JP2004230344A - Apparatus and method for treating suspension wastewater - Google Patents

Apparatus and method for treating suspension wastewater Download PDF

Info

Publication number
JP2004230344A
JP2004230344A JP2003024898A JP2003024898A JP2004230344A JP 2004230344 A JP2004230344 A JP 2004230344A JP 2003024898 A JP2003024898 A JP 2003024898A JP 2003024898 A JP2003024898 A JP 2003024898A JP 2004230344 A JP2004230344 A JP 2004230344A
Authority
JP
Japan
Prior art keywords
suspended
filter
tank
brush
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003024898A
Other languages
Japanese (ja)
Other versions
JP4567946B2 (en
Inventor
Hiroyoshi Nakamura
廣義 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakamura Kensetsu KK
Original Assignee
Nakamura Kensetsu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakamura Kensetsu KK filed Critical Nakamura Kensetsu KK
Priority to JP2003024898A priority Critical patent/JP4567946B2/en
Publication of JP2004230344A publication Critical patent/JP2004230344A/en
Application granted granted Critical
Publication of JP4567946B2 publication Critical patent/JP4567946B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Filtration Of Liquid (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a suspension wastewater treatment apparatus which does not cause environmental pollution, or the like by the use of a flocculant, can always do filtration treatment in constant proper conditions without clogging a filter cloth, or the like, and can efficiently treat suspension wastewater by appropriately adjusting the amount of muddy water to be passed through electrodes by interlocking it with a filtration device, and a suspension wastewater treatment method which can efficiently and economically treat a large amount of the suspension wastewater. <P>SOLUTION: The suspension wastewater is purified by the use of the suspension wastewater treatment apparatus 10 having a suspended particle flocculation tank 11 having a flocculation channel in which the suspension wastewater is supplied to a clearance formed by arranging an anode 13 and a cathode 14 in parallel and a filtration tank 12 having an approximately plate-shaped or approximately cylindrical filter 16 which is formed in the shape of a bag as a whole. The suspension wastewater which passed through the tank 11 is supplied to the filter from its outside surface side, and the filtered treatment water is discharged from the inside rear face side of the filter 16. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ダムや河川、湖沼、用水路等から流れ込む泥水や濁水、トンネル工事や浚渫工事、河川工事、造成工事、各種の建設工事などで発生する懸濁排水を清浄化するための懸濁排水処理装置及び懸濁排水処理方法に関する。
【0002】
【従来の技術】
従来、ダムや河川、湖沼の護岸工事などの工事現場などから排出される懸濁排水を浄化させるために複数の固液分離機等を組み合わせて浄化処理が行なわれている。このような懸濁排水の浄化処理に関して、例えば以下のような技術のものが知られている。
特許文献1には、濁水・泥水を貯留する貯留槽と、前記濁水・泥水に凝集剤を投入する凝集剤投入手段と、前記凝集剤と前記濁水・泥水を混合してフロックを生成する混合装置と、前記混合装置で生成された前記フロックを水と分離するろ過装置とを備えた濁水・泥水処理装置が記載されている。
特許文献2には、濁水を通過させる流路部内の水流方向に沿って、直流電源の陽極及び陰極に夫々接続した陽極電極板と陰極電極板とを交互に配列して電極板群を形成してなる濁水処理装置が記載されている。
【0003】
【特許文献1】
特開2002−219471号公報
【0004】
【特許文献2】
特開平11−226577号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来の技術は以下のような課題を有していた。
(イ)特許文献1に記載の凝集剤投入手段を有する濁水・泥水処理装置は、ポリ塩化アルミニウム等の凝集剤を懸濁排水に加えて細かい粒子を凝集させフロック化させるので、この凝集剤が拡散して周囲の環境を汚染しやすい上に、その投入量などの調整が困難であり、薬剤のコストがかかる等経済性にも欠けるという課題があった。
(ロ)フロックと水とを分離するろ過装置が多孔質体からなり、濁水の処理に伴ってその網目体の表面に固形分が厚く付着していくために、濁水のろ過効率が次第に低下して、大量処理が困難になるという課題があった。
(ハ)特許文献2に記載の電極板を用いて粒子を凝集させる濁水処理装置では、凝集させた処理液から固形分を分離する構成が呈示されていないので、電極板に流す濁水の水量などをろ過装置と連動させて適切に調整することが困難で、濁水処理の作業性に欠けるという課題があった。
(ニ)アルミニウムイオンが微小懸濁粒子と結合したまま排出され放流先で食用の生物に生物濃縮され安全性を害すという課題があった。
【0006】
本発明は上記課題を解決するためになされたもので、凝集剤の使用による環境汚染等のおそれがなく、ろ布等の目詰まりがなく常時一定なろ過処理を行うことができると共に、電極板に流す濁水の水量などをろ過装置と連動させて効率的に懸濁排水を処理できる懸濁排水処理装置の提供及び、懸濁排水の大量処理を連続的にかつ効率的に行うことができる懸濁排水処理方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
請求項1に記載の懸濁排水処理装置は、土砂等の懸濁粒子を含む懸濁排水が供給される懸濁粒子凝集槽と、前記懸濁粒子凝集槽に配設された陽極板及び陰極板が平行配置されて形成された間隙に懸濁排水が供給される凝集流路を備えた懸濁粒子凝集部と、ろ過槽と、前記ろ過槽に配設され前記懸濁粒子凝集部を通過した懸濁排水がその外部表面側から供給され内部裏面側からろ過された処理水が排出されるように全体が袋状に形成された略平板状又は略円筒状のフィルタを備えたろ過部と、を有して構成されている。
この構成によって以下の作用を有する。
(1)陽極板と陰極板間に直流電圧を印加することにより、この凝集流路を流れる懸濁排水中の微小粒子を帯電させ、懸濁粒子のフロック化を促して、下流のろ過部のフィルタで捕捉できる所定大きさまで成長させ、この電気処理された懸濁排水中の固形分をろ過部のフィルタ上に確実に保持させて清水部分と固形分とに効率的に分離させることができる。
(2)フィルタが袋状に形成され、懸濁水がこの袋状のフィルタの外部表面側から内部裏面側に流れるので、このフィルタの外側部分に付着した固形分をブラシやゴムホース等でさすることにより容易に除去することができる。
(3)フィルタに固着した付着層を除去してろ過条件を一定に維持させることが容易にできるので、処理効率の向上が図られ、河川工事等での多量の土砂微粒子を含む大量の懸濁排水を効率的に処理することが可能になる。
(4)フィルタが袋状になっているので、処理水槽内のスペースが狭い場合でもそのフィルタ面を有効に活用して、効率的に大量の懸濁排水を処理できる。
(5)従来の凝集剤を用いる水処理装置のように溶出物がないので、浄化処理に伴って環境を汚染させるおそれがない。
【0008】
ここで、懸濁粒子凝集部の陽極板及び陰極板はアルミニウムや亜鉛・ステンレス、チタン、スチール等の金属材や、炭素質等の導電性材料からなる平板状電極である。これらの平板状電極を非導電性のスペーサ等を介して交互に所定間隔例えば1〜100mmの間隔をおいて水槽内に複数配置して懸濁粒子凝集部が構成される。これら平板状電極間の隙間に懸濁排水を供給してその凝集流路を形成させ、電極板間に所定電圧、例えば0.5〜100ボルトの電圧を印加して懸濁排水中の微小粒子などを帯電させ、粒子間の凝集力を高めてフロック化を促すようにしている。
【0009】
ろ過部は、所定の網目間隔、例えば0.001〜1mmの網目間隔を有する織物や不織物からなる袋状のフィルタを懸濁排水が供給される水槽内に互いに所定間隔、例えば10〜200mmの間隔をおいて多数平行に配置して形成される。
ろ過部は、全体が枠状となるように金属やプラスチック製などの通水管を形成して、通水管の枠内側に取水孔を多数設け、この枠状の通水管の全体をろ布で袋状に覆設し、通水管から内部のろ過水を排出させるための排水口部をろ布に設けることで形成させることもできる。
さらに、通水管の枠内側に3次元網目構造又は中空状構造を有した芯材を配置して外圧力でろ過部のフィルタが潰れないようにしておくこともできる。
この通水管に穿設された取水孔の配置数が、通水管の中心線に対して、その一方側から他方側に向かって次第に多くすることによって、フィルタ部分の高低位置等で異なる懸濁排水の透過吸込み量が均一になるようにすることもできる。
【0010】
また、ろ過部は、一端側に取水孔部を備えた円形又は角形筒状の取水側端部材と、他端側の逆洗用配管を備えた円形又は角形筒状の逆洗側端部材と、前記取水側端部材及び前記逆洗側端部材間に円筒又は角筒又は星形筒を形成するように等間隔をあけて配設されたろ布支持部材と、前記ろ布支持部材に円筒状又は角筒状にもしくは星形筒状に覆設されろ布とで構成することもできる。これによって、フィルタ部材の取水孔部からろ布でろ過された浄化水を得ることができると共に、逆洗用配管を備えるので、ろ布が目詰まりした場合に逆洗用の空気やろ過水を流すことにより、付着した固形分を容易に剥離除去することができる。また、多数のろ布支持部材に円筒状又は角筒状にもしくは星形筒状に覆設されたろ布を有するので、構造強度を高めて、しかも軽量化でき、経済性に優れる。ろ布が星形となるように形成した場合にはろ過の際の実効面積を大きくしてろ過効率を高めることができ、大量処理にも対応できる。
【0011】
さらに、ろ過部には、炭酸ガス等の炭酸ガス等の微細気泡を含む水流を供給する微細気泡混合液噴出器や炭酸ガスの微細気泡を発生させる微細気泡発生器をその槽底等に備えるようにしてもよく、これによって、ろ過水槽でアルカリ水が中和されアルカリ水による害を防ぐことができる。
ここで微細気泡混合液噴出器は、例えば略回転対称形に形成された中空部を有する器体と、器体の周壁部に接線方向に開口され気液導入管が連設された気液導入孔と、中空部の回転対称軸の方向に開口して設けられた気液噴出孔とを備えて構成されたものなどが適用できる。この気液導入孔にポンプを介して炭酸ガスや空気の気泡を含む水を流入させると、器体周壁の接線方向から流入した水流は、器体の内壁に沿って旋回して、この旋回運動によって、水に内在した気泡が微細気泡となり、微細気泡の炭酸ガスや空気を含む気液混合水を気液噴出孔から吐出させることができ、水中のアルミニウムイオンやカルシウム等のアルカリ分を水中に溶存したCOで中和したり、溶存酸素量を高め、水質浄化等を促進させることができる。
【0012】
ろ過部は、ろ過部の取水部の下流側に配置された遮断弁と、遮断弁の上流側の取水部に連通された逆洗用配管と、を備えるようにしてもよく、これによって、フィルタのろ布が懸濁水の固形分によって目詰まりした時に、取水部の下流側に配置された遮断弁を閉止し、遮断弁の上流側の取水部に連通された逆洗用配管から圧縮空気や浄化水を用いた加圧水等を流すことにより逆洗操作を行なうことができ、フィルタ内部を圧縮空気や加圧水等で膨張させ押し出したり、ろ布を圧縮空気で通気させたりすることで、ろ布の表面に付着した固形分の層を効果的に剥離させて除去させ、ろ過水槽の底部に堆積させることができる。また、遮断弁を操作して効率的に圧縮空気や加圧水をろ布に向けて供給することができ、固形分を剥離させてメンテナンス性や作業性に優れている。
【0013】
ろ過部に配設されるフィルタは、ろ過水槽内に互いに所定間隔を有して着脱可能に立設させる仕切り枠を設けてユニット化にしてもよく、フィルタの取り付け時や、その損傷、劣化した際に、確実かつ容易にフィルタの交換が行なえ、メンテナンス性に優れている。さらに、仕切り枠によりフィルタが互いに干渉し合うのを防止でき、ろ過効率を維持できる。
ここで、互いに隣接し合うフィルタ部材間の間隔は、5〜20cm、好ましくは10〜15cmの範囲とすることが望ましい。処理する懸濁水の懸濁粒子の濃度や処理水量にもよるが、この間隔が10cmより少なくなるにつれ、ろ過水槽内を流れる懸濁水の流動抵抗が大きくなって、ろ過水量が減少する傾向が表れ、逆に15cmを超えるにつれて、ろ過水槽内に配置されるろ布の表面積が不足してろ過効率が低下する傾向が表れ、これらの傾向は5cmより少なくなるか、20cmを超えるとさらに顕著になるので好ましくない。
仕切り枠としては、金属製や合成樹脂製の流水が流れるように開口部を多数備えたものが用いられる。また、仕切り枠やフィルタは底部から離して懸濁物を底部側に貯留できるように配置される。これにより、逆洗された懸濁物を底部に流下させる効率を高めることができる。
【0014】
ろ過部はまた、フィルタを内蔵するろ過水槽と懸濁水隔壁を介して形成された懸濁水貯留槽と、ろ過水槽と前記懸濁水貯留槽の底部に取水口部側が低くなるように傾斜して形成された汚泥集積壁と、ろ過水槽及び懸濁水貯留槽の取水口側の下部に形成され汚泥集積壁上面に集積された汚泥を排出する汚泥排出部とを備えるようにしてもよい。これによって、懸濁水貯留槽に供給されてろ過水槽でろ過される懸濁水中の土砂などの大粒子を予め沈殿除去することができ、ろ布における負荷を軽減できる。さらに、その底部に傾斜して形成された汚泥集積壁を有するので、特別な動力を要することなく、汚泥排出部から土砂などの固形分を除去できる。
【0015】
更に、袋状のフィルタの内部には必要に応じて、フィルタを支持するための塩化ビニール製パイプなどで組まれた枠体を内蔵させたり、フィルタの両端部を水槽内の側部側に固定したりして、隣接するフィルタ間の距離を適正にしてその形状を保持するようにすることもできる。フィルタの素材としては、合成繊維や天然繊維からなる織布又は不織布が適用できる。合成繊維には通常、太さが0.1〜20μm程度のポリアミド、ポリエステル、ポリオレフィン、ポリビニルアルコール系、ポリフルオロエチレン、ポリアクリロニトリル、酢酸ビニル、四フッ化エチレンなどのものが使用できる。なお、前記繊維の各交点の所定個所を加熱により融着したり接着剤を用いて接着したりして固定し、全体を補強すると共に、懸濁水中の固体粒子の大きさに応じてその捕捉率を調整するようにしてもよい。また、フィルタの素材を、懸濁水中の帯電した固体粒子の付着を妨げるイオン交換樹脂で構成したり、フィルタ表面をイオン交換樹脂で部分的に被覆したりして、固体粒子の付着を抑制して、ろ過処理中の目詰まりを防ぐことも可能である。
イオン交換樹脂としては、ジビニルベンゼンで架橋したポリスチレンなどの母体合成樹脂にフェノール性ヒドロキシル基、カルボキシル基、スルホン酸基など酸性基を結合させた高分子酸からなる陽イオン交換樹脂や、母体合成樹脂にアミノ基、イミノ基、アンモニウム基などの塩基性基を結合させた高分子塩基からなる陰イオン交換樹脂を固形分の正負の帯電状態に応じて選択して用いることができる。例えば、懸濁水中の固形分が正に帯電する場合は陽イオン交換樹脂をフィルタに被覆することで固形分のろ布内への侵入や、その付着を効果的に防止できる。
なお、懸濁粒子凝集部の電極間に印加する電圧及び、この凝集流路に供給する懸濁排水の供給流量などは、ろ過部におけるフィルタの網目間隔やそのフィルタの面積、フィルタの圧損等に応じて実験的に適正値が設定される。これにより、ろ過部に供給される懸濁排水の処理液をフロック化させ、所定大きさに凝集フロック化された粒子をフィルタ面で確実に捕捉して清水に分離できる。
【0016】
請求項2に記載の懸濁排水処理装置は、請求項1に記載の発明において、前記フィルタの外部表面にその毛先が当接して配置されたブラシ部と、前記ブラシ部を前記外部表面に緩く当接させながら往復摺動させるブラシ駆動部と、を有して構成されている。
この構成によって、請求項1の作用に加えて以下の作用を有する。
(1)袋状に形成されたフィルタの外部表面にその毛先が当接して配置されたブラシ部をフィルタの外部表面に沿って往復摺動して摩るので、フィルタ面上の固形分の付着層を除去して、目詰まりさせることなく、一定のろ過条件を保持させることができ、ろ過効率の経時的安定性を維持すると共にフィルタの目詰まりによるメンテナンスの回数を著しく削減でき、ろ過作業の作業性を向上できる。
(2)フィルタ表面がブラシ部で所定間隔で摩って掃引され、フィルタ層の内部に一定量の固形分を保持させてフィルタ本来の網目間隔を狭めた状態で使用でき、数μm程度の微小粒子を透過させることなく捕捉できる。
(3)ブラシ部を往復摺動させるブラシ駆動部を有するので、フィルタ面へのエア吹き付けやフィルタの振動付加等による従来の付着層の除去方法等に比較して、均一にかつ確実に付着層を除去できる。
(4)ブラシ部の毛先をフィルタの外部表面に沿って摩りながら往復摺動させるので、フィルタ面を損傷させることがなく、メンテナンス性や耐用性に優れている。
【0017】
ここで、ブラシ部は、細長平板状やリング状などに形成され、平板状の片面側や円筒状の内面側にフィルタ外部表面にその毛先が対向するナイロンやポリビニルアルコール、ポリエステル等の繊維が植毛されている。ブラシ部はバネなどの弾性部材を介して保持され、この毛先から所定の押圧力がフィルタ面に付加されるように配置されている。尚、ブラシ部としては、植毛ブラシの他、ゴム製や合成樹脂製のシート状物や管状物、金属製やセラミック製の薄板も使用することができる。ろ過部の水中でフィルタ表面に付着したスラッジを摩って剥離することが可能だからである。
ブラシ駆動部は、モータやリミットスイッチ等を有して構成され、モータを駆動源としてブラシ部をフィルタ面に反って移動させ、ブラシ部が片側のリミットスイッチに接触して摺動方向を反転させることにより、所定間隔でフィルタ面上を往復摺動できるようにしている。
ブラシ駆動部は電動モータ以外に空気圧や水圧モータを用いることもできる。
ブラシ部を連続的に駆動させる場合、ブラシ駆動部で往復摺動されるブラシは、5〜60秒間、好ましくは10〜300秒間でリミットスイッチ間を一往復するように設定することが望ましい。これは懸濁排水の種類やその処理量などにもよるが、往復摺動の間隔が10秒より短かくなるにつれ、フィルタとブラシとの摩耗が激しくなって耐用性が低下する傾向があり、逆に300秒より長くなるにつれ、フィルタ面に付着する付着層の平均厚みが厚くなって、圧力損失が大となり自然ろ過による適正なろ過条件を維持させるのが困難となる傾向が表れ、これらの傾向は5秒より短くなるか、300秒を超えるとさらに大きくなる。
【0018】
請求項3に記載の懸濁排水処理装置は、請求項1又は2に記載の発明において、前記懸濁粒子凝集槽に、前記懸濁粒子凝集部の凝集流路の上流側及び/又は下流側に懸濁排水を上昇下降させる上昇流路と下降流路とを備えた粒子沈殿部が配設されて構成される。
この構成により請求項1又は2に記載の作用に加えて以下の作用を有する。
(1)懸濁粒子凝集槽内に凝集流路の上流側及び/又は下流側に上昇流路と下降流路とを備えた粒子沈殿部が配置されているので、供給される懸濁排水の流れを上下方向に反転させ、この流れの変化によって、懸濁排水中の固形分を効果的に沈殿分離させることができる。
(2)以降の凝集流路やろ過部における懸濁排水の浄化処理を軽減して、装置全体の耐用性やメンテナンス性を高めることができる。
(3)電力等の駆動源を要せず所定大きさの浮遊粒子を沈殿させることことのできる粒子沈殿部を備えるので、懸濁排水の浄化処理をさらに経済的に行うことができる。
ここで、上昇流路及び下降流路は、電気的に懸濁排水中の微小粒子を凝集させる凝集流路の上流側及び/又は下流側に先端が上方又は下方に突設された仕切り部を介して設けられ、隣接する上昇流路と下降流路の下端で懸濁排水の流れが反転してここに懸濁排水中の固形分を沈殿させる。
【0019】
請求項4に記載の懸濁排水処理装置は、請求項1乃至3の内いずれか1項に記載の発明において、前記懸濁粒子凝集部と前記ろ過部とがその内部に直列配置された懸濁排水処理槽を有して構成されている。
この構成によって、請求項1乃至3の内いずれか1項の作用に加えて以下の作用を有する。
(1)懸濁排水処理槽内に懸濁粒子凝集部とろ過部とが内蔵されているので、全体をコンパクトにすることができ、トラックの荷台部分に装置を搭載して容易に移動させることができ、道路工事におけるアスファルト道路の面部をカッターで切断する際などに伴って発生する懸濁排水を容易に処理することができる。
(2)懸濁粒子凝集部でフロック化処理された懸濁排水が直列配置されたろ過部に供給されるので、懸濁排水の流動に伴う圧力損失等のロスが少なく、全体の浄化処理効率を高めることができる。
ここで、懸濁排水処理槽は、プラスチック製や金属製など素材で形成された箱型容器であり、ポンプ等を介して懸濁排水が上方の開口部等から供給され、内部に平行配置された袋状のフィルタに取り付けられた排水パイプ等を介してそのフィルタの内部からろ過された懸濁排水の処理液が外部に排出できる。
【0020】
請求項5に記載の懸濁排水処理装置は、土砂等の固形分を含む懸濁排水が供給される処理水槽と、前記処理水槽内に配置されその外部表面側から前記懸濁排水が供給されて内部裏面側からろ過された処理水が排出される全体に密閉して形成された袋状のフィルタと、前記フィルタの表面にその毛先が当接して配置されたブラシ部と、前記ブラシ部を前記フィルタの表面に沿って往復摺動させるブラシ駆動部とを有して構成されている。
この構成によって、以下の作用を有する。
(1)ブラシ部をフィルタの外部表面に沿ってその表面を摩りながら往復摺動させるので、フィルタ面上に付着した固形分の付着層を除去でき、常時、適正な自然ろ過条件を安定的に保持させることができ、処理作業の効率化と安定化とが図られる。
(2)ブラシ部の毛先だけを当接させるので、フィルタ層の内部に一定量の固形分を保持させた透水状態を維持して使用でき、フィルタ網目の間隔より小さい微小粒子でも透過させることなく捕捉できる。
(3)ブラシ部を往復摺動させるブラシ駆動部を有するので、フィルタ面へのエア吹き付けやフィルタの振動付加等による従来の付着層の除去方法等に比較して、確実に付着層を除去でき、作業性とメンテナンス性に優れている。
【0021】
請求項6に記載の懸濁排水処理装置は、請求項1乃至5の内いずれか1項に記載の発明において、前記懸濁粒子凝集槽又は前記ろ過槽、前記懸濁排水処理槽、前記処理水槽のいずれか1以上の内部に、アルカリ性の前記懸濁排水を中和する中和手段を有して構成されている。
この構成によって、請求項1乃至5の内いずれか1項の作用に加えて以下の作用を有する。
(1)中和手段を有するので、アルカリイオンにより河川等の放流先がアルカリ化するのを防止できる。
(2)アルカリイオンによる河川等の生物のアルカリ蓄積を防止できる。
ここで、中和手段としては、希塩酸や酢酸などの中和剤を添加するか、炭酸ガス等を懸濁排水中に吹き込むことにより行われる。
【0022】
請求項7に記載の懸濁排水処理装置は、請求項6に記載の発明において、前記中和手段が、散気管と、前記散気管に炭酸ガスを供給する炭酸ガス供給部と、を有する、又は、微細気泡混合液噴出器と、前記微細気泡混合液噴出器に炭酸ガスと水との混合流体を供給するポンプとを有して構成されている。
この構成によって、請求項6の作用に加えて以下の作用を有する。
(1)中和手段として、散気管を有するので、懸濁排水中に炭酸ガスや空気を吹き込み、水酸化カルシウム等のアルカリ分を中和し処理水を中性化したり、溶存酸素量を高めることができる。
(2)中和手段として、微細気泡混合液噴出器に炭酸ガスや空気と水との混合流体を供給するポンプを有するので、アルカリ分を中和したり、溶存酸素量を高めることができる。特に、微細気泡混合液噴出器は水中への空気の溶解力が強いので、空気だけでもアルカリ分を中和できる。
【0023】
請求項8に記載の懸濁排水処理方法は、土砂等の固形分を含む懸濁排水を処理水槽内に供給する懸濁水供給工程と、前記処理水槽内に配置され全体に密閉して形成された袋状のフィルタの外部表面側から内部裏面側に前記懸濁排水をろ過させるろ過工程と、前記フィルタの表面にその毛先が当接されたブラシ部をブラシ駆動部を用いて前記フィルタの表面に沿って往復摺動させるブラシ工程とを有して構成されている。
この構成によって、以下の作用を有する。
(1)懸濁排水が供給される処理水槽内に配置された袋状のフィルタで懸濁排水をろ過させる工程と、ブラシ駆動部を介してブラシ部をフィルタの表面に沿って往復摺動させる工程を有するので、そのフィルタ面に堆積付着した固形分を確実に除去することができる。
(2)フィルタが常時適正なろ過状態に維持されるので、懸濁排水の浄化処理を大量かつ効率的に行うことができる。
【0024】
請求項9に記載の懸濁排水処理方法は、請求項8に記載の発明において、前記懸濁水供給工程の前工程として、前記懸濁排水を陽極板と陰極板が平行配置された凝集流路で懸濁粒子を凝集させる凝集工程を備えて構成されている。
この構成によって、請求項6の作用に加えて以下の作用を有する。
(1)凝集流路を流れる懸濁排水中の微小粒子を帯電させる凝集工程を備えるので、浮遊性の懸濁粒子のフロック化を促して、ろ過部のフィルタで捕捉できる所定大きさまで成長させ、懸濁排水中の固形分をろ過部のフィルタ上に確実に保持させて清水部分と固形分とに効率的に分離させることができる。
(2)従来の凝集剤を用いる水処理方法のように溶出物がないので、浄化処理に伴って環境を汚染させるおそれがない。
【0025】
請求項10に記載の懸濁排水処理方法は、請求項8又は9に記載の発明において、ろ過工程又は前記凝集工程において、前記懸濁排水をアルカリ分を中和する中和工程又は溶存酸素量を高める溶存酸素富化工程を備えて構成されている。
この構成によって、請求項8又は9の作用に加えて以下の作用を有する。
(1)懸濁排水がpH9〜12のアルカリ性を呈しても中和し、pH7の中性とすることができる。
【0026】
【発明の実施の形態】
(実施の形態1)
本発明の実施の形態1に係る懸濁排水処理装置について説明する。
図1は実施の形態1の懸濁排水処理装置の斜視図であり、図2はその構成断面模式図である。
図1及び図2において、10は実施の形態1の懸濁排水処理装置、11は懸濁排水が供給配管11aを介して供給される懸濁粒子凝集槽、11bは所定間隔をあけて平行に並設された陽極板と陰極板を備え陽極板と陰極板の間に凝集流路を備えた懸濁粒子凝集部、11eは懸濁粒子凝集槽11に流入した土砂等の比重の重い粒子を開閉弁11fを通して排出する凝集槽排出部、11gは3°〜45°傾斜して側壁に形成された凝集槽槽底、12は懸濁粒子凝集槽11で液中の微細粒子を電気的に凝集された懸濁排水が連結管12aを介して供給されろ過液をろ過液排出管12bから排出しその槽底12cにろ過分離された固形分が堆積されて固形分排出部12dから開閉弁12eを介して排出されるろ過槽、12fはろ過液排出管12bのバルブ、13,14は懸濁粒子凝集槽11の水槽内に流水方向と平行に又は直交して吊設された非導電性のスペーサ11cを有して懸濁粒子凝集槽11上部に固定された電極支持体11dを介して交互に直列配置された陽極板と陰極板、15は陽極板13と陰極板14に所定の直流電圧を印加する電源部、16はろ布16aにより全体が袋状となって平板状に形成され内部に支持枠体16bを有してろ過槽12内に立設されたフィルタ、フィルタ16はフィルタユニット(図示せず)でユニット化されたりして懸濁粒子凝集槽11に装設されている。16cはろ過槽12内に平行配置された複数のフィルタ16の下部に連設されたろ過液排出管12bに開口して設けられフィルタ16内のろ過液が排出される通水孔、17はフィルタ16の両表面側に対となってブラシ17aの毛先が当接されるブラシ部、18は左右のブラシ部17をフィルタ16の両ろ布面から当接させるように支持するブラシ支持体、19はブラシ支持体18をフィルタ16の面に沿って所定の速度で上下又は左右に往復摺動させる摺動機構を備えたブラシ駆動部である。
【0027】
懸濁粒子凝集槽11は下部が浸漬される黄銅やアルミニウムなどからなる陽極板13と陰極板14が交互に1〜100mmの間隙で配置されている。直流電圧が印加された陽極板13と陰極板14との間隙に懸濁排水の流れる凝集流路αを形成して、懸濁排水中の微細粒子の凝集を促している。これによって、ろ過槽12におけるフィルタ16の外表面でこの凝集させた粒子を捕捉しやすくなるようにしている。
陽極板13と陰極板14はその上部で電極支持体11dで連結保持され、各極板間にはプラスチックやセラミックス等からなる非導電性のスペーサ11cを配置して、所定間隔を維持させ凝集流路αが形成されるようにしている。
なお、ここでは各極板を懸濁粒子凝集槽11内に垂直になるように立設させているが、各極板を傾斜等させて配置して凝集流路を形成させることもできる。また、各極板に多数の通水孔を設けたり、金網状の素材で極板を形成し、極板に垂直な方向に懸濁排水が流れるようにしておくことができ、これよっても凝集流路αが形成できる。
懸濁粒子凝集槽11の底部は傾斜して形成され、沈殿された固形分を含む排水が凝集槽排出部11eからバルブ11fを開放することで適宜排出される。
陽極板13と陰極板14に電源部15を介して印加される直流電圧は2〜50ボルト、好ましくは6〜24ボルトとすることが望ましい。
これは、懸濁排水中の固形分の形態や電気伝導度、その処理量などにもよるが、この直流電圧が6ボルトより低くなるにつれ、微小粒子に対する凝集効果が低下する傾向が表れ、逆に24ボルトを超えるにつれ、懸濁排水の電解が進むと共に電極の消耗が加速される傾向が表れ、これらの傾向は2ボルトより低くなるか50ボルトより高くなるとさらに顕著になるからである。
【0028】
次に、フィルタについて、図面を用いて説明する。
図3(a)は実施の形態1のフィルタの斜視図であり、図3(b)はフィルタのろ布を取り外した状態の斜視図であり、図3(c)は、ろ過槽12に配置されるユニット化されたフィルタの斜視図である。
図3において、16は実施の形態1の懸濁水のフィルタ、16aは袋状に形成されたろ布、16bはろ布16aに内蔵された合成樹脂製管状物で略矩形枠状に形成された支持枠体、16cは支持枠体16bの中空部に連通しろ布16aの外部に開口して取り付けられた通水孔、16dはろ布16aの通水孔16c側で両面のろ布を縫着やファスナー等で固定する上側及び下側のろ布固定部、16eは支持枠体16bの各パイプに貫通して穿設された複数の取水孔、16fは支持枠体16bの枠内に配置された金属線や合成樹脂製線状物で3次元網目構造状に形成された芯材である。
図3(c)に示すようにフィルタ16は三枚を1組として、ユニット化されそれぞれの通水孔16cが三分岐管16gを介して平行に結合され、三分岐管16gの基端部がろ過槽12のろ過液排出管12bに連結されている。尚、ユニット化は2〜5枚を1組としてもよい。
支持枠体16bは図3(b)に示すように、全体が略矩形状の枠体に構成され、上部取水パイプ16ba、下部取水パイプ16bb、奥部取水パイプ16bc、前部取水パイプ16bdとで構成されている。前部取水パイプ16bdの中央より下よりの位置にろ布16aから外部に向けて突出して配置された通水孔16cが設けられている。
なお、取水孔16eは枠状に形成された支持枠体16bの枠内側に向けて一列又は複数列に形成されている。その口径は1〜5mmの範囲とし、支持枠体16bにおける取水孔16eの配置数は、各取水パイプ16ba〜16bd毎に異ならせている。即ち、各取水パイプ16ba〜16bdにおける単位長さ当たりの取水孔16eの配置数をそれぞれNa〜Ndとすると、Nb>Nc=Nd>Naの関係となるように形成されている。また、奥部取水パイプ16bc及び前部取水パイプ16bdにおける取水孔16eは下方から上方にいくほど疎になるように形成することが好ましい。これによって、通水孔16cにコンプレッサ等から圧縮空気を供給してろ布16aの逆洗を行う際の空気量を均一化させ、ろ布16aに付着した固形分の除去効率を高めることができる。
【0029】
芯材16fはポリエチレンやポリアミドなどの軟質又は硬質の合成樹脂からなり、3次元網目構造をもつように形成されるのが好ましく、これによって、ポンプ等を用いた強制排水時にろ布16aがその中央部で凹んで表裏のろ布16a同士が接触して流路が閉塞され通水性が妨げられるのを有効に防止することができる。
フィルタ16はその上端等をろ過槽12の上部に釣り下げて支持させたり、支持枠体16bやフィルタ16自体に取り付けられた図示しない支持部材などを介して立設したりして、ろ過槽12内に互いに所定間隔、例えば30〜150mmの間隔をおいて固定配置される。
それぞれのフィルタ16の内部はろ過液排出管12bに通水孔16cを介して連通されている。なお、ろ過液排出管12bを分岐構造にして、その分岐部を各フィルタ16に連結して用いてもよい。
【0030】
