JP2004235208A - Composite electronic component and method of adjusting characteristic thereof - Google Patents

Composite electronic component and method of adjusting characteristic thereof Download PDF

Info

Publication number
JP2004235208A
JP2004235208A JP2003018663A JP2003018663A JP2004235208A JP 2004235208 A JP2004235208 A JP 2004235208A JP 2003018663 A JP2003018663 A JP 2003018663A JP 2003018663 A JP2003018663 A JP 2003018663A JP 2004235208 A JP2004235208 A JP 2004235208A
Authority
JP
Japan
Prior art keywords
internal electrode
electronic component
composite electronic
electrodes
ceramic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003018663A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kita
弘幸 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003018663A priority Critical patent/JP2004235208A/en
Publication of JP2004235208A publication Critical patent/JP2004235208A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite electronic component where three components of a resistor, inductance and a capacitor are stored in one chip and to provide an adjusting method of an electrostatic capacity value. <P>SOLUTION: The composite electronic component is provide with a resistor which is adhered to a main face of a laminated ceramic capacitor where a dielectric layer and an inner electrode are laminated so that a meandering pattern is formed in a laminated body, and its ends are electrically connected to a pair of end electrodes. The dielectric layer of the laminated ceramic capacitor has a hole through which the inner electrode is exposed. The electrostatic capacity value is adjusted by deleting the inner electrode exposed from the hole while the electrostatic capacity value is measured. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、容量成分、抵抗成分、インダクタンス成分を一つのチップ部品に形成した複合電子部品とその特性調整方法に関するものである。
【0002】
【従来の技術】
従来の複合電子部品を図4及び図5に示す。
図4(a)は従来の複合電子部品の一例を示す外観斜視図、図4(b)はその等価回路図であり、同図に示す従来の複合電子部品100は、抵抗RとコンデンサCとを並列に接続した回路構成を有している。
【0003】
この複合電子部品100は、複数の誘電体層を積層してなる積層体の端面に一対の端面電極102、103を被着させた直方体状のチップ型コンデンサ101と、前記積層体の一主面に直線状に被着される帯状抵抗体104とを備えている。
【0004】
前記チップ型コンデンサ101は、一対の端面電極102、103にそれぞれ接続された第1、第2の内部電極と誘電体層とを厚み方向に交互に重ね合わせた構造を有し、また、帯状抵抗体104は、その両端が一対の端面電極102、103に接続され、これによって抵抗RとコンデンサCとを並列に接続した所定の電気回路を構成している。尚、前記帯状抵抗体104は、酸化ルテニウム(RuO)などの電気抵抗材料を従来周知の厚膜手法等を採用しチップ型コンデンサ101の一主面上に直線状に被着させることにより形成される。
【0005】
また一方、図5(a)は従来の複合電子部品の他の例を示す外観斜視図、図5(b)はその等価回路図であり、同図に示す従来の複合電子部品200は、インダクタンスLとコンデンサCとを並列に接続した回路構成を有している。
【0006】
この複合電子部品200は、先に述べたチップ型コンデンサ101と同様の構成を有したチップ型コンデンサ201と、その一主面に被着されたミアンダ(蛇行)状のインダクタンスパターン204とを備えている。
【0007】
前記インダクタンスパターン204は、その両端がチップ型コンデンサ201の端面電極202,203に電気的に接続され、これによってインダクタンスLとコンデンサCとを並列に接続した所定の電気回路を構成している。尚、前記インダクタンスパターン204は、例えば銀ペーストなどの導体材料を従来周知の厚膜手法等を採用しチップ型コンデンサ201の一主面上に蛇行状に被着させることによって形成される。
