JP2016087564A - Seawater desalination apparatus and method therefor - Google Patents

Seawater desalination apparatus and method therefor Download PDF

Info

Publication number
JP2016087564A
JP2016087564A JP2014226673A JP2014226673A JP2016087564A JP 2016087564 A JP2016087564 A JP 2016087564A JP 2014226673 A JP2014226673 A JP 2014226673A JP 2014226673 A JP2014226673 A JP 2014226673A JP 2016087564 A JP2016087564 A JP 2016087564A
Authority
JP
Japan
Prior art keywords
tep
seawater
bubbles
foam
seawater desalination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014226673A
Other languages
Japanese (ja)
Other versions
JP2016087564A5 (en
JP6381412B2 (en
Inventor
良介 秦
Ryosuke Hata
良介 秦
島村 和彰
Kazuaki Shimamura
和彰 島村
益啓 林
Masuhiro Hayashi
益啓 林
千田 祐司
Yuji Senda
祐司 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2014226673A priority Critical patent/JP6381412B2/en
Publication of JP2016087564A publication Critical patent/JP2016087564A/en
Publication of JP2016087564A5 publication Critical patent/JP2016087564A5/ja
Application granted granted Critical
Publication of JP6381412B2 publication Critical patent/JP6381412B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Abstract

PROBLEM TO BE SOLVED: To provide a seawater desalination apparatus by a membrane separation method and a method therefor removing TEP, preventing the clogging of a reverse osmosis membrane, and efficiently capable of stable working over a long period.SOLUTION: Provided is a seawater desalination apparatus comprising: a seawater taking part 10 of taking seawater; a flocculant adding means 15 of adding a flocculant to the taken seawater; a bubble generation and TEP-containing bubble removing part 20 of removing TEP components from the seawater including a flock formed the addition of the flocculant; a turbidity removing part 30 of removing a turbidity component from the seawater from which the TEP components are removed; and a reverse osmosis membrane treating part 40 of subjecting the seawater from which the turbidity component has been removed to desalting treatment so as to be desalinated.SELECTED DRAWING: Figure 2

Description

本発明は、海水淡水化装置及び方法に関し、特に、汽水や海水中のTEP(Transparent Exopolymer Particles)成分及びその前駆体を除去するTEP成分除去装置を具備する海水淡水化装置及びTEP成分除去を含む海水淡水化方法に関する。   The present invention relates to a seawater desalination apparatus and method, and in particular, includes a seawater desalination apparatus and a TEP component removal equipped with a TEP component removal apparatus that removes TEP (Transparent Exopolymer Particles) components and precursors in brackish water and seawater. The present invention relates to seawater desalination methods.

海水あるいは汽水を脱塩して淡水化する装置及び方法として、逆浸透(RO)膜を用いる膜処理方法が用いられている。逆浸透(RO)膜は数ナノメートルの孔径を有するため閉塞(ファウリング)しやすく、凝集法、砂濾過法、加圧浮上法、MF膜(精密濾過膜)/UF膜(限外濾過膜)法などを単独あるいは組み合わせて、海水あるいは汽水に含まれている濁質を除去する前処理が必要である。従来の海水淡水化装置の代表例を図15に示す。   A membrane treatment method using a reverse osmosis (RO) membrane is used as an apparatus and method for desalinating seawater or brackish water to desalinate. Reverse osmosis (RO) membranes have a pore size of several nanometers and are therefore easily clogged (fouling). Aggregation method, sand filtration method, pressurized flotation method, MF membrane (microfiltration membrane) / UF membrane (ultrafiltration membrane) ) A pretreatment to remove turbidity contained in seawater or brackish water is necessary alone or in combination. A typical example of a conventional seawater desalination apparatus is shown in FIG.

図15に示す海水淡水化装置は、海水を取水する取水管101、取水管101に次亜塩素酸ナトリウム(NaClO)などの殺菌剤を添加する殺菌剤添加手段102、取水管101に海水を汲み上げる取水ポンプ103、取水ポンプ103の閉塞を防止するために取水ポンプ103の前段に設けられ貝類や大型のゴミなどを取り除くストレーナ104、取水した海水を貯留する原水槽105、原水槽105から原水を前処理するための濾過装置(図15では重力式二層砂ろ過装置)109に送水するための濾過原水送水管106及び濾過原水ポンプ107、濾過原水送水管106に塩化鉄(FeCl)などの凝集剤を添加する凝集剤添加手段108、濾過装置109にて濾過された処理水を逆浸透膜装置115に送水する処理水送水管110及び供給ポンプ114並びに保安フィルタ112及び保安フィルタポンプ111、処理水送水管110に重亜硫酸ナトリウム(NaHSO)などの残留塩素除去剤を添加する残留塩素除去剤添加手段113を具備する。このような従来の海水淡水化装置では、前処理の濾過装置109及び逆浸透膜装置115の閉塞を防止するため、頻繁な定期メンテナンスが必要であり、逆浸透膜の寿命も短かった。 The seawater desalination apparatus shown in FIG. 15 draws seawater into a water intake pipe 101 for taking seawater, a bactericide adding means 102 for adding a bactericide such as sodium hypochlorite (NaClO) to the water intake pipe 101, and a water intake pipe 101. Intake pump 103, strainer 104 provided in front of intake pump 103 to prevent blockage of intake pump 103 to remove shellfish and large trash, raw water tank 105 for storing the intake seawater, raw water from the original water tank 105 Filtration raw water feed pipe 106 and filtration raw water pump 107 for feeding water to a filtration device 109 for processing (gravity type double-layer sand filtration device in FIG. 15), and raw material water feed pipe 106 are aggregated with iron chloride (FeCl 3 ) or the like. Treated water feed pipe 1 for feeding the treated water filtered by the flocculant adding means 108 for adding the agent and the filtration device 109 to the reverse osmosis membrane device 115 0 and the supply pump 114 and safety filter 112 and the security filter pump 111 comprises a treated water supply tube 110 to sodium bisulfite (NaHSO 3) residual chlorine removal agent adding means 113 for adding the residual chlorine removal agent such as. In such a conventional seawater desalination apparatus, in order to prevent the pretreatment filtration device 109 and the reverse osmosis membrane device 115 from being blocked, frequent regular maintenance is required, and the life of the reverse osmosis membrane is also short.

濾過膜及び逆浸透膜の閉塞(ファウリング)を起こす物質(ファウラント)として、海水に含まれる透明で粘着性の高いゼリー状の有機物であるTEP(Transparent Exopolymer Particles:生体外分泌高分子粒子)の存在が認識されるようになってきた(特許文献1、特許文献2、非特許文献1)。TEPは、植物プランクトンや浮遊性バクテリアの代謝によって発生するFibril(繊維状物質)やHydrogel(ハイドロゲル)に由来する多糖類からなるゼリー状物質で、0.4μm〜200μm程度の大きさを有すること、海水中では膨潤して重量濃度の100倍以上の体積濃度を有すること、加圧によって変形して粒子寸法よりも小さな孔径の膜を通過することが確認されている。なお、TEPの分析手法として、アルシアンブルーを用いる酸性ムコ多糖類の着色を利用する方法が用いられている(非特許文献2)。
本明細書及び特許請求の範囲において、「TEP」とは主として多糖類である透明で粘着性の高いゼリー状物質を意味し、「TEP前駆体」とはFibril(繊維状物質)やHydrogel(ハイドロゲル)などの0.4μm以下の微細粒子を意味するものとして扱う。尚、海水中に含まれる全ての有機物がファウラントという訳ではないことから、有機物の中で、特に、このTEPとTEP前駆体を含むTEP成分を除去対象とする。
Presence of TEP (Transparent Exopolymer Particles), a transparent and sticky jelly-like organic substance in seawater, as a substance (foulant) that causes clogging (fouling) of filtration membranes and reverse osmosis membranes Have been recognized (Patent Document 1, Patent Document 2, Non-Patent Document 1). TEP is a jelly-like substance composed of a polysaccharide derived from Fibril (fibrous substance) or Hydrogel (hydrogel) generated by metabolism of phytoplankton and planktonic bacteria, and has a size of about 0.4 μm to 200 μm. It has been confirmed that it swells in seawater and has a volume concentration of 100 times or more the weight concentration, and is deformed by pressurization and passes through a membrane having a pore size smaller than the particle size. As a TEP analysis method, a method using coloring of acidic mucopolysaccharide using Alcian Blue is used (Non-patent Document 2).
In the present specification and claims, “TEP” means a transparent and highly sticky jelly-like substance that is mainly a polysaccharide, and “TEP precursor” means Fibril (fibrous substance) and Hydrogel (hydrodynamic). Gel) and the like are treated as meaning fine particles of 0.4 μm or less. In addition, since not all organic substances contained in seawater are foulants, the TEP components including TEP and TEP precursors are particularly targeted for removal.

海水からTEPを除去する方法として、海水に磁性粒子を添加し、TEPに磁性粒子を付着させ、磁気分離によって磁性粒子に付着したTEPを海水から除去する方法が提案されている(特許文献1)。   As a method for removing TEP from seawater, a method is proposed in which magnetic particles are added to seawater, the magnetic particles are attached to TEP, and TEP attached to the magnetic particles by magnetic separation is removed from seawater (Patent Document 1). .

また、前処理用の濾過装置に、孔径1μm以上のポリテトラフルオロエチレン膜を用い、所定流束で原水を通過させ、TEPを除去する方法が提案されている(特許文献2)。   In addition, a method of removing TEP by using a polytetrafluoroethylene membrane having a pore diameter of 1 μm or more as a pretreatment filter and allowing raw water to pass through at a predetermined flux has been proposed (Patent Document 2).

更に、前処理として、逆浸透膜装置に供給する膜供給水に、特殊なノボラック型フェノール系樹脂のアルカリ溶液を凝集剤として添加し、多糖類を凝集させて除去する方法が提案されている(特許文献3)。   Furthermore, as a pretreatment, a method has been proposed in which an alkaline solution of a special novolac-type phenolic resin is added as a flocculant to the membrane feed water supplied to the reverse osmosis membrane device to aggregate and remove the polysaccharide ( Patent Document 3).

また、非イオン界面活性剤の処理方法として、50μm以下のマイクロバブルを用いて、その微細な気泡に非イオン界面活性剤を吸着させて気泡塔からオーバーフローさせる非泡沫分離と称する方法が提案されている(特許文献4)。   Further, as a method for treating a nonionic surfactant, there has been proposed a method called nonfoam separation in which microbubbles of 50 μm or less are used to adsorb nonionic surfactant to the fine bubbles and overflow from the bubble column. (Patent Document 4).

従来における海水の淡水化の前処理技術として、凝集砂ろ過法、生物膜ろ過法、加圧浮上法、MF膜(精密ろ過膜)、UF膜(限外濾過膜)を用いる方法などがある。また、海洋生物の飼育や養殖を目的にした海水浄化方法としてプロテインスキマーを用いる方法がある。以下に、これらの概要を説明する。   Conventional pretreatment techniques for seawater desalination include a coagulating sand filtration method, a biofilm filtration method, a pressurized flotation method, a method using an MF membrane (microfiltration membrane), and a UF membrane (ultrafiltration membrane). In addition, there is a method using a protein skimmer as a seawater purification method for the purpose of breeding and aquaculture of marine organisms. The outline of these will be described below.

凝集砂ろ過法は、塩化鉄(FeCl)などの凝集剤を海水に添加し、懸濁物質や一部の荷電を有する溶解性物質をフロックに吸着させ、砂やアンスラサイトを充填したろ過塔で除去する方法である。生物膜ろ過法は、生物膜を付着させた砂やアンスラサイトなどのろ材を充填したろ過塔に海水を供給し、生物膜による有機物の吸着や生物分解性有機物の分解、ろ材による捕捉作用でろ過を行う方法である。加圧浮上法は、海水中に含まれる藻類、油分など比較的比重の小さい非溶解性の懸濁物質を除去するために使用され、海水中に凝集剤を添加し、固形物や藻類、油分などの非溶解性物質を取り込んだフロックを作り、空気を加圧して水に溶解させ、その水を水中に放出することで微細な気泡を発生させ、フロックにその微細な気泡を多く吸着させて、気泡の浮力によりフロックを液面に浮上させて水中から除去する方法である(特許文献5、特許文献6)。MF膜やUF膜を用いる膜ろ過法は、数μmから0.01μm以下の非常に小さい孔径を有している除濁膜を用いる、微細な孔径によるろ過である。なお、水族館における海水浄化において、水槽内の水質管理を目的に泡沫分離装置の一種であるプロテインスキマーが実用化されている。しかしながら、プロテインスキマーは、魚類の出す粘液や糞、食べ残しのえさなどのたんぱく質を泡沫として分離し系外に排出して除去する方法であり、海水淡水化の前処理としては適用されていない。 Agglomerated sand filtration method is a filtration tower in which a flocculant such as iron chloride (FeCl 3 ) is added to seawater, suspended substances and some charged soluble substances are adsorbed on flocs, and sand or anthracite is packed. It is a method of removing by. In the biofilm filtration method, seawater is supplied to a filtration tower filled with sand or anthracite filter media with biofilm attached, and filtered by adsorption of organic matter by biofilm, decomposition of biodegradable organic matter, and trapping action by filter media. It is a method to do. The pressure levitation method is used to remove non-soluble suspended solids with relatively low specific gravity, such as algae and oil contained in seawater. Create a floc that incorporates non-soluble substances such as air, pressurize the air to dissolve it in water, release the water into the water to generate fine bubbles, and adsorb many fine bubbles to the floc In this method, the flock is lifted to the liquid surface by the buoyancy of the bubbles and removed from the water (Patent Documents 5 and 6). The membrane filtration method using an MF membrane or a UF membrane is filtration with a fine pore size using a turbidity membrane having a very small pore size of several μm to 0.01 μm or less. In the seawater purification in an aquarium, a protein skimmer, which is a kind of foam separation device, has been put into practical use for the purpose of water quality management in an aquarium. However, the protein skimmer is a method for separating and removing proteins such as mucus, feces, and uneaten food from fish as foams, and discharging them to the outside of the system, and is not applied as a pretreatment for seawater desalination.

特開2010- 58080号公報JP 2010-58080 A 特許第5019276号公報Japanese Patent No. 5019276 特開2012-166118号公報JP 2012-166118 A 特許第4379147号公報Japanese Patent No. 4379147 特開2012-223723号公報JP 2012-223723 A 特開2008-173534号公報JP 2008-173534 A

Transparent exopolymer particles: Potential agents for organic fouling and biofilm formation in desalination and water treatment plants, Edo Bar-Zeev et al., Desalination and Water Treatment 3 (2009) 136-142Transparent exopolymer particles: Potential agents for organic fouling and biofilm formation in desalination and water treatment plants, Edo Bar-Zeev et al., Desalination and Water Treatment 3 (2009) 136-142 A dye-binding assay for the spectrophotometric measurement oftransparent exopolymer particles (TEP), U. Passow, A. L. Alldredge, Limnol. Oceanogr., 40(7), 1995, 1326-1335A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP), U. Passow, A. L. Alldredge, Limnol. Oceanogr., 40 (7), 1995, 1326-1335

これまで提案されているTEP除去方法は、特殊な濾過膜や特殊な薬剤を使用するため、濾過膜のメンテナンスや薬剤の後処理などの副次的な問題が生じる。特殊な添加物や濾過膜を使用せずに、TEPの付着による前処理用の濾過膜及び逆浸透膜の閉塞を防止することが求められている。   The TEP removal methods that have been proposed so far use special filtration membranes and special chemicals, and thus cause secondary problems such as filtration membrane maintenance and chemical post-treatment. There is a need to prevent clogging of pretreatment filtration membranes and reverse osmosis membranes due to adhesion of TEP without using special additives or filtration membranes.

