JP2004228137A - Hetero junction bipolar transistor - Google Patents

Hetero junction bipolar transistor Download PDF

Info

Publication number
JP2004228137A
JP2004228137A JP2003011155A JP2003011155A JP2004228137A JP 2004228137 A JP2004228137 A JP 2004228137A JP 2003011155 A JP2003011155 A JP 2003011155A JP 2003011155 A JP2003011155 A JP 2003011155A JP 2004228137 A JP2004228137 A JP 2004228137A
Authority
JP
Japan
Prior art keywords
layer
ingaas
bipolar transistor
collector
ingap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003011155A
Other languages
Japanese (ja)
Other versions
JP4222033B2 (en
Inventor
Shigeyoshi Sato
薫由 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003011155A priority Critical patent/JP4222033B2/en
Publication of JP2004228137A publication Critical patent/JP2004228137A/en
Application granted granted Critical
Publication of JP4222033B2 publication Critical patent/JP4222033B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hetero junction bipolar transistor with reduced offset voltage. <P>SOLUTION: In the hetero junction bipolar transistor, an InGaP layer 10 is provided between a collector layer 4 and a base layer 5, so that a hetero barrier is formed between the collector layer 4 and the base layer 5 to reduce the offset voltage. Further, an In mixed crystal ratio of the InGaP layer 10 inserted into the collector layer 4 ranges within 0.52 to 0.60, whereby lattice matching of the InGaP layer 10 with the InGaAs base layer 5 is ensured. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ヘテロ接合バイポーラトランジスタに関する。
【0002】
【従来の技術】
III−V族化合物半導体を用いたヘテロ接合バイポーラトランジスタ(以下「HBT」という。)は、エミッタにワイドバンドギャップ半導体であるInGaPを用い、エミッタ以外の各層にGaAsを用いたInGaP/GaAs系HBTが開発されている(例えば、特許文献1参照。)。
【0003】
このInGaP/GaAs系HBTにおいて、InGaAsをHBTのベース層及びコレクタ層に用いると、InGaAsは高い電子移動度を有するため、高速動作に有利である。また、InGaAsはエネルギーギャップがGaAsに比べて小さいため、ターンオン電圧を低下させることができる。
【0004】
InGaAsはGaAsとは格子定数が異なるので、高速動作や低ターンオン電圧のためには、In混晶比を0.2以下とすることが望ましい。また、図2に示すようなIn、Ga、As各組成の混晶比をGaAsからInGaAsに向けて徐々に変化させたグレーデッド層を設けたメタモルフィックHBTエピタキシャルウェハが作製されている。
【0005】
図2は従来のヘテロ接合バイポーラトランジスタに用いられるエピタキシャルウェハの構造図である。
【0006】
同図に示すメタモルフィックHBTエピタキシャルウェハは、GaAs基板1上に、In組成傾斜InGaAsバッファ層2、InGaAsサブコレクタ層3、InGaAsコレクタ層4、InGaAsベース層5、InGaPエミッタ層6、InGaAsエミッタコンタクト層7及びInGaAsノンアロイ層8が順次形成されたものである(例えば、特願2002−72359号参照。)。
【0007】
【特許文献1】
特開2002−50630号公報
【0008】
【発明が解決しようとする課題】
InGaAsをベース層に用いることでデバイスのON電圧であるターンオン電圧を低下させることができるのが、メタモルフィックHBTのメリットではあるが、一方で従来のメタモルフィックHBTエピタキシャルウェハを用いたHBTではオフセット電圧(コレクタ電流が零の時のコレクタ−エミッタ間電圧)が高かった。オフセット電圧はデバイスの動作下限電圧となるため、低い方が望ましい。
【0009】
そこで、本発明の目的は、上記課題を解決し、オフセット電圧を低下させたヘテロ接合バイポーラトランジスタを提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明は、基板側から順に、バッファ層、サブコレクタ層、コレクタ層、ベース層、エミッタ層、エミッタコンタクト層及びノンアロイコンタクト層を形成した積層構造を備えた化合物半導体によるInGaP/InGaAs系ヘテロ接合バイポーラトランジスタにおいて、コレクタ層とベース層との間にInGaP層若しくはAlGaAs層を有するものである。
【0011】
請求項2の発明は、請求項1に記載の構成に加え、基板がGaAsからなり、バッファ層、サブコレクタ層、コレクタ層、ベース層及びエミッタコンタクト層がInGaAsからなり、エミッタ層がInGaP層からなり、InGaAs層のIn混晶比が0.2以下であるのが好ましい。
【0012】
請求項3の発明は、請求項1または2に記載の構成に加え、コレクタ層に挿入するInGaP層のIn混晶比が0.52〜0.60の範囲内にあるのが好ましい。
【0013】
請求項4の発明は、請求項1から3のいずれかに記載の構成に加え、バッファ層、サブコレクタ層、コレクタ層、ベース層、エミッタ層、エミッタコンタクト層及びノンアロイコンタクト層を有機金属気相成長法により形成したものであるのが好ましい。
【0014】
本発明によれば、ヘテロ接合バイポーラトランジスタにおいて、コレクタ層とベース層との間にInGaP層を有するので、ヘテロ障壁がコレクタ層とベース層との間に形成されてオフセット電圧が低下する。また、本発明によれば、コレクタ層に挿入されるInGaP層のIn混晶比を0.52〜0.60の範囲内にあるとすることにより、InGaAsベースと格子整合させることができる。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に基づいて詳述する。
【0016】
図1は本発明のヘテロ接合バイポーラトランジスタに用いられるエピタキシャルウェハの一実施の形態を示す構造図である。
【0017】
同図に示すエピタキシャルウェハは、GaAs基板1上に、In組成傾斜InGaAsバッファ層2、InGaAsサブコレクタ層3、InGaAsコレクタ層4、InGaPコレクタ層10、InGaAsベース層5、InGaPエミッタ層6、InGaAsエミッタコンタクト層7及びInGaAsノンアロイ層8を順次形成したものである。
【0018】
このような構造を有するHBTは、メタモルフィックHBTエピタキシャルウェハにおいて、InGaAsコレクタ層4の一部にInGaP層10を設けることによって、オフセット電圧を減少させるものである。
【0019】
HBTにおいて、ベース層5とエミッタ層6との間及びベース層5とコレクタ層4との間の伝導帯のエネルギーの不連続量をそれぞれΔEc1、ΔEc2とすると、ΔEc1とΔEc2との差がオフセット電圧の原因である。従って、コレクタ層4のベース層との界面近傍の一部をInGaPコレクタ層10とし、ベース層5とコレクタ層4間にもヘテロ障壁を設けることによってオフセット電圧を低下させることができる。
【0020】
InGaAsベース層5に格子整合させるため、コレクタ層4に挿入するInGaP層10のIn混晶比は0.52〜0.60の範囲内にあるのが好ましい。
【0021】
HBTのコレクタ層のベース界面近傍を一部InGaPとし、ベース層とコレクタ層との間にもヘテロ障壁を設けることによってオフセット電圧を低下させることができる。
