JPH04298284A - Polluted water treating device - Google Patents
Polluted water treating deviceInfo
- Publication number
- JPH04298284A JPH04298284A JP6200691A JP6200691A JPH04298284A JP H04298284 A JPH04298284 A JP H04298284A JP 6200691 A JP6200691 A JP 6200691A JP 6200691 A JP6200691 A JP 6200691A JP H04298284 A JPH04298284 A JP H04298284A
- Authority
- JP
- Japan
- Prior art keywords
- electrode plate
- anode
- cathode
- turbid water
- yen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 37
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910001220 stainless steel Inorganic materials 0.000 claims abstract description 4
- 239000010935 stainless steel Substances 0.000 claims abstract description 4
- 239000000463 material Substances 0.000 claims abstract description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 14
- 238000000034 method Methods 0.000 description 8
- 229910002092 carbon dioxide Inorganic materials 0.000 description 7
- 239000001569 carbon dioxide Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 238000006386 neutralization reaction Methods 0.000 description 6
- 239000002351 wastewater Substances 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 229910021645 metal ion Inorganic materials 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000005273 aeration Methods 0.000 description 3
- 239000004568 cement Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 239000010802 sludge Substances 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
Landscapes
- Physical Water Treatments (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は濁水処理装置に係り、特
に、工事廃水を連続的に浄化する装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbid water treatment system, and more particularly to a system for continuously purifying construction wastewater.
【0002】0002
【従来の技術】一般に、セメント系濁水のような工事排
水を浄化する方法としては、濁水に高分子凝集剤を添加
し懸濁物質を団粒化して沈澱させるものが知られている
。2. Description of the Related Art Generally, as a method for purifying construction wastewater such as cement-based turbid water, it is known to add a polymer coagulant to turbid water to aggregate and precipitate suspended substances.
【0003】その概要を図5により説明すると、工事排
水の貯溜池50と雨水の貯溜池51から原水を夫々ポン
プで汲み上げ、この原水にポリ塩化アルミニウム(PA
C)52溶液を添加する。そして原水は反応槽53、5
4に排出されここで高分子凝集剤55が添加される。そ
して、反応樋56、57で夫々反応を進行させ、沈澱池
59において懸濁物質を団粒化して沈澱させる。そして
、凝集化した泥58はポンプで濃縮汚泥処理池60で濃
縮される。一方、沈澱池59において固形物が沈澱した
後の水は炭酸ガス中和装置61に送られ中和反応槽62
において中和される。そして中和後の水は放流ピット6
3を介して河川に放流される。To explain the outline with reference to FIG. 5, raw water is pumped up from a construction wastewater reservoir 50 and a rainwater reservoir 51, respectively, and the raw water is treated with polyaluminum chloride (PA).
C) Add 52 solution. And raw water is reaction tank 53,5
4, and a polymer flocculant 55 is added here. Then, the reaction proceeds in the reaction channels 56 and 57, and the suspended solids are aggregated and precipitated in the settling tank 59. The flocculated sludge 58 is then concentrated by a pump in a thickened sludge treatment pond 60. On the other hand, the water after the solid matter has been precipitated in the settling tank 59 is sent to the carbon dioxide gas neutralization device 61 and is sent to the neutralization reaction tank 62.
It is neutralized in After neutralization, the water is discharged into the discharge pit 6.
3 and are discharged into rivers.
【0004】0004
【発明が解決しようとする課題】しかし、前記した従来
の方法では多量のポリ塩化アルミニウムと二酸化炭素と
を要するためコスト高となるのは勿論、薬剤を使用する
ことに伴う環境への影響が懸念されている。特に、セメ
ント系廃水はpH値が高いため、中和に多量の薬剤が必
要となり2次公害の虞れも指摘されている。[Problems to be Solved by the Invention] However, the above-mentioned conventional method requires a large amount of polyaluminum chloride and carbon dioxide, resulting in high costs, and there are concerns about the environmental impact of using chemicals. has been done. In particular, since cement-based wastewater has a high pH value, a large amount of chemicals are required for neutralization, and it has been pointed out that there is a risk of secondary pollution.