前述した特許文献1に開示されている方法では、磁性粒子の添加と磁気分離設備が必要であり、膜分離装置のみならず磁気分離設備のメンテナンスが必要となり、コストが増大し、0.4μm以下のFibril(繊維状物質)やHydrogel(ハイドロゲル)などのTEP前駆体を除去することができない。   In the method disclosed in Patent Document 1 described above, addition of magnetic particles and magnetic separation equipment are required, and maintenance of not only the membrane separation apparatus but also the magnetic separation equipment is required, resulting in an increase in cost and 0.4 μm or less. TEP precursors such as Fibril (hydrofibrous material) and Hydrogel (hydrogel) cannot be removed.

そして、特許文献2に開示されている方法では、特定の膜の使用及び流束の制御、並びに前処理膜表面に捕捉されたTEPの洗浄除去が必要となり、この方法で使用する前処理膜の孔径は1μm以上であり、1μm未満のFibrilやHydrogelなどのTEP前駆体を除去することができない。   In the method disclosed in Patent Document 2, it is necessary to use a specific membrane and control the flux, and to wash and remove TEP trapped on the surface of the pretreatment membrane. The pore diameter is 1 μm or more, and TEP precursors such as Fibril and Hydrogel of less than 1 μm cannot be removed.

また、特許文献3に開示されている方法では、特殊な凝集剤を使用することが必要で一般的に海水淡水化の前処理で用いられる鉄塩などの凝集剤と併用して用いるものであるため,汚泥発生量が増加しそれを処分しなければならないという問題がある。   Moreover, in the method disclosed in Patent Document 3, it is necessary to use a special flocculant, which is generally used in combination with a flocculant such as an iron salt used in a pretreatment for seawater desalination. Therefore, there is a problem that the amount of sludge generated increases and must be disposed of.

前述した特許文献4に示す非泡沫分離と称する方法は、粒径50μm以下のマイクロバブルを用いて非イオン界面活性剤を除去する。気泡の上昇速度は0.001m/s以下と極めて低速であり、装置内における水の滞留時間が10分〜60分と長時間を必要とする。したがって、大量の水を処理するには装置が大型になり、設置面積(フットプリント)の小さな装置の提供が課題であった。またマイクロバブルは、気泡が微細すぎるため、粒径が0.4μm〜200μmのTEPに対しては十分な吸着能を有していない。   In the method referred to as non-foam separation described in Patent Document 4 described above, the nonionic surfactant is removed using microbubbles having a particle size of 50 μm or less. The rising speed of the bubbles is as low as 0.001 m / s or less, and the residence time of water in the apparatus requires a long time of 10 minutes to 60 minutes. Therefore, in order to process a large amount of water, the apparatus becomes large, and providing an apparatus with a small installation area (footprint) has been a problem. Microbubbles do not have sufficient adsorption capacity for TEP having a particle size of 0.4 μm to 200 μm because the bubbles are too fine.

更に、凝集砂ろ過法、生物膜ろ過法、加圧浮上法、MF膜やUF膜を用いる膜ろ過方法では、効果的にTEPを除去することが困難であった。
即ち、凝集砂ろ過により前述のTEPも一部除去されるものの、凝集フロックに取り込まれるTEPは少ないため、凝集砂ろ過では効果的なTEP除去はできない(後述の比較例4参照)。TEPは、生物分解性が低い物質であり、生物膜ろ過では効果的なTEP除去はできない。
Furthermore, it has been difficult to effectively remove TEP by the aggregate sand filtration method, the biofilm filtration method, the pressure flotation method, and the membrane filtration method using an MF membrane or a UF membrane.
That is, although the TEP described above is partially removed by the agglomerated sand filtration, the TEP taken into the agglomerated flocs is small, and therefore effective TEP removal cannot be performed by the agglomerated sand filtration (see Comparative Example 4 described later). TEP is a substance with low biodegradability, and effective TEP removal cannot be achieved by biofilm filtration.

加圧浮上法は、元来、非溶解性の懸濁物質の除去を目的としており、凝集剤の作用によりフロック状の固形物と、空気を加圧して水に溶解させてその水を水中に放出することで発生させた10〜100μm程度の微細な気泡とを接触させ、固形物の周囲もしくは内部に包含された微細気泡の浮力を利用してフロス(浮上物)として水面に浮上させ、水面に積層されたフロスを系外に排出する。この場合、微細気泡の浮上速度が遅く、非常に大きな分離面積が必要で、装置の小型化が課題であった。また、浮上した気泡を含む浮上物の粒子をスキマーで掻き寄せて排出するまでに、ある程度浮上物を溜めて積層させるため、掻き寄せるまでの時間間隔が長く、その間に気泡の破泡によって粒子が再度分散し沈降する場合もあった。   The pressurized flotation method is originally intended to remove non-dissolvable suspended solids. By the action of a flocculant, floc-like solids and air are pressurized and dissolved in water to bring the water into the water. The fine bubbles of about 10 to 100 μm generated by discharging are brought into contact with each other, and floated on the water surface as floss (floating matter) using the buoyancy of the fine bubbles contained around or inside the solid matter. The floss laminated on is discharged out of the system. In this case, the rising speed of the fine bubbles is slow, a very large separation area is required, and downsizing of the apparatus has been a problem. In addition, since floating particles including bubbles that have risen are scraped up and discharged by a skimmer, the floating objects are accumulated and stacked to some extent. In some cases, it was dispersed and settled again.

MF膜やUF膜による膜ろ過法は、微細な孔径を有する除濁膜によるろ過であるため、TEPによりMF膜やUF膜にファウリングが生じ、頻繁な薬品洗浄が必要になる(後述の比較例5参照)。   Since the membrane filtration method using an MF membrane or UF membrane is filtration using a turbidity membrane having a fine pore size, fouling occurs in the MF membrane or UF membrane due to TEP, and frequent chemical cleaning is necessary (comparison described later). Example 5).

以上、単に、凝集砂ろ過法、生物膜ろ過法、加圧浮上法、MF膜やUF膜による膜ろ過法のいずれを適用したとしても、TEPを効率良く、安定的に除去することは困難であった。
即ち、特殊な薬剤や凝集剤、添加物を用いることなく、逆浸透膜を用いた海水淡水化の前処理技術において汎用されている例えば、鉄塩やアルミニウム塩、又は酸などの添加物を用いて、効率よく安定してTEPを除去することが切望されていた。
As described above, it is difficult to remove TEP efficiently and stably even if any one of agglomerated sand filtration method, biofilm filtration method, pressurized flotation method, and MF membrane or UF membrane membrane filtration method is applied. there were.
That is, without using special chemicals, flocculants, and additives, it is widely used in seawater desalination pretreatment techniques using reverse osmosis membranes, for example, using iron salts, aluminum salts, or acids. Therefore, it has been desired to remove TEP efficiently and stably.

本発明の目的は、TEP、多糖類、及びFibril(繊維状物質)やHydrogel(ハイドロゲル)、TEP前駆体などを、気泡に吸着させることで除去して、逆浸透膜の閉塞を防止し、長期にわたり、効率よく安定稼働が可能な海水淡水化装置及びその方法を提供することにある。   The object of the present invention is to remove TEP, polysaccharides, Fibril (fibrous substance), Hydrogel (hydrogel), TEP precursor, etc. by adsorbing them to the bubbles, thereby preventing clogging of the reverse osmosis membrane, It is an object of the present invention to provide a seawater desalination apparatus and method capable of stable operation efficiently over a long period of time.

本発明によれば、下記構成を有する海水淡水化装置及びその方法が提供される。
第1の側面として、本発明に係る海水淡水化装置は、取水した海水に凝集剤を添加する凝集剤添加手段と、凝集剤添加による形成されたフロックを含む海水中に気泡を発生させ、当該気泡にTEP成分やTEP成分が吸着して疎水化した凝集フロックを吸着させ、TEP含有気泡を水面に浮上させて水分を除去して泡沫として水面から除去する泡沫除去部を具備するTEP成分除去装置と、TEP成分が除去された海水を脱塩処理して淡水化する逆浸透膜処理装置と、を具備することを特徴とする。
ADVANTAGE OF THE INVENTION According to this invention, the seawater desalination apparatus and its method which have the following structure are provided.
As a first aspect, a seawater desalination apparatus according to the present invention generates bubbles in seawater containing flocculant addition means for adding a flocculant to the taken seawater and flocs formed by the addition of the flocculant, and A TEP component removing device comprising a foam removing unit that adsorbs a TEP component or a condensed floc hydrophobized by adsorbing a TEP component in a bubble, floats the TEP-containing bubble on the water surface, removes moisture, and removes it as a foam from the water surface And a reverse osmosis membrane treatment device that desalinates seawater from which the TEP component has been removed to desalinate it.

第2の側面として、本発明に係る海水淡水化方法は、取水した海水に凝集剤を添加してフロックを形成させ、当該フロックを含む海水に気泡を発生させ、当該気泡に海水中のTEP成分やTEP成分が吸着して疎水化した凝集フロックが付着してなるTEP含有気泡を水面に浮上させ、浮上した気泡を集めて泡沫とした後に当該TEP含有泡沫を除去するTEP成分除去工程、TEP含有気泡を除去した後の海水から濁質分を除去する除濁工程、TEP成分を除去した後の海水を脱塩処理する脱塩処理工程を含むことを特徴とする。
また、本発明に係る海水淡水化方法は、取水した海水に酸を添加する酸添加工程と、酸添加後の海水のpHを測定し、該pHが5〜7の範囲となる様に前記酸添加量を制御する酸添加制御工程と、前記海水中に気泡を生成させ、該気泡に海水中のTEP成分を付着させてTEP含有気泡を水面に浮上させ、浮上した気泡を集めてTEP含有泡沫とした後に該TEP含有泡沫を除去するTEP成分除去工程と、前記TEP成分が除去された海水を脱塩処理する脱塩処理工程と、を含むことを特徴とする。
As a second aspect, in the seawater desalination method according to the present invention, flocculant is added to the taken seawater to form a floc, bubbles are generated in the seawater containing the floc, and the TEP component in the seawater is generated in the bubbles. A TEP component removing step of removing TEP-containing foam after the TEP-containing bubbles adhering to the TEP component adsorbed and adhering hydrophobic flocs adhering to the surface float to the surface of the water and collecting the bubbles that have risen to form foam It includes a turbidity removing step for removing turbid components from seawater after removing bubbles and a desalting treatment step for desalting seawater after removing the TEP component.
The seawater desalination method according to the present invention includes an acid addition step of adding acid to the taken seawater, and the pH of the seawater after the acid addition is measured, and the acid is adjusted so that the pH is in the range of 5-7. Acid addition control step for controlling the amount of addition, bubbles are generated in the seawater, TEP components in the seawater are attached to the bubbles to cause the TEP-containing bubbles to rise to the surface of the water, and the bubbles that have risen are collected and TEP-containing foam And a TEP component removing step for removing the TEP-containing foam and a desalting treatment step for desalting the seawater from which the TEP component has been removed.

本発明に係る海水淡水化装置及びその方法によれば、逆浸透膜を用いた海水淡水化の前処理技術において汎用性のある添加物を用い、TEP、多糖類、及び繊維状物質やハイドロゲル、TEP前駆体などを、気泡に吸着させることで除去して、逆浸透膜の閉塞を防止し、長期にわたり、効率よく安定稼働が可能となる。 According to the seawater desalination apparatus and method therefor according to the present invention, TEP, polysaccharides, fibrous materials, and hydrogels are used in a pretreatment technology for seawater desalination using a reverse osmosis membrane. The TEP precursor and the like are removed by adsorbing them in the bubbles, thereby preventing the reverse osmosis membrane from being clogged and enabling stable and efficient operation over a long period of time.

本発明の海水淡水化装置の一実施態様を示す概略フローである。It is a general | schematic flow which shows one embodiment of the seawater desalination apparatus of this invention. 本発明の海水淡水化装置の実施態様を示す模式図である。It is a schematic diagram which shows the embodiment of the seawater desalination apparatus of this invention. 本発明の海水淡水化装置の気泡発生及び浮上気泡除去部の別の一実施形態を示す模式図である。It is a schematic diagram which shows another one Embodiment of the bubble generation of the seawater desalination apparatus of this invention, and a floating bubble removal part. 本発明の海水淡水化装置の気泡発生及び浮上気泡除去部の別の一実施形態を示す模式図である。It is a schematic diagram which shows another one Embodiment of the bubble generation of the seawater desalination apparatus of this invention, and a floating bubble removal part. 本発明の海水淡水化装置の気泡発生及び浮上気泡除去部の別の一実施形態を示す模式図である。It is a schematic diagram which shows another one Embodiment of the bubble generation of the seawater desalination apparatus of this invention, and a floating bubble removal part. 本発明の海水淡水化装置の気泡発生及び浮上気泡除去部の別の一実施形態を示す模式図である。It is a schematic diagram which shows another one Embodiment of the bubble generation of the seawater desalination apparatus of this invention, and a floating bubble removal part. 本発明の海水淡水化装置の気泡発生及び浮上気泡除去部の別の一実施形態を示す模式図である。It is a schematic diagram which shows another one Embodiment of the bubble generation of the seawater desalination apparatus of this invention, and a floating bubble removal part. 本発明の海水淡水化装置の気泡発生及び浮上気泡除去部の別の一実施形態を示す模式図である。It is a schematic diagram which shows another one Embodiment of the bubble generation of the seawater desalination apparatus of this invention, and a floating bubble removal part. 本発明の海水淡水化装置の気泡発生及び浮上気泡除去部の別の一実施形態を示す模式図である。It is a schematic diagram which shows another one Embodiment of the bubble generation of the seawater desalination apparatus of this invention, and a floating bubble removal part. 本発明の海水淡水化装置の気泡発生及び浮上気泡除去部の別の一実施形態を示す模式図である。It is a schematic diagram which shows another one Embodiment of the bubble generation of the seawater desalination apparatus of this invention, and a floating bubble removal part. 本発明の海水淡水化装置の気泡発生及び浮上気泡除去部の別の一実施形態を示す模式図である。It is a schematic diagram which shows another one Embodiment of the bubble generation of the seawater desalination apparatus of this invention, and a floating bubble removal part. 本発明の海水淡水化装置の気泡発生及び浮上気泡除去部の別の一実施形態を示す模式図である。It is a schematic diagram which shows another one Embodiment of the bubble generation of the seawater desalination apparatus of this invention, and a floating bubble removal part. 本発明の海水淡水化装置の気泡発生及び浮上気泡除去部の別の一実施形態を示す模式図である。It is a schematic diagram which shows another one Embodiment of the bubble generation of the seawater desalination apparatus of this invention, and a floating bubble removal part. 参考例1と比較例1における逆浸透膜の圧力の変動を示すグラフである。4 is a graph showing fluctuations in pressure of a reverse osmosis membrane in Reference Example 1 and Comparative Example 1. 従来技術における海水淡水化装置の代表例を示す概略フローである。It is a schematic flow which shows the representative example of the seawater desalination apparatus in a prior art. 本発明に係る海水淡水化装置の別の実施態様を示す模式図である。It is a schematic diagram which shows another embodiment of the seawater desalination apparatus which concerns on this invention. 図16に示す実施態様の泡沫分離部及び越流水位制御部(テレスコープ弁)の構成を示した説明図である。It is explanatory drawing which showed the structure of the foam separation part and overflow water level control part (telescope valve) of the embodiment shown in FIG. 参考例2と比較例2における逆浸透膜の圧力の変動を示すグラフである。4 is a graph showing fluctuations in pressure of a reverse osmosis membrane in Reference Example 2 and Comparative Example 2. 実施例1における海水淡水化処理フローを示す説明図である。It is explanatory drawing which shows the seawater desalination process flow in Example 1. FIG. 実施例2及び比較例3における海水淡水化処理フローを示す説明図である。It is explanatory drawing which shows the seawater desalination process flow in Example 2 and Comparative Example 3. 実施例3及び比較例4における海水淡水化処理フローを示す説明図である。It is explanatory drawing which shows the seawater desalination process flow in Example 3 and Comparative Example 4. 実施例4における海水淡水化処理フローを示す説明図である。It is explanatory drawing which shows the seawater desalination process flow in Example 4. 実施例5における海水淡水化処理フローを示す説明図である。It is explanatory drawing which shows the seawater desalination process flow in Example 5.