【0022】
図2に示した構造を有するHBTと図1に示した構造を有するHBTとのオフセット電圧を比較したところ、図2に示した従来の構造のHBTのオフセット電圧が115mV〜120mVの間であったのに対し、図1に示した本発明の構造のHBTのオフセット電圧が95mV〜100mVと低い値であった。
【0023】
尚、本実施の形態では、コレクタ層に挿入されるワイドバンドギャップ材料がInGaPの場合で説明したが、本発明はこれに限定されるものではなく、GaAsとの格子整合が可能なAlGaAsでもよい。
【0024】
【発明の効果】
以上要するに本発明によれば、オフセット電圧を低下させたヘテロ接合バイポーラトランジスタの提供を実現することができる。
【図面の簡単な説明】
【図1】本発明のヘテロ接合バイポーラトランジスタに用いられるエピタキシャルウェハの一実施の形態を示す構造図である。
【図2】従来のヘテロ接合バイポーラトランジスタに用いられるエピタキシャルウェハの構造図である。
【符号の説明】
1 GaAs基板
2 In組成傾斜InGaAsバッファ層
3 InGaAsサブコレクタ層
4 InGaAsコレクタ層
5 InGaAsベース層
6 InGaPエミッタ層
7 InGaAsエミッタコンタクト層
8 InGaAsノンアロイ層
10 InGaPコレクタ層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to heterojunction bipolar transistors.
[0002]
[Prior art]
A heterojunction bipolar transistor (hereinafter, referred to as “HBT”) using a III-V compound semiconductor includes an InGaP / GaAs-based HBT using InGaP, which is a wide band gap semiconductor, as an emitter, and GaAs as layers other than the emitter. It has been developed (for example, see Patent Document 1).
[0003]
In this InGaP / GaAs-based HBT, if InGaAs is used for the base layer and the collector layer of the HBT, InGaAs has high electron mobility, which is advantageous for high-speed operation. In addition, since InGaAs has a smaller energy gap than GaAs, the turn-on voltage can be reduced.
[0004]
Since InGaAs has a different lattice constant from GaAs, it is desirable that the In mixed crystal ratio be 0.2 or less for high-speed operation and low turn-on voltage. Further, a metamorphic HBT epitaxial wafer provided with a graded layer in which the mixed crystal ratio of each composition of In, Ga, and As is gradually changed from GaAs to InGaAs as shown in FIG.
[0005]
FIG. 2 is a structural view of an epitaxial wafer used for a conventional heterojunction bipolar transistor.
[0006]
The metamorphic HBT epitaxial wafer shown in FIG. 1 has an In composition gradient InGaAs buffer layer 2, an InGaAs subcollector layer 3, an InGaAs collector layer 4, an InGaAs base layer 5, an InGaP emitter layer 6, and an InGaAs emitter contact layer on a GaAs substrate 1. 7 and an InGaAs non-alloy layer 8 are sequentially formed (for example, refer to Japanese Patent Application No. 2002-72359).
[0007]
[Patent Document 1]
JP-A-2002-50630
[Problems to be solved by the invention]
The use of InGaAs for the base layer can reduce the turn-on voltage which is the ON voltage of the device, which is an advantage of the metamorphic HBT. On the other hand, the offset voltage of the HBT using the conventional metamorphic HBT epitaxial wafer is reduced. (Collector-emitter voltage when the collector current is zero) was high. Since the offset voltage is the lower limit voltage of the operation of the device, it is desirable that the offset voltage be lower.
[0009]
Therefore, an object of the present invention is to solve the above-mentioned problems and to provide a heterojunction bipolar transistor having a reduced offset voltage.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the invention of claim 1 provides a laminated structure in which a buffer layer, a subcollector layer, a collector layer, a base layer, an emitter layer, an emitter contact layer, and a non-alloy contact layer are formed in order from the substrate side. The InGaP / InGaAs heterojunction bipolar transistor using the compound semiconductor provided has an InGaP layer or an AlGaAs layer between a collector layer and a base layer.
[0011]
According to a second aspect of the present invention, in addition to the configuration of the first aspect, the substrate is made of GaAs, the buffer layer, the subcollector layer, the collector layer, the base layer, and the emitter contact layer are made of InGaAs, and the emitter layer is made of the InGaP layer. It is preferable that the In mixed crystal ratio of the InGaAs layer is 0.2 or less.
[0012]
According to a third aspect of the present invention, in addition to the configuration of the first or second aspect, it is preferable that the In composition ratio of the InGaP layer inserted into the collector layer be in the range of 0.52 to 0.60.
