JP2004224869A - Liquid-absorptive composition, liquid-absorptive sheet, and nonaqueous electrolyte battery pack - Google Patents

Liquid-absorptive composition, liquid-absorptive sheet, and nonaqueous electrolyte battery pack Download PDF

Info

Publication number
JP2004224869A
JP2004224869A JP2003012838A JP2003012838A JP2004224869A JP 2004224869 A JP2004224869 A JP 2004224869A JP 2003012838 A JP2003012838 A JP 2003012838A JP 2003012838 A JP2003012838 A JP 2003012838A JP 2004224869 A JP2004224869 A JP 2004224869A
Authority
JP
Japan
Prior art keywords
liquid
absorbent
isocyanate compound
maleic anhydride
vinyl ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003012838A
Other languages
Japanese (ja)
Other versions
JP4352707B2 (en
Inventor
Mamiko Nomura
麻美子 野村
Hiroshi Sagawa
博司 寒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Sony Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003012838A priority Critical patent/JP4352707B2/en
Application filed by Sony Chemicals Corp filed Critical Sony Chemicals Corp
Priority to KR1020057005583A priority patent/KR20050099956A/en
Priority to PCT/JP2003/016331 priority patent/WO2004065483A1/en
Priority to CNB2003801090185A priority patent/CN100422258C/en
Priority to US10/519,357 priority patent/US7732078B2/en
Priority to TW092136841A priority patent/TW200414580A/en
Publication of JP2004224869A publication Critical patent/JP2004224869A/en
Priority to HK06106528.2A priority patent/HK1086588A1/en
Application granted granted Critical
Publication of JP4352707B2 publication Critical patent/JP4352707B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/08Copolymers with vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/10Homopolymers or copolymers of unsaturated ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09D175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/107Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/227Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid-absorptive composition containing a liquid-absorptive crosslinked resin exhibiting an excellent ability to absorb the nonaqueous electrolyte of a secondary battery having a nonaqueous electrolyte, forming a nonaqueous electrolyte battery pack (particularly a secondary battery pack with a lithium ion nonaqueous electrolyte), and a liquid-absorptive sheet. <P>SOLUTION: The liquid-absorptive composition for a nonaqueous electrolyte battery pack contains a powder of a liquid-absorptive crosslinked resin obtained by crosslinking a methyl vinyl ether/maleic anhydride copolymer with a polyfunctional isocyanate compound, and a binder resin. The liquid-absorptive sheet for a nonaqueous electrolyte battery pack consists of a supporting base material 1 and a liquid-absorptive crosslinked resin layer 2 formed on one side of the base material 1 by crosslinking a methyl vinyl ether/maleic anhydride copolymer with a polyfunctional isocyanate compound. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解液電池パック内の非水電解液電池セルから電解液の漏液が生じた場合に、その電解液を吸収するための吸液性組成物及び吸液性シート、それらを用いた非水電解液電池パックに関する。
【0002】
【従来の技術】
電池ケース内に、複数の一次電池セル又は二次電池セルと、配線回路基板とが格納されている電池パックが広く使用されている。このような電池パックにおいては、電池セルから電解液の漏液が生じると、配線回路基板の配線に腐食が生じて導通不良が発生したり、逆にショートが発生するおそれがある。そこで、電解液の漏液が生じた場合でも、前述したような腐食やショートの問題を発生させないようにするために、電池パック内の電池セルと接触する位置もしくは近接した位置に、電解液を吸液する能力を有する吸液剤を備えた吸液部材を配置させることが提案されている(特許文献1)。ここで、吸液剤としては、吸着型、ゲル化型、自己膨潤型の各種高分子材料が使用されている。具体的には、ポリアクリル酸塩系吸水性樹脂、デンプン−グラフト共重合体系吸水性樹脂、ポリビニルアルコール系吸水性樹脂、ポリアクリルアミド系吸水性樹脂、イソブチレン−マレイン酸共重合体吸水性樹脂、長鎖アルキルアクリレート架橋重合体、ポリノルボルネン等が例示されている。
【0003】
【特許文献1】特開2001−351588号公報
【0004】
【発明が解決しようとする課題】
しかしながら、これらの吸液剤は、近年富みにその利用が広まっている非水電解液電池パック、特に、リチウムイオン非水電解液二次電池パックを構成する非水電解液二次電池に広く用いられているカーボネート系溶媒、例えば、プロピレンカーボネートやエチレンカーボネートを十分に吸液することができないという問題があった。
【0005】
本発明は、以上の従来の技術の課題を解決しようとするものであり、非水電解液電池パック(特に、リチウムイオン非水電解液二次電池パック)を構成する非水電解液二次電池の非水電解液に対して優れた吸液性を示す吸液性架橋樹脂を含有する吸液性組成物並びに吸液性シートを提供すること、そのような吸液性架橋樹脂の製造方法を提供すること、また、そのような吸液性組成物並びに吸液性シートから形成された電解液吸収部材を備えた電池パックを提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者らは、メチルビニルエーテル無水マレイン酸共重合体をMEK等の溶剤中で多官能イソシアネート化合物で架橋させると、ゲル化して溶剤を内包する吸液性架橋樹脂が得られ、その吸液性架橋樹脂が非水電解液電池の非水電解液を吸液し保持する能力に非常に優れていることを見出し、本発明を完成させるに至った。