互いに平行配置されたフィルタ16を保持するろ過槽12の槽底12cは水平面に対して約3〜45度の角度に片傾斜またはV字状に両傾斜させている。この傾斜部の最下部に連設して、バルブ12e等を有した固形分排出部12dが配置されている。このバルブ12eを開くことによって、槽底12cに沈殿堆積する土砂などを固形分排出部12dから排出させる。
【0031】
細長に形成されたブラシ部17,17aはブラシ支持体18を介して略平板状のフィルタ16の両面側を挟み込むように配置される。
図4(a)はブラシ部を駆動させるブラシ駆動部の駆動機構を説明する平面図であり、図4(b)はその要部側面図であり、図5はブラシ駆動部の側面図である。
図4、図5において、19はブラシ部17を左右方向に摺動させるブラシ駆動部、ブラシ駆動部19はろ過槽12の内側下部に配設されたブラシ駆動部支持部12に載置固定されている。19aは平行配置されたフィルタ16の両サイドに配置されたブラシ支持体18をチェーン19b及びスプロケット19cを介して駆動させるためのモータである。ブラシ部17のブラシ17aはチェーン19bを介してブラシ駆動部19のモータ19aでフィルタ16の両表面に沿って駆動される。ろ過槽12とチェーン19bにはブラシ部17の上下又は左右反転位置にリミットスイッチ19d,19eが設けられており、これによってモータ19aの正逆回転が切り替えられてブラシ部17の往復摺動させる操作が制御される。
なお、ブラシ支持体18はそのフィルタ面に沿って垂直方向又は水平方向に往復摺動するようにしたリンク機構等の前後動機構を備えたブラシ駆動部で駆動されるようにしてもよい。
【0032】
以上のように構成された実施の形態1の懸濁排水処理装置10に用いて懸濁排水を処理する方法について説明する。
まず、ダムや河川、湖沼、用水路等の工事現場から流れ込む泥水等の懸濁排水、トンネル工事や河川工事、浚渫工事、造成工事、各種の建設工事などで発生する土砂等の固形分を含む懸濁排水を懸濁粒子凝集槽11内に供給する。
懸濁粒子凝集槽11に供給された懸濁排水は、所定電圧が印加された陽極板13と陰極板14との間の凝集流路を流れ、ここで、液中の微小粒子が帯電され互いに凝集して所定大きさの粒子(フロック)が形成される。
懸濁粒子凝集槽11で電解処理されフロック化された粒子を含む懸濁排水は連結管12aからろ過槽12に供給され、フィルタ16のろ布16aでろ過される。こうしてフィルタ16の表面に沈着付着された固形分とろ過液とに分離され、ろ過液がフィルタ16下部の通水孔16cからろ過液排出管12bを介して排出される一方、フィルタ16の面上に付着した後剥離した土砂などの固形分は、槽底12cに貯留され、必要に応じて、固形分排出部12dから排出される。
この間、フィルタ16の両面にはブラシ部17のブラシ17aの毛先が当接され、ブラシ駆動部19を用いて所定の速度で往復摺動され、これによって、フィルタ16のろ布16aの表面のスラッジを落としろ布16aのろ過圧が常時一定となる適正なろ過条件に維持させている。
こうして、懸濁排水を懸濁粒子凝集槽11とろ過槽12とに連続的に供給して、微小粒子を含む懸濁排水の浄化処理を効率的に行うことができる。
【0033】
実施の形態1の懸濁排水処理装置は以上のように構成されているので以下の作用を有する。
(1)懸濁粒子凝集槽11で液中の微小粒子を帯電させることができ、浮遊性の懸濁粒子のフロック化を促して、ろ過槽12のフィルタ16で捕捉できる所定大きさ(5〜10μm以上)まで成長させ、この固形分をろ過槽12のフィルタ16上に確実に保持させて清水部分と固形分とに効率的に分離できる。
(2)袋状に形成されたフィルタ16の外部表面にその毛先が当接して配置されたブラシ部17のブラシ17aをその外部表面に沿って往復摺動させるので、フィルタ16面上の固形分の付着層を常時除去して、目詰まりさせることなく常時、一定のろ過条件を保持させることができ、処理作業の効率化が図られる。
(3)ろ布16aの表面にブラシ部17のブラシ17aでろ布16aの表面を軽く当接させるので、一定量の微粒子状の固形分をろ布16a中に保持させ、フィルタ本来の網目間隔を該固形分で狭めた状態で使用でき、0.1〜5μm程度の微小粒子を透過させることなく捕捉できる。
(4)懸濁水が袋状に形成されたフィルタ16の外部表面側から内部裏面側に流れるので、このフィルタ16の外側部分に付着した固形分の除去を容易に行うことができる。
(5)ブラシ部17を有しているので、フィルタ16に固着した付着層を凝集させた状態で除去してろ過条件を一定に維持させることが容易にできるので、処理効率の向上が図られ、ダムや河川等の懸濁排水を大量に処理することが可能になる。
(6)フィルタ16が袋状になっているので、設備スペースが狭い場合でもそのフィルタ面を有効に活用して、効率的に懸濁排水を処理できる。
(7)従来の凝集剤を用いる水処理装置のように有害な溶出物がないので、浄化処理に伴って環境を汚染させるおそれがない。
(8)ブラシ部17を往復摺動させるブラシ駆動部19を有するので、フィルタ面へのエア吹き付けやフィルタの振動付加、逆流等による従来の付着層の除去方法等に比較して、確実に付着層を除去できる。
(9)従来のような化学的な方法で懸濁粒子の除去を行っていたが、本発明は物理的な除去なので水に溶解したミネラル分等はそのまま処理水として河川やダムに排出されるので、河藻や海藻の成長を促進し、環境保全、改善効果を得ることができる。
【0034】
(実施の形態2)
本発明の実施の形態2に係る懸濁排水処理装置について説明する。
図6は実施の形態2の懸濁排水処理装置の斜視図であり、図7はその側面断面模式図である。
図6及び図7において、20は実施の形態2の懸濁排水処理装置、21は実施の形態1と同様の構成の懸濁粒子凝集槽11とろ過槽12を一体化し共に内蔵して配置された処理水槽、22,23は懸濁粒子凝集槽11の上流側及び下流側に設けられ懸濁排水を上昇下降させる上昇流路と下降流路とを備えた上流側及び下流側粒子沈殿部、24はろ過液排出管12bから流出するろ過水を貯水する貯水槽、24aは貯水槽24のろ過水を河川等に排水する排水管、25はポンプ、25aは貯水槽24からポンプ25にろ過水を送る吸水管、26はポンプ25の吸引側へ炭酸ガスを供給するガス供給部、27は炭酸ガスとろ過水の混合流体を吐出する吐出管、28は略回転対称形に形成された中空部を有する器体28aと、器体の周壁部に接線方向に開口され気液導入管28bが連設された気液導入孔と、中空部の回転対称軸の方向に開口して設けられた気液噴出孔28cとを備えた微細気泡混合液噴出器である。微細気泡混合液噴出器28の気液導入管28bから気液導入孔にポンプ25を介して炭酸ガスや空気の気泡を含む水を流入させると、器体周壁の接線方向から流入した水流は、器体28aの内壁に沿って旋回して、この旋回運動によって、水に内在した気泡が微細気泡となり、微細気泡の炭酸ガスや空気を含む気液混合水を気液噴出孔28cから吐出させることができ、水中のアルミニウムイオンやカルシウム等のアルカリ分を水中に溶存したCOで中和したり、溶存酸素量を高め、水質浄化等を促進させることができる。
なお、以下の説明において、実施の形態1と同様の作用を有するものについては同一の符号を付してその説明を省略する。
上流側粒子沈殿部22は、懸濁排水が供給される供給配管11a側に垂設されその下端が開口して保持される上部隔壁22aと、処理水槽21の槽底21aから立設されその上端が突出して保持される下側が流水可能に形成された下部隔壁22bとを備えてこの隔壁間に懸濁排水を上昇下降させるための下降流路と上昇流路が形成されている。なお処理水槽21の上流側粒子沈殿部22及び懸濁粒子凝集槽11、下流側粒子沈殿部23の底部は傾斜して形成され、その下端側には沈殿物を排出させる孔部等で形成された排出部22cや貯留部が設けられており、必要に応じて沈殿物が連続的又は間欠的に取り出せるようになっている。なお排出部22cは上流側粒子沈殿部22及び懸濁粒子凝集槽11、下流側粒子沈殿部23ごとに独立して設けることもできる。
下流側粒子沈殿部23は懸濁粒子凝集槽11とろ過槽12との間に垂直又は傾斜させて取り付けられた上部隔壁23aと下側に流水部が形成された下部隔壁23bを備えて形成されている。これによって、懸濁粒子凝集槽11の上部側から懸濁排水を取り込み槽底21a側に下降させて流れ上方に反転させることで、懸濁排水の流れのショートパスを防止して、懸濁排水の浄化処理を効率的行えると共に、特に大きく成長した固形分を上部隔壁23aの下側で沈殿させて除去することができる。
【0035】
次に、電極支持構造について、図面を用いて説明する。
図8は懸濁粒子凝集部における電極支持構造を示す断面構成図である。
図8において、30は懸濁排水が供給配管11aを介してその上部側などから供給される懸濁粒子凝集槽11の処理水槽や電解水槽等の水槽壁部、13,14はアルミなどの導電性材料で略平板状に形成され、それぞれ所定間隔をおいて配置される陽極板及び陰極板、31は黄銅などの金属からなる導電性スペーサ31aを介して電気的に接続して各電極板を保持させるための導電性支持部、32は塩化ビニル製のパイプ等からなる非導電性スペーサ32aを介して各電極板31,32を絶縁状態で支持するための非導電性支持部、35は各電極板31,32をそれぞれ電源部15に接続するための導線である。
陽極板13と陰極板14はその上下部や中間部で導電性支持部31や非導電性支持部32を介して連結保持されて所定間隔を維持させ極板間に凝集流路が形成されるようにしている。このため、例えば水槽壁部30の上部側に設けた供給配管11aから懸濁排水を供給すると、導電性支持部31と非導電性支持部32によって支持された陽極板13と陰極板14との間の凝集流路で、極めて微細な懸濁粒子を凝集させて5μm以上の粒子に成長させることができるので、沈殿させるとともに、下流側のろ過槽12で容易にろ過して分別させることができる。水槽壁部30の側壁部や下部側等に設けた図示しない排出口等から電解処理された懸濁排水を排出させることができる。
【0036】
実施の形態2の懸濁排水処理装置20は以上のように構成されているので、実施の形態1の作用に加えて、以下の作用を有する。
(1)懸濁粒子凝集槽11の上流側及び下流側に粒子沈殿部22、23が配置されているので、供給される懸濁排水の流れを上下方向に反転させ、この流れの変化によって、懸濁排水中の比重の大きい固形分を効果的に沈殿分離できる。
(2)処理水槽21内に懸濁粒子凝集槽11とろ過槽12とが内蔵されているので、全体をコンパクトにすることができる。
(3)懸濁粒子凝集槽11でフロック化処理された懸濁排水を直接、ろ過槽12に供給できるので懸濁排水の移送に伴う圧力損失等のロスが少なく、装置運転時における経済性にも優れている。
(4)上部隔壁22a,23aや下部隔壁22b,23bを有しているので比重の重い粒子が粒子沈殿部22,23に沈降するので、懸濁粒子凝集槽11やろ過槽12における懸濁排水の浄化処理を軽減して、装置全体の耐用性やメンテナンス性を高めることができる。
(5)電力等の駆動源を要せず所定大きさの浮遊粒子を沈殿させることことのできる粒子沈殿部22,23を備えるので、懸濁排水の浄化処理をさらに経済的に行うことができる。
(6)電極板への通電により微細な懸濁粒子を電気的に凝集させるので、ろ過槽12のフィルタ16の目詰まりを防ぐことができ運転時間を著しく長くすることができる。
【0037】
(実施の形態3)
図9はろ過槽に配設されるろ過ユニットとブラシ部の要部斜視図であり、図10はブラシ部の変形例の斜視図である。図8,9において、12bはろ過液排出管、16はフィルタ、16cは通水孔、16dはろ布固定部であり、これらは実施の形態1と同様なものなので、同一の符号を付し説明を省略する。
図9において、17aaは90°以内で反転するモータにカップリング等を介して軸着されたブラシ回動軸191に軸着されたステンレス製や木製、FRP等で形成されたブラシ部、17caはブラシ部17aaに固定された合成樹脂製シートやゴム管等で形成されたブラシである。尚、ブラシ部17aa,17aaは交互に90°以内で回動するように回動が調整されている。
図10において、17abはモータにカップリング等を介して軸着された回転軸192に軸着されたステンレス等で形成されたブラシ部、17cbはブラシ17caと同様の材質でブラシ部17abに固定されたブラシである。フィルタ16間に配設されるブラシ部17aa,17abには両面にブラシ17ca,17cbが形成されている。
以上のように実施の形態3のブラシ部は構成されているので、簡単な機構で、フィルタ16の表面のスラッジをなで降ろすことができる。
【0038】
【発明の効果】
請求項1に記載の懸濁排水処理装置によれば、以下の効果を有する。
(1)陽極板と陰極板間に直流電圧を印加することにより、この凝集流路を流れる懸濁排水中の微小粒子を帯電させ浮遊性の懸濁粒子のフロック化を促して、下流のろ過槽のフィルタで捕捉できる所定大きさまで成長させ、この電気処理された懸濁排水中の固形分をろ過槽のフィルタ上に確実に保持させて清水部分と固形分とに効率的に分離させることができろ過性に優れる。
(2)フィルタが袋状に形成され、懸濁水がこの袋状のフィルタの外部表面側から内部裏面側に流れるので、このフィルタの外側部分に付着した固形分の除去を容易に行うことができ、フィルタのろ過時間が長くメンテナンス性に優れる。
(3)フィルタに固着した付着層を除去してろ過条件を一定に維持させることが容易にできるので、処理効率の向上が図られ、河川工事等からの大量の懸濁排水を効率的に処理することが可能になる。
(4)フィルタが袋状になっているので、処理水槽内のスペースが狭い場合でもそのフィルタ面を有効に活用して、効率的に懸濁排水を処理できる。
(5)従来の凝集剤を用いる水処理装置のように溶出物がないので、浄化処理に伴って環境を汚染させるおそれがない。
【0039】
請求項2に記載の懸濁排水処理装置によれば、請求項1に記載の効果に加えて以下の効果を有する。
(1)袋状に形成されたフィルタの外部表面にその毛先が当接して配置されたブラシ部をフィルタの外部表面に沿って往復摺動させるので、フィルタ面上の固形分の付着層を除去して、目詰まりさせることなく、一定のろ過条件を保持させることができ、ろ過効率の経時的安定性を維持すると共にフィルタの目詰まりによるメンテナンスの回数を著しく削減でき、ろ過作業の作業性を向上できる。
(2)フィルタ表面がブラシ部で所定間隔で掃引され、フィルタ層の内部に一定量の固形分を保持させてフィルタ本来の網目間隔を狭めた状態で使用でき、数μm程度の微小粒子を透過させることなく捕捉できる。
(3)ブラシ部を往復摺動させるブラシ駆動部を有するので、フィルタ面へのエア吹き付けやフィルタの振動付加等による従来の付着層の除去方法等に比較して、確実に付着層を除去できる。
(4)ブラシ部の毛先をフィルタの外部表面に沿って往復摺動させるので、フィルタ面を損傷させることがなく、メンテナンス性や耐用性に優れている。
【0040】
請求項3に記載の懸濁排水処理装置によれば、請求項1又は2に記載の発明の効果に加えて、以下の効果を有する。
(1)凝集流路の上流側及び/又は下流側に上昇流路と下降流路とを備えた粒子沈殿部が配置されているので、供給される懸濁排水の流れを上下方向に反転させ、この流れの変化によって、懸濁排水中の固形分を効果的に沈殿分離させることができる。
(2)以降の凝集流路やろ過部における懸濁排水の浄化処理を軽減して、装置全体の耐用性やメンテナンス性に優れる。
(3)電力等の駆動源を要せず所定大きさの浮遊粒子を沈殿させることことのできる粒子沈殿部を備えるので、懸濁排水の浄化処理をさらに経済的に行うことができる。
【0041】
請求項4に記載の懸濁排水処理装置によれば、請求項1乃至3の内いずれか1項に記載の効果に加えて、以下の効果を有する。
(1)処理水槽内に懸濁粒子凝集槽とろ過槽とが内蔵されているので、全体をコンパクトにすることができ、トラックの荷台部分に装置を搭載して容易に移動させることができ、道路工事におけるアスファルトやコンクリート道路の面部をカッターで切断する際などに伴って発生する懸濁排水を容易に処理することができる。
(2)懸濁粒子凝集槽でフロック化処理された懸濁排水が直列配置されたろ過槽に供給されるので、懸濁排水の流動に伴う圧力損失等のロスが少なく、全体の浄化処理効率を高めることができる。
【0042】
請求項5に記載の懸濁排水処理装置によれば、以下の効果を有する。
(1)ブラシ部をフィルタの外部表面に沿って往復摺動させるので、フィルタ面上に付着した固形分の付着層を除去でき、常時、適正なろ過条件を安定的に保持させることができ、処理作業の効率化と安定化とが図られる。
(2)ブラシ部の毛先だけを当接させるので、フィルタ層の内部に一定量の固形分を保持させた透水状態を維持して使用でき、フィルタ網目の間隔より小さい微小粒子でも透過させることなく捕捉できる。
(3)ブラシ部を往復摺動させるブラシ駆動部を有するので、フィルタ面へのエア吹き付けやフィルタの振動付加等による従来の付着層の除去方法等に比較して、確実に付着層を除去でき、作業性とメンテナンス性に優れている。
【0043】
請求項6に記載の懸濁排水処理装置によれば、請求項1乃至5の内いずれか1項に記載の効果に加えて、以下の効果を有する。
(1)中和手段を有するので、アルカリイオンにより河川等の放流先がアルカリ化を防止でき、耐環境性(河川の汚濁防止など)に優れる。
(2)アルカリイオンによる河川等の生物のアルカリ蓄積を防止できる。
【0044】
請求項7に記載の懸濁排水処理装置によれば、請求項6に記載の効果に加えて、以下の効果を有する。
(1)中和手段を有するので、アルカリ分を中和したり、溶存酸素量を高めることができる。
【0045】
請求項8に記載の懸濁排水処理方法によれば、以下の効果を有する。
(1)懸濁排水が供給される処理水槽内に配置された袋状のフィルタで懸濁排水をろ過させる工程と、ブラシ駆動部を介してブラシ部をフィルタの表面に沿って往復摺動させる工程を有するので、そのフィルタ面に堆積付着した固形分を確実に除去し、ろ過時間を長期にし作業性に優れる。
(2)フィルタが常時適正なろ過状態に維持されるので、懸濁排水の浄化処理を大量かつ効率的に行うことができる。
【0046】
請求項9に記載の懸濁排水処理方法によれば、請求項8に記載の効果に加えて、以下の効果を有する。
(1)凝集流路を流れる懸濁排水中の微小粒子を帯電させる凝集工程を備えるので、浮遊性の懸濁粒子のフロック化を促して、ろ過部のフィルタで捕捉できる所定大きさまで成長させ、懸濁排水中の固形分をろ過部のフィルタ上に確実に保持させて清水部分と固形分とに効率的に分離させることができる。
(2)従来の凝集剤を用いる水処理方法のように溶出物がないので、浄化処理に伴って環境汚染を防止できる。
【0047】
請求項10に記載の懸濁排水処理方法によれば、請求項8又は9に記載の効果に加えて、以下の効果を有する。
(1)懸濁排水がpH9〜12のアルカリ性を呈しても中和し、pH7の中性とすることができ放流先の河川等の汚染を防止できる。
【図面の簡単な説明】
【図1】実施の形態1の懸濁排水処理装置の斜視図
【図2】実施の形態1の懸濁排水処理装置の断面模式図
【図3】(a)実施の形態1のフィルタの斜視図
(b)フィルタのろ布部を取り外した状態の斜視図
(c)ろ過部に配置されるフィルタユニットの斜視図
【図4】(a)ブラシ部を駆動させるブラシ駆動部の駆動機構を説明する側面図
(b)その平面図
【図5】ブラシ駆動部の側面図
【図6】実施の形態2の懸濁排水処理装置の斜視図
【図7】実施の形態2の懸濁排水処理装置の構成断面図
【図8】実施の形態1、2の懸濁粒子凝集部における電極支持構造の変形例を示す断面構成図
【図9】ろ過部に配設されるろ過ユニットとブラシ部の要部斜視図
【図10】ブラシ部の変形例の斜視図
【符号の説明】
10 実施の形態1の懸濁排水処理装置
11 懸濁粒子凝集槽
11a 供給配管
11b 懸濁粒子凝集部
11c スペーサ
11d 電極支持体
11e 凝集槽排出部
11f バルブ
11g 凝集槽槽底
12 ろ過槽
12a 連結管
12b ろ過液排出管
12c 槽底
12d 固形分排出部
12e 開閉弁
12f バルブ
12g ブラシ駆動部支持部
13 陽極板
14 陰極板
15 電源部
16 フィルタ
16a ろ布
16b 支持枠体
16c 通水孔
16d ろ布固定部
16e 取水孔
16f 芯材
16g 三分岐管
17、17aa、17ab ブラシ部
17a、17ca、17cb ブラシ
18 ブラシ支持体
19 ブラシ駆動部
19a モータ
19b チェーン
19c スプロケット
20 実施の形態2の懸濁排水処理装置
21 処理水槽
21a 槽底
22 上流側粒子沈殿部(粒子沈殿部)
22a 上部隔壁
22b 下部隔壁
22c 排出部
23 下流側粒子沈殿部(粒子沈殿部)
23a 上部隔壁
23b 下部隔壁
24 貯水槽
24a 排水管
25 ポンプ
26 ガス供給部
28 微細気泡混合液噴出器
30 水槽壁部
31 陽極板
32 陰極板
33 導電性支持部
33a 導電性スペーサ
34 非導電性支持部
34a 非導電性スペーサ
35 導線
191 回動軸
192 回転軸
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to suspended wastewater for purifying muddy water and turbid water flowing from dams, rivers, lakes, marshes, irrigation canals, etc. The present invention relates to a treatment apparatus and a suspension wastewater treatment method.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in order to purify suspended wastewater discharged from construction sites such as dams, rivers, and lakes and seawalls, purification treatment is performed by combining a plurality of solid-liquid separators and the like. For the purification treatment of such suspended wastewater, for example, the following technology is known.
Patent Document 1 discloses a storage tank for storing turbid water / muddy water, a flocculant charging means for charging a flocculant into the turbid water / muddy water, and a mixing device for mixing the flocculant and the turbid water / muddy water to generate floc. And a filtration device that separates the floc generated by the mixing device from water.
In Patent Document 2, an electrode plate group is formed by alternately arranging an anode electrode plate and a cathode electrode plate connected to an anode and a cathode of a DC power supply, respectively, along a water flow direction in a channel portion through which muddy water passes. A turbid water treatment device is described.
[0003]
[Patent Document 1]
JP-A-2002-219471
[0004]
[Patent Document 2]
JP-A-11-226577
[0005]
[Problems to be solved by the invention]
However, the above conventional technology has the following problems.
(A) The turbid water / muddy water treatment apparatus having the coagulant charging means described in Patent Document 1 adds a coagulant such as polyaluminum chloride to the suspended waste water to coagulate and flocculate fine particles. There is a problem that it is liable to diffuse and contaminate the surrounding environment, and it is difficult to adjust the amount of the substance to be introduced, and the cost of the drug is high.
(B) The filtration device for separating floc and water is made of a porous material, and the solid content adheres thickly to the surface of the mesh with the treatment of the turbid water, so that the filtration efficiency of the turbid water gradually decreases. Therefore, there is a problem that mass processing becomes difficult.
(C) In the turbid water treatment apparatus for aggregating particles using the electrode plate described in Patent Literature 2, since a configuration for separating solids from the agglomerated treatment liquid is not presented, the amount of turbid water flowing through the electrode plate, etc. There is a problem that it is difficult to properly adjust the water in conjunction with the filtration device, and the workability of the turbid water treatment is lacking.
(D) There is a problem in that aluminum ions are discharged while being bound to the fine suspended particles and bioaccumulated in edible organisms at the discharge destination, thereby impairing safety.
[0006]
The present invention has been made in order to solve the above-mentioned problems, and there is no risk of environmental pollution or the like due to the use of a flocculant. Of suspended effluent treatment equipment that can efficiently process suspended effluent by linking the amount of turbid water flowing to the filter with a filtration device, and a suspension that can continuously and efficiently perform large-scale treatment of suspended effluent. An object of the present invention is to provide a method for treating turbid wastewater.
[0007]
[Means for Solving the Problems]
The suspended wastewater treatment apparatus according to claim 1, wherein a suspended particle flocculation tank to which suspended wastewater containing suspended particles such as earth and sand is supplied, and an anode plate and a cathode disposed in the suspended particle flocculation tank A suspended particle aggregating section having an aggregating flow path to which suspended wastewater is supplied to a gap formed by disposing the plates in parallel, a filtration tank, and passing through the suspended particle aggregating section provided in the filtration tank A filtration unit having a substantially flat or substantially cylindrical filter formed in a bag shape so that the treated wastewater is supplied from the outer surface side and the treated water filtered from the inner rear surface side is discharged. , Is configured.
This configuration has the following operation.
(1) By applying a DC voltage between the anode plate and the cathode plate, the fine particles in the suspended wastewater flowing through the aggregation channel are charged, and the flocculation of the suspended particles is promoted. It is allowed to grow to a predetermined size that can be captured by the filter, and the solids in the electrotreated suspended wastewater can be reliably retained on the filter of the filtration unit, so that the freshwater portion and the solids can be efficiently separated.
(2) Since the filter is formed in a bag shape, and the suspension water flows from the outer surface side to the inner back surface side of the bag-shaped filter, the solid content attached to the outer portion of the filter is rubbed with a brush or a rubber hose. Can be easily removed.
(3) Since the adhering layer fixed to the filter can be removed and the filtration conditions can be easily maintained at a constant level, the treatment efficiency can be improved, and a large amount of suspended solids containing a large amount of sediment fine particles in river construction and the like can be obtained. Wastewater can be treated efficiently.
(4) Since the filter is in the shape of a bag, even if the space in the treated water tank is narrow, the filter surface can be effectively used, and a large amount of suspended wastewater can be efficiently treated.
(5) Since there is no eluate as in a conventional water treatment apparatus using a coagulant, there is no risk of polluting the environment with the purification treatment.
[0008]
Here, the anode plate and the cathode plate of the suspended particle aggregation portion are flat electrodes made of a metal material such as aluminum, zinc, stainless steel, titanium, and steel, or a conductive material such as carbonaceous material. A plurality of these flat electrodes are alternately arranged in a water tank at predetermined intervals, for example, 1 to 100 mm via a non-conductive spacer or the like, to form a suspended particle aggregation portion. Suspended wastewater is supplied to the gap between these plate-shaped electrodes to form an aggregation channel, and a predetermined voltage, for example, 0.5 to 100 volts, is applied between the electrode plates to cause fine particles in the suspended wastewater. The particles are charged to increase the cohesion between the particles to promote flocking.