[0013]
According to a fourth aspect of the present invention, in addition to the configuration according to any one of the first to third aspects, the buffer layer, the subcollector layer, the collector layer, the base layer, the emitter layer, the emitter contact layer, and the non-alloy contact layer are made of an organic metal. It is preferably formed by a phase growth method.
[0014]
According to the present invention, since the heterojunction bipolar transistor has the InGaP layer between the collector layer and the base layer, a hetero barrier is formed between the collector layer and the base layer, and the offset voltage is reduced. According to the present invention, the InGaP layer inserted into the collector layer has an In mixed crystal ratio in the range of 0.52 to 0.60, whereby lattice matching with the InGaAs base can be achieved.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0016]
FIG. 1 is a structural diagram showing an embodiment of an epitaxial wafer used for a heterojunction bipolar transistor of the present invention.
[0017]
The epitaxial wafer shown in FIG. 1 has an In composition gradient InGaAs buffer layer 2, an InGaAs subcollector layer 3, an InGaAs collector layer 4, an InGaP collector layer 10, an InGaAs base layer 5, an InGaAs emitter layer 6, and an InGaAs emitter layer on a GaAs substrate 1. The contact layer 7 and the InGaAs non-alloy layer 8 are sequentially formed.
[0018]
The HBT having such a structure reduces the offset voltage by providing the InGaP layer 10 on a part of the InGaAs collector layer 4 in a metamorphic HBT epitaxial wafer.
[0019]
In the HBT, when the discontinuous amounts of conduction band energy between the base layer 5 and the emitter layer 6 and between the base layer 5 and the collector layer 4 are ΔEc1 and ΔEc2, respectively, the difference between ΔEc1 and ΔEc2 is an offset voltage. Is the cause. Therefore, a part of the collector layer 4 near the interface with the base layer is formed as the InGaP collector layer 10, and the offset voltage can be reduced by providing a hetero barrier between the base layer 5 and the collector layer 4.
[0020]
In order to lattice match with the InGaAs base layer 5, the In mixed crystal ratio of the InGaP layer 10 inserted into the collector layer 4 is preferably in the range of 0.52 to 0.60.
[0021]
The offset voltage can be reduced by partially forming InGaP near the base interface of the collector layer of the HBT and providing a hetero barrier between the base layer and the collector layer.
[0022]
Comparing the offset voltages of the HBT having the structure shown in FIG. 2 and the HBT having the structure shown in FIG. 1, the offset voltage of the HBT having the conventional structure shown in FIG. 2 was between 115 mV and 120 mV. On the other hand, the offset voltage of the HBT of the structure of the present invention shown in FIG. 1 was as low as 95 mV to 100 mV.
[0023]
In this embodiment, the case where the wide band gap material inserted into the collector layer is InGaP has been described. However, the present invention is not limited to this, and AlGaAs capable of lattice matching with GaAs may be used. .
[0024]
【The invention's effect】
In short, according to the present invention, it is possible to provide a heterojunction bipolar transistor having a reduced offset voltage.
[Brief description of the drawings]
FIG. 1 is a structural diagram showing one embodiment of an epitaxial wafer used for a heterojunction bipolar transistor of the present invention.
FIG. 2 is a structural view of an epitaxial wafer used for a conventional heterojunction bipolar transistor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 GaAs substrate 2 In composition gradient InGaAs buffer layer 3 InGaAs subcollector layer 4 InGaAs collector layer 5 InGaAs base layer 6 InGaP emitter layer 7 InGaAs emitter contact layer 8 InGaAs non-alloy layer 10 InGaP collector layer