【0007】
即ち、本発明は、メチルビニルエーテル無水マレイン酸共重合体を多官能イソシアネート化合物で架橋させてなる吸液性架橋樹脂の粉末と、バインダ樹脂とを含有することを特徴とする吸液性組成物を提供する。
【0008】
また、本発明は、支持基材の片面に、メチルビニルエーテル無水マレイン酸共重合体が多官能イソシアネート化合物で架橋されてなる吸液性架橋樹脂層が形成されていることを特徴とする吸液性シートを提供する。
【0009】
更に、本発明は、メチルビニルエーテル無水マレイン酸共重合体を、SP値が9〜14の溶剤中に3〜35重量%となるように溶解させ、その溶液に多官能イソシアネート化合物を添加して架橋反応を行うことを特徴とする吸液性架橋樹脂の製造方法を提供する。
【0010】
また、本発明は、電池ケース内に、非水電解液電池セルと、配線回路基板と、電池セルから電解液の漏液が生じた場合にその電解液を吸収するための電解液吸収部材とが設置されている非水電解液電池パックにおいて、該電解液吸収部材が、前述の吸液性組成物又は吸液性シートから形成されたものであることを特徴とする非水電解液電池パックを提供する。
【0011】
【発明の実施の形態】
まず、本発明の吸液性組成物について説明する。
【0012】
この吸液性組成物は、メチルビニルエーテル無水マレイン酸共重合体を多官能イソシアネート化合物で架橋させてなる吸液性架橋樹脂の粉末と、バインダ樹脂とを含有する。このような吸液性架橋樹脂は、非水電解液電池に使用されているカーボネート系溶剤、特にプロピレンカーボネートを高いレベルで吸液し保持することができる。従って、この吸液性架橋樹脂の粉末を、バインダ樹脂に必要に応じて分散溶剤(例えば、トルエン、メチルエチルケトン、エタノール等)と共に分散させた組成物は、非水電解液電池パックの電解液吸液部材として有用なものとなる。しかも、この組成物は、樹脂塗料として扱うことができるので、公知の塗工方法あるいはディスペンス方法により自由度の高い形状に成形でき、従って、電解液吸液部材の形状自由度を高めることができる。
【0013】
本発明で使用するメチルビニルエーテル無水マレイン酸共重合体の重量平均分子量は、小さすぎると効果的な架橋が困難となり、大きすぎると架橋後に非水電解液に膨潤しにくくなるので、好ましくは50000〜1200000、より好ましくは200000〜900000である。
【0014】
本発明で使用する多官能イソシアネート化合物は、メチルビニルエーテル無水マレイン酸共重合体を架橋させる架橋剤として機能するが、本発明では、非水電解液の保持性の点から、特に分子中にイソシアネート基を3つ有する3官能イソシアネート化合物を使用することが好ましい。このような3官能イソシアネート化合物の具体例としては、トリメチロールプロパンアダクト体、イソシアヌレート環を有する3量体、トリフェニルメタントリイソシアネート等が挙げられる。
【0015】
また、本発明におけるメチルビニルエーテル無水マレイン酸共重合体に対する多官能イソシアネート化合物の架橋割合は、多官能イソシアネート化合物が多すぎると非水電解液に膨潤し難くなり、少なすぎると膨潤後の強度が得られなくなるので、メチルビニルエーテル無水マレイン酸共重合体の構成モノマーユニット100モルに対する多官能イソシアネート化合物のモル数を、好ましくは0.1〜2モル、より好ましくは0.2〜1モルとする。
【0016】
本発明において、メチルビニルエーテル無水マレイン酸共重合体と多官能イソシアネート化合物とを架橋させる場合、常法に従って行うことができ、例えば、溶剤(例えば、MEK等)にメチルビニルエーテル無水マレイン酸共重合体と多官能イソシアネート化合物とを投入し、25〜80℃に加熱すればよい。
【0017】
このようにして得られる吸液性架橋樹脂は、通常、架橋反応で使用した溶剤を内包するゲル化物として得られるが、本発明の吸液性組成物においては、このようなゲル化物を乾燥して粉末化する。ここで、粉末化する方法としては、乾燥した吸液性架橋樹脂を公知の粉砕方法(例えば、物理的粉砕法)を利用して粉砕すればよい。ここで、粉末の平均粒径は、小さ過ぎるとママコ状態となり、大きすぎると表面積が小さくなるので、好ましくは0.1〜150μm、より好ましくは2〜50μmである。
【0018】
このような吸液性架橋樹脂粉末が分散されるバインダ樹脂としては、非水電解液、特にカーボネート系溶剤、例えばプロピレンカーボネートやエチレンカーボネート等に可溶であるものを使用する。このようなバインダ樹脂としては、メチルビニルエーテル無水マレイン酸共重合体、シアノエチル変性澱粉、ポリエチレングリコール等を挙げることができる。
【0019】
吸液性架橋樹脂粉末とバインダ樹脂との配合比としては、吸液性架橋樹脂粉末が少なすぎると吸液性が低下し、多すぎると定着できずに粉末化してしまうので、吸液性架橋樹脂粉末100重量部に対し、バインダ樹脂を好ましくは3〜100重量部、より好ましくは10〜50重量部である。
【0020】
次に、非水電解液電池パックの電解液吸液部材として有用な本発明の吸液性シートについて説明する。
【0021】
この吸液性シートは、図1に示すように、支持基材1の片面に、メチルビニルエーテル無水マレイン酸共重合体が多官能イソシアネートで架橋されてなる吸液性架橋樹脂層2が形成された構造を有する。この場合、支持基材1の他面に粘着層3を形成しておくことが好ましい。これにより、電池ケース内に吸液性シートを簡便に設置することができる。また、図2に示すように、粘着層を設けることなく、吸液性架橋樹脂層2に粘着剤を配合し、支持基材1上の吸液性架橋樹脂層2に粘着性を付与してもよい。この場合には、電池パック内に電池セルを設置した後に吸液性シートを設置することができる。
【0022】
本発明の吸液性シートを構成する支持基材としては、ポリプロピレン等のプラスチック繊維などからなる不織布、ポリプロピレンフィルムなどを挙げることができる。
【0023】
また、吸液性架橋樹脂層2の形成は、メチルビニルエーテル無水マレイン酸共重合体と多官能イソシアネートとを溶剤に分散または溶解した混合物を、支持基材1上に常法により塗工し、加熱することによりゲル化させればよい。
【0024】
また、支持基材1の裏面に設ける粘着層3を構成する粘着剤としては、公知の粘着剤の中から適宜選択して使用することができる。また、吸液性架橋樹脂層2に粘着性を付与するために使用する粘着剤としては、部分架橋させた公知のアクリル系粘着剤等を挙げることができる。
【0025】
本発明の吸液性シートで使用するメチルビニルエーテル無水マレイン酸共重合体の重量平均分子量、多官能イソシアネート化合物、メチルビニルエーテル無水マレイン酸共重合体に対する多官能イソシアネート化合物の架橋割合等については、吸液性組成物で既に説明した通りである。
【0026】
次に、前述した吸液性組成物及び吸液性シートにおいて使用した吸液性架橋樹脂の特に好ましい製造方法について説明する。この製造方法は、前述したメチルビニルエーテル無水マレイン酸共重合体を、SP値が9〜14の溶剤中に3〜35重量%となるように溶解させ、その溶液にやはり前述した多官能イソシアネートを添加して架橋反応を行うものである。
【0027】
ここで、SP値が9〜14の溶剤を使用する理由は、メチルビニルエーテル無水マレイン酸共重合体を良く溶解させるからである。このような溶剤としては、プロピレンカーボネート(SP値=13.3)、メチルエチルケトン(MEK)(SP値=9.3)、酢酸エチル(SP値=9.1)等が挙げられる。中でも、沸点が比較的低いMEKや酢酸エチルが好ましい。
【0028】
また、このような溶剤中にメチルビニルエーテル無水マレイン酸共重合体を3〜35重量%となるように溶解させる理由は、3重量%未満であると得られる吸液性架橋樹脂のゲル化反応の収率が十分ではなく、架橋によらないメチルビニルエーテル無水マレイン酸共重合体が多くなり過ぎるので、吸液性架橋樹脂の非水電解液の保持性が不十分となる。逆に35重量%を超えると得られる吸液性架橋樹脂の吸液性が低下するからである。
【0029】
この製造方法において使用するメチルビニルエーテル無水マレイン酸共重合体の重量平均分子量、多官能イソシアネート化合物、メチルビニルエーテル無水マレイン酸共重合体に対する多官能イソシアネート化合物の架橋割合等については、吸液性組成物で既に説明した通りである。
【0030】