[0009]
The filtration unit has a predetermined mesh interval, for example, a bag-shaped filter made of a woven or non-woven fabric having a mesh interval of 0.001 to 1 mm. A large number of them are arranged in parallel at intervals.
The filtration unit forms a water pipe made of metal, plastic, or the like so that the whole becomes frame-shaped, and a number of water intake holes are provided inside the frame of the water pipe, and the entire frame-shaped water pipe is covered with a filter cloth. It is also possible to form the filter cloth by providing a drain port for draining the internal filtered water from the water pipe.
Further, a core material having a three-dimensional network structure or a hollow structure may be disposed inside the frame of the water pipe to prevent the filter of the filtration unit from being crushed by an external pressure.
By gradually increasing the number of water intake holes formed in the water pipe from one side to the other side with respect to the center line of the water pipe, different suspended drainage at a height position of the filter portion and the like. Can be uniformed.
[0010]
In addition, the filtration unit, a circular or square tubular intake side end member having an intake hole on one end side, and a circular or square tubular backwash side end member with a backwash pipe on the other end side. A filter cloth support member disposed at equal intervals so as to form a cylinder, a square tube, or a star-shaped tube between the water intake side end member and the backwash side end member; Alternatively, it may be constituted by a filter cloth which is covered in a square cylindrical shape or a star cylindrical shape. With this, it is possible to obtain purified water filtered by the filter cloth from the water intake hole of the filter member, and to provide a backwash pipe, so that when the filter cloth is clogged, the backwash air or filtered water is removed. By flowing, the attached solids can be easily peeled and removed. In addition, since a large number of filter cloth support members are provided with filter cloths covered in a cylindrical shape, a rectangular tube shape, or a star-shaped tube shape, structural strength can be increased, weight can be reduced, and economic efficiency is excellent. In the case where the filter cloth is formed in a star shape, the effective area at the time of filtration can be increased to increase the filtration efficiency, and it is possible to cope with mass processing.
[0011]
Further, in the filtration unit, a fine bubble mixed liquid ejector for supplying a water flow containing fine bubbles such as carbon dioxide such as carbon dioxide or a fine bubble generator for generating fine bubbles of carbon dioxide may be provided at a tank bottom thereof. Alternatively, the alkaline water may be neutralized in the filtration water tank, thereby preventing damage from the alkaline water.
Here, the microbubble mixed liquid ejector is, for example, a vessel having a hollow portion formed in a substantially rotationally symmetrical shape, and a gas-liquid introduction having a gas-liquid introduction pipe connected to a peripheral wall portion of the vessel in a tangential direction. The one provided with a hole and a gas-liquid ejection hole provided in the direction of the rotational symmetry axis of the hollow portion can be applied. When water containing carbon dioxide gas or air bubbles flows into the gas-liquid introduction hole via a pump, the water flow that has flowed in from the tangential direction of the peripheral wall of the body turns along the inner wall of the body, and this swirling motion By this, the gas bubbles contained in the water become fine bubbles, and the gas-liquid mixed water containing carbon dioxide gas and air of the fine bubbles can be discharged from the gas-liquid ejection hole, and the alkali components such as aluminum ions and calcium in the water are converted into the water. Dissolved CO 2 Neutralization or increase the amount of dissolved oxygen to promote water purification and the like.
[0012]
The filtration unit may include a shutoff valve disposed downstream of the water intake unit of the filtration unit, and a backwash pipe connected to the water intake unit upstream of the shutoff valve. When the filter cloth is clogged with the solid content of the suspension water, the shut-off valve disposed downstream of the intake section is closed, and compressed air or the like is returned from the backwash pipe connected to the intake section upstream of the shut-off valve. Backwashing can be performed by flowing pressurized water using purified water, etc., and the inside of the filter can be expanded and extruded with compressed air or pressurized water, or the filter cloth can be aerated with compressed air. A layer of solids adhering to the surface can be effectively stripped off and deposited on the bottom of the filtration tank. Further, the compressed air or the pressurized water can be efficiently supplied to the filter cloth by operating the shutoff valve, and the solid content is peeled off, so that the maintenance property and the workability are excellent.
[0013]
The filter disposed in the filtration unit may be unitized by providing a partition frame that is detachably erected at a predetermined interval in the filtration water tank, and may be unitized.When the filter is attached, the filter is damaged or deteriorated. In this case, the filter can be replaced reliably and easily, and the maintenance is excellent. Further, the filters can be prevented from interfering with each other by the partition frame, and the filtration efficiency can be maintained.
Here, the interval between the filter members adjacent to each other is desirably in the range of 5 to 20 cm, preferably 10 to 15 cm. Depending on the concentration of the suspended particles to be treated and the amount of the treated water, as this interval becomes smaller than 10 cm, the flow resistance of the suspended water flowing in the filtered water tank increases, and the amount of the filtered water tends to decrease. Conversely, as it exceeds 15 cm, the surface area of the filter cloth arranged in the filtration water tank tends to be insufficient and the filtration efficiency tends to decrease, and these tendencies become less than 5 cm or more remarkable when it exceeds 20 cm. It is not preferred.
As the partition frame, a partition frame having many openings so that flowing water made of metal or synthetic resin flows is used. Further, the partition frame and the filter are arranged apart from the bottom so that the suspended matter can be stored on the bottom side. This can increase the efficiency with which the backwashed suspension flows down to the bottom.
[0014]
The filtration unit is also formed with a filtration water tank having a built-in filter and a suspension water storage tank formed through a suspension water partition wall, and is formed at the bottom of the filtration water tank and the suspension water storage tank so as to be inclined so that an intake port side is lower. And a sludge discharge portion formed at a lower portion of the filtration water tank and the suspension water storage tank on the intake side and discharging the sludge accumulated on the upper surface of the sludge accumulation wall. Accordingly, large particles such as earth and sand in the suspension water supplied to the suspension water storage tank and filtered in the filtration water tank can be previously settled and removed, and the load on the filter cloth can be reduced. Further, since the sludge accumulation wall formed at the bottom is inclined, solid matter such as earth and sand can be removed from the sludge discharge portion without requiring special power.
[0015]
Furthermore, if necessary, a frame made of vinyl chloride pipe or the like may be built in the bag-shaped filter, or both ends of the filter may be fixed to the side of the water tank. In other words, the distance between adjacent filters can be made appropriate to maintain the shape. As a material of the filter, a woven or nonwoven fabric made of synthetic fibers or natural fibers can be used. As the synthetic fiber, polyamide, polyester, polyolefin, polyvinyl alcohol, polyfluoroethylene, polyacrylonitrile, vinyl acetate, tetrafluoroethylene and the like having a thickness of about 0.1 to 20 μm can be used. In addition, predetermined points at the intersections of the fibers are fixed by fusing by heating or bonding with an adhesive to reinforce the whole and to capture the solid particles in the suspension water according to the size of the solid particles. The rate may be adjusted. In addition, the material of the filter is made of an ion exchange resin that prevents the adhesion of charged solid particles in the suspension water, or the filter surface is partially covered with the ion exchange resin to suppress the adhesion of the solid particles. Thus, clogging during the filtration process can be prevented.
Examples of the ion exchange resin include a cation exchange resin composed of a polymer acid in which a phenolic hydroxyl group, a carboxyl group, and a sulfonic acid group are bonded to a base synthetic resin such as polystyrene cross-linked with divinylbenzene, and a base synthetic resin. An anion exchange resin comprising a polymer base having a basic group such as an amino group, an imino group or an ammonium group bonded thereto can be selected and used according to the positive or negative charge state of the solid. For example, when the solid content of the suspension water is positively charged, coating the filter with a cation exchange resin can effectively prevent the solid content from entering the filter cloth and adhering it.
The voltage applied between the electrodes of the suspended particle aggregating section and the supply flow rate of the suspended wastewater supplied to the agglomerated flow path depend on the mesh spacing of the filter in the filtration section, the area of the filter, the pressure loss of the filter, and the like. An appropriate value is experimentally set accordingly. As a result, the treatment liquid of the suspended wastewater supplied to the filtration unit is flocculated, and the particles flocculated and flocculated to a predetermined size can be reliably captured on the filter surface and separated into fresh water.
[0016]
According to a second aspect of the present invention, there is provided the suspended wastewater treatment device according to the first aspect, wherein a brush portion whose bristles abut on an outer surface of the filter is disposed on the outer surface. And a brush drive unit that reciprocates while sliding loosely.
This configuration has the following operation in addition to the operation of the first aspect.
(1) The brush portion, whose tip is in contact with the outer surface of the filter formed in a bag shape, slides back and forth along the outer surface of the filter, and rubs. By removing the adhering layer, it is possible to maintain constant filtration conditions without clogging, maintain the filtration efficiency over time, and significantly reduce the number of maintenance due to filter clogging. Workability can be improved.
(2) The filter surface is rubbed and swept at a predetermined interval by a brush portion, and the filter layer can be used in a state where a predetermined amount of solid content is retained inside the filter layer to narrow the original mesh interval of the filter. Can be captured without allowing the particles to permeate.
(3) Since the brush unit has a brush driving unit that reciprocally slides the brush unit, compared with the conventional method of removing the adhered layer by blowing air to the filter surface or applying vibration of the filter, etc., the adhered layer is more uniformly and reliably formed. Can be removed.
(4) The brush tip is reciprocally slid while being rubbed along the outer surface of the filter, so that the filter surface is not damaged, and the maintainability and the durability are excellent.
[0017]
Here, the brush portion is formed in an elongated flat plate shape or a ring shape, and fibers such as nylon, polyvinyl alcohol, and polyester whose hair ends face the outer surface of the filter on one side of the flat plate or on the inner surface of the cylinder. Hair transplanted. The brush portion is held via an elastic member such as a spring, and is arranged such that a predetermined pressing force is applied to the filter surface from the bristle tip. As the brush portion, besides the flocking brush, a sheet or tube made of rubber or synthetic resin, or a thin plate made of metal or ceramic can be used. This is because the sludge attached to the filter surface can be rubbed and removed in the water of the filtration section.
The brush driving unit includes a motor, a limit switch, and the like, and moves the brush unit against the filter surface using the motor as a driving source, and the brush unit contacts one of the limit switches to reverse the sliding direction. This allows the filter to slide back and forth on the filter surface at predetermined intervals.
The brush drive unit may use an air pressure or water pressure motor in addition to the electric motor.
When the brush unit is driven continuously, it is desirable that the brush reciprocally slid by the brush driving unit be set to make one reciprocation between the limit switches in 5 to 60 seconds, preferably 10 to 300 seconds. This depends on the type of suspended wastewater and its treatment amount, but as the interval between reciprocating sliding becomes shorter than 10 seconds, the abrasion between the filter and the brush becomes severe and the durability tends to decrease, Conversely, as the time is longer than 300 seconds, the average thickness of the adhesion layer adhering to the filter surface increases, the pressure loss increases, and it tends to be difficult to maintain appropriate filtration conditions by natural filtration. The tendency is less than 5 seconds or even greater than 300 seconds.
[0018]
According to a third aspect of the present invention, there is provided the suspension wastewater treatment apparatus according to the first or second aspect, wherein the suspended particle aggregating tank includes an upstream side and / or a downstream side of a flocculation flow path of the suspended particle aggregating section. And a particle sedimentation section having an ascending flow path for raising and lowering the suspended wastewater and a descending flow path.
This configuration has the following operation in addition to the operation described in claim 1 or 2.
(1) Since the particle sedimentation section having the ascending flow path and the descending flow path is arranged in the suspended particle aggregating tank on the upstream side and / or the downstream side of the agglomerated flow path, the suspended waste water supplied is The flow is inverted in the vertical direction, and the change in the flow allows the solids in the suspended wastewater to be effectively settled and separated.
(2) It is possible to reduce the purification treatment of the suspended wastewater in the coagulation flow path and the filtration unit, and to improve the durability and maintainability of the entire apparatus.