以下、添付図面を参照しながら本発明を詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings, but the present invention is not limited thereto.

本発明者らは、多糖類、特に溶解性多糖類を含むTEP成分を気泡表面に吸着させて、水面に浮上させ、泡状にして集合させ又は濃縮させて泡沫とすることで、水分と分離してTEP成分を容易に除去することができること、及び泡沫分離の前に凝集剤を添加することで、形成されるフロック表面にもTEP成分が吸着され、フロック表面を疎水化するため、TEP成分とフロックとがさらに気泡に吸着されやすくなり、TEP成分のみならず海水中懸濁物も効率的に除去されることを知見し、本発明を完成するに至った。TEP成分は分子構造として親水基と疎水基を有しており、疎水基を気泡の表面に向けることで気泡表面に吸着させることができる。水中に於いて気泡に吸着したTEP成分は水面に浮上して水分を分離することで泡沫となり、除去される。また凝集フロック表面には親水基を向けて吸着することで、逆に凝集フロックの外側に疎水基が向くことになりフロック表面が疎水化する。   The present inventors separate polysaccharides, in particular TEP components containing soluble polysaccharides, by adsorbing them on the surface of bubbles, floating them on the surface of the water, condensing them into bubbles, or concentrating them into foams to separate them from moisture. The TEP component can be easily removed, and by adding a flocculant before foam separation, the TEP component is also adsorbed on the formed flock surface and the flock surface is hydrophobized. And flocs are more easily adsorbed by bubbles, and it has been found that not only the TEP component but also the suspension in seawater can be efficiently removed, and the present invention has been completed. The TEP component has a hydrophilic group and a hydrophobic group as a molecular structure, and can be adsorbed on the bubble surface by directing the hydrophobic group toward the bubble surface. The TEP component adsorbed by the bubbles in the water floats on the surface of the water and separates the water to become foam and is removed. Further, by adsorbing the hydrophilic group toward the aggregated floc surface, the hydrophobic group is conversely directed to the outside of the aggregated floc and the floc surface becomes hydrophobic.

尚、本願明細書及び特許請求の範囲において、「TEP成分」とは、TEP及びTEP前駆体や多糖類を意味する。また、多糖類のうち、1μm以下の大きさのものを「溶解性多糖類」、1μmを越える大きさのものを「非溶解性多糖類」という。本発明の方法によれば、1μm以下のTEP成分を除去することができるため、多糖類のうち、除去が困難であった溶解性多糖類も良好に除去することができる。   In the present specification and claims, “TEP component” means TEP, a TEP precursor, and a polysaccharide. Among polysaccharides, those having a size of 1 μm or less are referred to as “soluble polysaccharides”, and those having a size exceeding 1 μm are referred to as “insoluble polysaccharides”. According to the method of the present invention, since a TEP component of 1 μm or less can be removed, among the polysaccharides, soluble polysaccharides that have been difficult to remove can be removed well.

本発明の海水淡水化方法は、(1)取水した海水に凝集剤を添加してフロックを形成させる凝集剤添加工程と、(2)当該フロックを含む海水に気泡を発生させ、当該気泡に海水中のTEP成分が付着してなるTEP含有気泡を水面に浮上させ、浮上した気泡を集めて泡沫とした後に当該TEP含有泡沫を除去する、TEP成分除去工程と、(3)TEP含有気泡を除去した後の海水から濁質分を除去する、除濁工程と、(4)濁質分を除去した後の海水を脱塩処理する、脱塩処理工程と、を含む。   The seawater desalination method of the present invention includes (1) a flocculant addition step in which flocculant is added to the collected seawater to form flocs, and (2) bubbles are generated in the seawater containing the flocs. A TEP component removal step in which the TEP-containing bubbles formed by adhering the TEP component in the surface rise to the surface of the water, and the collected bubbles are collected to form bubbles, and then the TEP-containing bubbles are removed; and (3) the TEP-containing bubbles are removed. A turbidity removing step for removing turbid components from the seawater after the removal, and (4) a desalting treatment step for desalting the seawater after removing the turbidity components.

凝集剤としては、鉄塩、アルミニウム塩などの無機凝集剤を好ましく用いることができ、塩化第二鉄(FeCl)、硫酸第二鉄(Fe(SO)、PAC(ポリ塩化アルミニウム)を好適例として挙げることができる。 As the flocculant, inorganic flocculants such as iron salts and aluminum salts can be preferably used. Ferric chloride (FeCl 3 ), ferric sulfate (Fe 2 (SO 4 ) 3 ), PAC (polyaluminum chloride) ) Can be cited as a suitable example.

また、本発明に係る海水淡水化方法は、取水した海水に酸を添加する酸添加工程と、酸添加後の海水のpHを測定し、該pHが5〜7の範囲となる様に前記酸添加量を制御する酸添加制御工程と、前記海水中に気泡を生成させ、該気泡に海水中のTEP成分を付着させてTEP含有気泡を水面に浮上させ、浮上した気泡を集めてTEP含有泡沫とした後に該TEP含有泡沫を除去するTEP成分除去工程と、前記TEP成分が除去された海水を脱塩処理する脱塩処理工程と、を具備する。 The seawater desalination method according to the present invention includes an acid addition step of adding acid to the taken seawater, and the pH of the seawater after the acid addition is measured, and the acid is adjusted so that the pH is in the range of 5-7. Acid addition control step for controlling the amount of addition, bubbles are generated in the seawater, TEP components in the seawater are attached to the bubbles to cause the TEP-containing bubbles to rise to the surface of the water, and the bubbles that have risen are collected and TEP-containing foam And then, a TEP component removing step for removing the TEP-containing foam and a desalting treatment step for desalting the seawater from which the TEP component has been removed.

即ち、TEP成分除去工程の前段に、海水若しくはフロックを含む海水に酸を添加して、pHを5.0〜7.0の範囲、好ましくは6.0〜7.0の範囲、最も好ましくは6.8に調節することが望ましい。pHを調節することで、泡沫の形成しやすさ及び安定性が向上してTEP除去率を向上させることができると共に、後段のRO膜分離における無機スケール付着を防止することができる。添加する酸としては、硫酸、塩酸などを挙げることができるが、コストの安く一般に広く利用されている硫酸が好ましい。   That is, before the TEP component removal step, acid is added to seawater or seawater containing flocs, and the pH is in the range of 5.0 to 7.0, preferably in the range of 6.0 to 7.0, most preferably. It is desirable to adjust to 6.8. By adjusting the pH, it is possible to improve the ease and stability of foam formation and improve the TEP removal rate, and it is possible to prevent inorganic scale adhesion in the subsequent RO membrane separation. Examples of the acid to be added include sulfuric acid and hydrochloric acid, but sulfuric acid which is widely used at low cost is preferable.

前記TEP成分除去工程は、TEP含有泡沫を高密度化して濃縮する濃縮工程及び/又はTEP含有泡沫を水面上の所定領域に集める集中工程をさらに含む。TEP含有泡沫の濃縮工程と集中工程とは、同一工程で行うこともできる。   The TEP component removal step further includes a concentration step for densifying and concentrating the TEP-containing foam and / or a concentration step for collecting the TEP-containing foam in a predetermined region on the water surface. The concentration step and concentration step of the TEP-containing foam can be performed in the same step.

TEP成分を吸着させる気泡の気泡径は50μm〜2mmが望ましく、50μm以下のマイクロバブルではTEP成分に対して微細すぎて吸着能が小さいことと、浮上速度が遅いことから、泡沫分離の目的を果たせない。また、2mmを上回る粗大な気泡では浮上速度が速く、気泡表面積が小さくなるため、TEP成分に対する吸着能の低下や水面で破泡しやすい傾向もあり適切ではない。   The bubble diameter of the bubbles for adsorbing the TEP component is desirably 50 μm to 2 mm, and the microbubbles of 50 μm or less are too fine for the TEP component to have a low adsorption capacity and the rising speed is slow. Absent. In addition, a coarse bubble exceeding 2 mm has a high ascent rate and a small bubble surface area. Therefore, there is a tendency that the adsorption ability with respect to the TEP component is lowered and the bubble tends to break on the water surface.

TEP成分除去工程において、取水した海水をTEP成分除去槽に落下させること、又は取水した海水を衝突部材に衝突させること、により、あるいは散気装置、曝気装置、撹拌式エアレータ、エジェクタを用いて、海水中に気泡を発生させることができる。また、散気装置、曝気装置、撹拌式エアレータ、エジェクタをTEP成分除去槽の底部に配置することによって、気泡を発生させると共に当該気泡にTEP成分が吸着されたTEP含有気泡を所定領域に集めることもできる。   In the TEP component removal step, by dropping the taken seawater into the TEP component removal tank, or by colliding the taken seawater with the collision member, or using an air diffuser, an aeration device, a stirring aerator, and an ejector, Bubbles can be generated in seawater. Also, by disposing a diffuser, aeration device, stirring aerator, and ejector at the bottom of the TEP component removal tank, bubbles are generated and TEP-containing bubbles in which the TEP component is adsorbed are collected in a predetermined region. You can also.

TEP成分除去工程におけるTEP含有泡沫の除去は、断面積が上方に向かって縮減する壁面に沿ってTEP含有泡沫を上昇させて水分を落下(脱水)させ泡沫成分を濃縮する泡沫分離部における分離除去、水面よりも下方に堰口を位置づけることができる可動堰による海水と泡沫との分離除去、スキマーによる泡沫の掻き取り、ポンプによる泡沫の吸引の少なくとも1種によりなされる。TEP含有気泡を所定領域に集めて濃縮した後、TEP含有泡沫除去を行うことでTEP含有気泡の分離除去がより容易になる。   The removal of the TEP-containing foam in the TEP component removal step is the separation and removal in the foam separation section that raises the TEP-containing foam along the wall surface where the cross-sectional area decreases upward and drops (dehydrates) moisture to concentrate the foam component. This is achieved by at least one of separation and removal of seawater and foam by a movable weir that can position the weir port below the water surface, scraping of the foam by a skimmer, and suction of the foam by a pump. After collecting and concentrating the TEP-containing bubbles in a predetermined region, the TEP-containing bubbles can be separated and removed more easily by removing the TEP-containing bubbles.

図1は、本発明の海水淡水化装置及びその方法のフローを示し、図2は本発明の海水淡水化装置の実施態様を示す概略図である。   FIG. 1 shows the flow of the seawater desalination apparatus and method of the present invention, and FIG. 2 is a schematic view showing an embodiment of the seawater desalination apparatus of the present invention.

本発明の海水淡水化装置は、海水を取水する海水取水部としての海水取水設備10、取水した海水に凝集剤を添加する凝集剤添加手段15、凝集剤添加による形成されたフロックを含む海水からTEP成分を除去する気泡発生及びTEP含有気泡除去部としての発泡・泡除去設備20、TEP成分を除去した海水(「濾過原水」ともいう)から濁質分を除去する除濁部としての前処理設備30、及び濁質分を除去した海水(「RO原水」ともいう)を脱塩処理して淡水化する逆浸透膜処理部としてのRO設備40を具備する。   The seawater desalination apparatus of the present invention includes a seawater intake facility 10 serving as a seawater intake unit for taking seawater, a flocculant addition means 15 for adding a flocculant to the taken seawater, and seawater containing flocs formed by adding the flocculant. Generation of bubbles for removing TEP components, foaming / foam removing equipment 20 as a TEP-containing bubble removing unit, pretreatment as a turbidity removing unit for removing turbid components from seawater from which TEP components have been removed (also referred to as “filtered raw water”) The facility 30 and the RO facility 40 as a reverse osmosis membrane treatment unit for desalinating seawater from which turbid components have been removed (also referred to as “RO raw water”) are provided.

また、図22に示す様に、TEP成分除去槽としての発泡・泡除去設備20の前段に、前記海水又は前記フロックを含む海水に酸を添加する酸添加手段、及び前記海水又は前記フロックを含む海水のpHを測定して酸の添加量を制御する酸添加量制御手段をさらに具備する。 In addition, as shown in FIG. 22, an acid addition means for adding acid to the seawater or seawater containing the floc, and the seawater or floc are included in the front stage of the foaming / foam removing equipment 20 as a TEP component removal tank. Acid addition amount control means for controlling the addition amount of the acid by measuring the pH of the seawater is further provided.

また図23に示す様に、酸添加手段及び酸添加制御手段の後に凝集剤添加手段を設けても良い。この場合、酸添加と、FeCl添加との相乗効果により、TEP除去率をより向上させることが可能となる。 Further, as shown in FIG. 23, a flocculant addition means may be provided after the acid addition means and the acid addition control means. In this case, the TEP removal rate can be further improved by the synergistic effect of the acid addition and the FeCl 3 addition.

尚、図1において、発泡・泡除去設備20は、取水海水に気泡を発生させる気泡発生部と、気泡に吸着又は付着したTEP成分を含むTEP含有気泡を除去するTEP含有気泡除去部とに別々に分けても良い。   In FIG. 1, the foaming / foam removing equipment 20 is divided into a bubble generating unit that generates bubbles in the intake seawater and a TEP-containing bubble removing unit that removes TEP-containing bubbles including TEP components adsorbed or adhered to the bubbles. It may be divided into

図2において、海水取水部は、海水又は汽水(以下、説明を簡潔にするために、海水と汽水を区別せずにまとめて「海水」と称す。)を取水する取水管11、取水管11に次亜塩素酸ナトリウム(NaClO)などの殺菌剤を添加する殺菌剤添加手段12、取水管11に海水を汲み上げる取水ポンプ13、及び取水ポンプ13の閉塞を防止するために取水ポンプ13の前段に設けられ貝類や大型のゴミなどを取り除くストレーナ14、逆浸透膜装置41に無機系のスケールの付着を防止するために海水のpHを下げる目的で硫酸(HSO)を添加する硫酸添加手段、気泡導入及び浮上気泡除去部20の前で塩化第二鉄(FeCl)などの凝集剤を添加する凝集剤添加手段を含む。 In FIG. 2, the seawater intake section includes intake pipe 11 and intake pipe 11 that take in seawater or brackish water (hereinafter, for the sake of brevity, seawater and brackish water are collectively referred to as “seawater”). In order to prevent clogging of the intake pump 13, a disinfectant addition means 12 for adding a disinfectant such as sodium hypochlorite (NaClO) to the intake pipe 11, a intake pump 13 for pumping seawater into the intake pipe 11, Sulfuric acid addition means for adding sulfuric acid (H 2 SO 4 ) for the purpose of lowering the pH of seawater in order to prevent inorganic scale from adhering to the strainer 14 and reverse osmosis membrane device 41 that are provided to remove shellfish and large dust In addition, a flocculant addition means for adding a flocculant such as ferric chloride (FeCl 3 ) in front of the bubble introduction and floating bubble removal unit 20 is included.