本発明の吸液性組成物と吸液性シートとは、電池ケース内に、非水電解液電池セルと、配線回路基板と、非水電解液電池セルから電解液の漏液が生じた場合にその電解液を吸収するための電解液吸収部材とが設置されている非水電解液電池パックにおける当該電解液吸収部材として好ましく使用することができる。例えば、図3に示すように、電池ケース31内に設置された配線回路基板32上に非水電解液電池セル33を配置した電池パックにおいて、非水電解液電池セル33から電解液の漏液が生じた場合にその電解液を吸収するための電解液吸収部材として、吸液性組成物34を非水電解液電池セル33の間に充填してもよい。ここで、非水電解液電池セル33と配線回路基板32とは、金属リード35で接続されており、更に外部端子36へと連通している。また、図4に示すように、配線回路基板32と非水電解液電池セル33との間に、図1で説明したような吸液性シート37を、吸液性架橋樹脂層が非水電解液電池セル33側なるように配置してもよい。また、図5に示すように、図2で説明したような吸液性シート38を、非水電解液電池セル33の上に吸液性架橋樹脂層が非水電解液電池セル33側になるように配置してもよい。
【0031】
なお、図3〜5においては、非水電解液電池パックにおける電池ケースの形状を直方体とし、電池セルの形状を円筒形としたが、本発明の非水電解液電池パックにおいては、それらに限定されず使用目的に応じた形状、配置構成とすることができる。また、電池セルの種類についても限定されるものではない。
【0032】
以上説明した本発明の非水電解液電池パックは、非水電解液吸収部材材料として、メチルビニルエーテル無水マレイン酸共重合体を多官能イソシアネート化合物で架橋した吸液性架橋樹脂であって、非水電解液の吸収・保持性に優れた吸液性架橋樹脂を使用しているので、電池セルから非電解液が漏液した場合であっても、配線回路の腐食やショートの発生を大きく抑制できる。
【0033】
【実施例】
以下、本発明を実施例により具体的に説明する。
【0034】
なお、実施例1〜6は膨潤度に関する例であり、実施例7〜10は、膨潤速度に関する例であり、実施例11〜16は、吸収速度に関する例である。
【0035】
実施例1
メチルビニルエーテル無水マレイン酸共重合体(VEMA)(重量平均分子量900000;商品名VEMA A106H5、ダイセル化学工業社)をメチルエチルケトン(MEK)に溶解させ、更にその溶液に架橋剤として3官能イソシアネート化合物(コロネートHL、日本ポリウレタン工業社)を添加し、この混合物を25℃で24時間架橋反応させることによりゲル化させて吸液性架橋樹脂を得た。ここで、3官能イソシアネート化合物は、VEMAの構成モノマー単位100モルに対し1モルの割合で使用し、また、MEKは、VEMA固形分が10wt%となる量で使用した。
【0036】
実施例2
3官能イソシアネート化合物の使用量を、VEMAの構成モノマー単位300モルに対し1モルとする以外は、実施例1と同様の操作を繰り返すことにより、吸液性架橋樹脂を得た。
【0037】
実施例3
3官能イソシアネート化合物の使用量を、VEMAの構成モノマー単位600モルに対し1モルとする以外は、実施例1と同様の操作を繰り返すことにより、吸液性架橋樹脂を得た。
【0038】
実施例4
MEKを、VEMA固形分が15wt%となるように使用する以外は、実施例1と同様の操作を繰り返すことにより、吸液性架橋樹脂を得た。
【0039】
実施例5
3官能イソシアネート化合物の使用量を、VEMAの構成モノマー単位300モルに対し1モルとする以外は、実施例4と同様の操作を繰り返すことにより、吸液性架橋樹脂を得た。
【0040】
実施例6
3官能イソシアネート化合物の使用量を、VEMAの構成モノマー単位600モルに対し1モルとする以外は、実施例4と同様の操作を繰り返すことにより、吸液性架橋樹脂を得た。
【0041】
(膨潤度評価)
実施例1〜6のゲル化した各吸液性架橋樹脂10gを、大量のプロピレンカーボネート中に3日間浸漬した後に、プロピレンカーボネートで膨潤した吸液性架橋樹脂の重量(g)を測定し、VEMA固形分(g)で除した商を膨潤度とした。得られた結果を表1に示す。
【0042】
【表1】

Figure 2004224869
【0043】
実施例1〜3の結果から、VEMAに対する架橋剤の使用量が少なくなると、膨潤し易くなることが分かった。また、実施例1と4、実施例2と5、及び実施例3と6とを対比すると、VEMAの固形分が多くなると膨潤度が小さくなることがわかった。
【0044】
なお、実施例5と実施例6とを対比すると、実施例6の方が架橋剤の使用量が少ないのに係わらず、膨潤度が増大しておらず、実施例2と実施例3とを対比した場合と明らかに異なる挙動を示した。これは、VEMA固形分が、実施例2や3の場合に比べて1.5倍となっているためであると考えられる。
【0045】
実施例7
VEMA(重量平均分子量900000;商品名VEMA A106H5、ダイセル化学工業社)をメチルエチルケトン(MEK)に溶解させ、更にその溶液に架橋剤として3官能イソシアネート化合物(コロネートHL、日本ポリウレタン工業社)を添加し、この混合物を25℃で24時間架橋反応させることによりゲル化させて吸液性架橋樹脂を得た。ここで、3官能イソシアネート化合物の使用量は、VEMAの構成モノマー単位100モルに対し1モルであり、また、MEKの使用量は、VEMA固形分が5、7.5、10、15wt%となる量とした。
【0046】
得られた吸液性架橋樹脂10gを、常圧下のオーブン(80℃、10分)中で乾燥させ、更に、真空オープン(80℃、20分)中で乾燥させた。得られた乾燥物を大量のプロピレンカーボネート中に浸漬し、経過時間毎にプロピレンカーボネートで膨潤した吸液性架橋樹脂の重量を測定することにより膨潤度を算出し、その膨潤速度を評価した。膨潤度が大きい程、膨潤速度が大きいことを意味する。得られた結果を表2及び図6に示す。
【0047】
【表2】
Figure 2004224869
【0048】
表2(図6)から、架橋剤とVEMAのモル比が1:100の場合には、VEMA固形分が5wt%の場合、それ以上の他の場合に比べて膨潤速度が大きいことがわかる。また、7.5wt%、10wt%、15wt%の場合には大差がないことがわかる。
【0049】
実施例8
3官能イソシアネート化合物の使用量を、VEMAの構成モノマー単位200モルに対し1モルとする以外は、実施例7と同様にして吸液性架橋樹脂を取得し、同様に膨潤度を測定した。得られた結果を表3及び図7に示す。
【0050】
【表3】
Figure 2004224869
【0051】
表3(図7)から、架橋剤とVEMAのモル比が1:200の場合には、VEMA固形分が増加するにつれて、膨潤速度が小さくなることがわかる。
【0052】
なお、VEMA固形分が5%の場合、72時間経過後には吸液性架橋樹脂が崩れてしまい、重量の測定ができなくなった。
【0053】
実施例9
3官能イソシアネート化合物の使用量を、VEMAの構成モノマー単位300モルに対し1モルとする以外は、実施例7と同様にして吸液性架橋樹脂を取得し、同様に膨潤度を測定した。得られた結果を表4及び図8に示す。
【0054】
【表4】
Figure 2004224869
【0055】
表4(図8)から、架橋剤とVEMAのモル比が1:300の場合には、VEMA固形分が増加するにつれて、膨潤速度が小さくなることがわかる。
【0056】
なお、VEMA固形分が5%の場合、8時間経過前には吸液性架橋樹脂が崩れてしまい、重量の測定ができなくなった。
【0057】
実施例10
3官能イソシアネート化合物の使用量を、VEMAの構成モノマー単位600モルに対し1モルとする以外は、実施例7と同様にして吸液性架橋樹脂を取得し、同様に膨潤度を測定した。得られた結果を表5及び図9に示す。
【0058】
【表5】
Figure 2004224869
【0059】
表5(図9)から、架橋剤とVEMAのモル比が1:600の場合、VEMA固形分が5%wtであると、27時間経過前には吸液性架橋樹脂が崩れてしまい、重量の測定ができなくなった。また、VEMA固形分が7.5%wt及び10wt%の場合にも、96時間経過前には吸液性架橋樹脂が崩れてしまい、重量の測定ができなくなった。
【0060】
実施例11
メチルビニルエーテル無水マレイン酸共重合体(VEMA)(重量平均分子量900000;商品名VEMA A106H5、ダイセル化学工業社)をメチルエチルケトン(MEK)に溶解させ、更にその溶液に架橋剤として3官能イソシアネート化合物(コロネートHL、日本ポリウレタン工業社)を添加し、ゲル化前にポリエステルフィルム上に10g(固形分)/mの割合で塗布し、80℃で10分間乾燥することにより吸液性架橋樹脂層を有する吸液性フィルムを得た。ここで、3官能イソシアネート化合物は、VEMAの構成モノマー単位100モルに対し1モルの割合で使用し、また、MEKは、VEMA固形分が10wt%となる量で使用した。
【0061】
実施例12
3官能イソシアネート化合物の使用量を、VEMAの構成モノマー単位300モルに対し1モルとする以外は、実施例11と同様の操作を繰り返すことにより、吸液性フィルムを得た。
【0062】
実施例13
3官能イソシアネート化合物の使用量を、VEMAの構成モノマー単位600モルに対し1モルとする以外は、実施例11と同様の操作を繰り返すことにより、吸液性フィルムを得た。
【0063】
実施例14
MEKを、VEMA固形分が15wt%となるように使用する以外は、実施例11と同様の操作を繰り返すことにより、吸液性フィルムを得た。
【0064】
実施例15