(3) Since there is provided a particle sedimentation part capable of sedimenting suspended particles of a predetermined size without requiring a driving source such as electric power, the purification treatment of suspended wastewater can be performed more economically.
Here, the ascending flow channel and the descending flow channel each have a partition portion whose tip protrudes upward or downward on the upstream and / or downstream side of the aggregation channel for electrically aggregating the fine particles in the suspended wastewater. The flow of the suspended wastewater is reversed at the lower ends of the adjacent ascending flow passage and the descending flow passage, and the solid content in the suspended wastewater is precipitated there.
[0019]
According to a fourth aspect of the present invention, there is provided the suspension wastewater treatment apparatus according to any one of the first to third aspects, wherein the suspended particle aggregation section and the filtration section are arranged in series inside the suspension. It has a turbid wastewater treatment tank.
With this configuration, the following operation is provided in addition to the operation of any one of the first to third aspects.
(1) Since the suspended particle aggregating section and the filtering section are built in the suspended wastewater treatment tank, the whole can be made compact, and the apparatus can be mounted on the bed portion of the truck and easily moved. This makes it possible to easily treat suspended drainage generated when cutting the surface of an asphalt road with a cutter in road construction.
(2) Since the suspended wastewater flocculated in the suspended particle aggregation section is supplied to the filtration section arranged in series, loss such as pressure loss due to the flow of the suspended wastewater is small, and the overall purification efficiency. Can be increased.
Here, the suspended wastewater treatment tank is a box-shaped container formed of a material such as plastic or metal, and suspended wastewater is supplied from an upper opening or the like via a pump or the like, and is disposed in parallel inside. Through the drain pipe or the like attached to the bag-shaped filter, the treatment liquid of the suspended wastewater filtered from the inside of the filter can be discharged to the outside.
[0020]
The suspended wastewater treatment device according to claim 5, wherein a treated water tank to which suspended wastewater containing solid content such as earth and sand is supplied, and wherein the suspended wastewater is arranged in the treated water tank and supplied from an external surface side thereof. A bag-shaped filter formed by sealing the whole, from which the treated water filtered from the inner back side is discharged; a brush portion having a bristle tip abutting on the surface of the filter; and the brush portion. And a brush drive unit for reciprocating sliding along the surface of the filter.
This configuration has the following operation.
(1) Since the brush is slid back and forth along the outer surface of the filter while rubbing the surface, it is possible to remove the adhered layer of solids adhered to the filter surface and to constantly stably maintain appropriate natural filtration conditions. As a result, the efficiency and stability of the processing operation can be improved.
(2) Since only the bristle tips of the brush portion are brought into contact with each other, the filter layer can be used while maintaining a water permeable state in which a fixed amount of solids is held inside, and small particles smaller than the interval between the filter meshes can be transmitted. Can be captured without.
(3) Since the brush drive unit for reciprocatingly sliding the brush unit is provided, the adhered layer can be removed more reliably than the conventional method of removing the adhered layer by blowing air on the filter surface or applying vibration of the filter. Excellent workability and maintainability.
[0021]
The suspended wastewater treatment device according to claim 6 is the invention according to any one of claims 1 to 5, wherein the suspended particle aggregation tank or the filtration tank, the suspended wastewater treatment tank, and the treatment are performed. In any one or more of the water tanks, there is provided a neutralizing means for neutralizing the alkaline suspended wastewater.
With this configuration, the following operation is provided in addition to the operation of any one of the first to fifth aspects.
(1) Since it has a neutralizing means, it is possible to prevent a discharge destination such as a river from being alkalized by alkali ions.
(2) Alkali accumulation of organisms such as rivers due to alkali ions can be prevented.
Here, the neutralizing means is performed by adding a neutralizing agent such as dilute hydrochloric acid or acetic acid, or by blowing carbon dioxide gas or the like into the suspended wastewater.
[0022]
In the suspended wastewater treatment apparatus according to claim 7, in the invention according to claim 6, the neutralizing means includes an air diffuser pipe, and a carbon dioxide gas supply unit that supplies carbon dioxide gas to the air diffuser pipe. Alternatively, the apparatus includes a fine bubble mixed liquid ejector and a pump for supplying a mixed fluid of carbon dioxide and water to the fine bubble mixed liquid ejector.
With this configuration, the following operation is obtained in addition to the operation of the sixth aspect.
(1) Since a diffuser tube is provided as a neutralizing means, carbon dioxide gas or air is blown into the suspended wastewater to neutralize alkali components such as calcium hydroxide to neutralize treated water or increase the amount of dissolved oxygen. be able to.
(2) Since a pump for supplying carbon dioxide gas or a mixed fluid of air and water to the fine bubble mixed liquid ejector as a neutralizing means is provided, it is possible to neutralize alkali components and increase the amount of dissolved oxygen. In particular, since the fine bubble mixed liquid ejector has a strong dissolving power of air in water, the air alone can neutralize alkali components.
[0023]
The suspended wastewater treatment method according to claim 8, wherein a suspended water supply step of supplying suspended wastewater containing a solid content such as earth and sand into a treated water tank, and a suspended water supply step disposed in the treated water tank and formed to be entirely sealed. A filtration step of filtering the suspended waste water from the outer surface side to the inner back side of the bag-shaped filter, and using a brush drive unit to apply a brush portion having a brush tip abutting to the filter surface using a brush driving unit. A brush step of reciprocating sliding along the surface.
This configuration has the following operation.
(1) A step of filtering the suspended wastewater with a bag-shaped filter arranged in a treatment water tank to which the suspended wastewater is supplied, and sliding the brush unit reciprocally along the surface of the filter via a brush driving unit. Since the method includes the step, it is possible to reliably remove solids deposited on the filter surface.
(2) Since the filter is always maintained in a proper filtration state, the purification treatment of the suspended wastewater can be efficiently performed in a large amount.
[0024]
According to a ninth aspect of the present invention, in the method of the eighth aspect, the suspended wastewater is subjected to a coagulation flow path in which an anode plate and a cathode plate are arranged in parallel with each other as a step before the suspension water supply step. And an aggregating step of aggregating the suspended particles.
With this configuration, the following operation is obtained in addition to the operation of the sixth aspect.
(1) A flocculation step of charging fine particles in the suspended wastewater flowing through the flocculation flow path is provided, so that the floating suspended particles are flocculated and grown to a predetermined size that can be captured by the filter of the filtration unit. The solid content in the suspension wastewater can be reliably retained on the filter of the filtration unit, and can be efficiently separated into the fresh water portion and the solid content.
(2) Since there is no eluate as in the conventional water treatment method using a flocculant, there is no possibility of polluting the environment with the purification treatment.
[0025]
According to a tenth aspect of the present invention, in the method of the eighth or ninth aspect, in the filtration step or the coagulation step, a neutralization step of neutralizing the suspended waste water with alkali or an amount of dissolved oxygen is performed. It is provided with a dissolved oxygen enrichment step that enhances
With this configuration, the following operation is obtained in addition to the operation of the eighth or ninth aspect.
(1) Even if the suspension wastewater exhibits an alkaline pH of 9 to 12, it can be neutralized to neutral pH 7.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
(Embodiment 1)
A suspended wastewater treatment device according to Embodiment 1 of the present invention will be described.
FIG. 1 is a perspective view of a suspended wastewater treatment apparatus according to Embodiment 1, and FIG. 2 is a schematic sectional view of the configuration.
1 and 2, reference numeral 10 denotes a suspended wastewater treatment apparatus according to the first embodiment, 11 denotes a suspended particle flocculation tank to which suspended wastewater is supplied via a supply pipe 11a, and 11b denotes a suspended particle coagulation tank in parallel at a predetermined interval. A suspended particle aggregating section having an anode plate and a cathode plate juxtaposed and having an aggregation channel between the anode plate and the cathode plate. A coagulation tank discharge section for discharging through 11f, 11g is a coagulation tank bottom formed on the side wall inclined at 3 ° to 45 °, and 12 is a suspended particle coagulation tank 11 in which fine particles in the liquid are electrically coagulated. Suspended wastewater is supplied through the connecting pipe 12a, the filtrate is discharged from the filtrate discharge pipe 12b, and the solid separated by filtration is deposited on the tank bottom 12c. The solid is discharged from the solid discharge part 12d through the on-off valve 12e. The filtration tank to be discharged, 12f is the valve of the filtrate discharge pipe 12b. And 13 and 14 are fixed to the upper part of the suspended particle flocculation tank 11 with the non-conductive spacer 11c suspended in the water tank of the suspended particle flocculation tank 11 in parallel or perpendicular to the flowing water direction. An anode plate and a cathode plate alternately arranged in series via an electrode support 11d, 15 is a power supply unit for applying a predetermined DC voltage to the anode plate 13 and the cathode plate 14, and 16 is a bag-like overall made of a filter cloth 16a. The filter 16 is formed in a flat plate shape, has a support frame 16b inside, and stands upright in the filtration tank 12, and the filter 16 is unitized by a filter unit (not shown) to form a suspended particle aggregation tank 11 It is installed in. Reference numeral 16c denotes a water passage hole which is provided to open to a filtrate discharge pipe 12b connected to a lower part of the plurality of filters 16 arranged in parallel in the filter tank 12, and through which the filtrate in the filter 16 is discharged. A brush portion to which the bristles of the brush 17a are abutted in pairs on both surface sides of the brush 16; a brush support 18 for supporting the left and right brush portions 17 so as to abut from both filter cloth surfaces of the filter 16; Reference numeral 19 denotes a brush driving unit provided with a sliding mechanism that reciprocates the brush support 18 up and down or left and right at a predetermined speed along the surface of the filter 16.
[0027]
In the suspended particle agglomeration tank 11, anode plates 13 and cathode plates 14 made of brass, aluminum, or the like into which the lower portion is immersed are alternately arranged with a gap of 1 to 100 mm. An agglomeration flow path α through which suspended wastewater flows is formed in a gap between the anode plate 13 and the cathode plate 14 to which a DC voltage is applied, thereby promoting aggregation of fine particles in the suspended wastewater. This makes it easier to capture the aggregated particles on the outer surface of the filter 16 in the filtration tank 12.
The anode plate 13 and the cathode plate 14 are connected and held by an electrode support 11d at the upper part thereof, and a non-conductive spacer 11c made of plastic, ceramics, or the like is arranged between the respective electrode plates to maintain a predetermined interval to form a coagulated flow. The path α is formed.
Here, the respective electrode plates are set up vertically in the suspended particle aggregating tank 11, but the respective aggregation plates may be arranged at an inclination or the like to form an aggregation channel. In addition, it is possible to provide a large number of water holes in each electrode plate, or to form an electrode plate with a wire mesh material so that suspended wastewater can flow in the direction perpendicular to the electrode plate. The channel α can be formed.
The bottom of the suspended particle coagulation tank 11 is formed to be inclined, and wastewater containing precipitated solids is appropriately discharged from the coagulation tank discharge section 11e by opening the valve 11f.
It is desirable that the DC voltage applied to the anode plate 13 and the cathode plate 14 via the power supply unit 15 be 2 to 50 volts, preferably 6 to 24 volts.
This depends on the form and electric conductivity of the solids in the suspended wastewater, the amount of treatment, and the like. However, as the DC voltage becomes lower than 6 volts, the effect of agglomerating the fine particles tends to decrease. As the voltage exceeds 24 volts, there is a tendency that the electrolysis of the suspended wastewater proceeds and the consumption of the electrodes is accelerated, and these tendencies become more pronounced when the voltage is lower than 2 volts or higher than 50 volts.
[0028]
Next, the filter will be described with reference to the drawings.
FIG. 3A is a perspective view of the filter of the first embodiment, FIG. 3B is a perspective view of the filter with the filter cloth removed, and FIG. FIG. 2 is a perspective view of a unitized filter to be manufactured.
In FIG. 3, reference numeral 16 denotes a filter of the suspension water according to the first embodiment, 16a denotes a filter cloth formed in a bag shape, and 16b denotes a support frame formed in a substantially rectangular frame shape by a synthetic resin tubular member built in the filter cloth 16a. 16c is a water passage hole which is connected to the hollow portion of the support frame body 16b and is opened to the outside of the filter cloth 16a. 16d is a filter cloth on both sides at the water passage hole 16c side of the filter cloth 16a. The upper and lower filter cloth fixing portions to be fixed by 16e, a plurality of water intake holes pierced through each pipe of the support frame 16b, and 16f a metal wire arranged in the frame of the support frame 16b. And a core material formed in a three-dimensional network structure with a linear material made of synthetic resin.