【0005】なお、有機性汚濁水の浄化に対しては曝気
式や活性汚泥式が知られているが、濁水の性状に限定が
ある他、処理速度が遅く大量の浄化は困難であるという
問題がある。[0005] The aeration method and the activated sludge method are known for purifying organic polluted water, but these methods have limitations in the properties of the turbid water and have problems such as slow processing speed and difficulty in purifying large quantities. There is.
【0006】本発明は前記事項に鑑みてなされたもので
、泥水の処理が低コストで効率的に行えるとともに、環
境への影響を大幅に低減することができるようにした濁
水処理装置を提供することを技術的課題とする。[0006] The present invention has been made in view of the above-mentioned matters, and provides a turbid water treatment device that can process muddy water efficiently at low cost and can significantly reduce the impact on the environment. This is a technical issue.
【0007】[0007]
【課題を解決するための手段】本発明は前記技術的課題
を解決するために、以下のような構成とした。即ち、濁
水を通過させる流路部1を設け、この流路部1の水流方
向に沿って直流電源2の陽極3及び陰極4に夫々接続し
た電極板5、6を交互に配列したことを技術的手段とす
る。[Means for Solving the Problems] In order to solve the above-mentioned technical problems, the present invention has the following configuration. That is, a channel section 1 through which turbid water passes is provided, and electrode plates 5 and 6 connected to the anode 3 and cathode 4 of a DC power source 2, respectively, are arranged alternately along the water flow direction of the channel section 1. As a practical means.
【0008】前記陽極側の電極板5をアルミニウム製と
し、陰極側の電極板6をステンレススチール製とするこ
とができる。The electrode plate 5 on the anode side can be made of aluminum, and the electrode plate 6 on the cathode side can be made of stainless steel.
【0009】[0009]
【作用】金属製の電極板5、6に直流電圧を与えると、
陽極から金属イオンが発生する。濁水中の懸濁物質は通
常は表面電荷が陰であるため、陽イオンである金属イオ
ンとの間で中性化し、中性化した粒子同士が引力によっ
て引き合い結合する。これによって濁水中の懸濁物質は
団粒化して沈澱すると考えられる。[Operation] When a DC voltage is applied to the metal electrode plates 5 and 6,
Metal ions are generated from the anode. Suspended substances in turbid water usually have a negative surface charge, so they are neutralized by contact with metal ions, which are cations, and the neutralized particles are attracted to each other and bonded together. It is thought that this causes the suspended solids in the turbid water to aggregate and precipitate.
【0010】また、これに伴う物理的作用としては、電
気分解により陽極側の電極板5から発生する酸素と、陰
極側の電極板6から発生する水素の気泡が水中に浮遊す
る懸濁物質と結合して、これら懸濁物質を急速に浮上さ
せる。このため、一種の曝気効果や脱気効果を期待する
ことも可能と考えられる。In addition, physical effects associated with this include oxygen generated from the electrode plate 5 on the anode side due to electrolysis and hydrogen bubbles generated from the electrode plate 6 on the cathode side, and suspended solids floating in the water. combine to cause these suspended substances to rise rapidly. Therefore, it is possible to expect a kind of aeration effect or deaeration effect.
【0011】また、濁水を通過させる流路部を設け、こ
の流路部内に陽極電極板と陰極電極板とを交互に配列し
て電極板群としたので設置も容易であり排水口等、任意
の場所に設置できる。[0011] In addition, a channel section for passing turbid water is provided, and an anode electrode plate and a cathode electrode plate are arranged alternately in this channel section to form an electrode plate group, so installation is easy and it can be installed as desired, such as a drainage port. It can be installed at any location.
【0012】用途としては前記したセメント系廃水の他
、上水道および下水道のろ過装置の前処理、降雨による
土砂流出濁水の浄化、その他建設工事に伴うあらゆる廃
水に応用することができる。[0012] In addition to the above-mentioned cement-based wastewater, the present invention can be applied to pre-treatment of filtration equipment for waterworks and sewerage systems, purification of turbid water caused by sediment runoff due to rainfall, and all kinds of wastewater associated with construction work.