Claims (4)

基板側から順に、バッファ層、サブコレクタ層、コレクタ層、ベース層、エミッタ層、エミッタコンタクト層及びノンアロイコンタクト層を形成した積層構造を備えた化合物半導体によるInGaP/InGaAs系ヘテロ接合バイポーラトランジスタにおいて、前記コレクタ層と前記ベース層との間にInGaP層若しくはAlGaAs層を有することを特徴とするヘテロ接合バイポーラトランジスタ。In the order from the substrate side, an InGaP / InGaAs-based heterojunction bipolar transistor made of a compound semiconductor having a laminated structure in which a buffer layer, a subcollector layer, a collector layer, a base layer, an emitter layer, an emitter contact layer, and a non-alloy contact layer are formed, A heterojunction bipolar transistor having an InGaP layer or an AlGaAs layer between the collector layer and the base layer. 前記基板がGaAsからなり、前記バッファ層、前記サブコレクタ層、前記コレクタ層、前記ベース層及び前記エミッタコンタクト層がInGaAsからなり、前記エミッタ層がInGaP層からなり、前記InGaAs層のIn混晶比が0.2以下である請求項1に記載のヘテロ接合バイポーラトランジスタ。The substrate is made of GaAs, the buffer layer, the sub-collector layer, the collector layer, the base layer and the emitter contact layer are made of InGaAs, the emitter layer is made of InGaP layer, and the In alloy ratio of the InGaAs layer is made of InGaAs. The heterojunction bipolar transistor according to claim 1, wherein is 0.2 or less. 前記コレクタ層に挿入するInGaP層のIn混晶比が0.52〜0.60の範囲内にある請求項1または2に記載のヘテロ接合バイポーラトランジスタ。3. The heterojunction bipolar transistor according to claim 1, wherein the InGaP layer inserted into the collector layer has an In mixed crystal ratio of 0.52 to 0.60. 前記バッファ層、前記サブコレクタ層、前記コレクタ層、前記ベース層、前記エミッタ層、前記エミッタコンタクト層及び前記ノンアロイコンタクト層を有機金属気相成長法により形成した請求項1から3のいずれかに記載のヘテロ接合バイポーラトランジスタ。4. The method according to claim 1, wherein the buffer layer, the sub-collector layer, the collector layer, the base layer, the emitter layer, the emitter contact layer, and the non-alloy contact layer are formed by metal organic chemical vapor deposition. A heterojunction bipolar transistor as described in claim 1.
JP2003011155A 2003-01-20 2003-01-20 InGaP / InGaAs heterojunction bipolar transistor Expired - Fee Related JP4222033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003011155A JP4222033B2 (en) 2003-01-20 2003-01-20 InGaP / InGaAs heterojunction bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003011155A JP4222033B2 (en) 2003-01-20 2003-01-20 InGaP / InGaAs heterojunction bipolar transistor