As shown in FIG. 3 (c), the filter 16 is formed into a unit of three filters, and the respective water holes 16c are connected in parallel via a three-branch tube 16g. It is connected to a filtrate discharge pipe 12b of the filtration tank 12. In addition, the unitization may be two to five sheets as one set.
As shown in FIG. 3B, the support frame 16b is formed into a substantially rectangular frame as a whole, and includes an upper intake pipe 16ba, a lower intake pipe 16bb, an inner intake pipe 16bc, and a front intake pipe 16bd. It is configured. At a position lower than the center of the front intake pipe 16bd, there is provided a water passage hole 16c projecting outward from the filter cloth 16a.
The water intake holes 16e are formed in one or more rows toward the inside of the frame of the frame-shaped support frame 16b. The diameter is in the range of 1 to 5 mm, and the number of water intake holes 16e in the support frame 16b is different for each of the water intake pipes 16ba to 16bd. That is, assuming that the number of water intake holes 16e per unit length in each of the water intake pipes 16ba to 16bd is Na to Nd, respectively, the relationship is such that Nb> Nc = Nd> Na. Further, it is preferable to form the water intake holes 16e in the rear water intake pipe 16bc and the front water intake pipe 16bd so that the water intake holes 16e become sparser from lower to higher. This makes it possible to supply compressed air from the compressor or the like to the water passage hole 16c to equalize the amount of air when the filter cloth 16a is backwashed, thereby improving the efficiency of removing solids attached to the filter cloth 16a.
[0029]
The core material 16f is made of a soft or hard synthetic resin such as polyethylene or polyamide, and is preferably formed to have a three-dimensional network structure, whereby the filter cloth 16a is positioned at the center thereof during forced drainage using a pump or the like. It is possible to effectively prevent the filter cloths 16a on the front and the back from contacting each other by being recessed at the portion to block the flow path and hinder water permeability.
The upper end of the filter 16 is hung on the upper part of the filter tank 12 to be supported, or the filter 16 is erected through a support frame 16b or a support member (not shown) attached to the filter 16 itself. Are fixedly arranged at a predetermined interval from each other, for example, an interval of 30 to 150 mm.
The inside of each filter 16 is connected to the filtrate discharge pipe 12b through a water hole 16c. Note that the filtrate discharge pipe 12b may have a branch structure, and the branch portion may be connected to each filter 16 for use.
[0030]
The tank bottom 12c of the filtration tank 12 holding the filters 16 arranged in parallel to each other is inclined at an angle of about 3 to 45 degrees with respect to a horizontal plane, or both inclined in a V-shape. A solids discharge portion 12d having a valve 12e and the like is arranged continuously at the lowermost portion of the inclined portion. By opening this valve 12e, the sediment deposited on the tank bottom 12c is discharged from the solids discharge section 12d.
[0031]
The elongated brush portions 17 and 17a are arranged so as to sandwich both sides of a substantially flat filter 16 with a brush support 18 interposed therebetween.
FIG. 4A is a plan view illustrating a driving mechanism of a brush driving unit that drives the brush unit, FIG. 4B is a side view of a main part thereof, and FIG. 5 is a side view of the brush driving unit. .
4 and 5, reference numeral 19 denotes a brush drive unit for sliding the brush unit 17 in the left-right direction, and the brush drive unit 19 is mounted and fixed on a brush drive unit support unit 12 provided at a lower inside of the filtration tank 12. ing. Reference numeral 19a denotes a motor for driving the brush supports 18 arranged on both sides of the filter 16 arranged in parallel via a chain 19b and a sprocket 19c. The brush 17a of the brush unit 17 is driven along both surfaces of the filter 16 by a motor 19a of a brush driving unit 19 via a chain 19b. The filter tank 12 and the chain 19b are provided with limit switches 19d and 19e at the upside-down or left-right reversal positions of the brush portion 17, whereby the forward / reverse rotation of the motor 19a is switched and the brush portion 17 slides back and forth. Is controlled.
The brush support 18 may be driven by a brush drive unit having a forward / backward movement mechanism such as a link mechanism that reciprocates vertically or horizontally along the filter surface.
[0032]
A method of treating suspended wastewater using the suspended wastewater treatment apparatus 10 of the first embodiment configured as described above will be described.
First of all, suspended solids such as muddy water flowing from construction sites such as dams, rivers, lakes and marshes, irrigation canals, and solids such as sediment generated from tunnel construction, river construction, dredging, construction, and various types of construction work. Turbid wastewater is supplied into the suspended particle coagulation tank 11.
The suspended wastewater supplied to the suspended particle flocculation tank 11 flows through a flocculation flow path between the anode plate 13 and the cathode plate 14 to which a predetermined voltage is applied, where fine particles in the liquid are charged and Agglomeration forms particles (flock) of a predetermined size.
Suspended wastewater containing particles flocculated by the electrolytic treatment in the suspended particle coagulation tank 11 is supplied to the filtration tank 12 from the connecting pipe 12a, and is filtered by the filter cloth 16a of the filter 16. In this way, the solid content deposited on the surface of the filter 16 and the filtrate are separated, and the filtrate is discharged from the water passage hole 16c at the lower portion of the filter 16 through the filtrate discharge pipe 12b. The solids such as earth and sand that are separated after adhering to the tank are stored in the tank bottom 12c and discharged from the solids discharge unit 12d as necessary.
During this time, the bristles of the brushes 17a of the brush portion 17 are in contact with both surfaces of the filter 16, and are reciprocally slid at a predetermined speed using the brush driving portion 19, whereby the surface of the filter cloth 16a of the filter 16 is removed. The sludge is dropped and the filtration pressure of the cloth 16a is maintained at an appropriate filtration condition that is always constant.
In this way, the suspended wastewater can be continuously supplied to the suspended particle flocculation tank 11 and the filtration tank 12, and the purification treatment of the suspended wastewater containing fine particles can be efficiently performed.
[0033]
Since the suspended wastewater treatment device of the first embodiment is configured as described above, it has the following operation.
(1) Microparticles in the liquid can be charged in the suspended particle aggregating tank 11 to promote flocculation of the suspended suspended particles, and a predetermined size (5 to 5) that can be captured by the filter 16 of the filtration tank 12 The solid content is securely held on the filter 16 of the filtration tank 12 so that the fresh water portion and the solid content can be efficiently separated.
(2) Since the brush 17a of the brush portion 17 whose bristle tip is in contact with the outer surface of the filter 16 formed in a bag shape is reciprocally slid along the outer surface, the solid on the surface of the filter 16 is solidified. Therefore, constant filtration conditions can be maintained at all times without clogging, thereby improving the efficiency of the processing operation.
(3) Since the surface of the filter cloth 16a is lightly brought into contact with the surface of the filter cloth 16a by the brush 17a of the brush unit 17, a certain amount of fine solid particles is held in the filter cloth 16a, and the original mesh spacing of the filter is reduced. It can be used in a state narrowed by the solid content, and can capture fine particles of about 0.1 to 5 μm without passing through.
(4) Since the suspension water flows from the outer surface side of the filter 16 formed in a bag shape to the inner back surface side, it is possible to easily remove the solid matter attached to the outer portion of the filter 16.
(5) Since the brush portion 17 is provided, the adhesion layer fixed to the filter 16 can be removed in an agglomerated state and the filtration conditions can be easily maintained at a constant level, thereby improving the processing efficiency. It is possible to treat a large amount of suspended wastewater from dams and rivers.
(6) Since the filter 16 is formed in a bag shape, even if the equipment space is small, the filter surface can be effectively used and the suspended drainage can be efficiently treated.
(7) Since there is no harmful eluting substance as in a conventional water treatment apparatus using a flocculant, there is no risk of polluting the environment with the purification treatment.
(8) Since the brush drive unit 19 for reciprocatingly sliding the brush unit 17 is provided, the adhesion is more reliably performed compared to the conventional method of removing the adhered layer by blowing air to the filter surface, applying vibration to the filter, backflow, or the like. The layer can be removed.
(9) The suspended particles are removed by a conventional chemical method. However, since the present invention is a physical removal, minerals and the like dissolved in water are directly discharged to rivers and dams as treated water. Therefore, the growth of river and seaweed can be promoted, and environmental conservation and improvement effects can be obtained.
[0034]
(Embodiment 2)
A suspended wastewater treatment device according to Embodiment 2 of the present invention will be described.
FIG. 6 is a perspective view of a suspended wastewater treatment apparatus according to Embodiment 2, and FIG. 7 is a schematic side sectional view thereof.
6 and 7, reference numeral 20 denotes a suspended wastewater treatment apparatus according to the second embodiment, and reference numeral 21 denotes a suspension particle flocculation tank 11 and a filtration tank 12 having the same configuration as in the first embodiment, which are integrated and disposed together. Treated water tanks 22 and 23 are provided upstream and downstream of the suspended particle flocculation tank 11 and have upstream and downstream particle sedimentation sections provided with an ascending flow path and a descending flow path for raising and lowering the suspended wastewater; Reference numeral 24 denotes a water tank for storing the filtered water flowing out from the filtrate discharge pipe 12b, reference numeral 24a denotes a drain pipe for draining the filtered water from the water tank 24 to a river or the like, reference numeral 25 denotes a pump, and reference numeral 25a denotes a filtered water from the water tank 24 to the pump 25. , A gas supply section for supplying carbon dioxide to the suction side of the pump 25, a discharge pipe 27 for discharging a mixed fluid of carbon dioxide and filtered water, and a hollow section 28 formed in a substantially rotationally symmetrical shape. And a tangential line on the peripheral wall of the container And a gas-liquid introduction hole which is provided with a gas-liquid introduction pipe 28b connected thereto and a gas-liquid ejection hole 28c which is provided in the direction of the rotationally symmetric axis of the hollow portion. is there. When water containing bubbles of carbon dioxide gas or air flows into the gas-liquid introduction hole from the gas-liquid introduction pipe 28b of the fine bubble mixed liquid ejector 28 through the pump 25, the water flow flowing from the tangential direction of the peripheral wall of the body becomes By swirling along the inner wall of the container 28a, the swirling motion turns bubbles contained in the water into fine bubbles, and discharges gas-liquid mixed water containing fine bubbles of carbon dioxide and air from the gas-liquid ejection holes 28c. Can be produced, and CO in which alkali components such as aluminum ions and calcium in the water are dissolved in the water. 2 Neutralization or increase the amount of dissolved oxygen to promote water purification and the like.
In the following description, components having the same functions as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
The upstream particle sedimentation section 22 is vertically provided on the side of the supply pipe 11a to which the suspended wastewater is supplied, and has an upper partition wall 22a whose lower end is opened and held, and an upper partition 22a which is erected from the tank bottom 21a of the treated water tank 21 and has an upper end. And a lower partition wall 22b formed so that water can flow therethrough, and a descending flow path and a rising flow path for raising and lowering the suspended wastewater are formed between the partition walls. In addition, the bottom of the upstream particle sedimentation part 22, the suspended particle agglutination tank 11, and the downstream particle sedimentation part 23 of the treatment water tank 21 is formed to be inclined, and the lower end thereof is formed by a hole or the like for discharging sediment. A discharge section 22c and a storage section are provided so that sediment can be continuously or intermittently taken out as necessary. The discharge unit 22c can be provided independently for each of the upstream particle sedimentation unit 22, the suspended particle agglutination tank 11, and the downstream particle sedimentation unit 23.
The downstream particle sedimentation section 23 is formed with an upper partition wall 23a vertically or inclinedly mounted between the suspended particle flocculation tank 11 and the filtration tank 12, and a lower partition wall 23b having a flowing water section formed below. ing. Thereby, the suspended wastewater is taken in from the upper side of the suspended particle flocculation tank 11, lowered to the tank bottom 21 a side, and reversed upward, thereby preventing a short path of the suspended wastewater flow, The purification process can be performed efficiently, and particularly, the solid matter that has grown particularly large can be removed by settling under the upper partition wall 23a.
[0035]
Next, the electrode support structure will be described with reference to the drawings.
FIG. 8 is a cross-sectional configuration diagram showing the electrode support structure in the suspended particle aggregation section.
In FIG. 8, reference numeral 30 denotes a water tank wall such as a treated water tank or an electrolyzed water tank of the suspended particle flocculation tank 11 to which suspended wastewater is supplied from above or the like via a supply pipe 11a. The anode plate and the cathode plate, which are formed in a substantially flat plate shape with a conductive material and are arranged at predetermined intervals, are electrically connected to each other through a conductive spacer 31a made of a metal such as brass to connect the respective electrode plates. Reference numeral 32 denotes a non-conductive support for holding the electrode plates 31 and 32 in an insulated state via a non-conductive spacer 32a made of a pipe made of vinyl chloride or the like. These are conductors for connecting the electrode plates 31 and 32 to the power supply unit 15, respectively.
