JP6887655B2 - Electrodes and capacitors for bismuth-based dielectrics - Google Patents

Electrodes and capacitors for bismuth-based dielectrics Download PDF

Info

Publication number
JP6887655B2
JP6887655B2 JP2015044135A JP2015044135A JP6887655B2 JP 6887655 B2 JP6887655 B2 JP 6887655B2 JP 2015044135 A JP2015044135 A JP 2015044135A JP 2015044135 A JP2015044135 A JP 2015044135A JP 6887655 B2 JP6887655 B2 JP 6887655B2
Authority
JP
Japan
Prior art keywords
electrode
heat treatment
bismuth
sample
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015044135A
Other languages
Japanese (ja)
Other versions
JP2016164901A (en
Inventor
貴弘 長田
貴弘 長田
クマラグルバラン ソム
クマラグルバラン ソム
知京 豊裕
豊裕 知京
健一郎 高橋
健一郎 高橋
成奇 李
成奇 李
鈴木 摂
摂 鈴木
吉文 恒川
吉文 恒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2015044135A priority Critical patent/JP6887655B2/en
Publication of JP2016164901A publication Critical patent/JP2016164901A/en
Application granted granted Critical
Publication of JP6887655B2 publication Critical patent/JP6887655B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明はビスマス(Bi)系誘電体材料用電極に関し、特に誘電体材料中のBiが拡散することを抑止する電極に関する。本発明は更に、このような電極とBi系誘電体材料とを用いたキャパシタに関する。 The present invention relates to an electrode for a bismuth (Bi) -based dielectric material, and more particularly to an electrode that suppresses the diffusion of Bi in the dielectric material. The present invention further relates to a capacitor using such an electrode and a Bi-based dielectric material.

SiC素子等の高温で動作可能な半導体素子の研究・開発が進められているが、このような半導体素子を使用した回路中あるいは半導体素子中に組み込んで使用できる、高温環境下で使用可能なキャパシタ用材料が求められている。高温用半導体素子の一つの典型的な用途として自動車分野がある。自動車用の半導体は単に高温環境下で動作できればよいだけではなく、自動車が外気に直接触れる環境下で使用されることから、極寒地域でもエンジンが起動したら直ちに走行を開始する場合があることを考えると、そこで使用される半導体回路あるいは集積回路は−40℃程度から正常に動作することが求められる。一方、例えばエンジン制御用高温センサの直近に設置される信号処理回路に使用される場合には高温側で400℃までの動作が求められる。すなわち、高温用半導体を使用した回路あるいはその集積回路は用途によっては−40℃〜400℃の広い温度範囲で正常に動作することが求められる。あるいはハイブリッド自動車や電気自動車で使用されるスナバ回路でも高温側が250℃程度の温度範囲での動作が求められる。更には、民生用途を考えると、メンテナンスなしでも長期間に渡って当初の特性を維持して安定動作することも必要となる。 Research and development of semiconductor devices that can operate at high temperatures, such as SiC devices, are underway, and capacitors that can be used in high-temperature environments that can be used in circuits using such semiconductor devices or by incorporating them into semiconductor devices. Materials are required. The automobile field is one of the typical applications of high temperature semiconductor devices. Considering that semiconductors for automobiles need not only be able to operate in a high temperature environment, but also because they are used in an environment where automobiles are in direct contact with the outside air, they may start running as soon as the engine starts even in extremely cold regions. The semiconductor circuit or integrated circuit used there is required to operate normally from about -40 ° C. On the other hand, for example, when it is used in a signal processing circuit installed in the immediate vicinity of a high temperature sensor for engine control, operation up to 400 ° C. is required on the high temperature side. That is, a circuit using a high temperature semiconductor or an integrated circuit thereof is required to operate normally in a wide temperature range of −40 ° C. to 400 ° C. depending on the application. Alternatively, even a snubber circuit used in a hybrid vehicle or an electric vehicle is required to operate in a temperature range of about 250 ° C. on the high temperature side. Furthermore, considering consumer use, it is also necessary to maintain the initial characteristics and operate stably for a long period of time without maintenance.

従来市販されてきたキャパシタは低温側ではともかく、400℃もの高温で使用可能なものはない。例えばBaTiO系の市販品の積層セラミックスキャパシタの使用温度範囲は−55℃〜150℃程度であり、タンタルキャパシタでも市販品の使用温度範囲は−55℃〜175℃程度しかない。 Aside from the low temperature side, there is no capacitor that has been commercially available that can be used at a high temperature of 400 ° C. For example, the operating temperature range of a commercially available multilayer ceramic capacitor of the BaTIO 3 system is about −55 ° C. to 150 ° C., and the operating temperature range of a commercially available tantalum capacitor is only about −55 ° C. to 175 ° C.