【0008】
【特許文献1】
特開2001−338838号公報
【0009】
【発明が解決しようとする課題】
しかしながら、上述した従来の複合電子部品によれば、図4の複合電子部品100は抵抗成分とコンデンサ成分のみを備えた複合電子部品、また図5の複合電子部品200はインダクタンス成分とコンデンサ成分のみを備えた複合電子部品であり、抵抗成分とインダクタンス成分とコンデンサ成分の3つの成分を一つのチップ部品に収容した複合電子部品はこれまで存在しなかった。それ故、抵抗、インダクタンス、コンデンサの3つの回路要素を備えた電気回路を構成する場合、図4に示すような複合電子部品100と図5に示すような複合電子部品200を組み合わせて電気回路を構成するか、或いは、チップ抵抗やチップインダクタンスを別途用意して複合電子部品100や複合電子部品200と組み合わせる必要があり、実装面積の大型化やコストアップを招く欠点を有していた。
【0010】
また、上述した従来の複合電子部品100,200は、その製造に際して、チップ型コンデンサ101の静電容量値を一定に揃えることが難しく、製造バラツキ等に起因した特性不良の発生等によって生産性の低下を招く欠点も有していた。
【0011】
本発明は上記欠点に鑑み案出されたもので、その目的は、抵抗成分、インダクタンス成分、容量成分の3つの成分を一つのチップ部品に備え、しかも電気的特性を簡単な手法により調整することが可能な、簡素な構成の複合電子部品を提供することにある。
【0012】
【課題を解決するための手段】
本発明の複合電子部品は、n個(nは3以上の自然数)の誘電体層を積層してなる積層体の内部で、各誘電体層間に第1の内部電極と第2の内部電極とを誘電体層の積層方向に交互に介在させるとともに、前記誘電体層の積層方向と平行な積層体の端面に一対の端面電極を被着させ、該端面電極の一方に第1の内部電極を、他方に第2の内部電極を電気的に接続させた積層セラミックコンデンサと、前記積層セラミックコンデンサの主面にミアンダ状パターンをなすように被着され、その両端部を前記一対の端面電極に電気的に接続させた抵抗体とを備えてなる複合電子部品であって、前記積層セラミックコンデンサは、最上層及び/または最下層の誘電体層に、第1の内部電極もしくは第2の内部電極の一部を露出させる孔部を有していることを特徴とするものである。
【0013】
また、本発明の複合電子部品の特性調整方法は、上述した複合電子部品の一対の端面電極間の静電容量値を測定しつつ、この静電容量値が目標値に達するまで前記第1の内部電極及び/または第2の内部電極の露出部を徐々に除去して静電容量値を調整することを特徴とするものである。
【0014】
【作用】
本発明の複合電子部品によれば、端面に一対の端面電極を有する積層セラミックコンデンサの主面に、両端部を一対の端面電極に電気的に接続させたミアンダ状の抵抗体を被着・形成した構造を有している。この場合、積層セラミックコンデンサの主面に形成されたミアンダ状の抵抗体パターンがインダクタンスパターンとしても機能することから、このミアンダ状パターンにより、抵抗成分に加えてインダクタンス成分をも形成することができ、抵抗成分、インダクタンス成分、容量(コンデンサ)成分の3つの成分を一つのチップ部品に備えた複合電子部品を構成することが可能となる。これにより、機器の高密度実装やコストダウンに寄与することができるようになる。
【0015】
また、本発明の複合電子部品の調整方法によれば、前記積層セラミックコンデンサは最上層及び/または最下層の誘電体層に、第1の内部電極もしくは第2の内部電極の一部を露出させる孔部を有していることから、前記複合電子部品における一対の端面電極間の静電容量値を測定しつつ、この静電容量値が目標値に達するまで第1の内部電極及び/または第2の内部電極の露出部を徐々に除去することで静電容量値を極めて容易に調整することができる。従って、複合電子部品の製造バラツキ等によってコンデンサの静電容量値が所定の規格から外れていたとしても、コンデンサの形成後に、第1の内部電極及び/または第2の内部電極の露出部を除去し静電容量値が規格に合致するように調整することにより、不良品の発生を極力抑えて複合電子部品の生産性を向上させることができる。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づき詳説する。
図1(a)は本発明の一実施形態に係る複合電子部品の外観斜視図、図1(b)はその等価回路図、図2(a)は図1(a)のA−A´線断面図であり、同図に示す複合電子部品10は、積層セラミックコンデンサ11の主面12に抵抗体13を被着・形成した構造を有している。
【0017】
前記積層セラミックコンデンサ11は、n個(nは3以上の自然数)の誘電体層17を積層してなる矩形状の積層体16と、内部電極18、19と、一対の端面電極14,15とで構成されている。
【0018】
誘電体層17はチタン酸バリウム、チタン酸ストロンチウム等の誘電体材料から成り、内部電極18,19はPd、Ag−Pd合金などの貴金属材料やNi、Cuなどの卑金属材料から成る。この内部電極は、複数の第1内部電極18と複数の第2内部電極19とで構成され、この2種類の内部電極が隣接する誘電体層間に一部を対向させた状態で交互に介在されている。
【0019】
また、一対の端面電極14,15は、誘電体層17の積層方向と平行な一対の端面とその近傍に位置する積層体16の側面とに被着・形成されており、一方の端面電極14に第1の内部電極18が、他方の端面電極15に第2の内部電極19が電気的に接続されている。
【0020】
そして、前記抵抗体13は、積層セラミックコンデンサ11の主面12、即ち、積層体16の主面にミアンダ状パターンをなすように被着・形成されており、その両端部は一対の端面電極14,15にそれぞれ接続されている。
【0021】