3官能イソシアネート化合物の使用量を、VEMAの構成モノマー単位300モルに対し1モルとする以外は、実施例14と同様の操作を繰り返すことにより、吸液性フィルムを得た。
【0065】
実施例16
3官能イソシアネート化合物の使用量を、VEMAの構成モノマー単位600モルに対し1モルとする以外は、実施例14と同様の操作を繰り返すことにより、吸液性架橋樹脂を得た。
【0066】
(吸収速度評価)
実施例11〜16の各吸液性フィルムを水平面に対し傾斜(30度)させ、その吸液性架橋樹脂層に、カーボネート系混合溶媒(エチレンカーボネート/プロピレンカーボネート/ジメチルカーボネート)を0.02ml滴下し、吸収されるまでに混合溶媒が移動した距離を測定した。得られた結果を表6に示す。なお、吸液性架橋樹脂層を設けないポリエステルフィルムに対する移動距離は25cm以上である。移動距離が長い程、吸収速度が遅いことを示している。また、表6において、「VEMA固形分」は、VEMAと3官能イソシアネート化合物とMEKとの混合物をポリエステルフィルムに塗布する際の当該混合物中の「VEMA固形分」である。
【0067】
【表6】
Figure 2004224869
【0068】
表6から、VEMAに対する架橋剤の使用量が少なくなると、吸収速度が向上することがわかる。なお、実施例13と実施例16とを対比すると、実施例13の方が移動速度が大きくなっているが、これは、電解液に吸液性架橋樹脂層が溶解しているためである。
【0069】
比較例1
メチルビニルエーテル無水マレイン酸共重合体(VEMA)(重量平均分子量900000;商品名VEMA A106H5、ダイセル化学工業社)をメチルエチルケトン(MEK)に溶解させ、更にその溶液に架橋剤として3官能イソシアネート化合物(コロネートHL、日本ポリウレタン工業社)を添加し、この混合物を25℃で24時間架橋反応させることによりゲル化させて吸液性架橋樹脂を得た。ここで、3官能イソシアネート化合物の使用量は、VEMAの構成モノマー単位1モルに対し1モル、0.5モル、0.2モルであり、また、MEKの使用量は、VEMA固形分が5wt%となる量とした。
【0070】
得られた吸液性架橋樹脂10gを、常圧下のオーブン(80℃、10分)中で乾燥させ、更に、真空オープン(80℃、20分)中で乾燥させた。得られた乾燥物を大量のプロピレンカーボネート中に浸漬し、経過時間毎にプロピレンカーボネートで膨潤した吸液性架橋樹脂の重量を測定することによりその膨潤度を測定した。得られた結果を表7及び図10に示す。
【0071】
【表7】
Figure 2004224869
【0072】
表7(図10)から、架橋剤の使用量が実施例に比べて著しく大きい場合には、膨潤も遅く、膨潤し難いことがわかる。
【0073】
比較例2
メチルビニルエーテル無水マレイン酸共重合体(VEMA)(重量平均分子量900000;商品名VEMA A106H5、ダイセル化学工業社)をメチルエチルケトン(MEK)に溶解させ、更にその溶液に架橋剤として3官能イソシアネート化合物(コロネートHL、日本ポリウレタン工業社)を添加し、この混合物を25℃で24時間架橋反応させることによりゲル化させて吸液性架橋樹脂を得た。ここで、3官能イソシアネート化合物の使用量は、VEMAの構成モノマー単位3000モルに対し1モルであり、また、MEKの使用量は、VEMA固形分が15wt%となる量とした。
【0074】
得られた吸液性架橋樹脂を、大量のプロピレンカーボネート中に浸漬したところ、24時間後には、吸液性架橋樹脂が崩壊し、流動性のある液体となってしまった。
【0075】
実施例17(吸液性架橋樹脂粉末を使用した吸液性組成物例)
メチルビニルエーテル無水マレイン酸共重合体(VEMA)(重量平均分子量900000;商品名VEMA A106H5、ダイセル化学工業社)をメチルエチルケトン(MEK)に10重量%で溶解させ、更にその溶液に架橋剤として3官能イソシアネート化合物(コロネートHL、日本ポリウレタン工業社)を添加し、この混合物を25℃で24時間架橋反応させることによりゲル化させて吸液性架橋樹脂を得た。この時のVEMAと架橋剤のモル比は1/800とした。得られたゲル化物である吸液性架橋樹脂100gを真空オーブン(80℃、30分間)中で乾燥させ、得られた乾燥物を高速粉砕機によって粉砕することにより吸液性架橋樹脂のゲル粉末を得た。
【0076】
次に、吸液性架橋樹脂のゲル粉末と混合するためのバインダ溶液を以下のように調製した。即ち、まず、バインダであるVEMAをMEKに固形分15%で溶解させ、更にその溶液にVEMA固形分が10%になるようにエタノールを添加し、60℃の常圧オーブン中でジャーミルで3時間撹拌することによりバインダ溶液を調製した。ここで、エタノールを添加した理由として、溶媒がMEKのみであると、吸液性架橋樹脂のゲル粉末が膨潤して塗布が困難となるからであり、しかしエタノールにはほとんど膨潤しないため、塗布性を低下させないためである。
【0077】
次に、バインダ溶液に対して、吸液性架橋樹脂のゲル粉末を、その固形分が10%又は20%となる様に混合することにより、吸液性組成物を得た。
【0078】
得られた吸液性組成物を、ポリエステルフィルムに100g/mの塗工量でコーティングし、80℃で10分乾燥させることにより、吸液性架橋樹脂層が形成された吸液性シートを作成した。
【0079】
この吸液性シートを水平面に対し傾斜(30度)させ、その吸液性架橋樹脂層に、カーボネート系混合溶媒(エチレンカーボネート/プロピレンカーボネート/ジメチルカーボネート)を0.02ml滴下し、吸収されるまでに混合溶媒が移動した距離を測定した。得られた結果を表8に示す。なお、吸液性架橋樹脂層を設けないポリエステルフィルムに対する移動距離は25cm以上である。移動距離が長い程、吸収速度が遅いことを示している。
【0080】
【表8】
Figure 2004224869
【0081】
表8から、吸液性架橋樹脂のゲル粉末をバインダ樹脂に混合して成膜した吸液性シートは、カーボネート系溶剤を迅速に吸収できることがわかる。
【0082】
実施例18(模擬電池パックでの電解液吸収試験)
図11に示すように、縦7.0cm×横7.9cm×高さ2.3cmのABS樹脂の箱41を用意し、箱の底部に縦6.5cm×横6.5cm×厚み100μmの図11の吸液性シート42(吸液性架橋樹脂のゲル粉末固形分10%)を貼り付け、その上にリチウムイオン電池43を3本装填し、電池に隣接した部分にガラスエポキシ基材44を回路基板として設置した(図11参照)。
【0083】
そして3本の電池43の真ん中の電池の側面部分に電気ドリルで孔hを一つ開口し、そこから漏れ出た電解液を吸液性シートに吸収させる試験を行った。孔hを開口し、一昼夜放置後、電池パック内を観察したところガラスエポキシ基板に濡れは観察されなかった。また、孔hが開口された電池の重量減少量が2.5gであり、吸液性シートの重量増大量が2.5gであったことから、漏れ出た電解液のすべてが吸液性シートに吸収されたことがわかった。
【0084】
【発明の効果】
本発明によれば、非水電解液電池パック(特に、リチウムイオン非水電解液二次電池パック)を構成する非水電解液二次電池の非水電解液に対して優れた吸液性を示す吸液性架橋樹脂を含有する吸液性組成物並びに吸液性シートが提供される。
【図面の簡単な説明】
【図1】本発明の吸液性シートの断面図である。
【図2】本発明の吸液性シートの断面図である。
【図3】本発明の非水電解液電池パックの透視図である。
【図4】本発明の非水電解液電池パックの透視図である。
【図5】本発明の非水電解液電池パックの透視図である。
【図6】架橋剤:VEMA(モル比)=1:100の場合の吸液性架橋樹脂の膨潤度を示す図である。
【図7】架橋剤:VEMA(モル比)=1:200の場合の吸液性架橋樹脂の膨潤度を示す図である。
【図8】架橋剤:VEMA(モル比)=1:300の場合の吸液性架橋樹脂の膨潤度を示す図である。
【図9】架橋剤:VEMA(モル比)=1:600の場合の吸液性架橋樹脂の膨潤度を示す図である。
【図10】多量の架橋剤を使用した場合の吸液性架橋樹脂の膨潤度を示す図である。
【図11】模擬電池パックでの電解液吸収試験の説明図である。
【符号の説明】
1…支持基材、2…吸液性架橋樹脂層、3…粘着層、31…電池ケース、32…配線回路基板、33…非水電解液電池セル、34…吸液性組成物、35…金属リード、36…外部端子、37,38…吸液性シート[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a liquid-absorbing composition and a liquid-absorbing sheet for absorbing an electrolytic solution when the electrolytic solution leaks from a non-aqueous electrolytic battery cell in a non-aqueous electrolytic battery pack. And a non-aqueous electrolyte battery pack using the same.