Publications (2)

Publication Number Publication Date
JP2004228137A true JP2004228137A (en) 2004-08-12
JP4222033B2 JP4222033B2 (en) 2009-02-12

Family

ID=32900139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003011155A Expired - Fee Related JP4222033B2 (en) 2003-01-20 2003-01-20 InGaP / InGaAs heterojunction bipolar transistor

Country Status (1)

Country Link
JP (1) JP4222033B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335586A (en) * 2006-06-14 2007-12-27 Sony Corp Semiconductor integrated circuit device and its manufacturing method
CN113130638A (en) * 2020-01-14 2021-07-16 全新光电科技股份有限公司 High robustness heterojunction bipolar transistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335586A (en) * 2006-06-14 2007-12-27 Sony Corp Semiconductor integrated circuit device and its manufacturing method
CN113130638A (en) * 2020-01-14 2021-07-16 全新光电科技股份有限公司 High robustness heterojunction bipolar transistor

Also Published As

Publication number Publication date
JP4222033B2 (en) 2009-02-12

Similar Documents

Publication Publication Date Title
TW200411927A (en) Semiconductor device
Welser et al. Role of neutral base recombination in high gain AlGaAs/GaAs HBT's
Mochizuki et al. GaInP/GaAs collector-up tunneling-collector heterojunction bipolar transistors (C-up TC-HBTs): Optimization of fabrication process and epitaxial layer structure for high-efficiency high-power amplifiers
US20070096150A1 (en) Heterojunction bipolar transistor
US5814843A (en) Heterojunction bipolar transistor having a graded-composition base region
EP1583154B1 (en) P-type nitride semiconductor structure and bipolar transistor
JP4222033B2 (en) InGaP / InGaAs heterojunction bipolar transistor
JP2002359249A (en) Compound semiconductor device and manufacturing method therefor
JP2000357801A (en) Hetero-junction semiconductor device
Welty et al. Design and performance of tunnel collector HBTs for microwave power amplifiers
JP2004140038A (en) Method for manufacturing thin film crystal wafer, semiconductor device and its manufacturing method
Hsin et al. Electron saturation velocity of GaInP deduced in a GaInP/GaAs/GaInP double heterojunction bipolar transistor
JP2001298031A (en) Junction-type bipolar transistor, its manufacturing method, and semiconductor integrated circuit device
JP3255973B2 (en) Semiconductor device
JP2004273891A (en) Heterojunction bipolar transistor
JP3801963B2 (en) Nitride semiconductor heterojunction bipolar transistor
JP2001203216A (en) Semiconductor epitaxial wafer
JPS6381977A (en) Hetero junction bipolar transistor
JP3141841B2 (en) Heterojunction field effect transistor
JPH06209008A (en) Hetero junction bipolar transistor
Liu et al. High-Gain Arsenic-Rich npn InP/GaAsSb DHBTs With $ F_ {T}≫\hbox {420}\\hbox {GHz} $
JP2004281950A (en) Hetero-junction bipolar transistor
JPH02271534A (en) Heterojunction bipolar transistor
Song et al. Degradation of AlGaAs/GaAs HBTs induced by hot carriers
JP2004014922A (en) Hetero-junction bipolar transistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050318

A977 Report on retrieval

Effective date: 20070713

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20070731

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070914

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20080212

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20080328

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080829

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20081110

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20111128

LAPS Cancellation because of no payment of annual fees