also reduces the solid-liquid separator 93 There is a possibility that constituent members (for example, the filter 98, the screw 96, the motor 95b, etc.) may be damaged.
[0014]
Further, when a mesh filter is used, the mechanical strength is lower than that of the filter 98 having the water holes, and the shape of the mesh filter is changed by the stress (internal pressure in the filter) caused by dehydration or the like. Deformation (plastic deformation) causes the dehydration rate and filtration rate to deteriorate due to the deterioration of the function of the solid-liquid separator, as described above, and the components of the solid-liquid separator 93 may be damaged. In a conventional mesh filter or the like, if the thickness (difference between the inner diameter and the outer diameter of the filter) is set to be large to increase the mechanical strength, it is difficult to form a desired water passage hole ( (For example, high cost).
[0015]
The present invention has been made based on the above-mentioned problem, and in a press-type solid-liquid separator, a filter having a desired shape (for example, a filter having a shape designed according to a screw to be used and a water hole) is easily provided. And a filter for a solid-liquid separator capable of imparting high mechanical strength (strength enough to withstand the internal pressure in the filter) while improving the dewatering rate and filtration rate and preventing breakage of each component. It is to provide structure.
[0016]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present invention has a cylindrical filter having a circular cross-section having a plurality of water passage holes formed in a side wall, and the filter is provided in the filter. In the filter structure of the solid-liquid separator for compressing the introduced solid-liquid pulverized substance, and dehydrating and filtering the solid-liquid pulverized matter through the water passage hole, the filter is formed by stacking a plurality of ring-shaped members having an inner peripheral surface of a perfect circle. The plurality of water holes (for example, slit-shaped water holes) are formed between each ring-shaped member.
[0017]
The invention according to claim 2 is characterized in that a plurality of the groove portions for the water holes are formed on one end surface side of each of the ring-shaped members.
[0018]
According to a third aspect of the present invention, a plurality of grooves are formed on one end surface side of each of the ring-shaped members (for example, a plurality of grooves are formed at predetermined intervals), and a spacer is fitted into each of the grooves. Thus, the water holes are formed between the spacers.
[0019]
According to a fourth aspect of the present invention, in each of the ring-shaped members, a groove (fitting groove) and a protruding portion (fitting protruding portion) having a semicircular shape and capable of fitting to both ends are formed. It is characterized by comprising two fitting members (by fitting the respective grooves and protrusions of the two fitting members to each other).
[0020]
The invention according to claim 5 is characterized in that the thickness of the portion where the water holes are located in each of the ring-shaped members is gradually reduced in the outer peripheral side direction (for example, it is tapered).
[0021]
According to a sixth aspect of the present invention, there is provided a filter having a perfect circular cross section on an inner peripheral side and a plurality of water holes formed in a side wall, and compressing a solid-liquid pulverized substance introduced into the filter. In the filter structure of the solid-liquid separator for dehydrating and filtering through the water holes, the filter is formed by spirally winding a linear member (for example, a wire).
[0022]
The invention according to claim 7 is characterized in that the pitch of the linear members is larger than or equal to the diameter of the linear members.
[0023]
The invention according to claim 8, wherein a screw formed by spirally providing wings on the outer peripheral surface of a substantially cylindrical shaft center in the filter (for example, the wings are arranged in a direction from one end of the filter to the other end). (A screw in which the pitch width is gradually narrowed or a screw in which the diameter of the axial center is sequentially widened).
[0024]
According to a ninth aspect of the present invention, in the filter, a screw formed by spirally providing wings on the outer peripheral surface of a substantially cylindrical shaft center is inserted, and the spiral in the inserted screw wings is provided. The direction (winding direction) and the winding direction of the linear member are the same.
[0025]
According to the present invention, in a press-type solid-liquid separator, a filter having a substantially cylindrical shape and a circular cross section at least on the inner peripheral side can be easily formed. For example, it is possible to impart mechanical strength that can withstand the stress generated when the solid-liquid pulverized product is compressed.
[0026]
In addition, by appropriately selecting the number of ring-shaped members to be laminated as in the first to fifth and eighth aspects of the present invention, filters conforming to various solid-liquid separator standards can be easily configured (that is, shafts can be easily formed). A filter having a desired length in the direction can be easily configured. Even if a failure such as breakage occurs in a part of the filter, it is not necessary to replace the entire filter. The filter can be repaired by replacing only the members.