[0002]
[Prior art]
A battery pack in which a plurality of primary battery cells or secondary battery cells and a printed circuit board are stored in a battery case is widely used. In such a battery pack, when the electrolyte leaks from the battery cells, the wiring of the printed circuit board may be corroded, causing a conduction failure or, conversely, a short circuit. Therefore, even in the event of electrolyte leakage, in order to prevent the above-mentioned problems of corrosion and short circuit from occurring, the electrolyte is placed at a position in contact with or close to the battery cell in the battery pack. It has been proposed to dispose a liquid-absorbing member provided with a liquid-absorbing agent capable of absorbing liquid (Patent Document 1). Here, as the liquid absorbing agent, various polymer materials of an adsorption type, a gelation type, and a self-swelling type are used. Specifically, polyacrylate-based water-absorbent resin, starch-graft copolymer-based water-absorbent resin, polyvinyl alcohol-based water-absorbent resin, polyacrylamide-based water-absorbent resin, isobutylene-maleic acid copolymer water-absorbent resin, Examples include cross-linked alkyl acrylate polymers, polynorbornenes, and the like.
[0003]
[Patent Document 1] JP-A-2001-351588
[0004]
[Problems to be solved by the invention]
However, these liquid absorbing agents are widely used in nonaqueous electrolyte battery packs, which have been widely used in recent years, and especially in nonaqueous electrolyte secondary batteries constituting lithium ion nonaqueous electrolyte secondary battery packs. However, there is a problem that the carbonate-based solvent, for example, propylene carbonate or ethylene carbonate, cannot be sufficiently absorbed.
[0005]
The present invention is intended to solve the above-mentioned problems of the related art, and a non-aqueous electrolyte secondary battery constituting a non-aqueous electrolyte battery pack (particularly, a lithium ion non-aqueous electrolyte secondary battery pack) To provide a liquid-absorbent composition and a liquid-absorbent sheet containing a liquid-absorbent crosslinked resin exhibiting excellent liquid-absorbency with respect to the non-aqueous electrolyte of the present invention. It is another object of the present invention to provide a battery pack provided with such an absorbent composition and an electrolyte absorbing member formed from the absorbent sheet.
[0006]
[Means for Solving the Problems]
The present inventors have found that when a methyl vinyl ether maleic anhydride copolymer is cross-linked with a polyfunctional isocyanate compound in a solvent such as MEK, a gel-forming liquid-absorbent cross-linked resin containing a solvent is obtained, and the liquid-absorbing cross-linked resin is obtained. The inventor has found that the crosslinked resin has an excellent ability to absorb and retain the nonaqueous electrolyte of the nonaqueous electrolyte battery, and has completed the present invention.
[0007]
That is, the present invention provides a liquid-absorbent composition characterized by containing a powder of a liquid-absorbent crosslinked resin obtained by crosslinking a methyl vinyl ether maleic anhydride copolymer with a polyfunctional isocyanate compound, and a binder resin. provide.
[0008]
Further, the present invention is characterized in that a liquid-absorbent crosslinked resin layer formed by cross-linking a methyl vinyl ether maleic anhydride copolymer with a polyfunctional isocyanate compound is formed on one surface of a supporting substrate. Provide a sheet.
[0009]
Further, the present invention provides a method of dissolving a methyl vinyl ether maleic anhydride copolymer in a solvent having an SP value of 9 to 14 so as to be 3 to 35% by weight, and adding a polyfunctional isocyanate compound to the solution to perform crosslinking. Provided is a method for producing a liquid-absorbent crosslinked resin, which comprises performing a reaction.
[0010]
The present invention also provides a non-aqueous electrolyte battery cell in a battery case, a printed circuit board, and an electrolyte absorbing member for absorbing the electrolyte when the electrolyte leaks from the battery cell. A non-aqueous electrolyte battery pack, wherein the electrolyte absorbing member is formed from the above-described liquid-absorbing composition or liquid-absorbing sheet. I will provide a.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
First, the liquid absorbing composition of the present invention will be described.
[0012]
This liquid-absorbing composition contains a powder of a liquid-absorbing cross-linked resin obtained by cross-linking a methyl vinyl ether maleic anhydride copolymer with a polyfunctional isocyanate compound, and a binder resin. Such a liquid-absorbent crosslinked resin can absorb and hold a carbonate-based solvent used in a nonaqueous electrolyte battery, particularly propylene carbonate, at a high level. Therefore, a composition obtained by dispersing the liquid absorbent cross-linking resin powder in a binder resin together with a dispersing solvent (for example, toluene, methyl ethyl ketone, ethanol, or the like) as necessary can be used as a non-aqueous electrolyte battery pack. It becomes useful as a member. In addition, since this composition can be handled as a resin coating, it can be formed into a shape having a high degree of freedom by a known coating method or a dispensing method, and therefore, the degree of freedom in the shape of the electrolyte solution absorbing member can be increased. .
[0013]
If the weight average molecular weight of the methyl vinyl ether maleic anhydride copolymer used in the present invention is too small, effective crosslinking becomes difficult, and if it is too large, it becomes difficult to swell in a non-aqueous electrolyte after crosslinking. It is 1200,000, more preferably 200,000 to 900,000.
[0014]
The polyfunctional isocyanate compound used in the present invention functions as a cross-linking agent for cross-linking the methyl vinyl ether / maleic anhydride copolymer. It is preferable to use a trifunctional isocyanate compound having three. Specific examples of such a trifunctional isocyanate compound include a trimethylolpropane adduct, a trimer having an isocyanurate ring, and triphenylmethane triisocyanate.
[0015]
In addition, the crosslinking ratio of the polyfunctional isocyanate compound to the methyl vinyl ether maleic anhydride copolymer in the present invention is such that if the polyfunctional isocyanate compound is too large, it is difficult to swell in the nonaqueous electrolyte, and if it is too small, the strength after swelling is obtained. Therefore, the number of moles of the polyfunctional isocyanate compound is preferably 0.1 to 2 moles, more preferably 0.2 to 1 mole, per 100 moles of the constituent monomer units of the methyl vinyl ether maleic anhydride copolymer.
[0016]
In the present invention, when the methyl vinyl ether maleic anhydride copolymer and the polyfunctional isocyanate compound are crosslinked, the crosslinking can be performed according to a conventional method. For example, the methyl vinyl ether maleic anhydride copolymer is added to a solvent (eg, MEK or the like). The polyfunctional isocyanate compound may be charged and heated to 25 to 80 ° C.
[0017]
The liquid-absorbent crosslinked resin thus obtained is usually obtained as a gelled substance containing the solvent used in the crosslinking reaction. In the liquid-absorbent composition of the present invention, such a gelled substance is dried. And pulverize. Here, as a method of pulverizing, the dried liquid-absorbent crosslinked resin may be pulverized by using a known pulverization method (for example, a physical pulverization method). Here, the average particle size of the powder is preferably 0.1 to 150 μm, more preferably 2 to 50 μm, because if the average particle size is too small, the average particle size becomes too small, and if the average particle size is too large, the surface area becomes small.
[0018]
As the binder resin in which such a liquid-absorbent crosslinked resin powder is dispersed, a binder resin which is soluble in a non-aqueous electrolyte, particularly a carbonate-based solvent such as propylene carbonate or ethylene carbonate is used. Examples of such a binder resin include a methyl vinyl ether maleic anhydride copolymer, a cyanoethyl-modified starch, and polyethylene glycol.
[0019]
The mixing ratio of the liquid-absorbent crosslinked resin powder to the binder resin is such that if the amount of the liquid-absorbent crosslinked resin powder is too small, the liquid-absorbing property is reduced. The binder resin is preferably 3 to 100 parts by weight, more preferably 10 to 50 parts by weight, based on 100 parts by weight of the resin powder.
[0020]
Next, the liquid-absorbing sheet of the present invention, which is useful as an electrolyte-absorbing member of a nonaqueous electrolyte battery pack, will be described.