この抵抗体13は、従来周知の厚膜手法や薄膜手法を採用することによって形成され、例えば、厚膜手法を採用する場合、RuO等の電気抵抗材料にAg、ガラス、樹脂等を添加・混合して得た所定の抵抗体ペーストを積層セラミックコンデンサ11の一主面12上に従来周知のスクリーン印刷等によって所定のミアンダ状パターンをなすように印刷・塗布し、これを高温で焼成することによって形成される。また、前記抵抗体13を薄膜手法によって形成する場合、Ni−Cr、Ta、Ta−N、Ta−Si等から成る抵抗薄膜を積層セラミックコンデンサ11の一主面12上に従来周知のスパッタリング及びフォトエッチング等により所定厚み、所定パターンに被着させることによって形成される。
【0022】
このような抵抗体13は、ミアンダ状パターンをなすように形成されているため、インダクタンスLとしても機能するようになっており、ミアンダライン間隔、ミアンダ本数等を適宜選択することによって所定のインダクタンス値が得られる。
【0023】
以上のように、積層セラミックコンデンサ11の主面に、両端部を一対の端面電極14,15に電気的に接続させたミアンダ状の抵抗体13を被着・形成して複合電子部品を構成するようにしたことから、ミアンダ状の抵抗体13をインダクタンスパターンとして機能させることができ、抵抗R、インダクタンスL、コンデンサCの3つの成分を一つのチップ部品に備えた簡素な構成の複合電子部品を形成することが可能となる。これにより、機器の高密度実装やコストダウンに寄与することができるようになる。
【0024】
更に、前記積層セラミックコンデンサ11は、積層体16を構成する誘電体層17に第1内部電極18もしくは第2内部電極19の一部を露出させる孔部20を有している。
【0025】
この孔部20は、積層体16を構成する複数の誘電体層17のうち最上層及び/または最下層の誘電体層に形成されており、その形成位置は、ミアンダ状パターンをなす抵抗体13の形成位置及び形状を勘案し、決定される。
【0026】
即ち、図2(b)に示すように、誘電体層17の最下層に形成しても良いし、最上層と最下層の両方に形成しても良いが、ミアンダ状抵抗体13の形成位置を避けるようにして形成する必要がある。そして、後述する調整方法に基づき、必要に応じて露出している第1の内部電極18もしくは第2の内部電極19を除去することにより、積層セラミックコンデンサ11の静電容量値が所望する値に設定されることとなる。
【0027】
かかる静電容量値の調整は次のようにして行なわれる。
即ち、図3に示す如く、一対の端面電極14,15間の静電容量値をキャパシティメータ等によって測定しつつ、この静電容量値が目標値に達するまで、孔部20からレーザー照射やサンドブラスト等により第1内部電極18及び/または第2内部電極19の露出部を除々に除去し、測定中の静電容量値が目標値に達したところで内部電極18,19の除去作業を止めるというという極めて簡易な方法によって実現される。このとき、上記目標値にある程度の許容幅をもたせておいても良いことは言うまでもない。
【0028】
従って、複合電子部品の製造バラツキ等によって積層セラミックコンデンサ11の当初の静電容量値が所定の規格から外れていたとしても、積層セラミックコンデンサ11の形成後に、その静電容量値を上述の内部電極露出部の除去によって変動させ、静電容量値が規格に合致するよう調整することにより、不良品の発生を極力抑えて複合電子部品の生産性を向上させることができる。
【0029】
尚、本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更・改等が可能である。
【0030】
【発明の効果】
本発明の複合電子部品によれば、端面に一対の端面電極を有する積層セラミックコンデンサの主面に、両端部を一対の端面電極に電気的に接続させたミアンダ状の抵抗体を被着・形成した構造を有している。この場合、積層セラミックコンデンサの主面に形成されたミアンダ状の抵抗体パターンがインダクタンスパターンとしても機能することから、このミアンダ状パターンにより、抵抗成分に加えてインダクタンス成分をも形成することができ、抵抗成分、インダクタンス成分、容量(コンデンサ)成分の3つの成分を一つのチップ部品に備えた複合電子部品を構成することが可能となる。これにより、機器の高密度実装やコストダウンに寄与することができるようになる。
【0031】
また、本発明の複合電子部品の調整方法によれば、前記積層セラミックコンデンサは最上層及び/または最下層の誘電体層に、第1の内部電極もしくは第2の内部電極の一部を露出させる孔部を有していることから、前記複合電子部品における一対の端面電極間の静電容量値を測定しつつ、この静電容量値が目標値に達するまで第1の内部電極及び/または第2の内部電極の露出部を徐々に除去することで静電容量値を極めて容易に調整することができる。従って、複合電子部品の製造バラツキ等によってコンデンサの静電容量値が所定の規格から外れていたとしても、コンデンサの形成後に、第1の内部電極及び/または第2の内部電極の露出部を除去し静電容量値が規格に合致するように調整することにより、不良品の発生を極力抑えて複合電子部品の生産性を向上させることができる。
【図面の簡単な説明】
【図1】(a)は本発明の一実施形態に係る複合電子部品の外観斜視図、(b)はその等価回路図である。
【図2】(a)は図1(a)のA−A´線断面図、(b)は本発明の他の実施形態に係る複合電子部品の断面図である。
【図3】本発明の複合電子部品の静電容量値の調整方法を示す説明図である。
【図4】(a)は従来の複合電子部品の一例を示す外観斜視図、(b)はその等価回路図である。
【図5】(a)は従来の複合電子部品の他の例を示す外観斜視図、(b)はその等価回路図である。
【符号の説明】
10・・・複合電子部品
11・・・積層セラミックコンデンサ
12・・・積層セラミックコンデンサ主面
13・・・抵抗体
14、15・・・端面電極
16・・・積層体
17・・・誘電体層
18・・・第1内部電極
19・・・第2内部電極
20・・・孔部
R・・・抵抗
L・・・インダクタンス