The anode plate 13 and the cathode plate 14 are connected and held at the upper and lower portions and intermediate portions thereof through the conductive support portion 31 and the non-conductive support portion 32 to maintain a predetermined interval to form an aggregation channel between the electrode plates. Like that. For this reason, for example, when the suspension drainage is supplied from the supply pipe 11 a provided on the upper side of the water tank wall 30, the anode plate 13 and the cathode plate 14 supported by the conductive support portion 31 and the nonconductive support portion 32 become In the inter-aggregation flow path, extremely fine suspended particles can be aggregated and grown to particles of 5 μm or more, so that they can be precipitated and can be easily filtered and separated in the downstream filtration tank 12. . Suspended wastewater subjected to electrolytic treatment can be discharged from a discharge port (not shown) provided on the side wall, lower part, or the like of the water tank wall 30.
[0036]
Since the suspended wastewater treatment device 20 of the second embodiment is configured as described above, it has the following operation in addition to the operation of the first embodiment.
(1) Since the particle sedimentation units 22 and 23 are arranged on the upstream and downstream sides of the suspended particle aggregating tank 11, the flow of the supplied suspended wastewater is reversed up and down. Solid matter having a large specific gravity in the suspension wastewater can be effectively separated by precipitation.
(2) Since the suspended particle coagulation tank 11 and the filtration tank 12 are built in the treatment water tank 21, the whole can be made compact.
(3) Suspended wastewater flocculated in the suspended particle flocculation tank 11 can be directly supplied to the filtration tank 12, so that there is little loss such as pressure loss due to the transfer of the suspended wastewater, and economy in operation of the apparatus is reduced. Is also excellent.
(4) Since particles having a high specific gravity settle in the particle sedimentation portions 22 and 23 because of having the upper partition walls 22a and 23a and the lower partition walls 22b and 23b, the suspension drainage in the suspended particle aggregation tank 11 and the filtration tank 12 is performed. The purification process can be reduced, and the durability and maintainability of the entire apparatus can be improved.
(5) Since the particle sedimentation units 22 and 23 capable of sedimenting suspended particles of a predetermined size without requiring a driving source such as electric power are provided, the purification treatment of suspended wastewater can be performed more economically. .
(6) Since fine suspended particles are electrically aggregated by energizing the electrode plate, clogging of the filter 16 of the filtration tank 12 can be prevented, and the operation time can be significantly lengthened.
[0037]
(Embodiment 3)
FIG. 9 is a perspective view of a main part of a filtration unit and a brush unit provided in a filtration tank, and FIG. 10 is a perspective view of a modification of the brush unit. 8 and 9, reference numeral 12b denotes a filtrate discharge pipe, 16 denotes a filter, 16c denotes a water passage hole, and 16d denotes a filter cloth fixing portion. Since these are the same as those in the first embodiment, they are denoted by the same reference numerals and described. Is omitted.
In FIG. 9, 17aa is a brush portion made of stainless steel, wood, FRP, or the like, which is mounted on a brush rotation shaft 191 which is mounted on a motor that reverses within 90 ° through a coupling or the like via a coupling or the like. The brush is formed of a synthetic resin sheet, a rubber tube, or the like fixed to the brush portion 17aa. The rotation of the brush portions 17aa, 17aa is adjusted so as to alternately rotate within 90 °.
In FIG. 10, 17ab is a brush portion made of stainless steel or the like, which is mounted on a rotating shaft 192 which is mounted on a motor via a coupling or the like, and 17cb is fixed to the brush portion 17ab with the same material as the brush 17ca. Brush. Brushes 17ca and 17cb are formed on both sides of the brush portions 17aa and 17ab provided between the filters 16.
As described above, the brush portion according to the third embodiment is configured, so that the sludge on the surface of the filter 16 can be stroked down with a simple mechanism.
[0038]
【The invention's effect】
According to the suspended wastewater treatment device of the first aspect, the following effects are obtained.
(1) By applying a DC voltage between the anode plate and the cathode plate, the fine particles in the suspended wastewater flowing through the aggregation channel are charged to promote the flocculation of the suspended suspended particles, and the downstream filtration is performed. It is grown to a predetermined size that can be captured by the filter of the tank, and the solid content in the electro-processed suspended wastewater is securely held on the filter of the filtration tank so that the fresh water portion and the solid content can be efficiently separated. Excellent filterability.
(2) Since the filter is formed in a bag shape, and the suspension water flows from the outer surface side to the inner back surface side of the bag-shaped filter, it is possible to easily remove solid matter attached to the outer portion of the filter. The filter has a long filtration time and is excellent in maintenance.
(3) Since it is easy to maintain the filtration conditions constant by removing the adhesion layer adhered to the filter, the treatment efficiency is improved, and a large amount of suspended wastewater from river works is efficiently treated. It is possible to do.
(4) Since the filter is in the shape of a bag, even if the space in the treated water tank is small, the filter surface can be effectively used and the suspended wastewater can be treated efficiently.
(5) Since there is no eluate as in a conventional water treatment apparatus using a coagulant, there is no risk of polluting the environment with the purification treatment.
[0039]
According to the suspended wastewater treatment apparatus of the second aspect, the following effect is obtained in addition to the effect of the first aspect.
(1) The brush portion, whose tip is in contact with the outer surface of the filter formed in a bag shape, is reciprocally slid along the outer surface of the filter. It can be removed to maintain constant filtration conditions without clogging, keeping the filtration efficiency stable over time and significantly reducing the number of maintenance due to filter clogging. Can be improved.
(2) The filter surface is swept at a predetermined interval by the brush portion, and a certain amount of solid content is held inside the filter layer, so that the filter can be used in a state in which the original mesh interval is narrowed. Can be captured without letting them go.
(3) Since the brush drive unit for reciprocatingly sliding the brush unit is provided, the adhered layer can be reliably removed as compared with the conventional method of removing the adhered layer by blowing air to the filter surface or applying vibration of the filter. .
(4) Since the bristle tip of the brush portion is reciprocally slid along the outer surface of the filter, the filter surface is not damaged, and the maintainability and the durability are excellent.
[0040]
According to the suspended wastewater treatment apparatus of the third aspect, the following effects are obtained in addition to the effects of the invention of the first or second aspect.
(1) Since a particle sedimentation section having an ascending flow path and a descending flow path is arranged on the upstream side and / or downstream side of the aggregation flow path, the flow of the supplied suspended wastewater is vertically inverted. By this change in the flow, the solids in the suspended wastewater can be effectively settled and separated.
(2) Subsequent purification treatment of suspended wastewater in the coagulation flow path and the filtration unit is reduced, and the entire apparatus is excellent in durability and maintainability.
(3) Since there is provided a particle sedimentation part capable of sedimenting suspended particles of a predetermined size without requiring a driving source such as electric power, the purification treatment of suspended wastewater can be performed more economically.
[0041]
According to the suspended wastewater treatment apparatus of the fourth aspect, the following effect is obtained in addition to the effect of any one of the first to third aspects.
(1) Since the suspended particle agglutination tank and the filtration tank are built in the treatment water tank, the whole can be made compact, and the apparatus can be mounted on the bed part of the truck and easily moved, Suspended drainage generated when asphalt or concrete road surface is cut with a cutter in road construction can be easily treated.
(2) Since the suspended wastewater flocculated in the suspended particle flocculation tank is supplied to the filtration tank arranged in series, there is little loss such as pressure loss due to the flow of the suspended wastewater, and the overall purification efficiency. Can be increased.
[0042]
According to the suspended wastewater treatment apparatus described in claim 5, the following effects are obtained.
(1) Since the brush portion is reciprocally slid along the outer surface of the filter, it is possible to remove the adhered layer of solids adhered to the filter surface, and to constantly stably maintain appropriate filtration conditions. Efficiency and stabilization of the processing work are achieved.
(2) Since only the bristle tips of the brush portion are brought into contact with each other, the filter layer can be used while maintaining a water permeable state in which a fixed amount of solids is held inside, and small particles smaller than the interval between the filter meshes can be transmitted. Can be captured without.
(3) Since the brush drive unit for reciprocatingly sliding the brush unit is provided, the adhered layer can be removed more reliably than the conventional method of removing the adhered layer by blowing air on the filter surface or applying vibration of the filter. Excellent workability and maintainability.
[0043]
According to the suspended wastewater treatment apparatus of the sixth aspect, the following effect is obtained in addition to the effect of any one of the first to fifth aspects.
(1) Since it has a neutralizing means, the discharge destination of a river or the like can be prevented from being alkalized by alkali ions, and is excellent in environmental resistance (prevention of river pollution).
(2) Alkali accumulation of organisms such as rivers due to alkali ions can be prevented.
[0044]
According to the suspended wastewater treatment apparatus of the seventh aspect, the following effect is obtained in addition to the effect of the sixth aspect.
(1) Since it has a neutralizing means, it is possible to neutralize an alkali component and increase the amount of dissolved oxygen.
[0045]
According to the suspended wastewater treatment method of the eighth aspect, the following effects are obtained.
(1) A step of filtering the suspended wastewater with a bag-shaped filter arranged in a treatment water tank to which the suspended wastewater is supplied, and sliding the brush unit reciprocally along the surface of the filter via a brush driving unit. Since it has a process, solids deposited and adhered to the filter surface are reliably removed, the filtration time is extended, and the workability is excellent.
(2) Since the filter is always maintained in a proper filtration state, the purification treatment of the suspended wastewater can be efficiently performed in a large amount.
[0046]
According to the suspended wastewater treatment method of the ninth aspect, the following effect is obtained in addition to the effect of the eighth aspect.
(1) A flocculation step of charging fine particles in the suspended wastewater flowing through the flocculation flow path is provided, so that the floating suspended particles are flocculated and grown to a predetermined size that can be captured by the filter of the filtration unit. The solid content in the suspension wastewater can be reliably retained on the filter of the filtration unit, and can be efficiently separated into the fresh water portion and the solid content.
(2) Since there is no eluate as in the conventional water treatment method using a flocculant, environmental pollution can be prevented with the purification treatment.
[0047]
According to the suspended wastewater treatment method of the tenth aspect, the following effect is obtained in addition to the effect of the eighth or ninth aspect.
(1) Even if the suspension wastewater exhibits alkalinity of pH 9 to 12, it is neutralized and neutralized to pH 7, which can prevent pollution of rivers and the like at the discharge destination.
[Brief description of the drawings]
FIG. 1 is a perspective view of a suspended wastewater treatment device according to a first embodiment.
FIG. 2 is a schematic cross-sectional view of the suspended wastewater treatment device according to the first embodiment.
FIG. 3A is a perspective view of a filter according to the first embodiment.
(B) Perspective view of the state where the filter cloth part of the filter is removed.
(C) Perspective view of a filter unit arranged in a filtration unit
FIG. 4A is a side view illustrating a driving mechanism of a brush driving unit that drives a brush unit.
(B) The plan view
FIG. 5 is a side view of the brush driving unit.
FIG. 6 is a perspective view of a suspended wastewater treatment apparatus according to a second embodiment.
FIG. 7 is a configuration sectional view of a suspended wastewater treatment apparatus according to a second embodiment.
FIG. 8 is a cross-sectional configuration diagram showing a modified example of the electrode support structure in the suspended particle agglutination section of the first and second embodiments.
FIG. 9 is a perspective view of an essential part of a filtration unit and a brush unit provided in the filtration unit.
FIG. 10 is a perspective view of a modification of the brush unit.
[Explanation of symbols]
10. Suspended wastewater treatment device of Embodiment 1
11 Suspended particle coagulation tank
11a Supply piping
11b Suspended particle aggregation section
11c spacer
11d electrode support
11e Coagulation tank discharge section
11f valve
11g Coagulation tank bottom
12 Filtration tank
12a Connecting pipe
12b Filtrate discharge pipe
12c Tank bottom
12d solids discharge section
12e On-off valve
12f valve
12g brush drive support
13 Anode plate
14 Cathode plate
15 Power supply section
16 Filter
16a Filter cloth
16b Support frame
16c water hole
16d Filter cloth fixing part
16e water intake
16f core material
16g three branch pipe
17, 17aa, 17ab brush part
17a, 17ca, 17cb brush
18 brush support
19 Brush drive unit
19a motor
19b chain
19c sprocket
20 Suspended wastewater treatment apparatus according to Embodiment 2
21 Treatment water tank
21a Tank bottom
22 Upstream particle sedimentation section (particle sedimentation section)
22a Upper partition
22b Lower partition
22c discharge section
23 Downstream particle sedimentation part (particle sedimentation part)
23a Upper partition
23b Lower partition
24 water tank
24a drain pipe
25 pump
26 Gas supply unit
28 Fine bubble mixed liquid ejector
30 Aquarium wall
31 Anode plate
32 cathode plate
33 Conductive support
33a conductive spacer
34 Non-conductive support
34a Non-conductive spacer
35 conductor
191 Rotation axis
192 Rotation axis