[0021]
In this liquid-absorbent sheet, as shown in FIG. 1, a liquid-absorbent crosslinked resin layer 2 formed by cross-linking a methyl vinyl ether maleic anhydride copolymer with a polyfunctional isocyanate was formed on one surface of a support substrate 1. Having a structure. In this case, it is preferable to form the adhesive layer 3 on the other surface of the support substrate 1. Thus, the liquid-absorbent sheet can be easily installed in the battery case. As shown in FIG. 2, without providing an adhesive layer, an adhesive is blended into the liquid-absorbent crosslinked resin layer 2, and the liquid-absorbent crosslinked resin layer 2 on the support substrate 1 is provided with adhesiveness. Is also good. In this case, the liquid-absorbent sheet can be installed after the battery cells are installed in the battery pack.
[0022]
Examples of the support substrate constituting the liquid-absorbent sheet of the present invention include a nonwoven fabric made of plastic fibers such as polypropylene, a polypropylene film, and the like.
[0023]
The liquid-absorbent crosslinked resin layer 2 is formed by applying a mixture obtained by dispersing or dissolving a methyl vinyl ether maleic anhydride copolymer and a polyfunctional isocyanate in a solvent onto the support substrate 1 by a conventional method, and heating the mixture. By doing so, the gelation may be performed.
[0024]
The pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer 3 provided on the back surface of the support substrate 1 can be appropriately selected from known pressure-sensitive adhesives and used. Examples of the pressure-sensitive adhesive used to impart tackiness to the liquid-absorbent crosslinked resin layer 2 include a known acrylic pressure-sensitive adhesive partially crosslinked.
[0025]
The weight average molecular weight of the methyl vinyl ether maleic anhydride copolymer used in the liquid absorbing sheet of the present invention, the polyfunctional isocyanate compound, the cross-linking ratio of the polyfunctional isocyanate compound to the methyl vinyl ether maleic anhydride copolymer, etc. It is as having already explained about the acidic composition.
[0026]
Next, a particularly preferable method for producing the liquid-absorbent crosslinked resin used in the above-mentioned liquid-absorbent composition and liquid-absorbent sheet will be described. In this production method, the above-mentioned methyl vinyl ether maleic anhydride copolymer is dissolved in a solvent having an SP value of 9 to 14 so as to be 3 to 35% by weight, and the above-mentioned polyfunctional isocyanate is added to the solution. To carry out a crosslinking reaction.
[0027]
Here, the reason why the solvent having an SP value of 9 to 14 is used is that the methyl vinyl ether / maleic anhydride copolymer is well dissolved. Examples of such a solvent include propylene carbonate (SP value = 13.3), methyl ethyl ketone (MEK) (SP value = 9.3), ethyl acetate (SP value = 9.1), and the like. Among them, MEK and ethyl acetate having relatively low boiling points are preferable.
[0028]
The reason why the methyl vinyl ether maleic anhydride copolymer is dissolved in such a solvent so as to have a concentration of 3 to 35% by weight is that if the amount is less than 3% by weight, the gelation reaction of the liquid-absorbent cross-linked resin obtained becomes less than 3% by weight. Since the yield is not sufficient and the amount of the methyl vinyl ether maleic anhydride copolymer that does not depend on crosslinking becomes too large, the retention of the non-aqueous electrolyte of the liquid-absorbent cross-linked resin becomes insufficient. Conversely, if the content exceeds 35% by weight, the liquid absorbing property of the obtained liquid absorbing crosslinked resin is reduced.
[0029]
The weight average molecular weight of the methyl vinyl ether maleic anhydride copolymer used in this production method, the polyfunctional isocyanate compound, the cross-linking ratio of the polyfunctional isocyanate compound to the methyl vinyl ether maleic anhydride copolymer, etc., in the liquid absorbing composition As described above.
[0030]
The liquid-absorbent composition and liquid-absorbent sheet according to the present invention include a battery case, a non-aqueous electrolyte battery cell, a wiring circuit board, and a case where electrolyte leakage occurs from the non-aqueous electrolyte battery cell Can be preferably used as the electrolyte absorbing member in a non-aqueous electrolyte battery pack in which an electrolyte absorbing member for absorbing the electrolyte is installed. For example, as shown in FIG. 3, in a battery pack in which a non-aqueous electrolyte battery cell 33 is arranged on a printed circuit board 32 installed in a battery case 31, electrolyte leakage from the non-aqueous electrolyte battery cell 33 The liquid absorbing composition 34 may be filled between the non-aqueous electrolyte solution battery cells 33 as an electrolyte solution absorbing member for absorbing the electrolyte solution in the case of occurrence of. Here, the non-aqueous electrolyte battery cells 33 and the printed circuit board 32 are connected by metal leads 35 and further communicate with external terminals 36. As shown in FIG. 4, between the printed circuit board 32 and the non-aqueous electrolyte battery cell 33, the liquid-absorbent sheet 37 as described in FIG. You may arrange | position so that it may become the liquid battery cell 33 side. As shown in FIG. 5, the liquid-absorbent sheet 38 described in FIG. 2 is placed on the non-aqueous electrolyte battery cell 33 with the liquid-absorbent crosslinked resin layer on the non-aqueous electrolyte battery cell 33 side. It may be arranged as follows.
[0031]
3 to 5, the shape of the battery case in the nonaqueous electrolyte battery pack is a rectangular parallelepiped, and the shape of the battery cell is cylindrical. However, in the nonaqueous electrolyte battery pack of the present invention, the shape is not limited thereto. Instead, the shape and arrangement can be made according to the purpose of use. Also, the type of the battery cell is not limited.
[0032]
The non-aqueous electrolyte battery pack of the present invention described above is a liquid-absorbent cross-linked resin obtained by cross-linking a methyl vinyl ether maleic anhydride copolymer with a polyfunctional isocyanate compound as a non-aqueous electrolyte solution absorbing member material. Uses a liquid-absorbent crosslinked resin with excellent electrolyte absorption and retention properties, so that even when non-electrolyte liquid leaks from the battery cells, the occurrence of corrosion and short circuits in the wiring circuit can be greatly suppressed. .
[0033]
【Example】
Hereinafter, the present invention will be described specifically with reference to examples.
[0034]
Examples 1 to 6 are examples relating to the degree of swelling, Examples 7 to 10 are examples relating to the swelling rate, and Examples 11 to 16 are examples relating to the absorption rate.
[0035]
Example 1
Methyl vinyl ether maleic anhydride copolymer (VEMA) (weight average molecular weight: 900000; trade name: VEMA A106H5, Daicel Chemical Industries, Ltd.) is dissolved in methyl ethyl ketone (MEK), and a trifunctional isocyanate compound (Coronate HL) is added to the solution as a crosslinking agent. And Nippon Polyurethane Industry Co., Ltd.), and the mixture was subjected to a cross-linking reaction at 25 ° C. for 24 hours to be gelled to obtain a liquid-absorbent cross-linked resin. Here, the trifunctional isocyanate compound was used in a proportion of 1 mol per 100 mol of the monomer units constituting VEMA, and MEK was used in such an amount that the VEMA solid content became 10 wt%.
[0036]
Example 2
A liquid-absorbent crosslinked resin was obtained by repeating the same operation as in Example 1, except that the amount of the trifunctional isocyanate compound used was changed to 1 mol with respect to 300 mol of the constituent monomer units of VEMA.
[0037]
Example 3
A liquid-absorbent crosslinked resin was obtained by repeating the same operation as in Example 1, except that the amount of the trifunctional isocyanate compound used was changed to 1 mol per 600 mol of the constituent monomer unit of VEMA.
[0038]
Example 4
A liquid-absorbent crosslinked resin was obtained by repeating the same operation as in Example 1 except that MEK was used so that the VEMA solid content was 15 wt%.
[0039]
Example 5
A liquid-absorbent crosslinked resin was obtained by repeating the same operation as in Example 4, except that the amount of the trifunctional isocyanate compound used was changed to 1 mol per 300 mol of the constituent monomer units of VEMA.
[0040]
Example 6
A liquid-absorbent crosslinked resin was obtained by repeating the same operation as in Example 4 except that the amount of the trifunctional isocyanate compound used was changed to 1 mol per 600 mol of the constituent monomer units of VEMA.