[0027]
For example, when a ring-shaped member made of metal is used in the filter according to claims 1 to 5, 8, the ring-shaped member can be manufactured by a method of punching a thin metal plate having a desired thickness into a substantially annular shape. The inside and surroundings of the punched portion of the thin plate correspond to unnecessary portions (corresponding to iron scraps). On the other hand, according to the fourth aspect of the present invention, since the metal sheet can be manufactured by punching the metal sheet into a substantially semicircular arc shape, the metal sheet can be used more efficiently (iron scrap Reduction).
[0028]
In addition, as in the invention according to claim 5, the thickness of the portion where the water passage hole is located in each ring-shaped member is gradually reduced in the outer peripheral direction, so that the water passage hole is clogged with the solid-liquid pulverized material or the like. Can be suppressed.
[0029]
Furthermore, in the case of a helical filter as in the invention according to claims 6 to 9, even if the stress or the like in the filter generated when the solid-liquid pulverized material is compressed changes, the filter changes the stress or the like. (The elastic shape returns to the initial shape due to the elastic force), and it is possible to prevent each component member from being damaged. In the case of this helical filter, by making the pitch of the linear members larger than the diameter of the linear members as in the invention of claim 7, a helical water passage hole is formed between adjacent linear members. It is formed. Further, when the pitch of the linear member is the same as the diameter of the linear member, the filter is elastically deformed due to stress in the filter generated when the solid-liquid pulverized material is compressed, and between the adjacent linear members. The spring characteristics of the filter are set so that a gap is formed. That is, the gap between adjacent linear members formed by the elastic deformation serves as the spiral water hole.
[0030]
Furthermore, a screw formed by spirally providing wings on the outer peripheral surface of a substantially cylindrical shaft center is inserted into the filter as in the invention according to the eighth and ninth aspects, thereby being introduced into the filter. The solid-liquid pulverized material can be dewatered and filtered, and the dewatered and filtered dewatered pulverized material can be sequentially discharged out of the filter.
[0031]
In addition, as in the invention of claim 9, for example, in the case of a press-type filter structure using a screw in which a spiral wing is formed, the winding direction of the spiral wing and the winding direction of the linear member are changed. By making them coincide with each other, for example, the solid-liquid pulverized material or the dehydrated pulverized material clogging the water passage hole is easily discharged to the outside of the spiral filter while moving along the winding direction.
[0032]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the filter structure of the solid-liquid separator according to the first and second embodiments of the present invention will be described in detail with reference to the drawings. Note that the same components as those shown in FIG. 9 are denoted by the same reference numerals and the like, and detailed description is omitted.
[0033]
[First Embodiment]
In the first embodiment, a plurality of ring-shaped members made of, for example, metal (for example, stainless steel (SUS304)) or resin (for example, polycarbonate) and having at least an inner peripheral surface having a perfect circular shape are laminated, thereby substantially A filter having a cylindrical shape and a circular cross section at least on the inner peripheral side (hereinafter, referred to as a laminated filter) is configured. For example, a plurality of slit-shaped gaps (that is, gaps corresponding to water holes) are formed at predetermined intervals between the ring-shaped members. In order to form the above-mentioned gaps, there is a method of interposing a plurality of spacers at predetermined intervals between the ring-shaped members. Alternatively, there is a method of forming a plurality of grooves in advance at predetermined intervals on one end surface side of each of the ring-shaped members.
[0034]
The pulverized solid-liquid pulverized material is supplied together with the drainage into the laminated filter (for example, from one end side of the laminated filter) configured as described above, and the pulverized solid-liquid pulverized substance is compressed in the laminated filter ( For example, water, oil, salt, etc. are dehydrated and filtered by compression (for example, compression by the circular motion of a screw disposed in a multilayer filter), and are discharged through a gap that serves as a water passage hole.
[0035]
According to the filter structure of the first embodiment, by adjusting the difference between the inner diameter and the outer diameter and the thickness of the ring-shaped member, the mechanical strength can be improved as compared with a conventional mesh filter, for example. Even without applying punching or the like, it is possible to easily form a laminated filter and a water passage hole having a desired shape (for example, a circular cross section on the inner peripheral side) designed according to the shape of the screw (for example). For example, no notch or protrusion is formed on the inner peripheral side of the water passage hole). For this reason, in a press-type solid-liquid separator, even when stress (high pressure in the unit of ton) is generated in the laminated filter during compression of the solid-liquid pulverized material, shape deformation of the laminated filter can be suppressed, and dehydration can be performed. It is possible to improve the filtration rate and the filtration rate, and prevent breakage of each constituent member.
[0036]
Also, by appropriately selecting the number, thickness, etc. of the ring-shaped members to be laminated, a laminated filter according to various solid-liquid separator standards can be easily configured, that is, a laminated filter having a desired length in the axial direction. The filter can be easily configured. Further, even if a defect such as breakage occurs in a part of the laminated filter, it is not necessary to replace the entire laminated filter. The laminated filter can be repaired by replacing only the ring-shaped member in which the defect has occurred, and the running cost ( Repair costs, etc.).
[0037]
[Second embodiment]
In the second embodiment, for example, a linear member such as a metal (for example, a wire made of stainless steel (SUS304) or the like) is used, and the linear member is formed so as to be spirally wound. A filter having a cylindrical shape and a circular cross section at least on the inner peripheral side (hereinafter referred to as a spiral filter) is formed.
[0038]
When the pitch of the spirally wound linear member is set to be at least larger than the diameter of the linear member as described above, a gap is formed between adjacent linear members, and the gap forms the spiral filter. Is formed with a spiral water hole. In addition, the pitch of the linear members is set to be equal to the diameter of the linear members, and the spiral filters are elastically deformed by the stress in the spiral filters generated when the solid-liquid pulverized material is compressed, and are adjacent to each other. When the spring characteristic of the spiral filter is set so that a gap (extremely thin gap) is formed between the linear members, the gap formed by the elastic deformation serves as the spiral water hole.
[0039]
The solid-liquid pulverized material that has been pulverized together with the drainage is supplied into the spiral filter configured as described above (for example, from one end of the spiral filter), and the solid-liquid pulverized material is compressed in the spiral filter ( For example, water, oil, salt, and the like are dehydrated and filtered by compressing the screw disposed in the helical filter by the circular motion thereof, and the water, oil, salt, and the like are discharged through a gap serving as a water passage hole.
[0040]
According to the filter structure of the second embodiment, the linear member is spirally wound, and the pitch and the spring characteristics of the linear member are determined according to the usage conditions of the spiral filter (for example, the internal pressure generated in the spiral filter). By appropriately setting the spiral filter and the water passage hole (gap between adjacent linear members) having a desired shape designed according to the shape of the screw, for example, it is possible to easily form the first filter. High dehydration and filtration rates can be obtained as in the case of the form.
[0041]
Also, for example, even if the stress in the helical filter generated during the compression of the solid-liquid pulverized material changes, the helical filter is elastically deformed in accordance with the above-mentioned stress change and the like. (Returned to the shape shown in FIG. 3), and it is possible to prevent breakage of each component.
[0042]
Further, for example, in the case of a press-type filter structure using a screw in which a spiral wing is formed, the winding direction of the spiral wing and the winding direction of the linear member of the spiral filter are made to coincide with each other, such as a water passage hole. Since the solid-liquid pulverized material and the dehydrated pulverized material clogging are discharged out of the spiral filter while moving along the winding direction, the remaining of the solid-liquid pulverized material and the dehydrated pulverized material can be suppressed.
[0043]
Next, first to third embodiments of the filter structure of the solid-liquid separator according to the first and second embodiments of the present invention will be described in detail. In the second and third embodiments, detailed description of the same components as those in the first embodiment will be omitted.
[0044]
[First embodiment]
FIG. 1 is a schematic explanatory view showing a first example of a ring-shaped member used for a filter structure according to a first embodiment of the present invention. In FIG. 1, reference numeral 12 denotes a plurality of spacers (four in FIG. 1) provided at predetermined intervals from one end surface of a ring-shaped member 11 having an inner peripheral surface having a perfect circular shape (described later). 3 shows a groove (recess) for the spacer). The thickness between the grooves 12 of the ring-shaped member 11 is preferably tapered so that, for example, one end surface (the upper surface in FIG. 1) is gradually thinned in the outer peripheral direction. In the first embodiment, a hole (hereinafter, referred to as a fastening hole) 13 having a shape through which a fastening member such as a bolt can be inserted is formed in the groove 12.
[0045]
The schematic explanatory view of FIG. 2 shows a method of forming a laminated filter of a solid-liquid separator by laminating a plurality of the ring-shaped members 11. Note that the same components as those shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted. As shown in FIG. 2, a plurality of ring-shaped members 11 are used, and spacers (substantially rectangular plate-shaped spacers in FIG. 2) 21 are fitted into the groove portions 12 of each ring-shaped member 11.
[0046]
In the case of the structure in which the spacer 21 is fitted into the groove 12 of each ring-shaped member 11 as described above, the thickness of the spacer 21 is at least part of the ring 21 fitted in the groove 12. It is set to the extent that it protrudes from one end surface of the shaped member 11 (that is, the thickness in accordance with the shape of the intended water passage hole). In the first embodiment, a fastening hole 22 having the same shape as the fastening hole 13 of the groove 12 is formed in the spacer 21.
[0047]
The ring-shaped members 11 fitted with the spacers 21 are laminated, and bolts (not shown) are inserted through the respective fastening holes 13 and 22 and tightened by nuts (not shown), thereby forming the laminated filter 20. Constitute. As a result, a slit-shaped gap (a tapered gap that is gradually thicker in the outer peripheral direction), that is, a water passage hole 23 is formed between the spacers 21 between the ring-shaped members 11.
[0048]
Note that, for example, flanges may be used at both ends of the laminated filter 20 in order to facilitate the tightening of each ring-shaped member 11. Alternatively, a plurality of laminated filters (units) 20 formed by laminating the respective ring-shaped members 11 using the flanges as described above may be used, joined via each flange, and tightened together to be laminated.
[0049]
Further, the thickness of the water passage hole 23 is set according to the scale of the solid-liquid separator. For example, when a home-use solid-liquid separator is configured using the ring-shaped member 11 having an inner diameter of 89 mm and an outer diameter of 103 mm, the inner-diameter side (and the portion where the groove 12 is located) and the outer-diameter side of the ring-shaped member 11 are formed. By setting the thickness to 3 mm and 1 mm, respectively, and the thickness of the spacer 21 to 2.5 mm, the thickness between the ring-shaped members 11 on the inner diameter side and the outer diameter side is 0.5 mm and 2.5 mm, respectively. Water holes 23 can be formed.
[0050]
The schematic explanatory diagram of FIG. 3 shows a configuration example of a solid-liquid separator using the laminated filter 20 and the screw 96. As shown in FIG. 3, a solid-liquid separator is formed by inserting a screw 96 having a diameter smaller than or equal to the inner diameter of the laminated filter 20 into the inner peripheral side of the laminated filter 20. Reference numeral 31 denotes a solid-liquid pulverized product having a cylindrical shape whose inner diameter is larger than the outer diameter of the screw 96 and having a plurality of water passage holes 31a on the side wall and connected to one end side (lower side in the drawing) of the laminated filter 20. It shows a supply adapter, and a supply port 31b is formed on the outer peripheral side of the supply adapter 31.
[0051]
Reference numeral 32 denotes a pulverized matter discharging adapter which is cylindrical and has an inner diameter larger than the outer diameter of the screw 96 and is connected to the other end (upper side in the drawing) of the laminated filter 20. A discharge port 32a is formed on the outer peripheral side. Reference numeral 33 denotes a fastening member such as a bolt for fastening the ring-shaped member 11 and the spacer 21.
[0052]
In the solid-liquid separator configured as described above, the solid-liquid pulverized material flowing from the pulverizer 92 is supplied into the laminated filter 20 from the supply port 31b, and moves toward the discharge port 32a by the circular motion of the screw 96. The solids and liquids are dewatered and filtered. Then, the dewatered and filtered dewatered and crushed material is discharged to the storage tank 94 through the discharge port 32a.
[0053]
[Second embodiment]
FIG. 4 is a schematic explanatory view showing a second example of the ring-shaped member used in the filter structure according to the first embodiment. In FIG. 4, reference numeral 42 denotes a plurality of (four in FIG. 4) water passage holes provided at a predetermined interval from one end surface of the ring-shaped member 41 whose inner peripheral surface is a perfect circle. 3 shows a groove (concave portion) for use. It is preferable that the thickness of the portion where each groove 42 is located in each of the ring members 41 is tapered so that the thickness gradually decreases in the outer peripheral direction of the ring member 41. In the second embodiment, a fastening hole 43 is formed between each groove 42 in each ring-shaped member 41.
[0054]
The schematic explanatory view of FIG. 5 shows a method of forming a stacked filter of a solid-liquid separator by stacking a plurality of the ring-shaped members 41. As shown in FIG. 5, a plurality of ring-shaped members 41 each having the groove 42 formed thereon are stacked, and a bolt or the like is inserted into each of the fastening holes 43 and tightened with a nut or the like to form a multilayer filter 50. Accordingly, a slit-shaped gap (a tapered gap that is formed in a slit shape and gradually increases in the outer peripheral direction), that is, a water passage hole 51 is formed at the position of the groove portion 42 between the ring-shaped members 41.
[0055]
[Third embodiment]
The schematic explanatory view of FIG. 6 shows a third example of the ring-shaped member used in the filter structure according to the first embodiment. In FIG. 6, reference numerals 61 and 62 denote fitting members having fitting grooves 61a and 62a and fitting protrusions 61b and 62b formed at both ends in a semicircular arc shape, respectively.
[0056]
The grooves 61a and 62a and the fitting protrusions 61b and 62b have shapes that can be fitted to each other. The fitting members 61 and 62 are formed by fitting the respective groove portions 61a and 62a and the protruding portions 61b and 62b with each other, as shown in the drawing, so that the inner peripheral surface is a ring-shaped member 60 having a perfect circular shape. And a shape that can be configured. Further, a plurality of (three in FIG. 6) grooves for water passage holes are formed on one end side of the fitting members 61 and 62 at predetermined intervals.
[0057]
Furthermore, it is preferable that the thickness of the portion where each groove 63 is located in each of the fitting members 61 and 62 is tapered so that the thickness gradually decreases in the outer peripheral direction of the fitting members 61 and 62. . In addition, in the third embodiment, a fastening hole 64 is formed between each groove 63 in each of the fitting members 61 and 62.
[0058]
The schematic explanatory view of FIG. 7 shows a method of forming a multilayer filter of a solid-liquid separator using a plurality of the fitting members 61 and 62. As shown in FIG. 7, a plurality of ring-shaped members 60 formed by fitting two grooves 61a, 62a and protrusions 61b, 62b to each other using two fitting members 61, 62 are stacked, and By forming a laminated filter 70 by inserting a bolt or the like into the fastening hole 64 and fastening it with a nut or the like, a slit-shaped gap (slit-shaped in the outer peripheral side direction) is formed at the position of the groove 63 between the ring-shaped members 60. A tapered gap that gradually increases in thickness), that is, a water passage hole 71 is formed.
[0059]
Although the groove 63 for the water passage hole 71 is formed in each of the fitting members 61 and 62 in the third embodiment, for example, a plurality of spacers 21 are used as in the first embodiment, and each of the spacers 21 is used. A configuration in which a slit-shaped water passage hole 22 is formed between the holes 21 may be used.
[0060]
[Fourth embodiment]
The schematic explanatory diagram of FIG. 8 shows a spiral filter used in the filter structure according to the second embodiment. 8, FIG. 80 shows a spiral filter having a substantially cylindrical shape formed by spirally winding a linear member 81 and having at least an inner peripheral surface having a circular cross section (for example, a perfect circular shape). It is. This helical filter uses a linear member 81 made of, for example, a wire (stainless steel wire or the like) having a substantially circular cross section and a diameter of 5 to 6 mm, an average outer diameter of 95.5 mm, an inner diameter of 90.5 mm, and an effective number of turns of 24. It is formed by spirally winding a total of 26 turns.
[0061]
The spiral filter 80 thus formed is applied, for example, in place of the laminated filter 20 of FIG. 3, and a screw (having a diameter smaller than or the same as the inner diameter of the spiral filter 80) is screwed to the inner peripheral side of the spiral filter 80. ) 96 to form a solid-liquid separator. Then, the solid-liquid pulverized material flowing from the pulverizer 92 is supplied from the supply port 31b into the spiral filter 80, and is compressed while moving in the direction of the discharge port 32a by the circular motion of the screw 96. Water and the like are dehydrated and filtered. The dewatered and filtered dewatered and crushed material is discharged to the storage tank 94 via the discharge port 32a.