気泡導入及び浮上気泡除去部20は、取水した海水を貯留して海水からTEP成分を除去するTEP成分除去槽21、TEP成分除去槽21内で海水に気泡を発生させ、気泡に海水中のTEP成分や凝集フロックを付着させてなるTEP含有気泡として水面に浮上させる気泡発生手段22、及び浮上したTEP含有気泡を水面から除去する泡沫除去手段23を含む。更に、水面に浮上したTEP含有気泡の気泡密度を高めて濃縮し、且つ水面に浮上したTEP含有気泡を所定領域に集合させる気泡指向手段25、水面に浮上した泡沫が後段の除濁部30の濾過原水に流入することを防止する泡沫流出防止手段26を含むことが好ましい。   The bubble introduction and floating bubble removal unit 20 stores the taken seawater and removes the TEP component from the seawater, generates bubbles in the seawater in the TEP component removal tank 21, and generates bubbles in the TEP in the seawater. It includes bubble generating means 22 that floats on the surface of the water as TEP-containing bubbles formed by adhering components and aggregated flocs, and foam removing means 23 that removes the floated TEP-containing bubbles from the water surface. Further, the bubble density of the TEP-containing bubbles floating on the water surface is increased and concentrated, and the bubble directing means 25 for collecting the TEP-containing bubbles floating on the water surface in a predetermined region, and the bubbles floating on the water surface are in the subsequent turbidity part 30. It is preferable to include foam outflow prevention means 26 for preventing inflow into the raw filter water.

除濁装置30は、気泡発生及び浮上気泡除去部20にてTEPおよびTEP前駆体が除去された原水(濾過原水)を前処理するための濾過装置31、濾過原水を濾過装置31に送水するための濾過原水送水管32及び濾過原水ポンプ33を含む。濾過装置31としては、一般的な前処理用濾過装置を制限なく使用することができ、砂、アンスラサイト、ガラス、ガーネット、活性炭、繊維部材、カートリッジフィルタなどの多孔性物質を充填してなる濾過装置でよい。除濁装置30として、UF膜又はMF膜などの有機膜を具備した膜分離を適用しても良い。また、除濁装置30として、ろ過に限らず、当業者に周知の加圧浮上法や沈殿法を適用することもできる。   The turbidity removal device 30 is used for pretreatment of raw water (filtered raw water) from which TEP and TEP precursor have been removed by the bubble generation and floating bubble removal unit 20, and for feeding the filtered raw water to the filtration device 31. The filtered raw water feed pipe 32 and the filtered raw water pump 33 are included. As the filtration device 31, a general pretreatment filtration device can be used without limitation, and the filtration device 31 is filled with a porous substance such as sand, anthracite, glass, garnet, activated carbon, fiber member, cartridge filter, and the like. It can be a device. As the turbidity removing device 30, membrane separation including an organic membrane such as a UF membrane or an MF membrane may be applied. Moreover, as the turbidity removing device 30, not only filtration but also a pressure levitation method and a precipitation method known to those skilled in the art can be applied.

逆浸透膜処理装置40は、除濁装置30にて濾過されて濁質分が除去された海水(RO原水)を逆浸透膜装置41に送水するRO原水送水管42及び供給ポンプ43並びに保安フィルタ44及び保安フィルタポンプ45、RO原水送水管42に重亜硫酸ナトリウム(NaHSO)などの残留塩素除去剤を添加する残留塩素除去剤添加手段46を含む。 The reverse osmosis membrane treatment device 40 is a RO raw water feed pipe 42, a feed pump 43, and a safety filter that feed seawater (RO raw water) filtered by the turbidity removal device 30 to remove turbid components to the reverse osmosis membrane device 41. 44, a safety filter pump 45, and a residual chlorine remover adding means 46 for adding a residual chlorine remover such as sodium bisulfite (NaHSO 3 ) to the RO raw water feed pipe 42.

次に、図3〜図14を参照しながら、気泡発生及びTEP含有気泡除去部20の好適な態様を説明する。尚、前出の図面に示されている同じ構成要素には同じ符号を付して、説明を省略する。   Next, a preferred embodiment of the bubble generation and TEP-containing bubble removal unit 20 will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected to the same component shown by previous drawing, and description is abbreviate | omitted.

図3は、水面に浮上したTEP含有泡沫が除濁部30に流入することを防止する泡沫流出防止手段として、TEP成分除去槽21の底面から水面レベルの下まで立設仕切26aを立設させ、気泡導入域21aと、濾過原水流出域21bと、に区分し、更に、気泡導入域21a内に気泡発生手段として曝気装置22aを配置した例である。曝気装置22aは、TEP成分除去槽21の気泡導入域21aの底部に位置づけられ、海水に気泡を発生させ、気泡にTEP成分を吸着させTEP含有気泡として浮上させて集めて水面上にて泡沫とする。立設仕切26aで区分された濾過原水流出域21bの下部に、図2に示す濾過原水送水管32が接続される。   FIG. 3 shows a standing partition 26a standing from the bottom surface of the TEP component removal tank 21 to below the water surface level as a foam outflow prevention means for preventing the TEP-containing foam floating on the water surface from flowing into the turbidity removing part 30. This is an example in which a bubble introduction area 21a and a filtered raw water outflow area 21b are divided, and an aeration device 22a is arranged as a bubble generation means in the bubble introduction area 21a. The aeration device 22a is positioned at the bottom of the bubble introduction area 21a of the TEP component removal tank 21, generates bubbles in seawater, adsorbs the TEP components to the bubbles, floats and collects them as TEP-containing bubbles, and creates bubbles on the water surface. To do. A filtered raw water feed pipe 32 shown in FIG. 2 is connected to the lower part of the filtered raw water outflow area 21b divided by the standing partition 26a.

図4は、TEP成分除去槽21の気泡導入域21aへの気泡発生手段として、取水管11の先端部にエジェクタ22bを取り付けて、TEP成分除去槽21に上方から海水を供給する例である。エジェクタ22bにおいて、ベンチュリー管の原理で流下する海水に外気が取り込まれ、気泡を含んだ原水がTEP成分除去槽21に流入する。原水は、TEP成分除去槽21に上方から落下するため、TEP成分除去槽21の底面及びTEP成分除去槽21に貯留されている海水の水面との衝撃によって、TEP成分除去槽21内で海水にさらに気泡が発生する。また、衝撃によって生じる乱流によって、海水中のTEP成分が気泡に吸着され、TEP含有気泡が上昇する。   FIG. 4 is an example in which an ejector 22 b is attached to the tip of the intake pipe 11 as seam generation means to the bubble introduction area 21 a of the TEP component removal tank 21, and seawater is supplied to the TEP component removal tank 21 from above. In the ejector 22b, outside air is taken into the seawater flowing down on the principle of the Venturi tube, and raw water containing bubbles flows into the TEP component removal tank 21. Since the raw water falls into the TEP component removal tank 21 from above, the sea water in the TEP component removal tank 21 is affected by the impact of the bottom surface of the TEP component removal tank 21 and the water surface of the seawater stored in the TEP component removal tank 21. Furthermore, bubbles are generated. Moreover, the TEP component in seawater is adsorbed by the bubbles due to the turbulent flow generated by the impact, and the TEP-containing bubbles rise.

図5は、TEP成分除去槽21の気泡導入域21aへの気泡発生手段として、取水管11の先端部にエジェクタ22bを取り付けて、TEP成分除去槽21の側壁下方から気泡を含んだ海水を導入する例である。   FIG. 5 shows a bubble generating means for the bubble introduction area 21 a of the TEP component removal tank 21, in which an ejector 22 b is attached to the tip of the intake pipe 11, and seawater containing bubbles is introduced from below the side wall of the TEP component removal tank 21. This is an example.

図6は、TEP成分除去槽21の気泡導入域21aへの気泡発生手段として、取水管11の流出口の直下に衝突材22cを位置づけて、TEP成分除去槽21に上方から海水を供給する例である。海水は、衝突材22cと衝突することによって、飛沫となり、気泡を取り込む。衝突材としては、石などの天然の固形物や人工のバイオボールなどを用いることができる。   FIG. 6 shows an example in which a collision material 22c is positioned directly below the outlet of the intake pipe 11 and seawater is supplied to the TEP component removal tank 21 from above as a bubble generating means to the bubble introduction area 21a of the TEP component removal tank 21. It is. Seawater splashes by colliding with the collision material 22c and takes in bubbles. As the impact material, natural solids such as stones or artificial bio balls can be used.

図7は、TEP成分除去槽21の気泡導入域21aへの気泡発生手段として、TEP成分除去槽21の底部に撹拌式エアレータ22dを設けた例である。撹拌式エアレータ22dは、モータ駆動により取り込んだ外気を海水中に放出する。   FIG. 7 shows an example in which a stirring aerator 22 d is provided at the bottom of the TEP component removal tank 21 as means for generating bubbles to the bubble introduction area 21 a of the TEP component removal tank 21. The agitating aerator 22d releases the outside air taken in by driving the motor into seawater.

図8は、図3に示す態様に加えて、水面に浮上するTEP含有気泡を所定領域に集める気泡指向手段25として、TEP成分除去槽21の気泡導入域21a内に、傾斜仕切25aを設けた例である。傾斜仕切25aは、TEP成分除去槽21の海水流入側の壁と、流出側の壁とによって区画された領域内の水断面積が上方に向かって縮減するように傾斜して設けられている。曝気装置22aによって海水中に導入された気泡は、TEP成分を吸着してTEP含有気泡として上昇する際に、傾斜仕切25aの傾斜面に沿って所定領域を指向することになる。また、TEP含有気泡が傾斜仕切25aによって仕切られた狭い領域に集中するため、TEP成分との接触頻度が高まり、TEP含有気泡の気泡密度も高くなり濃縮される。傾斜仕切25aは、TEP含有気泡が濾過原水流出域21bに流出することを阻止することができる程度に傾斜していればよい。   8, in addition to the mode shown in FIG. 3, an inclined partition 25a is provided in the bubble introduction area 21a of the TEP component removal tank 21 as the bubble directing means 25 that collects the TEP-containing bubbles floating on the water surface in a predetermined area. It is an example. The inclined partition 25a is provided so as to be inclined so that the water cross-sectional area in the region defined by the seawater inflow side wall and the outflow side wall of the TEP component removal tank 21 is reduced upward. The bubbles introduced into the seawater by the aeration device 22a are directed to a predetermined region along the inclined surface of the inclined partition 25a when the TEP component is adsorbed and rises as a TEP-containing bubble. Further, since the TEP-containing bubbles are concentrated in a narrow area partitioned by the inclined partition 25a, the contact frequency with the TEP component is increased, and the bubble density of the TEP-containing bubbles is increased and concentrated. The inclined partition 25a only needs to be inclined to such an extent that the TEP-containing bubbles can be prevented from flowing out to the filtered raw water outflow region 21b.

図9は、図3に示す態様に加えて、水面に浮上したTEP含有泡沫の密度を高めて濃縮する泡沫濃縮手段として、TEP成分除去槽1の対向壁間に架設されている複数の立設壁24aを設けた例である。水面に浮上して集められたTEP含有泡沫は、複数の立設壁24aの壁面に沿って這い上がり濃縮される。また、立設壁24aの壁面に付着したTEP含有泡沫を掻き取ることで、TEP含有泡沫の除去も容易に行うことができる。   FIG. 9 shows a plurality of standing structures installed between opposing walls of the TEP component removal tank 1 as a foam concentration means for increasing and concentrating the density of the TEP-containing foam floating on the water surface in addition to the embodiment shown in FIG. This is an example in which a wall 24a is provided. The TEP-containing foam that floats and collects on the water surface is scooped up and concentrated along the wall surfaces of the plurality of standing walls 24a. Further, the TEP-containing foam can be easily removed by scraping off the TEP-containing foam attached to the wall surface of the standing wall 24a.

図3〜図9には、気泡発生手段22の各種態様を示したが、各気泡発生手段22及び各TEP含有泡沫除去手段23を任意に組み合わせることができる。   3 to 9 show various modes of the bubble generating means 22, but each bubble generating means 22 and each TEP-containing foam removing means 23 can be arbitrarily combined.

図10は、図3に示す態様に加えて、気泡にTEP成分前駆体が吸着してなるTEP含有気泡を水面から除去する泡沫除去手段として、掻き寄せ機23aとパイプスキマー23bとを設けた例である。水面に浮上したTEP含有泡沫は、掻き寄せ機23によってパイプスキマー23bの周辺に掻き寄せられ、パイプスキマー23bを通って排出される。   FIG. 10 shows an example in which a scraper 23a and a pipe skimmer 23b are provided as foam removing means for removing, from the water surface, TEP-containing bubbles formed by adsorbing a TEP component precursor to bubbles in addition to the embodiment shown in FIG. It is. The TEP-containing foam that has floated on the water surface is scraped to the periphery of the pipe skimmer 23b by the scraper 23 and discharged through the pipe skimmer 23b.

図11は、図3に示す態様に加えて、気泡にTEP成分前駆体が吸着してなるTEP含有気泡を水面から除去する泡沫除去手段として、スカムポンプ23cを設けた例である。スカムポンプ23cは、浮き23dによって水面に浮いており、水面に浮上したTEP含有泡沫を吸い込んで排出する。   FIG. 11 is an example in which a scum pump 23c is provided as a foam removing unit that removes TEP-containing bubbles formed by adsorbing a TEP component precursor to bubbles from the water surface in addition to the embodiment shown in FIG. The scum pump 23c floats on the water surface by the float 23d, and sucks and discharges the TEP-containing foam that has floated on the water surface.

図12は、図3に示す態様に加えて、気泡にTEP成分前駆体が吸着してなるTEP含有気泡を水面から除去する泡沫除去手段として、水面よりも下方に堰口を位置づけることができる可動堰23eをTEP成分除去槽21の一壁面に取り付けた例である。可動堰23eの堰口を水面よりも下方に位置づけることによって、表層水と共にTEP含有泡沫は排出される。   In addition to the embodiment shown in FIG. 3, FIG. 12 shows a movable weir that can position a weir port below the water surface as foam removing means for removing the TEP-containing bubbles formed by adsorbing the TEP component precursor to the air bubbles from the water surface. This is an example in which 23e is attached to one wall surface of the TEP component removal tank 21. By positioning the weir port of the movable weir 23e below the water surface, the TEP-containing foam is discharged together with the surface water.

図10〜図12には、泡沫除去手段23の各種態様を示したが、各気泡発生手段22及び各泡沫除去手段23を任意に組み合わせることができる。   10 to 12 show various modes of the foam removing means 23, but each bubble generating means 22 and each foam removing means 23 can be arbitrarily combined.

図13は、気泡発生及び泡沫除去部20と除濁部30とをTEP成分除去槽21内に組み込み、一体とした例である。気泡発生及び泡沫除去部20を原水槽21の上部に設け、除濁部30をTEP成分除去槽21の下部に設けている。気泡発生及び泡沫除去部20の底部には曝気装置22aを設け、海水中に導入された気泡を上昇させ、TEP含有気泡を水面上に浮上せて集めて泡沫として除去する。TEP成分除去槽21の下部に設けられている除濁部30は、濾材が充填されてなる濾過装置31を含む。TEP成分が除去された海水は、気泡導入及び泡沫除去部20の底部から除濁部30の濾過装置31に流入し、濾材と接触して濾過されながら下降する。   FIG. 13 shows an example in which the bubble generation and foam removal unit 20 and the turbidity removal unit 30 are incorporated into a TEP component removal tank 21 and integrated. The bubble generation and foam removing unit 20 is provided in the upper part of the raw water tank 21, and the turbidity removing part 30 is provided in the lower part of the TEP component removing tank 21. An aeration device 22a is provided at the bottom of the bubble generation and foam removal unit 20, the bubbles introduced into the seawater are raised, and the TEP-containing bubbles float on the water surface and are collected and removed as bubbles. The turbidity removal part 30 provided in the lower part of the TEP component removal tank 21 includes a filtration device 31 filled with a filter medium. The seawater from which the TEP component has been removed flows from the bottom of the bubble introduction and foam removal unit 20 into the filtration device 31 of the turbidity removal unit 30 and descends while being filtered in contact with the filter medium.