C・・・コンデンサ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a composite electronic component in which a capacitance component, a resistance component, and an inductance component are formed in one chip component, and a method for adjusting the characteristics thereof.
[0002]
[Prior art]
Conventional composite electronic components are shown in FIGS.
FIG. 4A is an external perspective view showing an example of a conventional composite electronic component, and FIG. 4B is an equivalent circuit diagram thereof. The conventional composite electronic component 100 shown in FIG. Are connected in parallel.
[0003]
The composite electronic component 100 has a rectangular parallelepiped chip-type capacitor 101 in which a pair of end electrodes 102 and 103 are adhered to an end surface of a laminate formed by laminating a plurality of dielectric layers, and one main surface of the laminate. And a band-shaped resistor 104 that is linearly attached to the belt.
[0004]
The chip-type capacitor 101 has a structure in which first and second internal electrodes connected to a pair of end face electrodes 102 and 103 and a dielectric layer are alternately overlapped in a thickness direction. The body 104 has both ends connected to a pair of end electrodes 102 and 103, thereby forming a predetermined electric circuit in which a resistor R and a capacitor C are connected in parallel. The strip-shaped resistor 104 is formed by linearly depositing an electric resistance material such as ruthenium oxide (RuO 2 ) on one main surface of the chip type capacitor 101 by using a conventionally known thick film method or the like. Is done.
[0005]
On the other hand, FIG. 5A is an external perspective view showing another example of the conventional composite electronic component, and FIG. 5B is an equivalent circuit diagram thereof. The conventional composite electronic component 200 shown in FIG. It has a circuit configuration in which L and a capacitor C are connected in parallel.
[0006]
The composite electronic component 200 includes a chip-type capacitor 201 having the same configuration as the above-described chip-type capacitor 101, and a meandering meandering inductance pattern 204 attached to one main surface thereof. I have.
[0007]
Both ends of the inductance pattern 204 are electrically connected to end electrodes 202 and 203 of the chip type capacitor 201, thereby forming a predetermined electric circuit in which the inductance L and the capacitor C are connected in parallel. The inductance pattern 204 is formed by, for example, applying a conductor material such as a silver paste on one main surface of the chip type capacitor 201 in a meandering manner by using a conventionally known thick film method or the like.