[0062]
When the pitch of the spirally wound linear member 81 is larger than the diameter of the linear member, the moisture dewatered and filtered from the solid-liquid pulverized material is a gap between the adjacent linear members 81. Through the spiral filter 80. Further, the pitch of the linear member 81 is the same as the diameter of the linear member 81, and the spiral filter 80 is elastically deformed due to stress in the spiral filter 80 generated when the solid-liquid pulverized material is compressed, and the neighboring linear member 81 is adjacent to the linear member 81. When a gap (extremely thin gap) is formed between the fitted linear members 81, the dewatered and filtered water is discharged out of the spiral filter 80 through the gap formed by the elastic deformation.
[0063]
As described above, in the present invention, only the described specific examples have been described in detail, but it is apparent to those skilled in the art that various modifications and variations are possible within the technical idea of the present invention. It is obvious that such changes and modifications belong to the scope of the claims.
[0064]
For example, in the first to third embodiments, the slit-shaped tapered water passage hole which is gradually thicker in the outer circumferential direction is formed between the plurality of ring-shaped members. However, the shape of the water passage hole may be appropriately changed as long as the strength does not impair the strength of the laminated filter.
[0065]
In the fourth embodiment, a linear member having a substantially perfect circular cross section is used. However, it is apparent that similar effects can be obtained by using linear members having various cross-sectional shapes.
[0066]
Further, in the first and second embodiments, an example is described in which a screw in which wings are spirally formed on the outer peripheral surface of a substantially cylindrical shaft is inserted into the filter of the solid-liquid separator. However, any device capable of compressing, dehydrating, and filtering the solid-liquid pulverized material in the filter may be used as appropriate.
[0067]
Furthermore, the ring-shaped member, spacer, linear member, and the like used in the filter of the present invention are not limited to metals, resins, and the like, and can maintain desired mechanical strength and minimize deterioration due to solid-liquid pulverized material. Any material that can be used may be used as appropriate.
[0068]
In addition, in the first and second embodiments of the present invention, the contents of the solid-liquid separator for treating the residual foods such as perishables and contaminants discharged from general households and businesses together with the wastewater are described. The present invention may be applied to a processed food industry having a step (dehydration, filtration step) of squeezing vegetables, natto broth residue, okara, used tea leaves, coffee grounds, shochu grounds, mineral / vegetable oil, fried oil, and the like.
[0069]
【The invention's effect】
As described above, according to the present invention, in a filter structure of a press-type solid-liquid separator, a filter having a desired shape (for example, a filter and a water hole designed according to a screw to be used) can be easily formed. It is possible to improve the dehydration rate and the filtration rate, prevent breakage of each component, etc., and to provide high mechanical strength (strength that can withstand the internal pressure in the filter).
[0070]
That is, a filter having a high mechanical strength can be easily configured according to the standard of the solid-liquid separator, and for example, a solid-liquid pulverized product such as a fresh product or a contaminant can be efficiently dehydrated and filtered. .
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view of a ring-shaped member used for a filter structure in a first embodiment.
FIG. 2 is a schematic explanatory view showing a filter configuration example of a solid-liquid separator in the first embodiment.
FIG. 3 is a schematic explanatory view showing a configuration example of a solid-liquid separator in the first embodiment.
FIG. 4 is a schematic explanatory view of a ring-shaped member used for a filter structure in a second embodiment.
FIG. 5 is a schematic explanatory view showing a filter configuration example of a solid-liquid separator in a second embodiment.
FIG. 6 is a schematic explanatory view of a ring-shaped member used for a filter structure according to a third embodiment.
FIG. 7 is a schematic explanatory diagram showing a filter configuration example of a solid-liquid separator in a third embodiment.
FIG. 8 is a schematic explanatory diagram of a spiral filter used in a filter structure according to a fourth embodiment.
FIG. 9 is a schematic explanatory view of a sink including a general crusher, a solid-liquid separator, and the like.