図16は、本発明の海水淡水化装置の他の実施態様を示す概略図である。尚、前述した図2と共通する構成には同一符号を付し説明は省略する。図16において、特徴的なことは、気泡発生及び泡沫除去部20に、泡沫分離部200と越流水位制御部(テレスコープ弁)210とを組合せたことにある。   FIG. 16 is a schematic view showing another embodiment of the seawater desalination apparatus of the present invention. In addition, the same code | symbol is attached | subjected to the structure which is common in FIG. 2 mentioned above, and description is abbreviate | omitted. In FIG. 16, what is characteristic is that the bubble generation and foam removal unit 20 is combined with the foam separation unit 200 and the overflow water level control unit (telescope valve) 210.

図17に気泡発生及び泡沫除去部20の詳細の一例を示す。気泡発生及び泡沫除去部20には、TEP成分除去槽の上部から海水を供給する海水供給部201と、TEP成分除去槽の底部に気泡を発生させる散気装置202と、散気装置202にて発生した気泡の浮上方向を制御する整流板203と、浮上した気泡を破壊せずに濃縮して海水と分離する泡沫分離部204と、泡沫分離部204にて分離された海水を越流させる水位を制御するテレスコープ弁210と、が設けられている。散気装置202としては、気泡を噴出する孔径が1mm以下程度のメンブレン式散気装置又はセラミック製散気装置やエジェクタが好適である。   FIG. 17 shows an example of details of the bubble generation and foam removal unit 20. The bubble generation and foam removal unit 20 includes a seawater supply unit 201 that supplies seawater from the top of the TEP component removal tank, an air diffuser 202 that generates bubbles at the bottom of the TEP component removal tank, and an air diffuser 202. A rectifying plate 203 that controls the rising direction of the generated bubbles, a foam separation unit 204 that concentrates the separated bubbles without breaking them and separates them from seawater, and a water level that allows the seawater separated by the foam separation unit 204 to overflow. A telescope valve 210 for controlling. As the air diffuser 202, a membrane air diffuser, a ceramic air diffuser or an ejector having a hole diameter for ejecting bubbles of about 1 mm or less is suitable.

泡沫分離部204は、水面に対して平行となる底面204aと、当該底面204aから斜めに立ち上がり頂部に開口204cを形成する複数の逆漏斗形状の立ち上がり部204bとを具備する。整流板203により浮上したTEP成分含有気泡を集めたTEP含有泡沫は、泡沫分離部204の底面204aに接触して濃縮されると共に、立ち上がり部204bに向けて移動し、立ち上がり部204bの壁面に沿って開口204cに到達し、開口204cから排出され、底面204aの上面側に分離される。立ち上がり部204bは逆漏斗形状であるため、泡沫を破壊せずに速やかに移動させることができる。TEP含有気泡が分離除去された海水は、越流水として排水される。   The foam separating unit 204 includes a bottom surface 204a that is parallel to the water surface, and a plurality of reverse funnel-shaped rising portions 204b that form an opening 204c at the rising top obliquely from the bottom surface 204a. The TEP-containing foam that collects the TEP component-containing bubbles that have floated by the current plate 203 is brought into contact with the bottom surface 204a of the foam separating section 204 and concentrated, and moves toward the rising section 204b along the wall surface of the rising section 204b. Reaches the opening 204c, is discharged from the opening 204c, and is separated to the upper surface side of the bottom surface 204a. Since the rising portion 204b has a reverse funnel shape, the rising portion 204b can be quickly moved without destroying the foam. Seawater from which the TEP-containing bubbles are separated and removed is drained as overflow water.

越流水位制御部210は、TEP成分除去槽底部に設けた排水口210aと、当該排水口210aから上方向に流通させる立ち上がり管210bと、立ち上がり管210bからの越流水位を制御するテレスコープ弁210cと、を具備する。テレスコープ弁としては特に限定されず、一般的に水位調節に用いられているテレスコープ弁を用いることができる。越流水位制御部210は、海水水質に応じて越流水位を変えて、泡沫分離量を調整可能とする。即ち、越流水位を低くすると、越流水量が増え、泡沫分離部200の底面200aと水面との距離が大きくなり、水面上での泡沫の滞留量が増えて濃縮が進行し、立ち上がり部200b及び開口200cから排出される泡沫量が減少する。逆に、処理水の越流水位を高くすると、越流水量が減り、泡沫分離部200の底面200aと水面との距離が小さくなり、水面上での泡沫の滞留量が減って濃縮が進行せず、立ち上がり部200b及び開口200cから排出される泡沫量が増加する。なお、本実施態様では、越流水位を制御するためにテレスコープ弁を用いているが、同一の機能を有するものであればどのようなものでも適用可能であり、たとえば制御弁などを用いることもできる。   The overflow water level control unit 210 includes a drain outlet 210a provided at the bottom of the TEP component removal tank, a rising pipe 210b that flows upward from the drain outlet 210a, and a telescope valve that controls the overflow water level from the rising pipe 210b. 210c. The telescope valve is not particularly limited, and a telescope valve generally used for water level adjustment can be used. The overflow water level control unit 210 can adjust the amount of foam separation by changing the overflow water level according to the seawater quality. That is, when the overflow water level is lowered, the amount of overflow water is increased, the distance between the bottom surface 200a of the foam separation unit 200 and the water surface is increased, the amount of foam staying on the water surface is increased, the concentration proceeds, and the rising portion 200b. And the foam amount discharged | emitted from the opening 200c reduces. Conversely, when the overflow level of the treated water is increased, the amount of overflow water is reduced, the distance between the bottom surface 200a of the foam separation unit 200 and the water surface is reduced, the amount of foam remaining on the water surface is reduced, and the concentration proceeds. The amount of foam discharged from the rising portion 200b and the opening 200c increases. In this embodiment, a telescope valve is used to control the overflow water level. However, any telescope valve having the same function can be applied. For example, a control valve or the like is used. You can also.

本実施例の海水淡水化装置及びその方法によれば、従来のTEP除去方法では除去できなかった微細なTEP、及びその前駆体や、溶解性の多糖類の除去が可能となり、逆浸透膜の長期使用が可能となるため、洗浄及びメンテナンスの頻度を減少させ、長期にわたり、効率よく安定稼働が可能となる。また先に泡沫を除去する過程で凝集フロックとして海水中懸濁物も併せて除去することにより、後段の除濁工程における固形物負荷量が低減することで例えば砂ろ過であれば逆洗頻度が減少し、MF膜やUF膜であれば逆洗頻度の減少によって洗浄薬品使用量も低減する。   According to the seawater desalination apparatus and method of this embodiment, it is possible to remove fine TEP, precursors thereof, and soluble polysaccharides that could not be removed by the conventional TEP removal method. Since long-term use is possible, the frequency of cleaning and maintenance is reduced, and stable and efficient operation is possible over a long period. In addition, by removing the suspended matter in seawater as agglomerated floc in the process of removing the foam first, the amount of solid matter in the subsequent turbidity process is reduced, so that the frequency of backwashing is increased, for example, in sand filtration. In the case of MF membranes and UF membranes, the amount of cleaning chemicals used is reduced by reducing the frequency of backwashing.

更に海水淡水化の前処理として除濁工程が最初にある施設の場合、赤潮や砂などの自然現象による急激な取水海水の水質の悪化によって例えば砂ろ過装置の場合、ろ過層が閉塞して急激にろ過抵抗が上昇したり、例えばMF膜やUF膜の場合も同様に膜の差圧が急上昇して逆洗頻度が増加することで事実上処理できなくなり、水質悪化時には海水淡水化施設を停止せざるを得なくなる場合があるが、本発明の海水淡水化装置及びその方法によれば除濁工程の前に泡沫分離工程を設けることで急激な水質悪化を和らげる役割を果たし,除濁工程での装置への水質変化の衝撃を抑制して施設の運転を継続することができる。 In addition, in the case of facilities where the turbidity process is first performed as a pretreatment for seawater desalination, for example in the case of a sand filtration device due to a sudden deterioration in the quality of the intake water due to natural phenomena such as red tide and sand, the filtration layer is clogged and rapidly In the case of MF membranes and UF membranes, for example, the differential pressure of the membrane rises rapidly and the frequency of backwashing increases, making it virtually impossible to treat, and when the water quality deteriorates, the seawater desalination facility is stopped. However, according to the seawater desalination apparatus and method of the present invention, by providing a foam separation step before the turbidity step, it plays a role in relieving rapid water quality deterioration. The operation of the facility can be continued while suppressing the impact of water quality changes on the equipment.

また、特殊な濾過膜、特殊な凝集剤、及び磁性粒子などを使用する必要がなく、ランニングコストを削減することができる。   Moreover, it is not necessary to use a special filtration membrane, a special flocculant, magnetic particles, and the like, and the running cost can be reduced.

TEP成分除去の前に凝集剤を添加することによって、除去対象であるTEP成分やタンパク質などの界面活性機能を利用して、海水中の懸濁物が凝集して形成されるフロック表面を疎水化して気泡に吸着され易くして、TEP成分ばかりでなく懸濁物の除去率を高めることができ、後段のRO膜の閉塞を抑制できると共に,その前の除濁工程における砂ろ過やろ過膜などの固形物負荷が低減されることで、逆洗頻度や洗浄薬剤添加量を大幅に削減することができることで,洗浄動力の削減や逆洗に除濁工程の処理水を用いる場合には水回収率を向上させることができる。   By adding an aggregating agent before removing the TEP component, the surface of the floc formed by the suspension of the suspension in seawater is hydrophobized using the surface active function of the TEP component or protein to be removed. It can be easily adsorbed by air bubbles, can increase the removal rate of not only the TEP component but also the suspended matter, can suppress the blockage of the RO membrane in the latter stage, and sand filtration or filtration membrane in the previous turbidity process, etc. By reducing the solids load, the frequency of backwashing and the amount of cleaning chemicals added can be greatly reduced. The rate can be improved.

さらに、TEP成分除去の前に酸を添加してpHを5.0〜7.5に調節することによって、TEP成分が気泡により吸着しやすくなり、TEP成分の除去率が向上する。また、TEP含有泡沫の安定性も向上するため、TEP成分の除去率がさらに向上する。さらに、pHを5.0〜7.5に調節することによって、海水中の無機物がスケールとなって析出することも抑制される。   Furthermore, by adding an acid before removing the TEP component and adjusting the pH to 5.0 to 7.5, the TEP component is easily adsorbed by bubbles, and the removal rate of the TEP component is improved. Moreover, since the stability of the TEP-containing foam is also improved, the removal rate of the TEP component is further improved. Furthermore, by adjusting the pH to 5.0 to 7.5, the inorganic matter in seawater is prevented from being deposited as scale.

以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.

[参考例1]
図2に示す本発明の海水淡水化装置において、凝集剤添加位置を気泡発生及び泡沫除去部20の前段ではなく、後段である濾過原水送水管32に設けた場合(参考例1)と、図15に示す従来技術の海水淡水化装置(比較例1)と、を海に面した同一敷地内に並列して設置し、同一条件の下、6月〜翌年3月までの9ヶ月間にわたり、連続で運転した。
[Reference Example 1]
In the seawater desalination apparatus of the present invention shown in FIG. 2, when the flocculant addition position is provided not in the front stage of the bubble generation and foam removal unit 20 but in the subsequent filtered raw water water pipe 32 (Reference Example 1), FIG. The seawater desalination apparatus (Comparative Example 1) of the prior art shown in FIG. 15 is installed in parallel in the same site facing the sea, under the same conditions for 9 months from June to March of the following year, I drove continuously.

本発明の海水淡水化装置における気泡発生及び泡沫除去部20は、TEP成分除去槽21に、TEP含有泡沫流出防止手段として立設仕切26aをTEP成分除去槽21の底面から水面レベルの下まで立設し、気泡発生手段として取水管11の先端部にエジェクタ22b及びTEP成分除去槽21の底部に曝気装置22aを設け、TEP含有泡沫濃縮手段(及びTEP含有気泡指向手段)として対向壁面間に傾斜仕切25aを架設し、TEP含有気泡沫去手段として掻き寄せ機23a及びパイプスキマー23bを設けた構成とした。取水管11からの海水は、TEP成分除去槽21の上方から供給した。気泡発生及び泡沫除去部20の仕様を表1に示す。
In the seawater desalination apparatus of the present invention, the bubble generation and foam removal unit 20 stands in the TEP component removal tank 21 with a standing partition 26a as a TEP-containing foam outflow prevention means from the bottom surface of the TEP component removal tank 21 to below the water level. As a bubble generating means, an ejector 22b and an aeration device 22a are provided at the bottom of the intake pipe 11 at the tip of the intake pipe 11, and a TEP-containing foam concentrating means (and a TEP-containing bubble directing means) is inclined between the opposing wall surfaces. The partition 25a was constructed, and the scraper 23a and the pipe skimmer 23b were provided as TEP-containing bubble removing means. Seawater from the intake pipe 11 was supplied from above the TEP component removal tank 21. Table 1 shows the specifications of the bubble generation and foam removal unit 20.

図15に示す従来技術の海水淡水化装置における原水槽105には、取水管101からの海水を原水槽105の底部近傍に供給した。   In the raw water tank 105 in the conventional seawater desalination apparatus shown in FIG. 15, seawater from the intake pipe 101 was supplied to the vicinity of the bottom of the raw water tank 105.

参考例1の海水淡水化装置における除濁部30(従来技術における重力式二層砂濾過装置)の仕様を表2に示す。
Table 2 shows the specifications of the turbidity removing unit 30 (gravity-type double-layer sand filtration device in the prior art) in the seawater desalination apparatus of Reference Example 1.

参考例1の海水淡水化装置における脱塩処理装置40(従来の装置における逆浸透膜脱塩装置)のRO膜は、4インチのスパイラル式RO膜とした。取水部10(101)に設けたストレーナ14(104)は5mm目幅であり、海水中のゴミを取り除いてから、TEP成分除去槽21(105)に送水した。取水管11(101)中の海水に殺菌剤として1mg/L濃度の次亜塩素酸ナトリウム(NaClO)を添加し、濾過原水送水管32中の海水に凝集剤として3mg/L濃度の塩化鉄(FeCl)を添加し、RO原水送水管42中の海水に残留塩素除去剤として重亜硫酸ナトリウム(NaHSO)を添加した。取水量は10m/日とした。 The RO membrane of the desalination treatment apparatus 40 (reverse osmosis membrane desalination apparatus in the conventional apparatus) in the seawater desalination apparatus of Reference Example 1 was a 4-inch spiral RO membrane. The strainer 14 (104) provided in the water intake section 10 (101) has a width of 5 mm, and after removing dust in the seawater, the water was sent to the TEP component removal tank 21 (105). 1 mg / L sodium hypochlorite (NaClO) is added to the seawater in the intake pipe 11 (101) as a disinfectant, and 3 mg / L iron chloride (as a flocculant is added to the seawater in the raw water pipe 32 for filtration. FeCl 3 ) was added, and sodium bisulfite (NaHSO 3 ) was added to the seawater in the RO raw water feed pipe 42 as a residual chlorine remover. The amount of water intake was 10 m 3 / day.

参考例1の海水淡水化装置においては、エジェクタ22bにより気泡が混入した海水をTEP成分除去槽21に噴出させる。海水はTEP成分除去槽21内で滞留し、曝気装置22aにより曝気されて、さらに気泡と混合され、海水中のTEP成分が気泡に吸着してTEP含有気泡として浮上する。TEP成分除去槽21内に設けられている傾斜仕切25aにより、上昇するTEP含有気泡は気泡導入域21aの一部に集められ、水面に浮上したTEP含有泡沫は濃縮される。浮上したTEP含有泡沫は、TEP成分除去槽21の水面に滞留し、掻き寄せ機23aによってパイプスキマー23bの吸引口に集められ、取り込まれて排出される。一方、海水は、傾斜仕切25aの下方を通って、立設仕切26aの上方を横切り、濾過原水排出域21bから濾過原水送水管にて除濁部(重力式二層砂濾過装置)30に送られる。   In the seawater desalination apparatus of Reference Example 1, seawater mixed with bubbles is ejected to the TEP component removal tank 21 by the ejector 22b. Seawater stays in the TEP component removal tank 21, is aerated by the aeration device 22a, is further mixed with bubbles, and the TEP component in the seawater is adsorbed by the bubbles and floats as TEP-containing bubbles. Due to the inclined partition 25a provided in the TEP component removal tank 21, the rising TEP-containing bubbles are collected in a part of the bubble introduction region 21a, and the TEP-containing bubbles floating on the water surface are concentrated. The floated TEP-containing foam stays on the water surface of the TEP component removal tank 21, is collected by the scraper 23a at the suction port of the pipe skimmer 23b, and is taken out and discharged. On the other hand, the seawater passes below the inclined partition 25a, crosses above the upright partition 26a, and is sent from the filtered raw water discharge area 21b to the turbidity removing part (gravity type two-layer sand filter) 30 by the filtered raw water water pipe. It is done.

図15に示す従来の装置においては、海水は取水管101から原水槽105に供給され、一定時間滞留した後、重力式二層砂濾過装置109に送られる。除濁部(重力式二層砂濾過装置)109にて濾過された海水は、逆浸透膜脱塩装置115の逆浸透膜(RO膜)を保護するための保安フィルタを通して、RO膜に通水される。RO膜の水回収率を30%に設定し、3m/日のRO透過水(淡水)が流れるようにRO供給ポンプ114の流量を自動制御した。RO膜の圧力はRO膜のファウリング(閉塞)の状況に伴い上昇していくため、RO供給ポンプ114の吐出圧力が6.5MPaまで増加した場合にRO膜の薬液洗浄を行なった。 In the conventional apparatus shown in FIG. 15, seawater is supplied from the intake pipe 101 to the raw water tank 105, stays for a certain period of time, and then sent to the gravitational double-layer sand filter 109. Seawater filtered by the turbidity removal unit (gravity type double-layer sand filtration device) 109 passes through the RO membrane through the safety filter for protecting the reverse osmosis membrane (RO membrane) of the reverse osmosis membrane desalination device 115. Is done. The water recovery rate of the RO membrane was set to 30%, and the flow rate of the RO supply pump 114 was automatically controlled so that 3 m 3 / day of RO permeated water (fresh water) would flow. Since the RO membrane pressure increased with the RO membrane fouling (clogging) situation, the RO membrane was cleaned with chemicals when the discharge pressure of the RO supply pump 114 increased to 6.5 MPa.

TEPの量やその種類は、特に植物プランクトンなど季節性の影響を強く受けることから、特にTEP濃度が上昇する9月と比較的TEP濃度の低い低温期の1月に2回、各プロセスの定点においてTEP濃度を測定した。TEPの測定は、海水試料を孔径0.4μmのポリカーボネート製の濾紙で濾過し、濾紙表面に捕捉された試料をアルシアンブルーにて染色し、分光光度計によりキサンタンガム(XG)を標準として測定し、単位はμg−XG/Lで示した。本分析方法によって定量できるTEPは、酸性ムコ多糖類である。TEP測定結果を表3に示す。
The amount and type of TEP are strongly influenced by seasonality, especially phytoplankton, so the fixed point of each process is twice a month, especially in September when the TEP concentration rises and in January when the TEP concentration is relatively low. TEP concentration was measured. TEP is measured by filtering a seawater sample with a filter paper made of polycarbonate having a pore diameter of 0.4 μm, staining the sample captured on the surface of the filter paper with Alcian blue, and measuring xanthan gum (XG) with a spectrophotometer as a standard. The unit is indicated by μg-XG / L. TEP that can be quantified by this analytical method is an acidic mucopolysaccharide. Table 3 shows the TEP measurement results.

9月は赤潮が収まりつつあるものの、TEP濃度は翌年の1月と比較しても2.5倍程度高かった。   In September, red tides were subsided, but the TEP concentration was about 2.5 times higher than in January of the following year.

参考例1では、気泡発生及び泡沫除去部20により処理した海水を除濁装置30(重力式二層砂濾過装置31)の入口で取水して、TEP濃度を測定した。取水した海水中のTEP濃度が1,620μg−XG/Lであり、処理後の海水中のTEP濃度が502μg−XG/Lまで低下していることから、TEP除去率は69%であった。一方、比較例1では原水槽を介してもTEP濃度は1,540μg−XG/Lと1,550μg−XG/Lであり、殆ど変わらなかった。   In Reference Example 1, seawater treated by the bubble generation and foam removing unit 20 was taken at the inlet of the turbidity removal device 30 (gravity-type double-layer sand filtration device 31), and the TEP concentration was measured. Since the TEP concentration in the taken seawater was 1,620 μg-XG / L and the TEP concentration in the seawater after the treatment was reduced to 502 μg-XG / L, the TEP removal rate was 69%. On the other hand, in Comparative Example 1, the TEP concentrations were 1,540 μg-XG / L and 1,550 μg-XG / L even through the raw water tank, and were almost unchanged.

除濁装置(砂ろ過装置)30では、9月のTEP除去率は実施例1で31%、比較例1で34%、1月は参考例1で33%、比較例1で31%であり、参考例1と比較例1共に、TEP濃度の低下が見られた。FeClの凝集効果と濾過効果によるものと考えられる。 In the turbidizer (sand filter device) 30, the TEP removal rate in September was 31% in Example 1, 34% in Comparative Example 1, January was 33% in Reference Example 1, and 31% in Comparative Example 1. In both Reference Example 1 and Comparative Example 1, a decrease in TEP concentration was observed. This is considered to be due to the aggregation effect and filtration effect of FeCl 3 .

脱塩処理装置(RO膜装置)40入口における海水中のTEP濃度は、9月には参考例1で340μg−XG/L、比較例1においては1018μg−XG/L、1月には参考例1においては150μg−XG/L、比較例1においては469μg−XG/Lと、実施例1は、比較例1に対して著しく低いTEP濃度となった。   The TEP concentration in seawater at the inlet of the desalination treatment device (RO membrane device) 40 is 340 μg-XG / L in Reference Example 1 in September, 1018 μg-XG / L in Comparative Example 1, and Reference Example in January. In Example 1, 150 μg-XG / L, and in Comparative Example 1 469 μg-XG / L, Example 1 had a significantly lower TEP concentration than Comparative Example 1.

ゼリー状のTEPはRO膜表面に付着してRO膜のファウリングに繋がるものであることから、RO膜の圧力上昇や洗浄頻度の増加に繋がる。参考例1における実験期間中のRO膜の圧力変化を図14に示す。図14において、RO膜の圧力は、運転開始時は5MPa程度であり、運転の継続と共に上昇した。比較例1では6月から約4ヶ月(120日目)で設定圧の6.5MPaに達したことからRO膜の薬液洗浄を実施した。一方、参考例1では6月から約7.5ヶ月(230日目)で6.5MPaに達し、RO膜の薬液洗浄を実施した。   Since the jelly-like TEP adheres to the RO membrane surface and leads to fouling of the RO membrane, it leads to an increase in the RO membrane pressure and an increase in cleaning frequency. FIG. 14 shows the pressure change of the RO membrane during the experiment period in Reference Example 1. In FIG. 14, the pressure of the RO membrane was about 5 MPa at the start of operation, and increased with the continuation of operation. In Comparative Example 1, since the set pressure reached 6.5 MPa from June in about 4 months (120th day), the RO membrane was cleaned with a chemical solution. On the other hand, in Reference Example 1, the pressure reached 6.5 MPa in about 7.5 months (230th day) from June, and the chemical cleaning of the RO membrane was performed.

参考例1においては、比較例1と比べて約1.9倍長くRO膜を連続運転することができ、6月から翌年3月までの10ヶ月の連続運転において比較例1はRO膜の洗浄を2回要したのに対して、参考例1では1回の洗浄で済んだ。   In the reference example 1, the RO membrane can be continuously operated about 1.9 times longer than the comparative example 1, and in the continuous operation for 10 months from June to March of the following year, the comparative example 1 is the cleaning of the RO membrane. However, in Reference Example 1, only one cleaning was required.

参考例1の海水淡水化装置及び方法によれば、特殊な濾過膜や特殊な凝集剤や磁性粒子などを添加せずに、TEP成分(多糖類及びTEP、前駆体)を海水から分離することができ、逆浸透膜の閉塞を防止し、長期にわたり効率よく安定稼働が可能である。   According to the seawater desalination apparatus and method of Reference Example 1, separating TEP components (polysaccharides and TEP, precursors) from seawater without adding special filtration membranes, special flocculants, magnetic particles, or the like. Therefore, the reverse osmosis membrane is prevented from being blocked, and stable operation can be performed efficiently over a long period of time.

[参考例2]
図16に示す泡沫分離部200と越流水位制御部(テレスコープ弁)210とを具備する海水淡水化装置(参考例2)を用いて、図15に示す従来の装置(比較例2)と同一条件の下、6月〜翌年3月までの9ヶ月間にわたり、並行して連続で運転した。泡沫分離部200の仕様を表4に示す。
[Reference Example 2]
A conventional apparatus (Comparative Example 2) shown in FIG. 15 is used by using a seawater desalination apparatus (Reference Example 2) having a foam separation part 200 and an overflow water level control part (telescope valve) 210 shown in FIG. Under the same conditions, the vehicle was continuously operated in parallel for 9 months from June to March of the following year. Table 4 shows the specifications of the foam separation unit 200.

泡沫分離部200は、運転条件を固定して連続運転した場合、取水海水の水質変動により泡沫分離が安定しなくなる現象が確認されたため、水質変動に応じた制御方法を組み込んだ。   The foam separation unit 200 incorporates a control method according to the water quality fluctuation because the phenomenon that the foam separation becomes unstable due to the water quality fluctuation of the intake seawater is confirmed when the operation condition is fixed and continuously operated.

参考例2では、泡沫分離部200に流入する海水の5%である0.347L/分の泡沫分離量となるように越流水位制御部(テレスコープ弁)210で泡沫を含む水の越流水位を自動調節した。比較例2は、比較例1と同じ仕様にて運転した。TEP濃度が上昇する9月と比較的TEP濃度の低い低温期の12月に2回、各プロセスの定点においてTEP濃度を測定した結果を表5に示す。
In Reference Example 2, the overflow water containing foam in the overflow water level control unit (telescope valve) 210 so that the amount of foam separation is 0.347 L / min, which is 5% of the seawater flowing into the foam separation unit 200. The position was automatically adjusted. Comparative Example 2 was operated with the same specifications as Comparative Example 1. Table 5 shows the results of measuring the TEP concentration at a fixed point of each process twice in September when the TEP concentration increases and twice in December when the TEP concentration is relatively low.

参考例2において、9月に取水した海水中のTEP濃度が2,020μg−XG/Lであり、処理後の海水中のTEP濃度が632μg−XG/Lまで低下していることから、TEP除去率は69%であった。一方、比較例2では原水槽を介してもTEP濃度は1,980μg−XG/Lであり変わらなかった。   In Reference Example 2, since the TEP concentration in seawater taken in September is 2,020 μg-XG / L, and the TEP concentration in seawater after treatment has decreased to 632 μg-XG / L, TEP removal The rate was 69%. On the other hand, in Comparative Example 2, the TEP concentration was 1,980 μg-XG / L and remained unchanged even through the raw water tank.

除濁装置(重力式二層砂ろ過装置31)30では、9月のTEP除去率は参考例2で38%、比較例2で32%、12月は参考例2で36%、比較例2で33%であり、参考例2と比較例2共に、TEP濃度の低下が見られた。   In the turbidizer 30 (gravity type double-layer sand filter 31), the TEP removal rate in September was 38% in Reference Example 2, 32% in Comparative Example 2, and 36% in Reference Example 2 in December, Comparative Example 2. It was 33%. In both Reference Example 2 and Comparative Example 2, a decrease in TEP concentration was observed.

脱塩処理装置(RO膜装置)40入口における海水中のTEP濃度は、9月には参考例2で330μg−XG/L、比較例2は1,333μg−XG/L、12月には参考例2は130μg−XG/L、比較例2は330μg−XG/Lと、参考例2は比較例2に対して著しく低いTEP濃度となった。   The TEP concentration in seawater at the 40 inlet of the desalination treatment device (RO membrane device) is 330 μg-XG / L in Reference Example 2 in September, 1,333 μg-XG / L in Comparative Example 2, and reference in December. Example 2 had 130 μg-XG / L, Comparative Example 2 had 330 μg-XG / L, and Reference Example 2 had a significantly lower TEP concentration than Comparative Example 2.

また、参考例1と参考例2とを比較すると、越流水水位制御部(テレスコープ弁)210により、越流水位を制御することで、安定した泡沫分離が可能となった。実験期間中のRO膜41の圧力変化を図18に示す。図18において、RO膜の圧力は、運転開始時は4.8MPaであり、運転の継続と共に上昇した。比較例2では6月から急激に上昇し7月(110日目)に設定圧の6.5MPaに達したことからRO膜の薬液洗浄を実施した。一方、参考例2では11月(230日目)で6.5MPaに達し、RO膜の薬液洗浄を実施した。参考例2では、比較例2と比べて約2.1倍長くRO膜を連続運転することができ、4月から12月までの9ヶ月の連続運転において、比較例2はRO膜の洗浄を2回要したのに対して、参考例2では1回の洗浄で済んだ。   Moreover, when Reference Example 1 and Reference Example 2 were compared, stable foam separation became possible by controlling the overflow water level by the overflow water level control unit (telescope valve) 210. FIG. 18 shows the pressure change of the RO membrane 41 during the experiment. In FIG. 18, the RO membrane pressure was 4.8 MPa at the start of operation, and increased with the continuation of operation. In Comparative Example 2, since the temperature rapidly increased from June and reached the set pressure of 6.5 MPa in July (110th day), the RO membrane was cleaned with a chemical solution. On the other hand, in Reference Example 2, the pressure reached 6.5 MPa in November (230th day), and the RO membrane was subjected to chemical cleaning. In Reference Example 2, the RO membrane can be continuously operated about 2.1 times longer than in Comparative Example 2, and in the continuous operation for 9 months from April to December, Comparative Example 2 cleans the RO membrane. While it took two times, in Reference Example 2, only one washing was necessary.

なお、参考例2で用いた泡沫分離部200と同様の構造を持つものであれば、海水魚飼育/養殖用の市販のプロテインスキマーを用いても良い。   In addition, as long as it has the same structure as the foam separation part 200 used in Reference Example 2, a commercially available protein skimmer for seawater fish breeding / aquaculture may be used.

[実施例1]
図19に示す海水淡水化処理フローを用いて1週間運転し、泡沫分離部の出口排水中TEP成分濃度を測定し、取水した海水に凝集剤として塩化第二鉄(FeCl)を添加した場合(実施例1)と添加しない場合(比較例3)とにおけるTEP成分の除去性能を確認した。塩化第二鉄の添加量は取水海水に対して5mg/L(as FeCl3)とした。泡沫分離装置は水族館向けに製作販売されているプロテインスキマーを用いた。
[Example 1]
When operating for 1 week using the seawater desalination treatment flow shown in FIG. 19, measuring the TEP component concentration in the outlet drainage of the foam separation unit, and adding ferric chloride (FeCl 3 ) as a flocculant to the collected seawater The removal performance of the TEP component was confirmed when (Example 1) and when not added (Comparative Example 3). The amount of ferric chloride added was 5 mg / L (as FeCl 3 ) with respect to the intake seawater. The foam separator used was a protein skimmer manufactured and sold for aquariums.

TEPの測定は、海水試料を孔径0.4μmのポリカーボネート製の濾紙で濾過し、濾紙表面に捕捉された試料をアルシアンブルーにて染色し、分光光度計によりキサンタンガム(XG)を標準として測定し、単位はμg−XG/Lで示した。本分析方法によって定量できるTEPは、酸性ムコ多糖類である。
本実施例および比較例で用いた泡沫分離装置の仕様を表6に示す。
TEP is measured by filtering a seawater sample with a filter paper made of polycarbonate having a pore diameter of 0.4 μm, staining the sample captured on the surface of the filter paper with Alcian blue, and measuring xanthan gum (XG) with a spectrophotometer as a standard. The unit is indicated by μg-XG / L. TEP that can be quantified by this analytical method is an acidic mucopolysaccharide.
Table 6 shows the specifications of the foam separation apparatus used in this example and the comparative example.

実施例1及び比較例3のTEP成分測定結果を表7に示す。
Table 7 shows the TEP component measurement results of Example 1 and Comparative Example 3.

実施例1では、TEP除去率が78.2%、比較例3ではTEP除去率が53.0%であり、25.2ポイント向上したことがわかる。
TEP成分除去の前に凝集剤を添加しなかった参考例1及び2(56〜69%)との対比においても、本発明の方法によるTEP成分除去率は、9〜22ポイント向上していることがわかる。
In Example 1, the TEP removal rate was 78.2%, and in Comparative Example 3, the TEP removal rate was 53.0%, indicating that 25.2 points were improved.
Even in comparison with Reference Examples 1 and 2 (56 to 69%) in which the flocculant was not added before removing the TEP component, the TEP component removal rate by the method of the present invention was improved by 9 to 22 points. I understand.

[実施例2]
図20に示す海水淡水化処理フローを用いて1週間運転し、取水した海水に凝集剤として塩化第二鉄(FeCl)を添加した後にTEP成分除去分離を行い、砂ろ過装置の出口排水中TEP成分濃度を測定した場合(実施例2)と、取水した海水に凝集剤として塩化第二鉄(FeCl)を添加した後にTEP成分除去分離を行わずに砂ろ過を行い、砂ろ過装置の出口排水中TEP成分濃度を測定した場合(比較例4)とにおけるTEP成分の除去性能を確認した。塩化第二鉄の添加量は取水海水に対して5mg/L(as FeCl3)とした。泡沫分離装置は実施例1で用いたものと同じである。砂ろ過装置は、ろ過層の目詰まりによるろ過抵抗を検知し、一定のろ過抵抗(10kPa)となった時点で自動的に逆洗を行う構造とした。表8に砂ろ過装置の仕様を示す。
[Example 2]
20 days of operation using the seawater desalination treatment flow shown in FIG. 20, ferric chloride (FeCl 3 ) is added to the collected seawater as a coagulant, and then TEP component removal and separation is performed, and the sand filter is discharged from the outlet. When the TEP component concentration was measured (Example 2), and after adding ferric chloride (FeCl 3 ) as a flocculant to the collected seawater, sand filtration was performed without performing TEP component removal and separation. The removal performance of the TEP component was confirmed when the concentration of the TEP component in the outlet drainage was measured (Comparative Example 4). The amount of ferric chloride added was 5 mg / L (as FeCl 3 ) with respect to the intake seawater. The foam separation apparatus is the same as that used in Example 1. The sand filtration device has a structure in which filtration resistance due to clogging of the filtration layer is detected, and backwashing is automatically performed when the filtration resistance becomes constant (10 kPa). Table 8 shows the specifications of the sand filter.

実施例2及び比較例4のTEP成分測定結果を表9に示す。
Table 9 shows the TEP component measurement results of Example 2 and Comparative Example 4.

実施例2では、TEP除去率が89.2%、比較例4ではTEP除去率が43.4%であり、45.8ポイントも向上したことがわかる。
TEP成分除去の前に凝集剤を添加しなかった参考例1及び2(56〜69%)との対比においても、実施例2によるTEP成分除去率は、20〜33ポイントも向上していることがわかる。
また、砂ろ過槽の逆洗頻度は比較例3の16回/週から2回/週と1/8に大幅に低減できた。逆洗頻度が大幅に低下することによって、逆洗用水としての処理水の使用量も大幅に低下するため、海水淡水化処理で得られる処理水量、すなわち水回収率が大幅に向上する。
In Example 2, the TEP removal rate was 89.2%, and in Comparative Example 4, the TEP removal rate was 43.4%, indicating that it was improved by 45.8 points.
In comparison with Reference Examples 1 and 2 (56 to 69%) in which the flocculant was not added before removing the TEP component, the TEP component removal rate according to Example 2 was improved by 20 to 33 points. I understand.
Moreover, the backwash frequency of the sand filtration tank could be significantly reduced from 16 times / week in Comparative Example 3 to 2 times / week and 1/8. When the frequency of backwashing is significantly reduced, the amount of treated water used as backwashing water is also greatly reduced, so that the amount of treated water obtained by seawater desalination, that is, the water recovery rate is greatly improved.

[実施例3]
図21に示す海水淡水化処理フローを用いて1週間運転し、取水した海水に凝集剤として塩化第二鉄(FeCl)を添加した後にTEP成分除去分離を行い、UF膜分離装置の出口排水中TEP成分濃度を測定した場合(実施例3)と、取水した海水に凝集剤として塩化第二鉄(FeCl)を添加した後にTEP成分除去分離を行わずにUF膜分離を行い、UF膜分離装置の出口排水中TEP成分濃度を測定した場合(比較例5)とにおけるTEP成分の除去性能を確認した。泡沫分離装置は実施例1、実施例2で用いたものと同じである。塩化第二鉄の添加量は取水海水に対して5mg/L(as FeCl3)とした。UF膜分離装置は、入口側と出口側との差圧を検知し、一定の差圧(55kPa)となった時点で自動的に逆洗を行う構造とした。表10にUF膜分離装置の仕様を示す。
[Example 3]
It was operated for one week using the seawater desalination treatment flow shown in FIG. 21, and after adding ferric chloride (FeCl 3 ) as a coagulant to the collected seawater, TEP component removal separation was performed, and the outlet drainage of the UF membrane separator When measuring the concentration of medium TEP component (Example 3), after adding ferric chloride (FeCl 3 ) as a coagulant to the collected seawater, UF membrane separation was performed without performing TEP component removal separation, and UF membrane The removal performance of the TEP component in the case where the concentration of the TEP component in the outlet drainage of the separator was measured (Comparative Example 5) was confirmed. The foam separation apparatus is the same as that used in Examples 1 and 2. The amount of ferric chloride added was 5 mg / L (as FeCl 3 ) with respect to the intake seawater. The UF membrane separation device has a structure in which a differential pressure between the inlet side and the outlet side is detected, and the backwashing is automatically performed when a certain differential pressure (55 kPa) is reached. Table 10 shows the specifications of the UF membrane separator.

実施例3及び比較例5のTEP成分測定結果を表11に示す。
Table 11 shows the TEP component measurement results of Example 3 and Comparative Example 5.

実施例3では、TEP除去率が94.2%、比較例5ではTEP除去率が84.2%であり、10ポイント向上したことがわかる。
TEP成分除去の前に凝集剤を添加しなかった参考例1及び2(56〜69%)との対比においても、実施例3によるTEP成分除去率は、25〜38ポイントも向上していることがわかる。
また、UF膜分離装置の逆洗頻度は比較例5の252回/週から35回/週と14%以下に大幅に低減できた。逆洗頻度が大幅に低下することによって、逆洗用水としての処理水の使用量も大幅に低下するため、海水淡水化処理で得られる処理水量、すなわち水回収率が大幅に向上する。また、UF膜分離装置の逆洗には、次亜塩素酸ナトリウムを使用するため、薬剤使用量も大幅に減少し、維持管理費用の削減にも資する。
In Example 3, the TEP removal rate was 94.2%, and in Comparative Example 5, the TEP removal rate was 84.2%.
Even in comparison with Reference Examples 1 and 2 (56 to 69%) in which the flocculant was not added before removing the TEP component, the TEP component removal rate according to Example 3 was improved by 25 to 38 points. I understand.
Moreover, the backwash frequency of the UF membrane separator was significantly reduced from 252 times / week in Comparative Example 5 to 35 times / week to 14% or less. When the frequency of backwashing is significantly reduced, the amount of treated water used as backwashing water is also greatly reduced, so that the amount of treated water obtained by seawater desalination, that is, the water recovery rate is greatly improved. In addition, since sodium hypochlorite is used for backwashing the UF membrane separator, the amount of chemicals used is greatly reduced, which contributes to a reduction in maintenance costs.

[実施例4]
図22に示す処理フローにて海水に酸を添加しpH調整を行って泡沫分離処理した場合の実施例を説明する。 尚、酸には硫酸を用いた。
取水した海水に硫酸を添加してpHを4.0〜7.0に調節し、泡沫分離装置で処理を行い、泡沫分離部の出口排水中TEP成分濃度を測定した。結果を表12に示す。
[Example 4]
An embodiment in the case where foam is separated by adding acid to seawater and adjusting pH in the processing flow shown in FIG. 22 will be described. In addition, sulfuric acid was used as the acid.
Sulfuric acid was added to the taken-in seawater to adjust the pH to 4.0 to 7.0, and the mixture was treated with a foam separator, and the TEP component concentration in the outlet drainage of the foam separator was measured. The results are shown in Table 12.

pH調整を行わなかった比較例6と比べて、pH調節を行った実施例4のTEP除去率はいずれも向上していることがわかる。特に、pH5.0〜7.0の範囲において約10ポイント以上の向上が確認できた。一般には海水中のRO膜への無機スケール付着防止のために,RO膜直前で硫酸を添加してpHを6.8程度まで下げる方法が一般的である。よって本発明方法に準じて泡沫分離の前で硫酸を添加してpHを6.8まで下げることで、硫酸添加量を増やすことなく泡沫分離でのTEP除去率を向上させると共にRO膜への無機スケールの付着も防止することができる。   It can be seen that the TEP removal rate of Example 4 in which the pH was adjusted was improved as compared with Comparative Example 6 in which the pH was not adjusted. In particular, an improvement of about 10 points or more was confirmed in the range of pH 5.0 to 7.0. In general, in order to prevent inorganic scale from adhering to the RO membrane in seawater, a method is generally used in which sulfuric acid is added immediately before the RO membrane to lower the pH to about 6.8. Therefore, in accordance with the method of the present invention, sulfuric acid is added before foam separation to lower the pH to 6.8, thereby improving the TEP removal rate in foam separation without increasing the amount of sulfuric acid added and inorganic to the RO membrane. Scale adhesion can also be prevented.

[実施例5]
図23に示す処理フローにて海水に硫酸を添加しpHを6.0に調整した後に塩化第二鉄を取水海水に対して5mg/L(as FeCl3)として添加して泡沫分離処理した場合の実施例を説明する。泡沫分離部の出口排水中TEP成分濃度を測定した。結果を表13に示す。
[Example 5]
When sulfuric acid is added to seawater and the pH is adjusted to 6.0 in the treatment flow shown in FIG. 23, ferric chloride is added as 5 mg / L (as FeCl 3 ) to the seawater and foam separation is performed. Examples will be described. The TEP component concentration in the outlet drainage of the foam separation part was measured. The results are shown in Table 13.

pH調整を行なわず凝集剤も添加しなかった比較例7と比べて、pH調整のみを行った比較例8ではTEP除去率は10.3ポイント向上した。更にpH調整をして凝集剤を添加した場合、比較例6と比べて21.4ポイント、比較例7と比べて11.1ポイント向上していることがわかる。処理対象となる取水海水の水質状況に応じて,泡沫分離の前において酸添加のみとするか、より高いTEP除去率を目標とする場合には酸を添加して更に凝集剤を添加することができる。   Compared with Comparative Example 7 in which pH adjustment was not performed and no flocculant was added, Comparative Example 8 in which only pH adjustment was performed improved the TEP removal rate by 10.3 points. It can be seen that when the pH is further adjusted and the flocculant is added, it is improved by 21.4 points compared to Comparative Example 6 and 11.1 points compared with Comparative Example 7. Depending on the quality of the intake seawater to be treated, only acid addition is required before foam separation, or when higher TEP removal rate is targeted, acid may be added and a flocculant added. it can.

10:海水取水部
15:凝集剤添加手段
20:気泡発生及び泡沫除去部
21:TEP成分除去槽
22:気泡発生手段
23:泡沫除去手段
24:泡沫濃縮手段
25:気泡指向手段
26:泡沫流出防止手段
30:除濁装置(部)
31:濾過装置
40:逆浸透膜処理装置
200:泡沫分離部
210:越流水水位制御部(テレスコープ弁)
10: Seawater intake section 15: Coagulant addition means 20: Bubble generation and foam removal section 21: TEP component removal tank 22: Bubble generation means 23: Foam removal means 24: Foam concentration means 25: Bubble directing means 26: Prevention of foam outflow Means 30: Turbidity removal device (part)
31: Filtration device 40: Reverse osmosis membrane treatment device 200: Foam separation unit 210: Overflow water level control unit (telescope valve)

Claims (19)

取水した海水に凝集剤を添加する凝集剤添加手段と、
凝集剤により海水中懸濁物が凝集して形成されたフロックを含む海水中に気泡を発生させ、当該気泡にTEP成分が吸着してなるTEP含有気泡を水面に集めてTEP含有泡沫として除去する泡沫除去部を具備するTEP成分除去槽と、
TEP成分が除去された海水を脱塩処理して淡水化する逆浸透膜処理装置と、
を具備することを特徴とする海水淡水化装置。
A flocculant addition means for adding a flocculant to the taken seawater;
Bubbles are generated in seawater containing flocs formed by aggregation of suspension in seawater with a flocculant, and TEP-containing bubbles formed by adsorbing TEP components to the bubbles are collected on the water surface and removed as TEP-containing foams. A TEP component removal tank having a foam removal unit;
A reverse osmosis membrane treatment apparatus for desalinating seawater from which TEP components have been removed;
A seawater desalination apparatus comprising:
前記泡沫除去部は、水面に浮上したTEP含有泡沫を高密度化して濃縮する泡沫濃縮部を具備することを特徴とする請求項1に記載の海水淡水化装置。 The seawater desalination apparatus according to claim 1, wherein the foam removal unit includes a foam concentration unit that densifies and concentrates the TEP-containing foam that has floated on the water surface. 前記泡沫濃縮部は、前記TEP成分除去槽の対向壁間に架設されている1又は複数の仕切り壁であることを特徴とする請求項2に記載の海水淡水化装置。 The seawater desalination apparatus according to claim 2, wherein the foam concentrating part is one or a plurality of partition walls provided between opposing walls of the TEP component removal tank. 前記泡沫除去部は、水面に浮上するTEP含有気泡を所定領域に集める気泡指向手段を具備することを特徴とする請求項1又は2に記載の海水淡水化装置。 The seawater desalination apparatus according to claim 1, wherein the foam removing unit includes a bubble directing unit that collects TEP-containing bubbles floating on the water surface in a predetermined region. 前記気泡指向手段は、前記TEP成分除去槽に設けられている傾斜仕切であり、当該傾斜仕切によって区画された一の領域内の水断面積が上方に向かって縮減するように傾斜していることを特徴とする請求項4に記載の海水淡水化装置。 The bubble directing means is an inclined partition provided in the TEP component removal tank, and is inclined so that a water cross-sectional area in one region partitioned by the inclined partition is reduced upward. The seawater desalination apparatus according to claim 4. 前記泡沫除去部は、パイプスキマー、又はスカムポンプの少なくとも1種を含むことを特徴とする請求項1〜5の何れか1に記載の海水淡水化装置。 The said foam removal part contains at least 1 sort (s) of a pipe skimmer or a scum pump, The seawater desalination apparatus of any one of Claims 1-5 characterized by the above-mentioned. 前記TEP成分除去槽は、底面から水面レベルの下まで立設されている立設仕切、又は水面よりも下方に堰口を位置づけることができる可動堰を具備し、水面に浮上したTEP含有泡沫の流出を防止することを特徴とする請求項1〜6の何れか1に記載の海水淡水化装置。 The TEP component removal tank is provided with a standing partition standing from the bottom surface to below the water surface level, or a movable weir capable of positioning a weir port below the water surface, and the outflow of the TEP-containing foam floating on the water surface The seawater desalination apparatus according to any one of claims 1 to 6, wherein 前記泡沫除去部は、水面に対して平行となる底面と、当該底面から斜めに立ち上がり頂部に開口を形成する複数の逆漏斗形状の立ち上がり部とを具備することを特徴とする請求項1に記載の海水淡水化装置。 The foam removing unit includes a bottom surface that is parallel to the water surface, and a plurality of inverted funnel-shaped rising portions that obliquely rise from the bottom surface and form openings at the top portion. Seawater desalination equipment. 前記TEP成分除去槽は、TEP成分除去後の海水の排水量を制御して前記泡沫除去部における泡沫除去量を一定にする越流水位制御部をさらに具備することを特徴とする請求項1〜8の何れか1に記載の海水淡水化装置。 The said TEP component removal tank is further equipped with the overflow water level control part which controls the waste_water | drain amount of the seawater after TEP component removal, and makes the foam removal amount in the said foam removal part constant. The seawater desalination apparatus according to any one of the above. 前記TEP成分除去槽は、散気装置、曝気装置、撹拌式エアレータ、エジェクタ、極微細気泡発生装置、又は取水した海水を衝突させる衝突部材の少なくとも1種を含むことを特徴とする請求項1〜9の何れか1に記載の海水淡水化装置。 The said TEP component removal tank contains at least 1 sort (s) of an aeration apparatus, an aeration apparatus, a stirring-type aerator, an ejector, an ultrafine bubble generator, or the colliding member which collides the picked-up seawater, It is characterized by the above-mentioned. 9. The seawater desalination apparatus according to any one of 9 above. 前記TEP成分を除去した海水、又は前記取水した海水から濁質分を除去する除濁装置をさらに具備することを特徴とする請求項1〜10の何れかに記載の海水淡水化装置。 The seawater desalination apparatus according to any one of claims 1 to 10, further comprising a turbidity removing apparatus that removes turbid components from the seawater from which the TEP component has been removed or the taken-in seawater. 前記除濁装置は、MF膜、UF膜、砂、アンスラサイト、ガラス、ガーネット、活性炭、及び繊維部材から選択される少なくとも1種を濾材として充填してなる濾過装置であることを特徴とする請求項11に記載の海水淡水化装置。 The said turbidity removal apparatus is a filtration apparatus formed by filling at least one selected from MF membrane, UF membrane, sand, anthracite, glass, garnet, activated carbon, and fiber member as a filter medium. Item 12. A seawater desalination apparatus according to item 11. 前記TEP成分除去槽の前段に、前記海水又は前記フロックを含む海水に酸を添加する酸添加手段と、前記海水又は前記フロックを含む海水のpHを測定して酸の添加量を制御する酸添加量制御手段と、をさらに具備することを特徴とする請求項1〜12の何れか1に記載の海水淡水化装置。 An acid addition means for adding acid to the seawater or seawater containing the flock, and an acid addition for controlling the amount of acid added by measuring the pH of the seawater or seawater containing the flock before the TEP component removal tank The seawater desalination apparatus according to any one of claims 1 to 12, further comprising a quantity control means. 取水した海水に凝集剤を添加して、海水中懸濁物を凝集させてフロックを形成させる凝集剤添加工程と、
当該フロックを含む海水中に気泡を生成させ、当該気泡に海水中のTEP成分を付着させてTEP含有気泡を水面に浮上させ、浮上した気泡を集めてTEP含有泡沫とした後に当該TEP含有泡沫を除去するTEP成分除去工程と、
取水した海水、又はTEP含有気泡を除去した後の海水から濁質分を除去する除濁工程と、
前記TEP成分を除去した後の海水を脱塩処理する脱塩処理工程と、
を具備することを特徴とする海水淡水化方法。
A flocculant addition step of adding flocculant to the taken seawater to agglomerate the suspension in seawater to form a floc;
Bubbles are generated in seawater containing the floc, TEP components in the seawater are attached to the bubbles, the TEP-containing bubbles are floated on the surface of the water, and the bubbles that have risen are collected to form a TEP-containing foam. A TEP component removing step to be removed;
A turbidity removing step for removing turbidity from the taken seawater or seawater after removing TEP-containing bubbles;
A desalting treatment step of desalinating seawater after removing the TEP component;
The seawater desalination method characterized by comprising.
取水した海水に酸を添加する酸添加工程と、
酸添加後の海水のpHを測定し、該pHが5〜7の範囲となる様に前記酸添加量を制御する酸添加制御工程と、
前記海水中に気泡を生成させ、該気泡に海水中のTEP成分を付着させてTEP含有気泡を水面に浮上させ、浮上した気泡を集めてTEP含有泡沫とした後に該TEP含有泡沫を除去するTEP成分除去工程と、
前記TEP成分が除去された海水を脱塩処理する脱塩処理工程と、
を具備することを特徴とする海水淡水化方法。
An acid addition step of adding acid to the taken seawater;
An acid addition control step of measuring the pH of the seawater after acid addition and controlling the acid addition amount so that the pH is in the range of 5-7;
A TEP that generates bubbles in the seawater, attaches a TEP component in the seawater to the bubbles, causes the TEP-containing bubbles to float on the surface of the water, collects the bubbles that have risen into TEP-containing bubbles, and then removes the TEP-containing bubbles Component removal step;
A desalinating process for desalinating the seawater from which the TEP component has been removed;
The seawater desalination method characterized by comprising.
前記TEP成分除去工程は、前記TEP含有泡沫を高密度化して濃縮する濃縮工程を含むことを特徴とする請求項14又は15に記載の海水淡水化方法。 The seawater desalination method according to claim 14 or 15, wherein the TEP component removal step includes a concentration step of concentrating the TEP-containing foam by increasing the density. 前記TEP成分除去工程は、前記TEP含有気泡を水面上の所定領域に集めるTEP含有気泡指向工程を含むことを特徴とする請求項14又は15に記載の海水淡水化方法。 The seawater desalination method according to claim 14 or 15, wherein the TEP component removal step includes a TEP-containing bubble directing step for collecting the TEP-containing bubbles in a predetermined region on the water surface. 前記気泡は、
取水した海水を水槽に落下させること、又は取水した海水を衝突部材に衝突させること、あるいは散気装置、曝気装置、撹拌式エアレータ、エジェクタ、極微細気泡発生装置を用いて形成されることを特徴とする請求項14又は15に記載の海水淡水化方法。
The bubbles are
It is formed by dropping the taken seawater into the aquarium, colliding the taken seawater with the collision member, or using an air diffuser, an aeration device, an agitating aerator, an ejector, or an ultrafine bubble generating device. The seawater desalination method according to claim 14 or 15.
前記TEP成分除去工程における水面に浮上したTEP含有泡沫の除去は、水面上方に設けた逆漏斗形状の泡沫分離部による分離除去、水面に浮かぶ可動堰による海水との分離除去、水面上でのスキマーによる掻き取り、ポンプによる吸引の少なくとも1種によりなされることを特徴とする請求項14〜18の何れか1に記載の海水淡水化方法。 The removal of the TEP-containing foam that has floated on the water surface in the TEP component removal step is performed by separation / removal using a reverse funnel-shaped foam separation unit provided above the water surface, separation / removal from seawater by a movable weir floating on the water surface, and a skimmer on the water surface. The seawater desalination method according to any one of claims 14 to 18, wherein the seawater desalination method is performed by at least one kind of scraping by the above and suction by a pump.
JP2014226673A 2014-11-07 2014-11-07 Seawater desalination apparatus and method Active JP6381412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014226673A JP6381412B2 (en) 2014-11-07 2014-11-07 Seawater desalination apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014226673A JP6381412B2 (en) 2014-11-07 2014-11-07 Seawater desalination apparatus and method

Publications (3)

Publication Number Publication Date
JP2016087564A true JP2016087564A (en) 2016-05-23
JP2016087564A5 JP2016087564A5 (en) 2017-06-29
JP6381412B2 JP6381412B2 (en) 2018-08-29

Family

ID=56016437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014226673A Active JP6381412B2 (en) 2014-11-07 2014-11-07 Seawater desalination apparatus and method

Country Status (1)

Country Link
JP (1) JP6381412B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018012061A (en) * 2016-07-21 2018-01-25 水ing株式会社 Membrane obstructiveness evaluation method of reverse osmotic membrane feed water, operation control method of water treatment device using the membrane obstructiveness evaluation method
JP2018124129A (en) * 2017-01-31 2018-08-09 三菱重工業株式会社 Reactor containment structure, and operation method of bubble generation device
JP2018153742A (en) * 2017-03-16 2018-10-04 水ing株式会社 Water intake method, water intake device and water treating method
JP2019126782A (en) * 2018-01-25 2019-08-01 住友重機械工業株式会社 Wastewater biological treatment method and wastewater treatment system
CN110589922A (en) * 2019-09-20 2019-12-20 无锡海拓环保装备科技有限公司 Flotation rectification air flotation tank
CN114215141A (en) * 2021-11-02 2022-03-22 浙江建投环保工程有限公司 Water intake device for dissolved air pump

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148757A (en) * 1974-10-23 1976-04-27 Mitsubishi Electric Corp
JPS5249645A (en) * 1975-10-17 1977-04-20 Sumitomo Metal Ind Ltd Desalting apparatus
JP2008173534A (en) * 2007-01-16 2008-07-31 Toray Ind Inc Water treatment method and water treatment apparatus
JP2009165915A (en) * 2008-01-11 2009-07-30 Asahi Organic Chem Ind Co Ltd Method and apparatus for treating oil-containing waste water
WO2011016410A1 (en) * 2009-08-06 2011-02-10 住友電気工業株式会社 Water treatment device and water treatment method
JP2011240237A (en) * 2010-05-18 2011-12-01 Univ Of Tsukuba Apparatus and method for floating, separating and collecting pollutants
JP2012223723A (en) * 2011-04-21 2012-11-15 Hitachi Ltd Control device and control method of seawater desalination system
WO2014181583A1 (en) * 2013-05-10 2014-11-13 水ing株式会社 Apparatus for seawater desalination and method therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148757A (en) * 1974-10-23 1976-04-27 Mitsubishi Electric Corp
JPS5249645A (en) * 1975-10-17 1977-04-20 Sumitomo Metal Ind Ltd Desalting apparatus
JP2008173534A (en) * 2007-01-16 2008-07-31 Toray Ind Inc Water treatment method and water treatment apparatus
JP2009165915A (en) * 2008-01-11 2009-07-30 Asahi Organic Chem Ind Co Ltd Method and apparatus for treating oil-containing waste water
WO2011016410A1 (en) * 2009-08-06 2011-02-10 住友電気工業株式会社 Water treatment device and water treatment method
JP2011240237A (en) * 2010-05-18 2011-12-01 Univ Of Tsukuba Apparatus and method for floating, separating and collecting pollutants
JP2012223723A (en) * 2011-04-21 2012-11-15 Hitachi Ltd Control device and control method of seawater desalination system
WO2014181583A1 (en) * 2013-05-10 2014-11-13 水ing株式会社 Apparatus for seawater desalination and method therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018012061A (en) * 2016-07-21 2018-01-25 水ing株式会社 Membrane obstructiveness evaluation method of reverse osmotic membrane feed water, operation control method of water treatment device using the membrane obstructiveness evaluation method
JP2018124129A (en) * 2017-01-31 2018-08-09 三菱重工業株式会社 Reactor containment structure, and operation method of bubble generation device
JP2018153742A (en) * 2017-03-16 2018-10-04 水ing株式会社 Water intake method, water intake device and water treating method
JP2019126782A (en) * 2018-01-25 2019-08-01 住友重機械工業株式会社 Wastewater biological treatment method and wastewater treatment system
CN110589922A (en) * 2019-09-20 2019-12-20 无锡海拓环保装备科技有限公司 Flotation rectification air flotation tank
CN114215141A (en) * 2021-11-02 2022-03-22 浙江建投环保工程有限公司 Water intake device for dissolved air pump

Also Published As

Publication number Publication date
JP6381412B2 (en) 2018-08-29

Similar Documents

Publication Publication Date Title
JP6170552B2 (en) Seawater desalination apparatus and method
JP6381412B2 (en) Seawater desalination apparatus and method
US10421669B2 (en) Dissolved air flotation device
US20210363044A1 (en) Treating Water
AU2013320381B2 (en) Water treatment process comprising floatation combined with gravity filtration, and corresponding equipment
KR101281514B1 (en) A pressure float type polluted water treatment method using microbubble unit and slanted plate sturcture
US20210001273A1 (en) Methods, systems, and compositions for delivery of nanobubbles in water treatment systems
JP2011088053A (en) Equipment and method for desalination treatment
JP2010527787A (en) Hydrocyclone floating separator and water pollution control system including the same
KR101297293B1 (en) Floatation plant with scum concentration fuction
JP2016087564A5 (en)
JP2007289847A (en) Raw tap water purification method and its apparatus
JP6580338B2 (en) Film processing apparatus and film processing method
JP6613323B2 (en) Water treatment apparatus and water treatment method
JP5801249B2 (en) Desalination apparatus and desalination method
JP6779475B2 (en) Blue-green algae concentration and recovery device
JP6496931B2 (en) Processing fluid treatment system
RU2547498C1 (en) Physicochemical membrane bioreactor
JPH10323683A (en) Water purification treatment and device
KR200471174Y1 (en) Filtration apparatus having means for recovering filter material
CN211644952U (en) Water recycling treatment device for degreased silane wastewater
CN101811786B (en) Device and process for producing drinking water
JP2010234324A (en) Filtration method, filtration apparatus and filter bed
KR100579117B1 (en) Apparatus for purificating of closed water area by dissolved air flotation
AU2022257254A1 (en) Water treatment facility and method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180731

R150 Certificate of patent or registration of utility model

Ref document number: 6381412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250