Claims (10)

土砂等の懸濁粒子を含む懸濁排水が供給される懸濁粒子凝集槽と、前記懸濁粒子凝集槽に配設された陽極板及び陰極板が平行配置されて形成された間隙に懸濁排水が供給される凝集流路を備えた懸濁粒子凝集部と、ろ過槽と、前記ろ過槽に配設され前記懸濁粒子凝集部を通過した懸濁排水がその外部表面側から供給され内部裏面側からろ過された処理水が排出されるように全体が袋状に形成された略平板状又は略円筒状のフィルタを備えたろ過部と、を有することを特徴とする懸濁排水処理装置。Suspended particle flocculation tanks to which suspended wastewater containing suspended particles such as earth and sand are supplied, and an anode plate and a cathode plate disposed in the suspended particle flocculation tank are suspended in a gap formed by being arranged in parallel. A suspended particle aggregating section provided with an aggregating flow path to which drainage is supplied, a filtration tank, and suspended wastewater disposed in the filtration tank and passing through the suspended particle aggregating section is supplied from the outer surface side to the inside thereof. A filtration section provided with a substantially flat or substantially cylindrical filter formed entirely in a bag shape so that the treated water filtered from the back side is discharged, . 前記フィルタの外部表面にブラシの毛先が当接して配置されたブラシ部と、前記ブラシ部を前記外部表面に緩く当接させながら往復摺動させるブラシ駆動部と、を有することを特徴とする請求項1に記載の懸濁排水処理装置。A brush portion in which the tip of a brush abuts on the outer surface of the filter; and a brush drive portion that reciprocates while sliding the brush portion loosely on the outer surface. The suspended wastewater treatment device according to claim 1. 前記懸濁粒子凝集槽に、前記懸濁粒子凝集部の凝集流路の上流側及び/又は下流側に懸濁排水を上昇下降させる上昇流路と下降流路とを備えた粒子沈殿部が形設されていることを特徴とする請求項1又は2に記載の懸濁排水処理装置。The suspended particle aggregating tank is formed with a particle sedimentation section provided with an ascending flow path and a descending flow path for raising and lowering the suspended wastewater upstream and / or downstream of the aggregation flow path of the suspended particle aggregation section. The suspended wastewater treatment device according to claim 1, wherein the suspended wastewater treatment device is provided. 前記懸濁粒子凝集部と前記ろ過部とがその内部に直列配置された懸濁排水処理槽を有することを特徴とする請求項1乃至3の内いずれか1項に記載の懸濁排水処理装置。The suspended wastewater treatment apparatus according to any one of claims 1 to 3, further comprising a suspended wastewater treatment tank in which the suspended particle aggregation section and the filtration section are arranged in series. . 土砂等の固形分を含む懸濁排水が供給される処理水槽と、前記処理水槽内に配置されその外部表面側から前記懸濁排水が供給されて内部裏面側からろ過された処理水が排出される全体に密閉して形成された袋状のフィルタと、前記フィルタの表面にその毛先が当接して配置されたブラシ部と、前記ブラシ部を前記フィルタの表面に沿って往復摺動させるブラシ駆動部とを有することを特徴とする懸濁排水処理装置。A treated water tank to which suspended wastewater containing solid content such as earth and sand is supplied, and the suspended wastewater disposed in the treated water tank is supplied from the outer surface side thereof, and filtered treated water is discharged from the inner rear surface side. A bag-shaped filter formed by sealing the entirety of the filter, a brush portion having its tip abutting on the surface of the filter, and a brush for reciprocatingly sliding the brush portion along the surface of the filter. A suspended wastewater treatment device comprising a driving unit. 前記懸濁粒子凝集槽又は前記ろ過槽、前記懸濁排水処理槽、前記処理水槽のいずれか1以上の内部に、アルカリ性の前記懸濁排水を中和する中和手段を備えていることを特徴とする請求項1乃至5の内いずれか1項に記載の懸濁排水処理装置。The suspended particle aggregating tank or the filtration tank, the suspended wastewater treatment tank, and the inside of any one or more of the treated water tanks are provided with neutralizing means for neutralizing the alkaline suspended wastewater. The suspended wastewater treatment device according to any one of claims 1 to 5, wherein 前記中和手段が、散気管と、前記散気管に炭酸ガスを供給する炭酸ガス供給部と、を有する、又は、微細気泡混合液噴出器と、前記微細気泡混合液噴出器に炭酸ガスと水との混合流体を供給するポンプと、を有することを特徴とする請求項6に記載の懸濁排水処理装置。The neutralization means has an air diffuser and a carbon dioxide gas supply unit for supplying carbon dioxide to the air diffuser, or a fine bubble mixed liquid ejector, and the fine bubble mixed liquid ejector is provided with carbon dioxide and water. And a pump for supplying a mixed fluid with the suspension. 土砂等の固形分を含む懸濁排水を処理水槽内に供給する懸濁水供給工程と、前記処理水槽内に配置され全体に密閉して形成された袋状のフィルタの外部表面側から内部裏面側に前記懸濁排水をろ過させるろ過工程と、前記フィルタの表面にその毛先が当接されたブラシ部をブラシ駆動部を用いて前記フィルタの表面に沿って往復摺動させるブラシ工程とを有することを特徴とする懸濁排水処理方法。A suspended water supply step of supplying suspended wastewater containing solids such as earth and sand into a treated water tank, and a bag-shaped filter disposed in the treated water tank and entirely sealed from the outer surface side to the inner back side. A filtration step of filtering the suspended wastewater, and a brush step of reciprocatingly sliding the brush portion, whose brush tip is in contact with the surface of the filter, along the surface of the filter using a brush driving unit. A method for treating suspended wastewater, comprising the steps of: 前記懸濁水供給工程の前工程として、前記懸濁排水を陽極板と陰極板が平行配置された凝集流路で前記懸濁排水中の懸濁粒子を凝集させる凝集工程を備えていることを特徴とする請求項8に記載の懸濁排水処理方法。As a process prior to the suspension water supply step, the suspension waste water is provided with an aggregation step of aggregating suspended particles in the suspension waste water in an aggregation channel in which an anode plate and a cathode plate are arranged in parallel. The method for treating suspended wastewater according to claim 8, wherein ろ過工程又は前記凝集工程において、前記懸濁排水をアルカリ分を中和する中和工程又は溶存酸素量を高める溶存酸素富化工程を備えていることを特徴とする請求項8又は9に記載の懸濁排水処理方法。The filtration step or the coagulation step according to claim 8 or 9, further comprising a neutralization step of neutralizing the suspended wastewater to alkalinize or a dissolved oxygen enrichment step of increasing the amount of dissolved oxygen. Suspended wastewater treatment method.
JP2003024898A 2003-01-31 2003-01-31 Suspension wastewater treatment apparatus and suspension wastewater treatment method Expired - Fee Related JP4567946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003024898A JP4567946B2 (en) 2003-01-31 2003-01-31 Suspension wastewater treatment apparatus and suspension wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003024898A JP4567946B2 (en) 2003-01-31 2003-01-31 Suspension wastewater treatment apparatus and suspension wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2004230344A true JP2004230344A (en) 2004-08-19
JP4567946B2 JP4567946B2 (en) 2010-10-27