近年、BaTiO−Bi(Mg,Nb)O(以下、BT−BMNと略称することがある)(特許文献1)等の高温でも高誘電率を維持する材料が開発された。また、類似組成の誘電体BaTiO−Bi(Mg0.5Ti0.5)Oが非特許文献1及び2で報告されている。このようなBiを成分元素として含有する誘電体材料(Bi系誘電体材料と称する)は高温環境下で使用可能なキャパシタ用の誘電体材料として有望視されているが、解決すべき問題点も残されている。 In recent years, materials that maintain a high dielectric constant even at high temperatures, such as BaTiO 3- Bi (Mg, Nb) O 3 (hereinafter, may be abbreviated as BT-BMN) (Patent Document 1), have been developed. Further, a dielectric material BaTiO 3- Bi (Mg 0.5 Ti 0.5 ) O 3 having a similar composition has been reported in Non-Patent Documents 1 and 2. Such a dielectric material containing Bi as a component element (referred to as a Bi-based dielectric material) is promising as a dielectric material for a capacitor that can be used in a high temperature environment, but there are also problems to be solved. It is left.

これまでのBi系酸化物材料は室温、低温が主な応用ターゲットであったため、電極はこれまで良好な電極となることが経験的にわかっているPt、Au等をそのまま使用しても問題はなかった。しかし、本願発明者の研究により、高温環境で使用するBiを含む高誘電体薄膜材料では、試料作成時における加熱状態、及び素子使用時の高温環境でのBiの拡散、脱離によって生じる誘電率の減少に加えて、Biが電極材料中にまで拡散することによる電極と誘電体との界面の熱的不安定性が高温下で使用されるBi系誘電体を使用するキャパシタの特性を劣化させるとの知見を得た。 Since the main application targets of Bi-based oxide materials so far are room temperature and low temperature, there is no problem even if Pt, Au, etc., which have been empirically known to be good electrodes, are used as they are. There wasn't. However, according to the research of the inventor of the present application, in the high dielectric thin film material containing Bi used in a high temperature environment, the dielectric constant generated by the heating state at the time of sample preparation and the diffusion and desorption of Bi in the high temperature environment when the element is used. In addition to the decrease, the thermal instability of the interface between the electrode and the dielectric due to the diffusion of Bi into the electrode material deteriorates the characteristics of capacitors using Bi-based dielectrics used at high temperatures. I got the knowledge of.

本発明の課題は、上述した従来技術の問題点を解消し、製造プロセスや使用中での高温下でBi系誘電体材料中のBiが電極中に拡散しないようにすることにある。 An object of the present invention is to solve the above-mentioned problems of the prior art and prevent Bi in the Bi-based dielectric material from diffusing into the electrode under high temperature during the manufacturing process or use.

本発明の一側面によれば、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、スカンジウム、イットリウム、ランタン、チタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、亜鉛、アルミニウム、ガリウム、インジウム、タリウム、硫黄、ゲルマニウム、スズ、砒素及びアンチモンからなる群から選択される少なくとも一の元素を含む、ビスマス系誘電体材料用電極が提供される。
ここで、前記元素を少なくとも前記ビスマス系誘電体材料との界面側に含んでよい。
また、前記ビスマスを拡散しくい元素を金属、並びに前記元素の炭化物及び窒化物からなる群から選択される少なくとも一つの形態で含んでよい。
本発明の他の側面によれば、ビスマス系誘電体材料の膜と、前記膜に隣接した上記何れかの電極とを設けたキャパシタが与えられる。
According to one aspect of the invention, beryllium, magnesium, calcium, strontium, barium, scandium, ittium, lantern, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, zinc, aluminum, gallium, indium. , A bismuth-based dielectric material electrode comprising at least one element selected from the group consisting of thallium, sulfur, germanium, tin, arsenic and antimony.
Here, the element may be contained at least on the interface side with the bismuth-based dielectric material.
Further, the bismuth may be contained in at least one form selected from the group consisting of a metal and a carbide and a nitride of the element.
According to another aspect of the present invention, a capacitor provided with a film of a bismuth-based dielectric material and any of the above electrodes adjacent to the film is provided.

本発明によれば、高温環境下でもBi系誘電体材料中のBiが電極中に拡散せず、これにより高温に曝されることによるキャパシタ特性の劣化を防止することができる。 According to the present invention, Bi in the Bi-based dielectric material does not diffuse into the electrode even in a high temperature environment, and thereby it is possible to prevent deterioration of the capacitor characteristics due to exposure to a high temperature.

Biに対して拡散防止作用を有する金属元素を示す図。The figure which shows the metal element which has the diffusion prevention effect with respect to Bi. 誘電体と電極との間の界面構造及び電子状態を観測するために作製した試料の概略構造を示す図。The figure which shows the schematic structure of the sample prepared for observing the interface structure and an electronic state between a dielectric and an electrode. 試料の誘電体層作成過程におけるポストアニールの温度プロファイルを示す図。The figure which shows the temperature profile of post-annealing in the process of making a dielectric layer of a sample. XPSとHX−PESのそれぞれにより評価される試料の深さ方向の位置を概念的に示す図。The figure which conceptually shows the position in the depth direction of the sample evaluated by XPS and HX-PES respectively. 価電子帯近傍の電子構造をHX−PESにより評価した結果を示す図。The figure which shows the result of having evaluated the electronic structure in the vicinity of a valence band by HX-PES. 仮のフェルミレベルの位置を示す図。The figure which shows the position of a tentative Fermi level. Ba3dを用いた界面アライメント解析を説明する図。The figure explaining the interface alignment analysis using Ba3d. HX−PESによる熱処理前後の各試料のBa3dの測定結果を示す図。The figure which shows the measurement result of Ba3d of each sample before and after the heat treatment by HX-PES. 熱処理前後の各試料の界面電荷バリアを示す図。The figure which shows the interfacial charge barrier of each sample before and after a heat treatment. HX−PESによる熱処理前後の各試料のBi4fの測定結果を示す図。The figure which shows the measurement result of Bi4f of each sample before and after the heat treatment by HX-PES. X線源としてAl−Kαを使用した通常のXPSによる熱処理前後の各試料のBa3d及びBi4fの測定結果を示す図。The figure which shows the measurement result of Ba3d and Bi4f of each sample before and after the heat treatment by ordinary XPS using Al-Kα as an X-ray source.

本発明の実施の態様によれば、熱拡散の理論からBi拡散の抑制に効果がある金属を含む電極材料(単金属、炭化金属、窒化金属)をBi系誘電体材料用電極として提供する。この金属としては例えばTa、Tiを使用することができる。 According to the embodiment of the present invention, an electrode material (single metal, carbide metal, metal nitride) containing a metal effective in suppressing Bi diffusion is provided as an electrode for a Bi-based dielectric material from the theory of thermal diffusion. As this metal, for example, Ta and Ti can be used.

Bi拡散・析出を阻止するために誘電体中に添加すべき材料を探索するため、本願発明者は、本願出願人が公開している金属偏析予測システム(SurfSeg)を使用して解析を行った。なお、SurfSegはインターネット上においてhttp://surfseg.nims.go.jp/SurfSeg/menu.htmlでアクセス可能である。また、SurfSegが行う解析の原理等は本願発明とは直接関係しないのでここでは説明しないが、必要に応じて非特許文献3、4を参照されたい。 In order to search for a material to be added to the dielectric in order to prevent Bi diffusion / precipitation, the inventor of the present application conducted an analysis using the metal segregation prediction system (SurfSeg) published by the applicant of the present application. .. SurfSeg can be accessed on the Internet at http://surfseg.nims.go.jp/SurfSeg/menu.html. Further, the principle of analysis performed by SurfSeg is not directly related to the present invention and will not be described here, but refer to Non-Patent Documents 3 and 4 as necessary.

この解析は、金属Biの表面を他の金属層で覆ったものを酸素雰囲気で熱処理を行うという単純化されたモデルに基づいて行った。また、金属Biの表面を覆う金属を、Pt、Ru、Ta、Ti、Srとして解析した。その結果、表面を覆う金属層としてPtを使用した場合にはBiは容易に金属層中を拡散して表面に析出するが、Ruの場合にはPtに比べて拡散が少なく、Ta、TiまたはSrで表面を覆った場合には拡散を充分に抑止できることが判った。SurfSegを使用して更に解析を進めた結果、上に挙げた金属元素だけではなく、図1に示す周期律表中で太枠線で囲まれた領域内の元素、すなわちベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、スカンジウム、イットリウム、ランタン、チタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、亜鉛、アルミニウム、ガリウム、インジウム、タリウム、硫黄、ゲルマニウム、スズ、砒素及びアンチモン、がBiに対して拡散防止作用を有することがわかった。 This analysis was performed based on a simplified model in which the surface of the metal Bi covered with another metal layer was heat-treated in an oxygen atmosphere. Further, the metal covering the surface of the metal Bi was analyzed as Pt, Ru, Ta, Ti, and Sr. As a result, when Pt is used as the metal layer covering the surface, Bi easily diffuses in the metal layer and precipitates on the surface, but in the case of Ru, the diffusion is less than that of Pt, and Ta, Ti or It was found that diffusion can be sufficiently suppressed when the surface is covered with Sr. As a result of further analysis using SurfSeg, not only the metal elements listed above, but also the elements in the region surrounded by the thick frame in the periodic table shown in FIG. 1, that is, beryllium, magnesium, calcium, Bi It was found that it has an anti-diffusion effect on.

なお、上述したモデルは単純化のために電極に相当する層を金属で構成される場合だけを取り扱っているが、電極材料としては金属だけではなく、Bi拡散防止作用を有する金属元素の炭化物または窒化物を使用しても同じ効果が得られる。 The model described above deals only with the case where the layer corresponding to the electrode is composed of metal for simplification, but the electrode material is not limited to metal, but is a carbide of a metal element having a Bi diffusion preventing action or a carbide. The same effect can be obtained by using a nitride.

次に、Bi系誘電体(ここではBT−BMNを使用)上に電極を設けた試料を作成して、誘電体と電極との間の界面構造及び電子状態の比較を行った。この試料の概略の構造を図2に示す。電極の材料としてはBiが拡散しやすい材料としてPtを、またBiが拡散しにくい材料としてTaCとTiCの一方を使用した二種類の試料を作製した。誘電体層をレーザーアブレーションで作製した(後述)後、電極をArイオンビームスパッタ法により10nm堆積した。このようにして作製した試料を評価し、その後、高速熱処理装置(RTA)を用いてAr雰囲気で500℃において10分間熱処理したものについて同じ評価を行った。以降の図中ではこの熱処理前の試料及びその評価結果を”as grown”、"as deposited"あるいは"as depo."、熱処理後の試料及びその評価結果を”annealed”と表記して区別する。 Next, a sample in which an electrode was provided on a Bi-based dielectric (here, BT-BMN was used) was prepared, and the interface structure and electronic state between the dielectric and the electrode were compared. The schematic structure of this sample is shown in FIG. Two types of samples were prepared using Pt as a material for the electrode to easily diffuse Bi and one of TaC and TiC as a material for which Bi is difficult to diffuse. After the dielectric layer was prepared by laser ablation (described later), the electrodes were deposited at 10 nm by the Ar ion beam sputtering method. The sample thus prepared was evaluated, and then the same evaluation was performed on the sample heat-treated at 500 ° C. for 10 minutes in an Ar atmosphere using a high-speed heat treatment apparatus (RTA). In the following figures, the sample before the heat treatment and its evaluation result are referred to as "as grown", "as deposited" or "as depo.", And the sample after the heat treatment and its evaluation result are referred to as "annealed".

試料中の誘電体層作製の詳細は以下のとおりである。 The details of preparing the dielectric layer in the sample are as follows.

(1)先ず、レーザーアブレーション法(物理蒸着(PLD)法)により、5wt%Nb:SrTiO基板上にBT−BMNを堆積させた。
成膜条件は以下の通りであった。
・レーザー:KrFエキシマレーザー(248nm)を使用した。パルス幅を10ns、強度を約3J/cm、繰り返し周波数を5Hzとした。
・ターゲット:SrRuO及び[BTO]0.6−[Bi(Mg,Nb)O]0.4(Bi−8wt%過剰)
・基板温度:510℃
・雰囲気:酸素/オゾン
・集光レンズ−ターゲットア間距離:36.0cm
・ターゲット−基板間距離:3cm
(1) First, BT-BMN was deposited on a 5 wt% Nb: SrTiO 3 substrate by a laser ablation method (physical vapor deposition (PLD) method).
The film forming conditions were as follows.
-Laser: A KrF excimer laser (248 nm) was used. The pulse width was 10 ns, the intensity was about 3 J / cm 2 , and the repetition frequency was 5 Hz.
Target: SrRuO 3 and [BTO] 0.6 - [Bi ( Mg, Nb) O] 0.4 (Bi 2 O 3 -8wt% excess)
-Substrate temperature: 510 ° C
・ Atmosphere: Oxygen / Ozone ・ Distance between condenser lens and target: 36.0 cm
・ Distance between target and board: 3 cm

(2)成膜後にポストアニールにより結晶化を行った。
この処理は1気圧の酸素雰囲気中で行った。また、その温度プロファイルを図3に示す。
(2) Crystallization was performed by post-annealing after the film formation.
This treatment was performed in an oxygen atmosphere of 1 atm. The temperature profile is shown in FIG.

このようにして作製された試料に対して、Al−X線(1.5KeV)を使用した通常のXPS及びSpring−8の高輝度放射光(6KeV)を使用した硬X線光電子分光法(HX−PES)の測定を組み合わせることで、図4に示すように異なる深さ領域の結合状態を非破壊で評価した。なお、HX−PESは当業者には周知の事項であるためこれ自体については詳細に説明しないが、必要であれば非特許文献5等を参照されたい。 For the sample prepared in this way, normal XPS using Al-X-rays (1.5 KeV) and hard X-ray photoelectron spectroscopy (HX) using high-intensity synchrotron radiation (6 KeV) of Spring-8. By combining the measurements of −PES), the binding states of different depth regions were evaluated non-destructively as shown in FIG. Since HX-PES is a matter well known to those skilled in the art, it will not be described in detail, but if necessary, refer to Non-Patent Document 5 and the like.

価電子帯近傍の電子構造をHX−PESにより評価した。その結果を図5に示す。ここで、全ての試料で電極が熱処理後(annealed)もフェルミ準位Efに電子状態が存在し、電極として機能していることがわかった。図5の最上部に示したグラフはBT−BMNの誘電体層を上述のようにして作製した後、電極のための層をその上に形成していない状態の試料を示す。以降の図中においてはこの試料についての評価結果を"Film"と表記する場合がある。なお、HX−PESでは光イオン化断面積の違いから酸素2pが弱く出るため、価電子帯頂上の厳密な解析には通常のXPSの対実験が必要であるが、ここでは仮のフェルミ位置を図6下図に示すようにした。ここでバンドギャップはチタン酸バリウム(BTO)をベースとして仮定した。 The electronic structure near the valence band was evaluated by HX-PES. The result is shown in FIG. Here, it was found that in all the samples, even after the electrode was annealed, an electronic state existed at the Fermi level Ef and the electrode functioned as an electrode. The graph shown at the top of FIG. 5 shows a sample in a state where the dielectric layer of BT-BMN is prepared as described above and then the layer for the electrode is not formed on the dielectric layer. In the following figures, the evaluation result for this sample may be referred to as "Film". In HX-PES, oxygen 2p is weakly emitted due to the difference in photoionization cross section, so a normal XPS pair experiment is required for rigorous analysis of the valence band peak. 6 As shown in the figure below. Here, the bandgap is assumed to be based on barium titanate (BTO).

化学結合状態が変わらなければ価電子帯と結合スペクトル間のエネルギーは一定となる。ここでは、最も形状変化の少ないBa3dに基づいて図7に示すようにして界面のバンドアライメントを概算した。熱処理前後の各試料のHX−PESによるBa3dの測定結果を図8に示す。 If the chemical bond state does not change, the energy between the valence band and the bond spectrum is constant. Here, the band alignment of the interface is estimated as shown in FIG. 7 based on Ba3d having the least shape change. FIG. 8 shows the measurement results of Ba3d by HX-PES of each sample before and after the heat treatment.

この解析の結果、熱処理前後の各試料の界面電荷バリアが図9のように求められた。図9からわかるように、Ptでは熱処理後にバンドオフセットに変化がみられる。また、電極を形成していないBT−BMN(Film)で見られる変化は、熱処理によるBi偏析・離脱に起因するものと考えられる。 As a result of this analysis, the interfacial charge barrier of each sample before and after the heat treatment was obtained as shown in FIG. As can be seen from FIG. 9, in Pt, a change in the band offset is observed after the heat treatment. Further, it is considered that the change observed in BT-BMN (Film) on which no electrode is formed is caused by Bi segregation / separation due to heat treatment.

次に、電極とBT−BMNとの界面において、電極の成膜時点及び成膜後の加熱時にBi−電極間反応層やBi欠陥層がどの程度形成されるかを、BX−PESを用いて加熱前後の各試料のBi4fを測定することで調べた。この測定結果を図10に示す。図10中の上部にある2つの下向き太矢印及び夫々の太矢印から直下へ伸びる破線は、Bi−電極間反応層及びBi欠陥層に対応するピークが現れる結合エネルギー位置を示す。 Next, using BX-PES, the extent to which a Bi-electrode reaction layer or a Bi defect layer is formed at the interface between the electrode and the BT-BMN at the time of film formation of the electrode and during heating after the film formation is used. It was examined by measuring Bi4f of each sample before and after heating. The measurement result is shown in FIG. The two downward thick arrows at the top of FIG. 10 and the broken lines extending directly below each thick arrow indicate the binding energy positions where the peaks corresponding to the Bi-electrode reaction layer and the Bi defect layer appear.

図10から、電極材料としてPtを使用した場合には成膜時に欠陥が形成され(as grown)、熱処理により欠陥に起因するピークの強度が大きく増大する(annealed)ことから、加熱により反応層が増加することがわかる。これに対して電極にTaを含む材料(TaC)を使用した場合には、成膜時に欠陥が形成されるが、熱処理後もその強度変化が小さく、反応層はほとんど増加しないことがわかった。電極にTiを含む材料(TiC)を使用した場合にはこの傾向はさらに顕著になった。 From FIG. 10, when Pt is used as the electrode material, defects are formed during film formation (as grown), and the intensity of peaks caused by the defects is greatly increased by heat treatment (annealed). Therefore, the reaction layer is formed by heating. It can be seen that it increases. On the other hand, when a material containing Ta (TaC) was used for the electrode, defects were formed during film formation, but the change in strength was small even after the heat treatment, and it was found that the reaction layer hardly increased. This tendency became even more pronounced when a Ti-containing material (TiC) was used for the electrodes.

更に、電極の成膜過程や熱処理時に誘電体層のBT−BMNが電極層を通して拡散するか否かを、電極表面の組成を測定できる従来のXPSを使用することで調べた(図4参照)。図11の上半分の3つの測定結果からわかるように、全ての試料で熱処理前後とも電極表面にはBT−BMN由来のBaは検出されなかった。これに対して、同図左下の測定結果に示すように、同じくBT−BMN由来のBiは熱処理後のPt電極表面で大量のBiが検出されており、熱処理によりPt電極中でBiの劇的な拡散が起こっており、Pt電極では界面安定性に問題があることが確認された。 Furthermore, whether or not the BT-BMN of the dielectric layer diffuses through the electrode layer during the electrode film formation process and heat treatment was investigated by using a conventional XPS capable of measuring the composition of the electrode surface (see FIG. 4). .. As can be seen from the three measurement results in the upper half of FIG. 11, Ba derived from BT-BMN was not detected on the electrode surface before and after the heat treatment in all the samples. On the other hand, as shown in the measurement result at the lower left of the figure, a large amount of Bi was also detected on the surface of the Pt electrode after the heat treatment for Bi derived from BT-BMN, and the Bi was dramatically increased in the Pt electrode by the heat treatment. It was confirmed that there was a problem with the interfacial stability of the Pt electrode.

これに対して、TaCは熱処理前後ともBiは全く検出されなかった。また、TiCでは熱処理前の試料から僅かなBiが検出されたが、熱処理前後の差は誤差の範囲であった。これはTiCの一部が欠陥を生じたことでBiが拡散した可能性があるが、熱処理に対する安定性はTaCと同等であった。従って、Ta、Tiを含む電極の界面安定性が高いことが確認された。 On the other hand, in TaC, Bi was not detected at all before and after the heat treatment. In TiC, a small amount of Bi was detected in the sample before the heat treatment, but the difference before and after the heat treatment was within the margin of error. This is because Bi may have diffused due to a defect in a part of TiC, but the stability against heat treatment was equivalent to that of TaC. Therefore, it was confirmed that the interfacial stability of the electrode containing Ta and Ti was high.

もちろん、Bi系誘電体上に形成する電極層は一様な組成の層とする必要はなく、例えば、誘電体に隣接する部分のみにTa、Ti等のBiを拡散しにくい元素を含むようにしてもよい。あるいは複数の層を積層する場合にはBi系誘電体側にある一つ或いは一部の層だけにBiを拡散しにくい元素を含むようにすることもできる。また、本発明に基づくキャパシタでは、Bi系誘電体を挟む両側の電極が共にBiを拡散しにくい元素を含んでもよいし、あるいは状況によっては片方だけの電極がBiを拡散しにくい元素を含んでもよい。 Of course, the electrode layer formed on the Bi-based dielectric does not have to be a layer having a uniform composition. For example, even if only the portion adjacent to the dielectric contains an element such as Ta or Ti that does not easily diffuse Bi. Good. Alternatively, when a plurality of layers are laminated, it is possible to include an element that does not easily diffuse Bi in only one or a part of the layers on the Bi-based dielectric side. Further, in the capacitor based on the present invention, the electrodes on both sides of the Bi-based dielectric may both contain an element that does not easily diffuse Bi, or depending on the situation, only one electrode may contain an element that does not easily diffuse Bi. Good.

以上説明したように、本発明によれば、Bi系誘電体を使用して高温下でも電極と誘電体との界面安定性に優れたキャパシタを提供することができるので、自動車等、高温に曝されるキャパシタを使用する産業分野に大いに貢献することが期待される。 As described above, according to the present invention, it is possible to provide a capacitor having excellent interfacial stability between the electrode and the dielectric even at a high temperature by using a Bi-based dielectric, so that the capacitor is exposed to a high temperature such as an automobile. It is expected to make a great contribution to the industrial field where capacitors are used.

特開2011−11963号公報Japanese Unexamined Patent Publication No. 2011-1963

H. Tanaka et al., J. Appl. Phys. 111, 084108 (2012).H. Tanaka et al., J. Appl. Phys. 111, 084108 (2012). B. Xiong et al., J. Am. Ceram. Soc., 94[10] 3412-3417 (2011).B. Xiong et al., J. Am. Ceram. Soc., 94 [10] 3412-3417 (2011). M. Yoshitake et al., J. Vac. Sci. Technol. A 19, 1432 (2001).M. Yoshitake et al., J. Vac. Sci. Technol. A 19, 1432 (2001). M. Yoshitake, Jpn. J. Appl. Phys., 51, 085601 (2012).M. Yoshitake, Jpn. J. Appl. Phys., 51, 085601 (2012). 高田恭孝「X 線光電子分光」、日本放射光学会誌「放射光」Vo.,17, No.2 (2004), 66-71.Yasutaka Takada "X-ray Photoelectron Spectroscopy", Journal of the Japanese Society of Synchrotron Radiation "Synchrotron Radiation" Vo., 17, No.2 (2004), 66-71.

Claims (2)

ビスマス系誘電体材料に隣接して用いられるビスマス系誘電体材料用電極であって、
ンタルの炭化物を含む、ビスマス系誘電体材料用電極。
An electrode for a bismuth-based dielectric material used adjacent to a bismuth-based dielectric material.
Containing carbides of tantalum, bismuth-based dielectric material for the electrode.
ビスマス系誘電体材料の膜と、前記膜に隣接した請求項1に記載のビスマス系誘電体材料用電極とを設けたキャパシタ。 And film of bismuth-based dielectric material, the capacitor having a bismuth-based dielectric material for electrode according to claim 1 adjacent to the membrane.
JP2015044135A 2015-03-06 2015-03-06 Electrodes and capacitors for bismuth-based dielectrics Active JP6887655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015044135A JP6887655B2 (en) 2015-03-06 2015-03-06 Electrodes and capacitors for bismuth-based dielectrics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015044135A JP6887655B2 (en) 2015-03-06 2015-03-06 Electrodes and capacitors for bismuth-based dielectrics

Publications (2)

Publication Number Publication Date
JP2016164901A JP2016164901A (en) 2016-09-08
JP6887655B2 true JP6887655B2 (en) 2021-06-16

Family

ID=56876788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015044135A Active JP6887655B2 (en) 2015-03-06 2015-03-06 Electrodes and capacitors for bismuth-based dielectrics

Country Status (1)

Country Link
JP (1) JP6887655B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115010493B (en) * 2022-05-31 2023-01-13 清华大学 High-entropy pyrochlore dielectric ceramic material and preparation method and application thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5897818A (en) * 1981-12-07 1983-06-10 松下電器産業株式会社 Thin film condenser
JPH10135077A (en) * 1996-10-30 1998-05-22 Kyocera Corp Thin film capacitor
JP4109304B2 (en) * 1997-03-27 2008-07-02 株式会社ルネサステクノロジ Semiconductor device and manufacturing method thereof
JP3874521B2 (en) * 1998-01-13 2007-01-31 沖電気工業株式会社 Method for forming ferroelectric memory electrode
JP2002076293A (en) * 2000-09-01 2002-03-15 Matsushita Electric Ind Co Ltd Method for manufacturing capacitor and semiconductor device
US6613695B2 (en) * 2000-11-24 2003-09-02 Asm America, Inc. Surface preparation prior to deposition
JP4407112B2 (en) * 2001-11-26 2010-02-03 パナソニック株式会社 Porcelain capacitor
JP4561629B2 (en) * 2003-02-27 2010-10-13 Tdk株式会社 Thin film multilayer capacitor
JP4997757B2 (en) * 2005-12-20 2012-08-08 富士通株式会社 Thin film capacitor and method for manufacturing the same, electronic device and circuit board
JP4483849B2 (en) * 2006-10-04 2010-06-16 Tdk株式会社 Ferroelectric thin film
JP5590224B2 (en) * 2011-03-25 2014-09-17 株式会社村田製作所 Multilayer ceramic capacitor and manufacturing method thereof
JP6020068B2 (en) * 2012-01-27 2016-11-02 Tdk株式会社 Dielectric porcelain composition and electronic component

Also Published As

Publication number Publication date
JP2016164901A (en) 2016-09-08

Similar Documents

Publication Publication Date Title
Jeon Recent advances in the understanding of high-k dielectric materials deposited by atomic layer deposition for dynamic random-access memory capacitor applications
Azadmanjiri et al. A review on hybrid nanolaminate materials synthesized by deposition techniques for energy storage applications
Grill et al. Base electrodes for high dielectric constant oxide materials in silicon technology
Menou et al. Composition influence on the physical and electrical properties of SrxTi1− xOy-based metal-insulator-metal capacitors prepared by atomic layer deposition using TiN bottom electrodes
JP2013102157A (en) Method for forming mimcap structure, and mimcap structure
EP1793416B1 (en) Capacitor and method for manufacturing the same
US7539005B2 (en) Dielectric film production process and capacitor
Zhao et al. High dielectric constant in CaCu3Ti4O12 thin film prepared by pulsed laser deposition
Hu et al. Thermally stable yttrium–scandium oxide high-k dielectrics deposited by a solution process
JP6887655B2 (en) Electrodes and capacitors for bismuth-based dielectrics
Boonlakhorn et al. High dielectric permittivity and dielectric relaxation behavior in a Y2/3Cu3Ti4O12 ceramic prepared by a modified Sol− Gel route
US20220028621A1 (en) High permittivity and low leakage dielectric thin film materials
Cha et al. Scaling the Equivalent Oxide Thickness by Employing a TiO2 Thin Film on a ZrO2–Al2O3‐Based Dielectric for Further Scaling of Dynamic Random Access Memory
Choi et al. Co: BaTiO3/Sn: BaTiO3 Heterostructure Thin‐Film Capacitors with Ultrahigh Energy Density and Breakdown Strength
Goh et al. Titanium diffusion into (K0. 5Na0. 5) NbO3 thin films deposited on Pt/Ti/SiO2/Si substrates and corresponding effects
Menou et al. Seed Layer and Multistack Approaches to Reduce Leakage in SrTiO3-Based Metal–Insulator–Metal Capacitors Using TiN Bottom Electrode
Kim et al. Leakage current control of SrTiO3 thin films through al doping at the interface between dielectric and electrode layers via atomic layer deposition
Qiu et al. Phase separation and interfacial reaction of high-k HfAlOx films prepared by pulsed-laser deposition in oxygen-deficient ambient
JP6308554B2 (en) Dielectric thin film
Paskaleva et al. Improved electrical behavior of ZrO2-based MIM structures by optimizing the O3 oxidation pulse time
Jung et al. Chemistry of ruthenium as an electrode for metal–insulator–metal capacitor application
Heidary et al. Redesigning multilayer ceramic capacitors by preservation of electrode conductivity and localized doping
Wang et al. Instability of metal barrier with porous methyl silsesquioxane films
Levi et al. Influence of substrate microstructure on the high field dielectric properties of BaTiO3 films
Brassard et al. Pulsed-laser deposition of high-k titanium silicate thin films

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200123

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200123

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200131

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200204

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200306

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200310

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200721

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20201222

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210330

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210511

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210512

R150 Certificate of patent or registration of utility model

Ref document number: 6887655

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250