[Explanation of symbols]
11, 41, 60 ... ring-shaped member
12 ... Groove (for spacer)
13, 22, 43, 64 ... fastening holes
20, 50, 70 ... Multilayer filter
23, 51, 71 ... water holes
42, 63 ... grooves (for water holes)
61a, 62a ... groove for fitting
61b, 62b ... fitting protrusion
80: spiral filter
81 ... Linear member

Claims (9)

内周側の横断面が真円状で側壁に複数個の通水孔が設けられたフィルターを有し、前記フィルタ内に導入された固液粉砕物を圧縮し前記通水孔を介して脱水,濾過する固液分離機のフィルタ構造において、
前記フィルタは、内周面が真円状であるリング状部材を複数個積層して成り、各リング状部材間にはそれぞれ前記の複数個の通水孔が形成されたことを特徴とする固液分離機のフィルタ構造。
It has a filter with a circular cross section on the inner peripheral side and a plurality of water holes formed in the side wall, compresses the solid-liquid pulverized matter introduced into the filter, and dehydrates through the water holes. , In the filter structure of the solid-liquid separator for filtering,
The filter is formed by laminating a plurality of ring-shaped members whose inner peripheral surface is a perfect circle, and the plurality of water passage holes are formed between the respective ring-shaped members. Filter structure of liquid separator.
前記の各リング状部材の一端面側には、前記通水孔用の溝部が複数個形成されたことを特徴とする請求項1記載の固液分離機のフィルタ構造。2. The filter structure for a solid-liquid separator according to claim 1, wherein a plurality of grooves for said water holes are formed on one end surface side of each of said ring-shaped members. 前記の各リング状部材の一端面側には溝部が複数個形成され、それら各溝部にスペーサを嵌合させることにより、前記の各スペーサ間に前記の通水孔がそれぞれ形成されたことを特徴とする請求項1記載の固液分離機のフィルタ構造。A plurality of grooves are formed on one end surface side of each of the ring-shaped members, and the water holes are respectively formed between the spacers by fitting spacers into the respective grooves. The filter structure of a solid-liquid separator according to claim 1, wherein 前記の各リング状部材は、半円弧状で両端部に対し互いに嵌合可能な形状の溝部,突出部が形成された2つの嵌合部材から成ることを特徴とする請求項1乃至3記載の固液分離機のフィルタ構造。4. The ring-shaped member according to claim 1, wherein each of the ring-shaped members comprises two fitting members each having a semicircular arc-shaped groove and a projecting portion which can be fitted to both ends. Filter structure of solid-liquid separator. 前記の各リング状部材における通水孔が位置する部分の厚さは、外周側方向へ順次薄くなることを特徴とする請求項1乃至4記載の固液分離機のフィルタ構造。5. The filter structure of a solid-liquid separator according to claim 1, wherein a thickness of a portion of each of said ring-shaped members where water holes are located is gradually reduced toward an outer peripheral side. 内周側の横断面が真円状で側壁に複数個の通水孔が設けられたフィルターを有し、前記フィルタ内に導入された固液粉砕物を圧縮し前記通水孔を介して脱水,濾過する固液分離機のフィルタ構造において、
前記フィルタは、線状部材を螺旋状に巻回して成ることを特徴とする固液分離機のフィルタ構造。
It has a filter with a circular cross section on the inner peripheral side and a plurality of water holes formed in the side wall, compresses the solid-liquid pulverized matter introduced into the filter, and dehydrates through the water holes. , In the filter structure of the solid-liquid separator for filtering,
The filter structure of a solid-liquid separator, wherein the filter is formed by spirally winding a linear member.
前記線状部材のピッチは、前記線状部材の径よりも大きい、または同一であることを特徴とする請求項6記載の固液分離機のフィルタ構造。The filter structure of a solid-liquid separator according to claim 6, wherein a pitch of the linear members is larger than or equal to a diameter of the linear members. 前記フィルタ内には、略円柱状の軸心の外周面に羽を螺旋状に設けて成るスクリューが貫装されたことを特徴とする請求項1乃至7記載の固液分離機のフィルタ構造。8. A filter structure for a solid-liquid separator according to claim 1, wherein a screw having a substantially cylindrical shaft center provided with wings in a spiral shape is inserted in the filter. 前記フィルタ内には、略円柱状の軸心の外周面に羽を螺旋状に設けて成るスクリューが貫装され、
前記羽の螺旋方向と線状部材の巻回方向とが同一であることを特徴とする請求項6または7記載の固液分離機のフィルタ構造。
In the filter, a screw formed by spirally providing wings on the outer peripheral surface of a substantially cylindrical shaft center is inserted,
8. The filter structure for a solid-liquid separator according to claim 6, wherein the spiral direction of the blade and the winding direction of the linear member are the same.
JP2003028966A 2003-02-06 2003-02-06 Filter structure of solid-liquid separator Pending JP2004237208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003028966A JP2004237208A (en) 2003-02-06 2003-02-06 Filter structure of solid-liquid separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003028966A JP2004237208A (en) 2003-02-06 2003-02-06 Filter structure of solid-liquid separator

Publications (1)

Publication Number Publication Date
JP2004237208A true JP2004237208A (en) 2004-08-26

Family

ID=32956272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003028966A Pending JP2004237208A (en) 2003-02-06 2003-02-06 Filter structure of solid-liquid separator

Country Status (1)

Country Link
JP (1) JP2004237208A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107185284A (en) * 2017-06-22 2017-09-22 江苏金润环保工程有限公司 A kind of desalination device filter
CN108126394A (en) * 2018-01-03 2018-06-08 辜晓林 A kind of filter cylinder for livestock and poultry excrement solid-liquid seperator
JP2019042658A (en) * 2017-08-31 2019-03-22 株式会社鶴見製作所 Solid-liquid separation device and solid-liquid separation system
JP2019042669A (en) * 2017-09-01 2019-03-22 株式会社鶴見製作所 Solid-liquid separation device
KR20210085210A (en) * 2019-12-30 2021-07-08 김군수 2-stage filtration device using disk method and fiber
TWI778456B (en) * 2020-11-24 2022-09-21 財團法人金屬工業研究發展中心 Tangential flow filtration module and tangential flow filtration assembly

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107185284A (en) * 2017-06-22 2017-09-22 江苏金润环保工程有限公司 A kind of desalination device filter
JP2019042658A (en) * 2017-08-31 2019-03-22 株式会社鶴見製作所 Solid-liquid separation device and solid-liquid separation system
JP2019042669A (en) * 2017-09-01 2019-03-22 株式会社鶴見製作所 Solid-liquid separation device
CN108126394A (en) * 2018-01-03 2018-06-08 辜晓林 A kind of filter cylinder for livestock and poultry excrement solid-liquid seperator
KR20210085210A (en) * 2019-12-30 2021-07-08 김군수 2-stage filtration device using disk method and fiber
KR102361054B1 (en) 2019-12-30 2022-02-08 김군수 2-stage filtration device using disk method and fiber
TWI778456B (en) * 2020-11-24 2022-09-21 財團法人金屬工業研究發展中心 Tangential flow filtration module and tangential flow filtration assembly

Similar Documents

Publication Publication Date Title
CA2501036C (en) Solid-liquid separator
RU2411058C2 (en) Device to separate solid and liquid phases
JP2004237208A (en) Filter structure of solid-liquid separator
WO2013119444A1 (en) High compression shaft configuration and related method for screw press systems used in rendering applications
US8985011B2 (en) Screw filter press
US4244287A (en) Two-stage mechanical dewatering of sewage sludge
CN210676331U (en) Kitchen waste treatment device
WO1999024372A1 (en) Apparatus for dewatering previously-dewatered municipal waste-water sludges using high electrical voltage
CN113102440A (en) Apparatus for converting organic and inorganic solid municipal waste into aggregates
US8151702B2 (en) Device for dehumidifying and compacting solids contained in sewage for disposal
WO2001026776A1 (en) Rotary type compressive filtrating machine
JP2017001022A (en) Sludge dehydrator equipped with main-axis screw conveyer section and non-axis screw conveyer section
JP2005219008A (en) Solid-liquid separator
CN201728219U (en) Kitchen waste source reduction and classification equipment
CN211683628U (en) Kitchen garbage spiral extrusion hydroextractor
JP6761092B2 (en) Screw press and how to operate the screw press
CN101811132A (en) Kitchen rubbish source decreasing and sorting equipment
CN110947732A (en) Separation, crushing and filtering device and application thereof
US20120261351A1 (en) System and method for treating waste
JP5748587B2 (en) Electroosmosis dehydrator
CN101898862A (en) Vertical sludge dewatering equipment
US8708266B2 (en) System for crushing with screw porition that increases in diameter
KR20100041234A (en) A compression dehydrator for waste
JP2010051968A (en) Screw press and method of adjusting compression ratio of screw press
JP2021122815A (en) Screw press and operation method of the same