[0041]
(Swelling degree evaluation)
After immersing 10 g of each of the gelled liquid-absorbent crosslinked resins of Examples 1 to 6 in a large amount of propylene carbonate for 3 days, the weight (g) of the liquid-absorbent crosslinked resin swollen with propylene carbonate was measured, and VEMA was measured. The quotient divided by the solid content (g) was defined as the degree of swelling. Table 1 shows the obtained results.
[0042]
[Table 1]
Figure 2004224869
[0043]
From the results of Examples 1 to 3, it was found that when the amount of the cross-linking agent used with respect to VEMA was reduced, swelling was easy. In addition, comparing Examples 1 and 4, Examples 2 and 5, and Examples 3 and 6, it was found that the degree of swelling decreased as the solid content of VEMA increased.
[0044]
In addition, when Example 5 and Example 6 are compared, the degree of swelling does not increase in Example 6 regardless of the use amount of the cross-linking agent, and Example 2 and Example 3 are compared. The behavior was clearly different from that of the contrast. This is considered to be because the VEMA solid content was 1.5 times as large as that in Examples 2 and 3.
[0045]
Example 7
VEMA (weight average molecular weight 900000; trade name VEMA A106H5, Daicel Chemical Industries, Ltd.) was dissolved in methyl ethyl ketone (MEK), and a trifunctional isocyanate compound (Coronate HL, Nippon Polyurethane Industry Co., Ltd.) was added as a crosslinking agent to the solution. This mixture was subjected to a crosslinking reaction at 25 ° C. for 24 hours to be gelled, thereby obtaining a liquid-absorbent crosslinked resin. Here, the amount of the trifunctional isocyanate compound used is 1 mole per 100 moles of the monomer units constituting VEMA, and the amount of MEK used is such that the VEMA solid content is 5, 7.5, 10, and 15 wt%. Amount.
[0046]
10 g of the obtained liquid-absorbent crosslinked resin was dried in an oven (80 ° C., 10 minutes) under normal pressure, and further dried in a vacuum open (80 ° C., 20 minutes). The obtained dried product was immersed in a large amount of propylene carbonate, and the swelling degree was calculated by measuring the weight of the liquid-absorbent cross-linked resin swelled with propylene carbonate at each elapsed time, and the swelling rate was evaluated. The higher the degree of swelling, the higher the swelling rate. The results obtained are shown in Table 2 and FIG.
[0047]
[Table 2]
Figure 2004224869
[0048]
From Table 2 (FIG. 6), it can be seen that when the molar ratio of the crosslinking agent to VEMA is 1: 100, the swelling rate is higher when the VEMA solid content is 5 wt% than in other cases. Also, it can be seen that there is no significant difference in the cases of 7.5 wt%, 10 wt%, and 15 wt%.
[0049]
Example 8
A liquid-absorbent crosslinked resin was obtained in the same manner as in Example 7, except that the amount of the trifunctional isocyanate compound used was changed to 1 mol per 200 mol of the constituent monomer unit of VEMA, and the swelling degree was measured in the same manner. The results obtained are shown in Table 3 and FIG.
[0050]
[Table 3]
Figure 2004224869
[0051]
Table 3 (FIG. 7) shows that when the molar ratio of the crosslinking agent to VEMA is 1: 200, the swelling rate decreases as the VEMA solid content increases.
[0052]
When the VEMA solid content was 5%, the liquid-absorbent crosslinked resin collapsed after 72 hours, and the weight could not be measured.
[0053]
Example 9
A liquid-absorbent crosslinked resin was obtained in the same manner as in Example 7, except that the amount of the trifunctional isocyanate compound used was changed to 1 mol per 300 mol of the monomer unit of VEMA, and the swelling degree was measured in the same manner. The obtained results are shown in Table 4 and FIG.
[0054]
[Table 4]
Figure 2004224869
[0055]
Table 4 (FIG. 8) shows that when the molar ratio of the crosslinking agent to VEMA is 1: 300, the swelling rate decreases as the VEMA solid content increases.
[0056]
When the VEMA solid content was 5%, the liquid-absorbent crosslinked resin collapsed before the elapse of 8 hours, and the weight could not be measured.
[0057]
Example 10
A liquid-absorbent crosslinked resin was obtained in the same manner as in Example 7, except that the amount of the trifunctional isocyanate compound used was changed to 1 mol with respect to 600 mol of the constituent monomer unit of VEMA, and the swelling degree was measured in the same manner. The obtained results are shown in Table 5 and FIG.
[0058]
[Table 5]
Figure 2004224869
[0059]
From Table 5 (FIG. 9), when the molar ratio of the crosslinking agent to VEMA is 1: 600 and the solid content of VEMA is 5% wt, the liquid-absorbent crosslinked resin collapses before 27 hours, and the weight is reduced. Can no longer be measured. Also, when the VEMA solid content was 7.5% wt and 10% by weight, the liquid-absorbent crosslinked resin collapsed before 96 hours, and the weight could not be measured.
[0060]
Example 11
Methyl vinyl ether maleic anhydride copolymer (VEMA) (weight average molecular weight: 900000; trade name: VEMA A106H5, Daicel Chemical Industries, Ltd.) is dissolved in methyl ethyl ketone (MEK), and a trifunctional isocyanate compound (Coronate HL) is added to the solution as a crosslinking agent. , Nippon Polyurethane Industry Co., Ltd.) and 10 g (solid content) / m on a polyester film before gelation. 2 And dried at 80 ° C. for 10 minutes to obtain a liquid-absorbent film having a liquid-absorbent crosslinked resin layer. Here, the trifunctional isocyanate compound was used in a proportion of 1 mol per 100 mol of the monomer units constituting VEMA, and MEK was used in such an amount that the VEMA solid content became 10 wt%.
[0061]
Example 12
A liquid-absorbent film was obtained by repeating the same operation as in Example 11, except that the amount of the trifunctional isocyanate compound used was changed to 1 mol per 300 mol of the monomer units constituting VEMA.
[0062]
Example 13
A liquid-absorbent film was obtained by repeating the same operation as in Example 11 except that the amount of the trifunctional isocyanate compound used was changed to 1 mol per 600 mol of the constituent monomer unit of VEMA.
[0063]
Example 14
A liquid-absorbent film was obtained by repeating the same operation as in Example 11 except that MEK was used so that the VEMA solid content was 15 wt%.
[0064]
Example 15
A liquid-absorbent film was obtained by repeating the same operation as in Example 14, except that the amount of the trifunctional isocyanate compound used was changed to 1 mol per 300 mol of the monomer units constituting VEMA.
[0065]
Example 16
A liquid-absorbent crosslinked resin was obtained by repeating the same operation as in Example 14, except that the amount of the trifunctional isocyanate compound used was changed to 1 mol per 600 mol of the monomer units constituting VEMA.
[0066]
(Absorption rate evaluation)
Each of the liquid absorbing films of Examples 11 to 16 was inclined (30 degrees) with respect to the horizontal plane, and 0.02 ml of a carbonate-based mixed solvent (ethylene carbonate / propylene carbonate / dimethyl carbonate) was dropped on the liquid absorbing crosslinked resin layer. Then, the distance traveled by the mixed solvent before absorption was measured. Table 6 shows the obtained results. In addition, the moving distance with respect to the polyester film which does not provide a liquid-absorbent crosslinked resin layer is 25 cm or more. The longer the moving distance, the lower the absorption speed. In Table 6, “VEMA solid content” is “VEMA solid content” in a mixture of VEMA, a trifunctional isocyanate compound, and MEK when the mixture is applied to a polyester film.
[0067]
[Table 6]
Figure 2004224869
[0068]
From Table 6, it can be seen that as the amount of the crosslinking agent used for VEMA decreases, the absorption rate improves. In addition, when Example 13 and Example 16 are compared, the moving speed of Example 13 is higher than that of Example 13, because the liquid absorbing cross-linked resin layer is dissolved in the electrolytic solution.