[0008]
[Patent Document 1]
JP 2001-338838 A
[Problems to be solved by the invention]
However, according to the conventional composite electronic component described above, the composite electronic component 100 of FIG. 4 has only a resistance component and a capacitor component, and the composite electronic component 200 of FIG. 5 has only an inductance component and a capacitor component. There has been no composite electronic component having three components, a resistance component, an inductance component, and a capacitor component, housed in one chip component. Therefore, when configuring an electric circuit including three circuit elements of resistance, inductance, and capacitor, the electric circuit is formed by combining the composite electronic component 100 as shown in FIG. 4 and the composite electronic component 200 as shown in FIG. It is necessary to construct or to separately prepare a chip resistor and a chip inductance and combine them with the composite electronic component 100 or the composite electronic component 200, which has a disadvantage of increasing the mounting area and increasing the cost.
[0010]
Further, in the above-described conventional composite electronic components 100 and 200, it is difficult to make the capacitance value of the chip-type capacitor 101 uniform at the time of manufacturing, and the productivity is reduced due to the occurrence of characteristic defects due to manufacturing variations and the like. It also has a disadvantage that it causes a decrease.
[0011]
The present invention has been devised in view of the above drawbacks, and has as its object to provide three components of a resistance component, an inductance component, and a capacitance component in one chip component, and to adjust electric characteristics by a simple method. It is an object of the present invention to provide a composite electronic component having a simple configuration and capable of performing the above.
[0012]
[Means for Solving the Problems]
The composite electronic component according to the present invention is configured such that a first internal electrode and a second internal electrode are provided between each dielectric layer inside a laminate formed by laminating n (n is a natural number of 3 or more) dielectric layers. Are alternately interposed in the stacking direction of the dielectric layers, and a pair of end electrodes are attached to the end surfaces of the stacked body parallel to the stacking direction of the dielectric layers, and a first internal electrode is provided on one of the end electrodes. A multilayer ceramic capacitor having a second internal electrode electrically connected to the other, and a meandering pattern attached to a main surface of the multilayer ceramic capacitor, and both ends of the multilayer ceramic capacitor are electrically connected to the pair of end surface electrodes. Wherein the multilayer ceramic capacitor comprises a first internal electrode or a second internal electrode on a top dielectric layer and / or a bottom dielectric layer. Has a hole to expose part And it is characterized in and.
[0013]
Further, the method for adjusting the characteristics of the composite electronic component of the present invention measures the capacitance value between the pair of end face electrodes of the composite electronic component described above, and until the capacitance value reaches a target value, the first first characteristic is measured. The capacitance value is adjusted by gradually removing the exposed portion of the internal electrode and / or the second internal electrode.
[0014]
[Action]
According to the composite electronic component of the present invention, a meander-shaped resistor whose both ends are electrically connected to the pair of end face electrodes is attached and formed on the main surface of the multilayer ceramic capacitor having the pair of end face electrodes on the end face. It has the following structure. In this case, since the meander-shaped resistor pattern formed on the main surface of the multilayer ceramic capacitor also functions as an inductance pattern, the meander-shaped pattern can form an inductance component in addition to a resistance component, It is possible to configure a composite electronic component having three components of a resistance component, an inductance component, and a capacitance (capacitor) component in one chip component. This can contribute to high-density mounting and cost reduction of devices.
[0015]
Further, according to the composite electronic component adjusting method of the present invention, the multilayer ceramic capacitor exposes a part of the first internal electrode or the second internal electrode on the uppermost layer and / or the lowermost dielectric layer. Because of having the hole, the first internal electrode and / or the first internal electrode and / or the second capacitor are measured while measuring the capacitance value between the pair of end surface electrodes in the composite electronic component until the capacitance value reaches the target value. The capacitance value can be adjusted very easily by gradually removing the exposed portions of the internal electrodes 2. Therefore, even if the capacitance value of the capacitor deviates from a predetermined standard due to a manufacturing variation of the composite electronic component, the exposed portion of the first internal electrode and / or the second internal electrode is removed after the formation of the capacitor. By adjusting the capacitance value so as to conform to the standard, it is possible to minimize the occurrence of defective products and improve the productivity of the composite electronic component.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
1A is an external perspective view of a composite electronic component according to an embodiment of the present invention, FIG. 1B is an equivalent circuit diagram thereof, and FIG. 2A is a line AA ′ in FIG. FIG. 2 is a cross-sectional view, and the composite electronic component 10 shown in FIG. 1 has a structure in which a resistor 13 is attached and formed on a main surface 12 of a multilayer ceramic capacitor 11.
[0017]
The multilayer ceramic capacitor 11 includes a rectangular laminate 16 formed by laminating n (n is a natural number of 3 or more) dielectric layers 17, internal electrodes 18 and 19, and a pair of end face electrodes 14 and 15. It is composed of
[0018]
The dielectric layer 17 is made of a dielectric material such as barium titanate or strontium titanate, and the internal electrodes 18 and 19 are made of a noble metal material such as Pd or Ag-Pd alloy or a base metal material such as Ni or Cu. This internal electrode is composed of a plurality of first internal electrodes 18 and a plurality of second internal electrodes 19, and these two types of internal electrodes are alternately interposed between adjacent dielectric layers with a part thereof facing each other. ing.
[0019]
The pair of end face electrodes 14 and 15 are attached and formed on a pair of end faces parallel to the laminating direction of the dielectric layer 17 and side faces of the stacked body 16 located near the end faces. The first internal electrode 18 is electrically connected to the second end electrode 15 and the second internal electrode 19 is electrically connected to the other end electrode 15.
[0020]
The resistor 13 is attached and formed on the main surface 12 of the multilayer ceramic capacitor 11, that is, on the main surface of the multilayer body 16 so as to form a meandering pattern. , 15 respectively.
[0021]
The resistor 13 is formed by employing a conventionally known thick film technique or thin film technique. For example, when the thick film technique is employed, Ag, glass, resin, or the like is added to an electric resistance material such as RuO 2. A predetermined resistor paste obtained by mixing is printed and applied on one main surface 12 of the multilayer ceramic capacitor 11 by a conventionally known screen printing or the like so as to form a predetermined meandering pattern, and is fired at a high temperature. Formed by When the resistor 13 is formed by a thin film method, a resistor thin film made of Ni—Cr, Ta, Ta—N, Ta—Si, or the like is formed on the main surface 12 of the multilayer ceramic capacitor 11 by sputtering and photolithography. It is formed by applying a predetermined thickness and a predetermined pattern by etching or the like.
[0022]
Since such a resistor 13 is formed so as to form a meandering pattern, it also functions as an inductance L. By appropriately selecting the meander line interval, the number of meanders, and the like, a predetermined inductance value is obtained. Is obtained.
[0023]
As described above, the meander-shaped resistor 13 whose both ends are electrically connected to the pair of end electrodes 14 and 15 is attached and formed on the main surface of the multilayer ceramic capacitor 11 to form a composite electronic component. Accordingly, the meander-shaped resistor 13 can function as an inductance pattern, and a composite electronic component having a simple configuration in which three components of the resistor R, the inductance L, and the capacitor C are provided in one chip component. It can be formed. This can contribute to high-density mounting and cost reduction of devices.
[0024]
Further, the multilayer ceramic capacitor 11 has a hole 20 for exposing a part of the first internal electrode 18 or the second internal electrode 19 in the dielectric layer 17 constituting the multilayer body 16.
[0025]
The holes 20 are formed in the uppermost and / or lowermost dielectric layers of the plurality of dielectric layers 17 constituting the laminate 16, and are formed in the resistor 13 having a meandering pattern. Is determined in consideration of the formation position and the shape.
[0026]
That is, as shown in FIG. 2B, it may be formed on the lowermost layer of the dielectric layer 17, or may be formed on both the uppermost layer and the lowermost layer. Must be formed in such a way as to avoid. Then, by removing the exposed first internal electrode 18 or the second internal electrode 19 as necessary based on the adjustment method described later, the capacitance value of the multilayer ceramic capacitor 11 becomes a desired value. Will be set.
[0027]
The adjustment of the capacitance value is performed as follows.
That is, as shown in FIG. 3, while measuring the capacitance value between the pair of end face electrodes 14 and 15 using a capacity meter or the like, until the capacitance value reaches a target value, laser irradiation or the like from the hole 20 is performed. The exposed portion of the first internal electrode 18 and / or the second internal electrode 19 is gradually removed by sand blasting or the like, and the removal of the internal electrodes 18 and 19 is stopped when the capacitance value during measurement reaches a target value. This is realized by an extremely simple method. At this time, it is needless to say that the target value may have a certain allowance.
[0028]
Therefore, even if the initial capacitance value of the multilayer ceramic capacitor 11 deviates from a predetermined standard due to a manufacturing variation of the composite electronic component or the like, after the multilayer ceramic capacitor 11 is formed, the capacitance value is changed to the above-described internal electrode. By changing the capacitance value by removing the exposed portion and adjusting the capacitance value so as to conform to the standard, it is possible to minimize the occurrence of defective products and improve the productivity of the composite electronic component.
[0029]
Note that the present invention is not limited to the above-described embodiment, and various changes and modifications can be made without departing from the gist of the present invention.
[0030]
【The invention's effect】
According to the composite electronic component of the present invention, a meander-shaped resistor whose both ends are electrically connected to the pair of end face electrodes is attached and formed on the main surface of the multilayer ceramic capacitor having the pair of end face electrodes on the end face. It has the following structure. In this case, since the meander-shaped resistor pattern formed on the main surface of the multilayer ceramic capacitor also functions as an inductance pattern, the meander-shaped pattern can form an inductance component in addition to a resistance component, It is possible to configure a composite electronic component having three components of a resistance component, an inductance component, and a capacitance (capacitor) component in one chip component. This can contribute to high-density mounting and cost reduction of devices.
[0031]
According to the method for adjusting a composite electronic component of the present invention, the multilayer ceramic capacitor exposes a part of the first internal electrode or the second internal electrode on the uppermost and / or lowermost dielectric layers. Because of the presence of the hole, the first internal electrode and / or the second internal electrode and / or the second capacitor are measured until the capacitance value reaches a target value while measuring the capacitance value between the pair of end surface electrodes in the composite electronic component. The capacitance value can be adjusted very easily by gradually removing the exposed portions of the internal electrodes 2. Therefore, even if the capacitance value of the capacitor deviates from a predetermined standard due to manufacturing variations of the composite electronic component, the exposed portion of the first internal electrode and / or the second internal electrode is removed after the formation of the capacitor. By adjusting the capacitance value so as to conform to the standard, it is possible to minimize the occurrence of defective products and improve the productivity of the composite electronic component.
[Brief description of the drawings]
FIG. 1A is an external perspective view of a composite electronic component according to an embodiment of the present invention, and FIG. 1B is an equivalent circuit diagram thereof.
2A is a cross-sectional view taken along line AA ′ of FIG. 1A, and FIG. 2B is a cross-sectional view of a composite electronic component according to another embodiment of the present invention.
FIG. 3 is an explanatory diagram showing a method of adjusting the capacitance value of the composite electronic component according to the present invention.
FIG. 4A is an external perspective view showing an example of a conventional composite electronic component, and FIG. 4B is an equivalent circuit diagram thereof.
FIG. 5A is an external perspective view showing another example of a conventional composite electronic component, and FIG. 5B is an equivalent circuit diagram thereof.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Composite electronic component 11 ... Multilayer ceramic capacitor 12 ... Main surface of multilayer ceramic capacitor 13 ... Resistor 14, 15 ... End face electrode 16 ... Laminate 17 ... Dielectric layer 18 First internal electrode 19 Second internal electrode 20 Hole R Resistance L Inductance C Capacitor

Claims (2)

n個(nは3以上の自然数)の誘電体層を積層してなる積層体の内部で、各誘電体層間に第1の内部電極と第2の内部電極とを誘電体層の積層方向に交互に介在させるとともに、前記誘電体層の積層方向と平行な積層体の端面に一対の端面電極を被着させ、該端面電極の一方に第1の内部電極を、他方に第2の内部電極を電気的に接続させた積層セラミックコンデンサと、
前記積層セラミックコンデンサの主面にミアンダ状パターンをなすように被着され、その両端部を前記一対の端面電極に電気的に接続させた抵抗体とを備えてなる複合電子部品であって、
前記積層セラミックコンデンサは、最上層及び/または最下層の誘電体層に、第1の内部電極もしくは第2の内部電極の一部を露出させる孔部を有していることを特徴とする複合電子部品。
In a laminate formed by laminating n (n is a natural number of 3 or more) dielectric layers, a first internal electrode and a second internal electrode are arranged between the dielectric layers in the direction in which the dielectric layers are laminated. A pair of end electrodes are attached to end faces of the stacked body which are alternately interposed and are parallel to the stacking direction of the dielectric layers, and a first internal electrode is provided on one of the end face electrodes and a second internal electrode is provided on the other. A multilayer ceramic capacitor electrically connected to
A composite electronic component comprising a resistor attached to the main surface of the multilayer ceramic capacitor in a meandering pattern, and having both ends electrically connected to the pair of end surface electrodes,
The multi-layer ceramic capacitor according to claim 1, further comprising a hole in the uppermost dielectric layer and / or the lowermost dielectric layer for exposing a part of the first internal electrode or the second internal electrode. parts.
請求項1に記載の複合電子部品であって、前記一対の端面電極間の静電容量値を測定しつつ、該静電容量値が目標値に達するまで前記第1の内部電極及び/または第2の内部電極の露出部を徐々に除去して静電容量値を調整することを特徴とする複合電子部品の特性調整方法。2. The composite electronic component according to claim 1, wherein the first internal electrode and / or the first internal electrode is measured until the capacitance value reaches a target value while measuring a capacitance value between the pair of end surface electrodes. 3. 2. A method for adjusting the characteristics of a composite electronic component, wherein the capacitance value is adjusted by gradually removing exposed portions of the internal electrodes.
JP2003018663A 2003-01-28 2003-01-28 Composite electronic component and method of adjusting characteristic thereof Pending JP2004235208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003018663A JP2004235208A (en) 2003-01-28 2003-01-28 Composite electronic component and method of adjusting characteristic thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003018663A JP2004235208A (en) 2003-01-28 2003-01-28 Composite electronic component and method of adjusting characteristic thereof

Publications (1)

Publication Number Publication Date
JP2004235208A true JP2004235208A (en) 2004-08-19

Family

ID=32948731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003018663A Pending JP2004235208A (en) 2003-01-28 2003-01-28 Composite electronic component and method of adjusting characteristic thereof

Country Status (1)

Country Link
JP (1) JP2004235208A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140139971A1 (en) * 2011-07-08 2014-05-22 Kemet Electronics Corporation Sintering of High Temperature Conductive and Resistive Pastes onto Temperature Sensitive and Atmospheric Sensitive Materials
US10401446B2 (en) 2013-07-18 2019-09-03 Koninklijke Philips N.V. Laminate design-based radio frequency coil unit for MRI

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140139971A1 (en) * 2011-07-08 2014-05-22 Kemet Electronics Corporation Sintering of High Temperature Conductive and Resistive Pastes onto Temperature Sensitive and Atmospheric Sensitive Materials
US10401446B2 (en) 2013-07-18 2019-09-03 Koninklijke Philips N.V. Laminate design-based radio frequency coil unit for MRI

Similar Documents

Publication Publication Date Title
JP6048759B2 (en) Multilayer inductor and manufacturing method thereof
JP5332475B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
US8125765B2 (en) Laminated ceramic electronic component
JP4010920B2 (en) Inductive element manufacturing method
JP2001085230A (en) Inductor
JP2010034272A (en) Multilayer capacitor and method for adjusting equivalent series resistance value of multilayer capacitor
KR102194727B1 (en) Inductor
JP3594031B1 (en) Multilayer ceramic electronic component, multilayer coil component, and method of manufacturing multilayer ceramic electronic component
JP2019114669A (en) Electronic component
JP3952716B2 (en) High frequency circuit components
JP2000340448A (en) Laminated ceramic capacitor
US20160126003A1 (en) Multilayer inductor
JP2004207540A (en) Hybrid electronic component and its characteristic adjusting method
JP2020047894A (en) Lamination coil component
JP2004235208A (en) Composite electronic component and method of adjusting characteristic thereof
JP2007012825A (en) Chip part and its manufacturing method
JP2004207526A (en) Hybrid electronic component and its characteristic adjusting method
JP2001093733A (en) Laminated chip inductor and method for manufacturing thereof
JPH08250307A (en) Chip thermistor
KR102262904B1 (en) Inductor
JP2001044059A (en) Multilayer ceramic capacitor
JP4178896B2 (en) LR composite parts
JP2003297633A (en) Laminated component
JP2003297670A (en) Chip type composite part
JP2002111421A (en) Noise filter