【0013】[0013]
【実施例】本発明の実施例を図1ないし図4に基づいて
説明する。Embodiment An embodiment of the present invention will be explained based on FIGS. 1 to 4.
【0014】本発明の装置Aは図3に示すように、濁水
の貯水池30と堰で区画された水路31に設置されるも
ので、この装置Aを通過して浄化された処理水は堰32
でせき止められ、ポンプPで排出されるようになってい
る。As shown in FIG. 3, the device A of the present invention is installed in a reservoir 30 of turbid water and a waterway 31 separated by a weir.
It is dammed up by a pump P and discharged by a pump P.
【0015】装置Aにおいて、図1に示すように濁水を
通過させる流路部1は絶縁材により形成され、底板の両
側に側壁部1a、1bを設けて断面「コ」字状に形成し
てある。この流路部1は水路31の全幅に配置されてお
り、貯水池30の濁水は総て流路部1内を通過するよう
になっている。In device A, as shown in FIG. 1, a channel section 1 through which turbid water passes is formed of an insulating material, and has side wall sections 1a and 1b on both sides of a bottom plate to form a U-shaped cross section. be. This flow path section 1 is arranged across the entire width of the waterway 31, so that all of the turbid water in the reservoir 30 passes through the inside of the flow path section 1.
【0016】前記流路部1内には水流方向に沿って、直
流電源2の陽極3及び陰極4に夫々接続した陽極電極板
5と陰極電極板6とを交互に配列してある。前記直流電
源2は図1に示すように、商用電源P、スライダックS
、及びサイリスタを利用した整流回路Dから構成されて
いる。そしてこの直流電源2の出力は陽極3及び陰極4
に接続されている。陽極3及び陰極4は図2に示すよう
に棒状の導体で形成され、これら陽極3及び陰極4に陽
極電極板5と陰極電極板6とが夫々取り付けられている
。In the flow path section 1, anode electrode plates 5 and cathode electrode plates 6 connected to the anode 3 and cathode 4 of the DC power source 2, respectively, are arranged alternately along the water flow direction. As shown in FIG. 1, the DC power supply 2 includes a commercial power supply P, a slider S
, and a rectifier circuit D using a thyristor. The output of this DC power supply 2 is an anode 3 and a cathode 4.
It is connected to the. As shown in FIG. 2, the anode 3 and cathode 4 are formed of rod-shaped conductors, and an anode electrode plate 5 and a cathode electrode plate 6 are attached to the anode 3 and cathode 4, respectively.
【0017】前記陽極電極板5と陰極電極板6は電極板
群7を構成しており、流路部1の前端と後端において、
側壁部1a、1b間を橋絡するよう夫々設置された支持
材8で保持されている。これら陽極電極板5と陰極電極
板6は使用によって損耗するため容易に交換できるよう
になっている。The anode electrode plate 5 and the cathode electrode plate 6 constitute an electrode plate group 7, and at the front end and rear end of the flow path section 1,
It is supported by supporting members 8 installed to bridge the side wall portions 1a and 1b. Since these anode electrode plate 5 and cathode electrode plate 6 are worn out with use, they can be easily replaced.
【0018】なお、前記した実施例では、前記陽極電極
5をアルミニウム製としたが、鉄を使用することもでき
、また、陰極はステンレススチールの他、アルミニウム
、カーボンを使用することができる。In the above embodiment, the anode electrode 5 is made of aluminum, but iron can also be used, and the cathode can be made of stainless steel, aluminum, or carbon.
【0019】以下、作用を説明する。金属製の電極板5
、6に直流電圧を与えると、陽極から金属イオンが発生
する。濁水中の懸濁物質は通常は表面電荷が陰であるた
め、陽イオンである金属イオンとの間で中性化し、中性
化した粒子同士が引力によって引き合い結合する。これ
によって濁水中の懸濁物質は団粒化して沈澱する。The operation will be explained below. Metal electrode plate 5
, 6, metal ions are generated from the anode. Suspended substances in turbid water usually have a negative surface charge, so they are neutralized by contact with metal ions, which are cations, and the neutralized particles are attracted to each other and bonded together. As a result, the suspended matter in the turbid water aggregates and precipitates.
【0020】また、これに伴う物理的作用としては、電
気分解により陽極側の電極板5から発生する酸素と、陰
極側の電極板6から発生する水素の気泡が水中に浮遊す
る懸濁物質と結合して、これら懸濁物質を急速に浮上さ
せる。このため、一種の曝気効果や脱気効果を期待する
ことの可能と考えられる。In addition, physical effects associated with this include oxygen generated from the electrode plate 5 on the anode side due to electrolysis and hydrogen bubbles generated from the electrode plate 6 on the cathode side, and suspended matter floating in the water. combine to cause these suspended substances to rise rapidly. Therefore, it is considered possible to expect a kind of aeration effect or deaeration effect.
【0021】以下、処理量を1500m3(濁水のpH
は11.5)とした実際のケースで1日あたりのコスト
を比較する。この実験では図4に示すように、装置Aを
通過させた処理水を沈澱池33で沈澱させ、上澄みをポ
ンプPで汲み上げラインミキサー34で二酸化炭素35
を混合して中和反応を完結させ中和反応池36に貯溜す
るようにした。
(従来方法)ポリ塩化アルミニウム30ppm、高分子
凝集剤1ppm、及び、二酸化炭素330g/m3を添
加して処理した。
■ポリ塩化アルミニウムのコスト
1500m3×30ppm×10−6×103×55円
(kg当たりの概算価格)=2475円
■高分子凝集剤のコスト
1500m3×1ppm×10−6×103×1600
円(kg当たりの概算価格)=2400円
■二酸化炭素のコスト
1500m3×0.33kg/m3×220円(kg当
たりの概算価格)=108900円
以上より合計113775円(75.85円/m3)と
なる。
(本発明の装置による方法)
■電気料金
2次出力 4.5V 30A、AC1次入力 1
00V 7Aより100V×7A×10−3×24h
r×27/kwhr=453.6円■アルミニウム電極
損耗費用
1箇月にプラス極(10枚)を1回交換するとした場合
10枚×1回×2350円(1枚単価)/30日=78
3.3円■二酸化炭素のコスト
1500m3×0.180kg/m3×220円(kg
当たりの概算価格)=59400円
以上より合計60637円(40.42円/m3)とな
る。[0021] Below, the treatment amount is 1500 m3 (pH of turbid water
11.5) and compare the costs per day. In this experiment, as shown in FIG.
were mixed to complete the neutralization reaction and stored in the neutralization reaction pond 36. (Conventional method) Treatment was performed by adding 30 ppm of polyaluminum chloride, 1 ppm of polymer flocculant, and 330 g/m3 of carbon dioxide. ■Cost of polyaluminum chloride 1500m3 x 30ppm x 10-6 x 103 x 55 yen (approximate price per kg) = 2475 yen ■Cost of polymer flocculant 1500m3 x 1ppm x 10-6 x 103 x 1600
Yen (approximate price per kg) = 2400 yen ■Cost of carbon dioxide 1500 m3 x 0.33 kg/m3 x 220 yen (approximate price per kg) = 108,900 yen or more, total 113,775 yen (75.85 yen/m3) Become. (Method using the device of the present invention) ■Electricity bill secondary output 4.5V 30A, AC primary input 1
100V x 7A x 10-3 x 24h from 00V 7A
r x 27/kwhr = 453.6 yen ■ Aluminum electrode wear and tear cost If you replace the positive electrode (10 pieces) once per month 10 pieces x 1 time x 2,350 yen (unit price per piece) / 30 days = 78
3.3 yen ■Cost of carbon dioxide 1500 m3 x 0.180 kg/m3 x 220 yen (kg
Approximate price) = 59,400 yen or more, totaling 60,637 yen (40.42 yen/m3).
【0022】このように本発明のランニングコストは従
来の方法に比較して約半減することがわかる。[0022] Thus, it can be seen that the running cost of the present invention is reduced by about half compared to the conventional method.
【0023】なお、処理すべき濁水のpH値によっては
二酸化炭素の使用を大幅に低減できる。そこで二酸化炭
素のコストを除外したコストを比較すると、従来方法で
は2.75円/m3、本発明では0.82円/m3とな
り大幅なコスト低減となった。特に、赤土濁水に対して
実施した場合には、強力な団粒化が認められ、短時間で
効率的に沈澱させることができた。Note that depending on the pH value of the turbid water to be treated, the use of carbon dioxide can be significantly reduced. Therefore, when comparing the costs excluding the cost of carbon dioxide, the conventional method was 2.75 yen/m3, and the present invention was 0.82 yen/m3, which was a significant cost reduction. In particular, when the method was applied to turbid red clay water, strong agglomeration was observed, and precipitation could be achieved efficiently in a short period of time.
【0024】[0024]
【発明の効果】本発明によれば、凝集剤を用いることな
く、濁水中の懸濁物質を連続的に団粒化して沈下させる
ことができる。このため、処理コストを大幅に低減する
ことができるとともに、凝集剤を添加する必要もないた
め環境に悪影響を与える虞れがなく、従来の方法に比較
して環境保護上極めて有効である。According to the present invention, suspended matter in turbid water can be continuously aggregated and settled without using a flocculant. Therefore, processing costs can be significantly reduced, and since there is no need to add a flocculant, there is no risk of adverse effects on the environment, and this method is extremely effective in protecting the environment compared to conventional methods.
【図1】本発明の一実施例を示す全体の回路図である。FIG. 1 is an overall circuit diagram showing an embodiment of the present invention.
【図2】本発明の一実施例を示す斜視図である。FIG. 2 is a perspective view showing an embodiment of the present invention.
【図3】本発明の一実施例を示す側面図である。FIG. 3 is a side view showing one embodiment of the present invention.
【図4】本発明の一実施例を示す全体の系統図である。FIG. 4 is an overall system diagram showing an embodiment of the present invention.
【図5】従来の装置を示す全体の系統図である。FIG. 5 is an overall system diagram showing a conventional device.
1・・流路部、 2・・直流電源、 3・・陽極、 4・・陰極、 5・・陽極電極板、 6・・陰極電極板、 7・・電極板群、 8・・支持材。 1...Flow path section, 2. DC power supply, 3. Anode, 4. Cathode, 5. Anode electrode plate, 6. Cathode electrode plate, 7. Electrode plate group, 8. Supporting material.
Claims (2)
部内に水流方向に沿って、直流電源の陽極及び陰極に夫
々接続した陽極電極板と陰極電極板とを交互に配列して
電極板群とし、この電極板群を支持材で保持したことを
特徴とする濁水処理装置。Claim 1: A channel section through which turbid water passes is provided, and within the channel section, anode electrode plates and cathode electrode plates connected to the anode and cathode of a DC power source are arranged alternately along the water flow direction. A turbid water treatment device comprising an electrode plate group and a support material holding the electrode plate group.
陰極電極板がステンレススチール製であることを特徴と
する濁水処理装置。2. The anode electrode plate is made of aluminum;
A turbid water treatment device characterized in that the cathode electrode plate is made of stainless steel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6200691A JPH04298284A (en) | 1991-03-26 | 1991-03-26 | Polluted water treating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6200691A JPH04298284A (en) | 1991-03-26 | 1991-03-26 | Polluted water treating device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04298284A true JPH04298284A (en) | 1992-10-22 |
Family
ID=13187639
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6200691A Pending JPH04298284A (en) | 1991-03-26 | 1991-03-26 | Polluted water treating device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04298284A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100366726B1 (en) * | 2000-08-07 | 2003-01-09 | 한국생산기술연구원 | Continuous Type Wastewater treatement Plant using Electrolysis |
JP2004230344A (en) * | 2003-01-31 | 2004-08-19 | Nakamura Kensetsu Kk | Apparatus and method for treating suspension wastewater |
JP2010510876A (en) * | 2006-11-30 | 2010-04-08 | エクサジャン テクノロジーズ インコーポレイテッド | Removal of pollutants from waste streams by production and use of oxyhydrogen gas |
US8211290B2 (en) | 2002-01-25 | 2012-07-03 | Bcde Group Llc | Method and apparatus for removing impurities from waste water by electroflotation |
KR20130023154A (en) * | 2011-08-25 | 2013-03-07 | 윤치 훙 | Continuous electrolyzed oxidizing/reduction water generator device |
US9296629B2 (en) | 2002-11-19 | 2016-03-29 | Xogen Technologies Inc. | Treatment of a waste stream through production and utilization of oxyhydrogen gas |
-
1991
- 1991-03-26 JP JP6200691A patent/JPH04298284A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100366726B1 (en) * | 2000-08-07 | 2003-01-09 | 한국생산기술연구원 | Continuous Type Wastewater treatement Plant using Electrolysis |
US8211290B2 (en) | 2002-01-25 | 2012-07-03 | Bcde Group Llc | Method and apparatus for removing impurities from waste water by electroflotation |
US9296629B2 (en) | 2002-11-19 | 2016-03-29 | Xogen Technologies Inc. | Treatment of a waste stream through production and utilization of oxyhydrogen gas |
JP2004230344A (en) * | 2003-01-31 | 2004-08-19 | Nakamura Kensetsu Kk | Apparatus and method for treating suspension wastewater |
JP2010510876A (en) * | 2006-11-30 | 2010-04-08 | エクサジャン テクノロジーズ インコーポレイテッド | Removal of pollutants from waste streams by production and use of oxyhydrogen gas |
KR20130023154A (en) * | 2011-08-25 | 2013-03-07 | 윤치 훙 | Continuous electrolyzed oxidizing/reduction water generator device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AlJaberi et al. | Can electrocoagulation technology be integrated with wastewater treatment systems to improve treatment efficiency? | |
KR101030075B1 (en) | Apparatus for treating waste water effluent with electrocoagulation floating type and method for treating waste water effluent using the same | |
US8551305B2 (en) | Apparatus for treating water or wastewater | |
AZARIAN et al. | Algae removal by electro-coagulation process, application for treatment of the effluent from an industrial wastewater treatment plant | |
CN100336746C (en) | Method of preparing pure water using metallurgic sewage | |
Jameson | Application of the Jameson cell technology for algae and phosphorus removal from maturation ponds | |
US3969203A (en) | Waste water treatment | |
CN107522327B (en) | Electric flocculation-precipitation-advanced oxidation integrated papermaking wastewater treatment device | |
Shammas et al. | Wastewater treatment by electrocoagulation–flotation | |
KR20090047641A (en) | Wastewater treatment device by electroly-zation | |
JPH04298284A (en) | Polluted water treating device | |
WO2005082788A1 (en) | Fluoride species removal process | |
US10745299B2 (en) | Struvite formation by precipitation of ammonia in electrocoagulation process | |
CN211004911U (en) | Modular copper-containing effluent treatment plant of high concentration | |
JP3230847B2 (en) | Turbid water treatment equipment | |
CN105016537A (en) | Plug flow type dual-electrode electrolysis air floater | |
KR100321799B1 (en) | Water processing method and apparatus for the same jointly using electro-coagulation and dissolved air flotation combined | |
JPH06509989A (en) | How to reduce phosphorus content in wastewater | |
KR20020004661A (en) | Waste Water Treatment Apparatus using Cylindrical Electrocoagulated Equipment | |
Paul | Electrolytic treatment of turbid water in package plant | |
JP2009056346A (en) | Polluted muddy water treatment system | |
CN210855619U (en) | Contain salt organic waste water electrocatalytic oxidation coupling preprocessing device | |
JP3914582B2 (en) | Electrode scale prevention method in electrolytic muddy water treatment equipment | |
KR200252264Y1 (en) | Mining waste water treatment device | |
KR200223757Y1 (en) | Sewage and wastewater treatment system using electrolysis and inclined settler |