Family

ID=32953305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003024898A Expired - Fee Related JP4567946B2 (en) 2003-01-31 2003-01-31 Suspension wastewater treatment apparatus and suspension wastewater treatment method

Country Status (1)

Country Link
JP (1) JP4567946B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014128777A (en) * 2012-12-28 2014-07-10 Yamada Katsuhiko Apparatus and method for flocculating, separating and recovering particle
JP2015134339A (en) * 2014-01-20 2015-07-27 株式会社Ihi Suspended matter capturing device and suspended matter capturing system
JP2015199056A (en) * 2014-03-31 2015-11-12 国立大学法人 筑波大学 Suspension water treatment device and cleaning, classification and treatment system
WO2017109283A1 (en) * 2015-12-22 2017-06-29 Outotec (Finland) Oy An electrochemical reactor, an apparatus and a system for treating water, and a method for controlling a water treatment apparatus
CN107827211A (en) * 2017-12-13 2018-03-23 重庆大学 A kind of electrochemical reaction cell for handling algae-containing water
CN110787527A (en) * 2019-09-28 2020-02-14 中原环资科技有限公司 Method and equipment for separating organic slurry
JP2020131070A (en) * 2019-02-14 2020-08-31 国立研究開発法人産業技術総合研究所 Method for treating construction muddy water and treating device
CN113304518A (en) * 2021-05-06 2021-08-27 淮北森诺环保科技有限公司 Recovery equipment for fertilizer waste liquid and recovery method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4328779Y1 (en) * 1965-01-23 1968-11-26
JPS4961958A (en) * 1972-10-16 1974-06-15
JPS55165116A (en) * 1979-06-11 1980-12-23 Ando Screen Seisakusho:Kk Brush driving device of screen for solid-liquid separation
JPH04298284A (en) * 1991-03-26 1992-10-22 Maeda Corp Polluted water treating device
JPH09271613A (en) * 1996-04-04 1997-10-21 Takane Kitao Sewage filtering apparatus
JP2001029751A (en) * 1999-07-27 2001-02-06 Daicel Chem Ind Ltd Separation apparatus and solid-liquid separation method
JP2001038177A (en) * 1999-07-29 2001-02-13 Daicel Chem Ind Ltd Solid-liquid separation process and separation membrane module for the same
JP2001252671A (en) * 2000-03-13 2001-09-18 Junichiro Sato Sewage treating device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4328779Y1 (en) * 1965-01-23 1968-11-26
JPS4961958A (en) * 1972-10-16 1974-06-15
JPS55165116A (en) * 1979-06-11 1980-12-23 Ando Screen Seisakusho:Kk Brush driving device of screen for solid-liquid separation
JPH04298284A (en) * 1991-03-26 1992-10-22 Maeda Corp Polluted water treating device
JPH09271613A (en) * 1996-04-04 1997-10-21 Takane Kitao Sewage filtering apparatus
JP2001029751A (en) * 1999-07-27 2001-02-06 Daicel Chem Ind Ltd Separation apparatus and solid-liquid separation method
JP2001038177A (en) * 1999-07-29 2001-02-13 Daicel Chem Ind Ltd Solid-liquid separation process and separation membrane module for the same
JP2001252671A (en) * 2000-03-13 2001-09-18 Junichiro Sato Sewage treating device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014128777A (en) * 2012-12-28 2014-07-10 Yamada Katsuhiko Apparatus and method for flocculating, separating and recovering particle
JP2015134339A (en) * 2014-01-20 2015-07-27 株式会社Ihi Suspended matter capturing device and suspended matter capturing system
JP2015199056A (en) * 2014-03-31 2015-11-12 国立大学法人 筑波大学 Suspension water treatment device and cleaning, classification and treatment system
WO2017109283A1 (en) * 2015-12-22 2017-06-29 Outotec (Finland) Oy An electrochemical reactor, an apparatus and a system for treating water, and a method for controlling a water treatment apparatus
EA034339B1 (en) * 2015-12-22 2020-01-29 Оутотек (Финлэнд) Ой Electrochemical reactor, apparatus and system for treating water, and method for controlling a water treatment apparatus
US10604427B2 (en) 2015-12-22 2020-03-31 Outotec (Finland) Oy Electrochemical reactor, an apparatus and a system for treating water, and a method for controlling a water treatment apparatus
CN107827211A (en) * 2017-12-13 2018-03-23 重庆大学 A kind of electrochemical reaction cell for handling algae-containing water
CN107827211B (en) * 2017-12-13 2023-07-18 重庆大学 Electrochemical reaction tank for treating algae-containing water
JP2020131070A (en) * 2019-02-14 2020-08-31 国立研究開発法人産業技術総合研究所 Method for treating construction muddy water and treating device
CN110787527A (en) * 2019-09-28 2020-02-14 中原环资科技有限公司 Method and equipment for separating organic slurry
CN113304518A (en) * 2021-05-06 2021-08-27 淮北森诺环保科技有限公司 Recovery equipment for fertilizer waste liquid and recovery method thereof

Also Published As

Publication number Publication date
JP4567946B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
US8518261B2 (en) Water purification apparatus and method for using pressure filter and pore control fiber filter
US8721869B2 (en) Moving electrode electroflocculation process
JP2006043614A (en) Flocculated deposition removing device, suspended waste water treatment device provided therewith and suspended waste water treatment method
JP5850793B2 (en) Suspended water filtration apparatus and method
JPWO2014181583A1 (en) Seawater desalination apparatus and method
JP4567946B2 (en) Suspension wastewater treatment apparatus and suspension wastewater treatment method
JP2016087564A (en) Seawater desalination apparatus and method therefor
KR101539727B1 (en) A total phosphorus removal device using electrocoagulation and electromagnet
CN111704265B (en) Water purification equipment and water purification method thereof
JP5801249B2 (en) Desalination apparatus and desalination method
JP6779475B2 (en) Blue-green algae concentration and recovery device
CA2282578A1 (en) Coagulation precipitator
JPWO2017159303A1 (en) Treatment method for high hardness wastewater
JP3944881B2 (en) Water purification method and water purification apparatus
CN206553348U (en) A kind of level stream sand filter
CN109293087A (en) A kind of waste water treatment system can automatically clean filter membrane
JP2004230332A (en) Wastewater treatment device for road cutter and work vehicle for road cutter equipped with the device
US20070007213A1 (en) Water filtration process and apparatus
CN209778435U (en) A biofiltration device for sewage treatment system
CN211056839U (en) Plastic waste liquid retrieves and uses purifier
JPH06134220A (en) Solid-liquid separation device
KR100955913B1 (en) Physicochemical apparatus for purifying water
CN217103456U (en) Sewage treatment system of magnetic coagulation sedimentation tank
CN205258185U (en) Sewage treatment device
CN101811786B (en) Device and process for producing drinking water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100806

R150 Certificate of patent or registration of utility model

Ref document number: 4567946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20190813

Year of fee payment: 9

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees