JP2004231979A - Method for producing vapor-deposition film - Google Patents

Method for producing vapor-deposition film Download PDF

Info

Publication number
JP2004231979A
JP2004231979A JP2003018378A JP2003018378A JP2004231979A JP 2004231979 A JP2004231979 A JP 2004231979A JP 2003018378 A JP2003018378 A JP 2003018378A JP 2003018378 A JP2003018378 A JP 2003018378A JP 2004231979 A JP2004231979 A JP 2004231979A
Authority
JP
Japan
Prior art keywords
vapor
film
thin film
splash
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003018378A
Other languages
Japanese (ja)
Inventor
Hiroshi Suzuki
浩 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2003018378A priority Critical patent/JP2004231979A/en
Publication of JP2004231979A publication Critical patent/JP2004231979A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a vapor-deposition film with which the vapor-deposition thin film is formed as at least one side surface of a film base material composed of high polymer, especially, even in the case of spattering splash particles of a material for forming vapor-deposition thin film with splash, the vapor-deposition film can be obtained without developing pin hole. <P>SOLUTION: The method for producing the vapor-deposition film, disposes a mesh for catching the splash particles between a melting/storing vessel of the material for forming the vapor-deposition in a film-forming chamber and a position applying the vapor-deposition thin film on the film base-material, and the splash particles scattering at melting and vaporizing time of the material for forming vapor-deposition thin film, are caught with the mesh for catching the splash particles and also, the mesh for catching the splash particles, is heated and the splash particles caught therein, is melted and circulated in order into the melting/storing vessel of the material for forming the vapor-deposition thin film. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、高分子材料を主体とするフィルム基材の少なくとも一方の面に蒸着薄膜を設けてなる蒸着フィルムの製造方法、特にスプラッシュにより蒸着薄膜形成用材料のスプラッシュ粒子が飛散してもピンホールの発生を極力低減させて蒸着フィルムが得られるようにした蒸着フィルムの製造方法に関する。
【0002】
【従来の技術】
食品、医薬品、精密電子部品等の包装に用いられる包装材料は、特に、食品の包装に使用される場合には蛋白質や油脂等の酸化、変質を抑制し、さらに味、鮮度を保持するために、また無菌状態での取扱いが必要とされる医薬品の包装に使用される場合には有効成分の変質を抑制し、効能を維持するために、さらに精密電子部品の包装に使用される場合には金属部分の腐食、絶縁不良等を防止するために、そこを透過しようとする酸素、水蒸気、その他内容物に悪影響与える気体を遮断する必要があり、これらの気体(ガス)を遮断するガスバリア性を備えることが求められている。
【0003】
そのため、塩化ビニリデン樹脂をコートしたポリプロピレン(KOP)やポリエチレンテレフタレート(KPET)、或いはエチレンビニルアルコール共重合体(EVOH)等の一般的にガスバリア性が比較的高いといわれる高分子樹脂組成物をガスバリア材として用いた包装フィルムが使われるようになった。
【0004】
ところが、上述の高分子樹脂組成物のみからなる包装フィルムは、ガスバリア性があまり高くなく、しかもガスバリア性が温度や湿度の影響を受けやすく、それらの変化によってはさらにガスバリア性が劣化することがある。
【0005】
そこで上記の問題点を克服するため、高分子樹脂フィルム上にアルミニウム等の金属またはその金属化合物等からなる蒸着薄膜を設けた金属蒸着フィルムや、高分子樹脂フィルム上にセラミック薄膜を設けてなるセラミック蒸着フィルムが最近は広く使われるようになってきており、食品、医薬品、精密電子部品等の包装分野において透明性を有するガスバリア性包装材料として盛んに使われるようになってきている。特に、酸化アルミニウム(AlO)からなるセラミック薄膜を設けてなるセラミック蒸着フィルムは、それを構成するセラミック原材料の安さとガスバリア性を損なわないで透明性を確保できることから、最近では最も注目されている。
【0006】
これらの蒸着フィルムの内、金属蒸着フィルムであるアルミニウム蒸着フィルムは、真空中でアルミニウムを溶融、蒸発させ、そのアルミニウム蒸気をフィルム基材上へ凝着、堆積させて金属薄膜を成膜して製造している。また、セラミック蒸着フィルムである酸化アルミニウム蒸着フィルムは、上述したアルミニウム蒸着フィルムの製造とほぼ同様に、真空中でアルミニウムを溶融、蒸発させ、アルミニウム蒸気として飛ばし、酸素を導入しながらフィルム基材上へ酸化アルミニウムの薄膜を堆積させて製造している(例えば特許文献1)。
【0007】
しかしながら、金属蒸着フィルムやセラミック蒸着フィルム等の蒸着フィルムは、その製造、特に蒸着薄膜の成膜に際してピンホールが発生し易く、製造された蒸着フィルムのバリア性がその部分で局所的に低下してしまうという問題点を抱えていた。
【0008】
即ち、これらの成膜工程では、蒸着薄膜形成用材料の溶解漕中で突沸現象(スプラッシュ)が突発的に生じ、アルミニウムやセラミック等のスプラッシュ粒子が基材上へ到達して、基材を溶解させ、その部分にピンホールを発生させることがある。
こういったピンホールは、突発的に発生することから、検査によって除去することが難しく、品質保証上の大きな問題となっている。
【0009】
【特許文献1】
特開平10−323933号公報
【0010】
【発明が解決しようとする課題】
本発明は以上のような状況に鑑みなされたものであり、その課題とするところは、ピンホール・フリーな蒸着薄膜が高分子材料を主体としてなるフィルム基材上に形成可能な、蒸着フィルムの製造方法を提供することにある。
【0011】
【課題を解決するための手段】
本発明は上記課題を解決すべくなされたものであり、請求項1に記載の発明は、高分子材料を主体としてなるフィルム基材の少なくとも一方の面に蒸着薄膜を設けてなる蒸着フィルムの製造方法であって、蒸着薄膜形成用材料の溶解・貯留槽とフィルム基材に蒸着薄膜を施す個所との間にスプラッシュ粒子捕捉用メッシュを配置し、蒸着薄膜形成用材料の溶解、蒸発時に飛散するスプラッシュ粒子を捕捉すると共に、スプラッシュ粒子捕捉用メッシュを加熱してそこに捕捉されているスプラッシュ粒子を溶解せしめて蒸着薄膜形成用材料の溶解・貯留槽中に還流することを特徴とする蒸着フィルムの製造方法である。
【0012】
また、請求項2に記載の発明は、請求項1に記載の蒸着フィルムの製造方法において、スプラッシュ粒子捕捉用メッシュは網目状金属製板状体であることを特徴とする。
【0013】
さらにまた、請求項3に記載の発明は、請求項1に記載の蒸着フィルムの製造方法において、蒸着薄膜形成用材料が金属または金属酸化物であることを特徴とする。
【0014】
【発明の実施の形態】
以下、図面を参照にして本発明の実施の形態を説明する。
図1は蒸着装置の概要と本発明の蒸着フィルムの製造方法を示す説明図である。
【0015】
図中、1はアルミニウムや珪素、さらにはチタニウム、スズ、カルシウム等の蒸着薄膜形成用材料2を溶解し貯留するための溶解・貯留槽、7は蒸着薄膜形成用材料に電子線を照射して溶融、蒸発させるための電子線照射手段、4は蒸着薄膜を形成するための高分子材料を主体としてなるフィルム基材5を冷却しながら搬送する搬送ロール、3は成膜チャンバー8内にガスを送り込むためのガス導入パイプをそれぞれ示している。
そして、6は蒸着薄膜が搬送ロール4に抱かれながら搬送されてくるフィルム基材5上にピンホールの発生がなく成膜できるように、蒸着薄膜形成用材料の溶解槽1とフィルム基材5に蒸着薄膜を施す個所との間に配置したスプラッシュ粒子捕捉用メッシュである。このスプラッシュ粒子捕捉用メッシュ6は加熱手段9により所望の温度に加熱されるようになっており、後述するようにここに捕捉されたスプラッシュ粒子(図示せず)を溶融させ、その一部を伝わらせて溶解・貯留槽1内に還流させるようになっている。
【0016】
図示の装置においては、蒸着薄膜形成用材料を溶融、蒸発させるための手段が電子線照射手段の例で示してあるが、本発明において使用可能な蒸着薄膜形成用材料の溶解、蒸発手段はこれに限定されるものではなく、電熱器による抵抗加熱手段や高周波による加熱手段等が採用され得る。また、フィルム基材5は高分子材料を主体としてなるものであるが、その構成は単層であっても、他の素材からなる層との多層構成であってもよい。
【0017】
一方、スプラッシュ粒子捕捉用メッシュ6は、開口率が10〜90%程度で、各開口部の大きさが50〜5,000μm程度で、かつ厚さが1mm程度の網目状板状体である。そして、その形成部材は鉄や銅等の金属や、セラミックス等の耐熱性部材である。
このスプラッシュ粒子捕捉用メッシュ6は、前述したように、溶解・貯留槽1とフィルム基材5に蒸着薄膜を施す個所との間に位置させている。この位置は、電子線照射手段7から照射される電子線の飛来を妨げない位置であり、またガス導入パイプ3から供給されてくるガスがこの部分では反応しないように設定してある。
【0018】
このようにスプラッシュ粒子捕捉用メッシュ6を設置しておけば、蒸着薄膜形成用材料の蒸気はこのスプラッシュ粒子捕捉用メッシュ6を通り抜けてフィルム基材5の蒸着薄膜形成部に到達し、その表面に蒸着薄膜を形成する。
【0019】
一方、スプラッシュにより生じたスプラッシュ粒子はその粒径が大きいためにスプラッシュ粒子捕捉用メッシュ6により捕捉される。この時、スプラッシュ粒子捕捉用メッシュ6は高温に加熱されているのでスプラッシュ粒子捕捉用メッシュ6に一旦捕捉されたスプラッシュ粒子は溶解し、メッシュの目詰まりを回避、解消すると共に、スプラッシュ粒子捕捉用メッシュ6の一部を伝わって再び溶解・貯留槽1中に還流されることになる。
【0020】
したがって、本発明においては、その蒸着薄膜の成膜過程でスプラッシュが発生したとしても、溶解・貯留槽1とフィルム基材5に蒸着薄膜を施す個所との間に設置したスプラッシュ粒子捕捉用メッシュ6により、スプラッシュ粒子のほとんどが捕捉されてしまうため、ピンホールの発生を極力低減させつつ蒸着薄膜を成膜することができるようになる。
【0021】
【実施例】
以下、本発明の蒸着フィルムの製造方法を具体的な実施例を挙げ、図面を参照しつつ詳細に説明する。
〔実施例1〕
溶解・貯留槽1に蒸着薄膜形成材料2(アルミニウム)を入れ、成膜チャンバー8内を約10−3Paに減圧した後、溶解・貯留槽1中のアルミニウムに対して電子線照射手段7により電子線を照射して加熱し、溶解、蒸発させた。一方、蒸着薄膜を形成しようとするロール状のフィルム基材5(膜厚12μmのポリエチレンテレフタレート(PET)フィルム)を搬送ロール4に抱かせながら成膜チャンバー8内に供給する共に、その蒸着薄膜を施す個所に向かってガス導入パイプ3から酸素を供給してアルミニウム蒸気と反応させ、そこに酸化アルミニウムからなる蒸着薄膜を約200Åの厚さで成膜し、ガスバリア性に優れる蒸着フィルムを得た。
【0022】
蒸着薄膜の成膜の過程においては、溶解・貯留槽1中で突発的にスプラッシュが生じたが、その時のスプラッシュ粒子はスプラッシュ粒子捕捉用メッシュ6に捕捉されて基材5の蒸着薄膜形成面までには到達しなかった。そして、一旦このスプラッシュ粒子捕捉用メッシュ6に捕捉されたスプラッシュ粒子はスプラッシュ粒子捕捉用メッシュ6が加熱手段9により約700〜1000℃に加熱されているために溶解し、スプラッシュ粒子捕捉用メッシュ6の一部を伝わって溶解・貯留槽1中に還流された。この時に使用されたスプラッシュ粒子捕捉用メッシュ6はその構成部材が銅で、メッシュの開口径は500μm、開口率は60%であった。
【0023】
〔比較例1〕
スプラッシュ粒子捕捉用メッシュを使用せず、その他は実施例1と同様な条件にて、フィルム基材(膜厚12μmのポリエチレンテレフタレート(PET)フィルム)の片面に酸化アルミニウムからなる厚さが約200Åの蒸着薄膜を成膜し、比較例1に係る蒸着フィルムを製造した。
【0024】
次に実施例1及び比較例1で得られた各蒸着フィルムのピンホール発生頻度を評価した。
【0025】
【表1】

Figure 2004231979
【0026】
表1のように、本発明の製造方法によって得られた蒸着フィルムは、比較例1の蒸着フィルムに較べ、ピンホールの数が非常に少ないものであった。
【0027】
【発明の効果】
以上述べたように、本発明によれば、ピンホールの発生を極力低減させて蒸着フィルムを製造することが可能となる。また、スプラッシュ粒子捕捉用メッシュで一旦捕捉されたスプラッシュ粒子は加熱手段により加熱、溶融させて溶融・貯留槽に順次還流させているためにメッシュの目詰まりが発生することもなくなり、ピンホールの発生を極力低減させつつ連続的に蒸着フィルムの製造が可能となる。
【図面の簡単な説明】
【図1】蒸着装置の概要と本発明の蒸着フィルムの製造方法を示す説明図である。
【符号の説明】
1 溶解・貯留槽
2 蒸着薄膜形成用材料
3 ガス導入パイプ
4 搬送ロール
5 フィルム基材
6 スプラッシュ粒子捕捉用メッシュ
7 電子線照射手段
8 成膜チャンバー
9 加熱手段[0001]
[Industrial applications]
The present invention relates to a method for producing a vapor-deposited film comprising a vapor-deposited thin film provided on at least one surface of a film substrate mainly composed of a polymer material, and in particular, a pinhole even when splash particles of the vapor-deposited thin film forming material are scattered by splash. The present invention relates to a method for manufacturing a vapor-deposited film in which a vapor-deposited film can be obtained by minimizing the generation of the film.
[0002]
[Prior art]
Packaging materials used for packaging foods, pharmaceuticals, precision electronic parts, etc., especially when used for food packaging, are intended to suppress oxidation and deterioration of proteins and oils and fats, and to maintain taste and freshness. In addition, when used in the packaging of pharmaceuticals that need to be handled under aseptic conditions, in order to suppress the deterioration of the active ingredient and maintain its efficacy, when it is used in the packaging of precision electronic components, In order to prevent corrosion of metal parts, insulation failure, etc., it is necessary to block oxygen, water vapor, and other gases that have a bad influence on the contents, and to provide a gas barrier that blocks these gases. It is required to prepare.
[0003]
Therefore, a polymer resin composition such as polypropylene (KOP), polyethylene terephthalate (KPET), or ethylene vinyl alcohol copolymer (EVOH) coated with vinylidene chloride resin, which is generally said to have relatively high gas barrier properties, is used as a gas barrier material. The packaging film that was used as is now used.
[0004]
However, a packaging film composed of only the above-described polymer resin composition has a gas barrier property that is not so high, and the gas barrier property is easily affected by temperature and humidity, and the gas barrier property may be further deteriorated depending on the change. .
[0005]
Therefore, in order to overcome the above-mentioned problems, a metal-deposited film in which a vapor-deposited thin film made of a metal such as aluminum or its metal compound is provided on a polymer resin film, or a ceramic in which a ceramic thin film is provided on a polymer resin film Recently, vapor-deposited films have been widely used, and have been actively used as gas-barrier packaging materials having transparency in the field of packaging foods, pharmaceuticals, precision electronic components, and the like. In particular, a ceramic vapor-deposited film provided with a ceramic thin film made of aluminum oxide (AlO x ) has recently been receiving the most attention because it can ensure transparency without impairing the cost of ceramic raw materials constituting the ceramic thin film and gas barrier properties. .
[0006]
Among these vapor-deposited films, the aluminum-deposited film, which is a metal-deposited film, is manufactured by melting and evaporating aluminum in a vacuum, depositing and depositing the aluminum vapor on the film substrate to form a metal thin film. are doing. Aluminum oxide deposited film, which is a ceramic deposited film, melts and evaporates aluminum in a vacuum, blows it off as aluminum vapor, and introduces oxygen onto the film substrate, almost in the same manner as the production of aluminum deposited film described above. It is manufactured by depositing a thin film of aluminum oxide (for example, Patent Document 1).
[0007]
However, vapor-deposited films such as metal-deposited films and ceramic-deposited films are apt to produce pinholes during the production thereof, particularly when depositing a vapor-deposited thin film, and the barrier properties of the produced vapor-deposited film are locally reduced in that portion. Had the problem of getting lost.
[0008]
That is, in these film forming processes, a sudden boiling phenomenon (splash) occurs suddenly in a dissolving tank of a material for forming a vapor-deposited thin film, and splash particles such as aluminum and ceramics reach the substrate and dissolve the substrate. And a pinhole may be generated in that portion.
Since such pinholes occur suddenly, it is difficult to remove them by inspection, which is a major problem in quality assurance.
[0009]
[Patent Document 1]
JP 10-323933 A
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and the subject thereof is that a pinhole-free vapor-deposited thin film can be formed on a film substrate mainly composed of a polymer material. It is to provide a manufacturing method.
[0011]
[Means for Solving the Problems]
The present invention has been made to solve the above problems, and the invention according to claim 1 is directed to manufacturing a vapor-deposited film formed by providing a vapor-deposited thin film on at least one surface of a film base mainly composed of a polymer material. A method in which a mesh for catching splash particles is arranged between a dissolution / reservoir of a material for forming a vapor-deposited thin film and a place where a vapor-deposited thin film is formed on a film substrate, and the material for forming a vapor-deposited thin film disperses during melting and evaporation. The vapor deposition film is characterized in that the splash particles are captured and the splash particle capturing mesh is heated to dissolve the splash particles captured therein and to flow back into the dissolution / storage tank for the vapor deposition thin film forming material. It is a manufacturing method.
[0012]
According to a second aspect of the present invention, in the method for producing a vapor-deposited film according to the first aspect, the splash particle capturing mesh is a mesh-like metal plate.
[0013]
Furthermore, the invention according to claim 3 is the method for producing a vapor-deposited film according to claim 1, wherein the material for forming a vapor-deposited thin film is a metal or a metal oxide.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory view showing an outline of a vapor deposition apparatus and a method for producing a vapor deposition film of the present invention.
[0015]
In the figure, 1 is a dissolution / storage tank for dissolving and storing a material 2 for forming a vapor-deposited thin film such as aluminum, silicon, titanium, tin, calcium, etc., and 7 is an electron beam irradiating the material for forming a vapor-deposited thin film. Electron beam irradiating means for melting and evaporating, 4 is a transport roll for transporting a film substrate 5 mainly composed of a polymer material for forming a vapor-deposited thin film while cooling, and 3 is a gas for feeding gas into a film forming chamber 8. Each shows a gas inlet pipe for feeding.
6 is a dissolving tank 1 for the material for forming a vapor-deposited thin film and a film substrate 5 so that the vapor-deposited thin film can be formed on the film substrate 5 transported while being held by the transport roll 4 without generating pinholes. FIG. 4 is a mesh for catching splash particles, which is disposed between a portion where a vapor-deposited thin film is to be formed and a portion where a vapor-deposited thin film is to be formed. The splash particle trapping mesh 6 is heated to a desired temperature by a heating means 9, and as described later, the splash particles (not shown) trapped here are melted and transmitted through a part thereof. Then, it is returned to the dissolution / storage tank 1.
[0016]
In the illustrated apparatus, the means for melting and evaporating the material for forming a deposited thin film is shown as an example of the electron beam irradiation means. However, the present invention is not limited thereto, and a resistance heating unit using an electric heater, a heating unit using a high frequency, or the like may be employed. Further, the film substrate 5 is mainly composed of a polymer material, but may have a single-layer structure or a multilayer structure with a layer made of another material.
[0017]
On the other hand, the splash particle capturing mesh 6 is a mesh-like plate having an opening ratio of about 10 to 90%, a size of each opening of about 50 to 5,000 μm, and a thickness of about 1 mm. The forming member is a metal such as iron or copper, or a heat-resistant member such as ceramics.
As described above, the splash particle capturing mesh 6 is located between the dissolution / storage tank 1 and a portion where the thin film is deposited on the film substrate 5. This position is a position that does not prevent the electron beam emitted from the electron beam irradiation means 7 from flying, and is set so that the gas supplied from the gas introduction pipe 3 does not react in this portion.
[0018]
If the splash particle trapping mesh 6 is installed in this way, the vapor of the vapor deposition thin film forming material passes through the splash particle trapping mesh 6 and reaches the vapor deposition thin film forming portion of the film substrate 5, where the vapor is deposited on the surface. Form a deposited thin film.
[0019]
On the other hand, the splash particles generated by the splash are captured by the splash particle capturing mesh 6 because of their large particle size. At this time, since the splash particle trapping mesh 6 is heated to a high temperature, the splash particles once trapped in the splash particle trapping mesh 6 are dissolved, and clogging of the mesh is avoided or eliminated, and the splash particle trapping mesh is also used. 6 is returned to the dissolution / storage tank 1 again.
[0020]
Therefore, in the present invention, even if a splash occurs during the deposition process of the vapor-deposited thin film, the splash particle capturing mesh 6 installed between the dissolution / storage tank 1 and the place where the vapor-deposited thin film is applied to the film substrate 5 is provided. Accordingly, almost all of the splash particles are captured, so that it is possible to form a vapor-deposited thin film while minimizing the generation of pinholes.
[0021]
【Example】
Hereinafter, the method for producing a vapor-deposited film of the present invention will be described in detail with reference to the drawings by way of specific examples.
[Example 1]
The deposition thin film forming material 2 (aluminum) is put into the dissolution / storage tank 1, and the pressure in the film forming chamber 8 is reduced to about 10 −3 Pa. Then, the aluminum in the dissolution / storage tank 1 is irradiated with the electron beam irradiation means 7. The sample was irradiated with an electron beam, heated, dissolved and evaporated. On the other hand, a roll-shaped film substrate 5 (a 12 μm-thick polyethylene terephthalate (PET) film) on which a vapor-deposited thin film is to be formed is supplied into a film-forming chamber 8 while being held by a transport roll 4, and the vapor-deposited thin film is Oxygen was supplied from the gas introduction pipe 3 toward the application location to react with the aluminum vapor, and a vapor-deposited thin film made of aluminum oxide was formed thereon to a thickness of about 200 ° to obtain a vapor-deposited film having excellent gas barrier properties.
[0022]
In the process of forming the vapor-deposited thin film, a sudden splash occurs in the dissolution / storage tank 1, and the splash particles at that time are captured by the splash-particle capturing mesh 6 and reach the surface of the substrate 5 where the vapor-deposited thin film is formed. Did not reach. The splash particles once captured by the splash particle capturing mesh 6 are dissolved because the splash particle capturing mesh 6 is heated to about 700 to 1000 ° C. by the heating unit 9, and the splash particle capturing mesh 6 It was returned to the dissolution / storage tank 1 after passing through a part. The constituent member of the splash particle capturing mesh 6 used at this time was copper, the opening diameter of the mesh was 500 μm, and the opening ratio was 60%.
[0023]
[Comparative Example 1]
A film made of aluminum oxide having a thickness of about 200 mm on one surface of a film substrate (a polyethylene terephthalate (PET) film having a thickness of 12 μm) was used under the same conditions as in Example 1 without using a mesh for capturing splash particles. A vapor-deposited thin film was formed to produce a vapor-deposited film according to Comparative Example 1.
[0024]
Next, the pinhole occurrence frequency of each of the vapor-deposited films obtained in Example 1 and Comparative Example 1 was evaluated.
[0025]
[Table 1]
Figure 2004231979
[0026]
As shown in Table 1, the number of pinholes in the vapor-deposited film obtained by the production method of the present invention was very small as compared with the vapor-deposited film of Comparative Example 1.
[0027]
【The invention's effect】
As described above, according to the present invention, it is possible to manufacture a vapor-deposited film while minimizing the occurrence of pinholes. In addition, the splash particles once captured by the splash particle capturing mesh are heated and melted by the heating means and sequentially returned to the melting / reservoir tank. It is possible to continuously produce a vapor-deposited film while reducing as much as possible.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an outline of a vapor deposition apparatus and a method for producing a vapor deposition film of the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 dissolution / storage tank 2 material for forming vapor-deposited thin film 3 gas introduction pipe 4 transport roll 5 film substrate 6 mesh for catching splash particles 7 electron beam irradiation means 8 film formation chamber 9 heating means

Claims (3)

高分子材料を主体とするフィルム基材の少なくとも一方の面に蒸着薄膜を設けてなる蒸着フィルムの製造方法であって、成膜チャンバー内の蒸着薄膜形成用材料の溶解・貯留槽とフィルム基材に蒸着薄膜を施す個所との間にスプラッシュ粒子捕捉用メッシュを配置し、蒸着薄膜形成用材料の溶解、蒸発時に飛散するスプラッシュ粒子をスプラッシュ粒子捕捉用メッシュで捕捉すると共に、スプラッシュ粒子捕捉用メッシュを加熱してそこに捕捉されているスプラッシュ粒子を溶解せしめて蒸着薄膜形成用材料の溶解・貯留槽中に順次還流することを特徴とする蒸着フィルムの製造方法。A method for producing a vapor-deposited film in which a vapor-deposited thin film is provided on at least one surface of a film substrate mainly composed of a polymer material, comprising: A mesh for splash particles is arranged between the portion where the vapor deposition thin film is applied to the surface, and the splash particles scattered at the time of dissolving and evaporating the material for forming the vapor deposition thin film are captured by the splash particle capturing mesh, and the splash particle capturing mesh is formed. A method for producing a vapor-deposited film, comprising heating and dissolving splash particles trapped therein, and sequentially refluxing in a dissolution / storage tank for a material for forming a vapor-deposited thin film. スプラッシュ粒子捕捉用メッシュは網目状金属製板状体であることを特徴とする請求項1に記載の蒸着フィルムの製造方法。The method for producing a vapor-deposited film according to claim 1, wherein the mesh for catching splash particles is a mesh-like metal plate. 蒸着薄膜形成用材料が金属または金属酸化物であることを特徴とする請求項1に記載の蒸着フィルムの製造方法。The method for producing a vapor-deposited film according to claim 1, wherein the material for forming a vapor-deposited thin film is a metal or a metal oxide.
JP2003018378A 2003-01-28 2003-01-28 Method for producing vapor-deposition film Pending JP2004231979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003018378A JP2004231979A (en) 2003-01-28 2003-01-28 Method for producing vapor-deposition film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003018378A JP2004231979A (en) 2003-01-28 2003-01-28 Method for producing vapor-deposition film

Publications (1)

Publication Number Publication Date
JP2004231979A true JP2004231979A (en) 2004-08-19

Family

ID=32948520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003018378A Pending JP2004231979A (en) 2003-01-28 2003-01-28 Method for producing vapor-deposition film

Country Status (1)

Country Link
JP (1) JP2004231979A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008291309A (en) * 2007-05-24 2008-12-04 Toppan Printing Co Ltd Vacuum film-forming apparatus
JP2008291308A (en) * 2007-05-24 2008-12-04 Toppan Printing Co Ltd Vacuum film-forming method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008291309A (en) * 2007-05-24 2008-12-04 Toppan Printing Co Ltd Vacuum film-forming apparatus
JP2008291308A (en) * 2007-05-24 2008-12-04 Toppan Printing Co Ltd Vacuum film-forming method

Similar Documents

Publication Publication Date Title
JP4520059B2 (en) Thermal physical vapor deposition source
US20030185977A1 (en) Methods and apparatus for deposition of thin films
US10626503B2 (en) Particulates and methods of making particulates
JP5620747B2 (en) Vacuum deposition equipment
JP2004231979A (en) Method for producing vapor-deposition film
TWI673373B (en) Metallic evaporation material
JP2004256843A (en) Vacuum vapor deposition apparatus
JP2007297712A (en) Metallization through thin seed layer deposited using plasma
JP5549483B2 (en) Vapor deposition material, gas barrier vapor deposition film manufacturing method, and gas barrier vapor deposition film
JP5729072B2 (en) Vapor deposition material, gas barrier vapor deposition film, and method for producing the vapor deposition film
EP4053303A1 (en) Vapor deposition method for coating a spectacle lens, physical vapor deposition system and crucible for physical vapor deposition
Cansizoglu et al. Effect of shell coating techniques on dynamic response of photoconductive core/shell nanorod arrays
JP3396943B2 (en) Manufacturing method of gas barrier metal vapor deposited film
JP5879789B2 (en) Vapor deposition material, gas barrier vapor deposition film, and gas barrier vapor deposition film manufacturing method
JP5423288B2 (en) Electron absorber and electron beam heating vapor deposition apparatus using the same
KR102391800B1 (en) Manufacturing method for amorphous thin film
JP2010222640A (en) Method of producing gas barrier film
JP5866900B2 (en) Vapor deposition material, gas barrier vapor deposition film, and method for producing the vapor deposition film
JP5594051B2 (en) Vapor deposition material
JP6887655B2 (en) Electrodes and capacitors for bismuth-based dielectrics
Gunby et al. Study of precursor chemistry and solvent systems in pp‐MOCVD processing with alumina case study
JP2014152372A (en) Vapor deposition material, gas barrier vapor deposition film and method for manufacturing gas barrier vapor deposition film
JP2010037589A (en) Vapor deposition apparatus and vapor deposition method
JP6102375B2 (en) Gas barrier vapor deposition film and method for producing gas barrier vapor deposition film
JP2002240183A (en) High steam barrier film and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106