[0069]
Comparative Example 1
Methyl vinyl ether maleic anhydride copolymer (VEMA) (weight average molecular weight: 900000; trade name: VEMA A106H5, Daicel Chemical Industries, Ltd.) is dissolved in methyl ethyl ketone (MEK), and a trifunctional isocyanate compound (Coronate HL) is added to the solution as a crosslinking agent. And Nippon Polyurethane Industry Co., Ltd.), and the mixture was subjected to a cross-linking reaction at 25 ° C. for 24 hours to be gelled to obtain a liquid-absorbent cross-linked resin. Here, the amount of the trifunctional isocyanate compound used is 1 mol, 0.5 mol, and 0.2 mol per 1 mol of the constituent monomer unit of VEMA, and the amount of MEK is such that the VEMA solid content is 5 wt%. It became the quantity which becomes.
[0070]
10 g of the obtained liquid-absorbent crosslinked resin was dried in an oven (80 ° C., 10 minutes) under normal pressure, and further dried in a vacuum open (80 ° C., 20 minutes). The obtained dried product was immersed in a large amount of propylene carbonate, and the degree of swelling was measured by measuring the weight of the liquid-absorbent crosslinked resin swelled with propylene carbonate at each elapsed time. The results obtained are shown in Table 7 and FIG.
[0071]
[Table 7]
Figure 2004224869
[0072]
From Table 7 (FIG. 10), it can be seen that when the amount of the cross-linking agent used is significantly larger than in the examples, the swelling is slow and the swelling is difficult.
[0073]
Comparative Example 2
Methyl vinyl ether maleic anhydride copolymer (VEMA) (weight average molecular weight: 900000; trade name: VEMA A106H5, Daicel Chemical Industries, Ltd.) is dissolved in methyl ethyl ketone (MEK), and a trifunctional isocyanate compound (Coronate HL) is added to the solution as a crosslinking agent. And Nippon Polyurethane Industry Co., Ltd.), and the mixture was subjected to a cross-linking reaction at 25 ° C. for 24 hours to be gelled to obtain a liquid-absorbent cross-linked resin. Here, the amount of the trifunctional isocyanate compound used was 1 mol based on 3000 mol of the monomer unit constituting the VEMA, and the amount of the MEK used was an amount such that the VEMA solid content became 15 wt%.
[0074]
When the obtained liquid-absorbent crosslinked resin was immersed in a large amount of propylene carbonate, after 24 hours, the liquid-absorbent crosslinked resin collapsed and became a liquid having fluidity.
[0075]
Example 17 (Example of liquid absorbing composition using liquid absorbing crosslinked resin powder)
Methyl vinyl ether maleic anhydride copolymer (VEMA) (weight average molecular weight 900000; trade name VEMA A106H5, Daicel Chemical Industries, Ltd.) is dissolved in methyl ethyl ketone (MEK) at 10% by weight, and trifunctional isocyanate is added to the solution as a crosslinking agent. A compound (Coronate HL, Nippon Polyurethane Industry Co., Ltd.) was added, and the mixture was subjected to a cross-linking reaction at 25 ° C. for 24 hours to be gelled to obtain a liquid-absorbent cross-linked resin. At this time, the molar ratio between VEMA and the crosslinking agent was 1/800. 100 g of the obtained absorbent crosslinked resin, which is a gelled product, is dried in a vacuum oven (80 ° C., 30 minutes), and the obtained dried product is pulverized by a high-speed pulverizer to obtain a gel powder of the liquid absorbent crosslinked resin. Got.
[0076]
Next, a binder solution for mixing with the gel powder of the liquid-absorbent crosslinked resin was prepared as follows. That is, first, VEMA as a binder is dissolved in MEK at a solid content of 15%, and ethanol is added to the solution so that the VEMA solid content becomes 10%. A binder solution was prepared by stirring. Here, the reason for adding ethanol is that if the solvent is only MEK, the gel powder of the liquid-absorbent cross-linked resin swells and application becomes difficult. This is because it does not lower the value.
[0077]
Next, a liquid-absorbent composition was obtained by mixing the gel powder of the liquid-absorbent crosslinked resin with the binder solution so that the solid content was 10% or 20%.
[0078]
100 g / m2 of the obtained liquid absorbing composition was applied to a polyester film. 2 And dried at 80 ° C. for 10 minutes to prepare a liquid-absorbent sheet having a liquid-absorbent crosslinked resin layer formed thereon.
[0079]
The liquid-absorbent sheet is inclined (30 degrees) with respect to the horizontal plane, and 0.02 ml of a carbonate-based mixed solvent (ethylene carbonate / propylene carbonate / dimethyl carbonate) is dropped on the liquid-absorbent crosslinked resin layer until the liquid-absorbent sheet is absorbed. The distance traveled by the mixed solvent was measured. Table 8 shows the obtained results. In addition, the moving distance with respect to the polyester film which does not provide a liquid-absorbent crosslinked resin layer is 25 cm or more. The longer the moving distance, the lower the absorption speed.
[0080]
[Table 8]
Figure 2004224869
[0081]
Table 8 shows that the liquid-absorbent sheet formed by mixing the gel powder of the liquid-absorbent crosslinked resin with the binder resin can quickly absorb the carbonate-based solvent.
[0082]
Example 18 (electrolyte absorption test with simulated battery pack)
As shown in FIG. 11, an ABS resin box 41 having a length of 7.0 cm × width 7.9 cm × height 2.3 cm is prepared, and a 6.5 cm × 6.5 cm × 100 μm thick figure is provided at the bottom of the box. No. 11 liquid-absorbing sheet 42 (gel powder solid content of liquid-absorbing crosslinked resin: 10%) was affixed, and three lithium ion batteries 43 were loaded thereon, and a glass epoxy base material 44 was placed on a portion adjacent to the battery. It was installed as a circuit board (see FIG. 11).
[0083]
Then, a test was performed in which one hole h was opened in the side portion of the middle battery of the three batteries 43 with an electric drill, and the electrolyte leaked from the hole h was absorbed by the liquid absorbing sheet. The hole h was opened, and after standing all day and night, when the inside of the battery pack was observed, no wetting was observed on the glass epoxy substrate. Further, since the weight loss of the battery with the hole h opened was 2.5 g and the weight increase of the liquid-absorbent sheet was 2.5 g, all of the leaked electrolyte solution was in the liquid-absorbent sheet. It was found that it was absorbed.
[0084]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the non-aqueous electrolyte battery pack (especially a lithium ion non-aqueous electrolyte secondary battery pack) has excellent liquid absorbability with respect to the non-aqueous electrolyte solution of the non-aqueous electrolyte secondary battery. The present invention provides a liquid-absorbent composition and a liquid-absorbent sheet containing the liquid-absorbent crosslinked resin described above.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a liquid-absorbent sheet of the present invention.
FIG. 2 is a cross-sectional view of the liquid-absorbent sheet of the present invention.
FIG. 3 is a perspective view of the nonaqueous electrolyte battery pack of the present invention.
FIG. 4 is a perspective view of the nonaqueous electrolyte battery pack of the present invention.
FIG. 5 is a perspective view of the nonaqueous electrolyte battery pack of the present invention.
FIG. 6 is a diagram showing the degree of swelling of the liquid-absorbent crosslinked resin when the crosslinking agent: VEMA (molar ratio) = 1: 100.
FIG. 7 is a diagram showing the degree of swelling of a liquid-absorbent cross-linked resin when the cross-linking agent: VEMA (molar ratio) = 1: 200.
FIG. 8 is a diagram showing the degree of swelling of the liquid-absorbent crosslinked resin when the crosslinking agent: VEMA (molar ratio) = 1: 300.
FIG. 9 is a graph showing the degree of swelling of a liquid-absorbent crosslinked resin in the case of a crosslinking agent: VEMA (molar ratio) = 1: 600.
FIG. 10 is a graph showing the degree of swelling of a liquid-absorbent crosslinked resin when a large amount of a crosslinker is used.
FIG. 11 is an explanatory diagram of an electrolytic solution absorption test in a simulated battery pack.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Support base material 2 ... Liquid-absorbent crosslinked resin layer, 3 ... Adhesive layer, 31 ... Battery case, 32 ... Wiring circuit board, 33 ... Non-aqueous electrolyte battery cell, 34 ... Liquid-absorbent composition, 35 ... Metal lead, 36: external terminal, 37, 38: liquid absorbing sheet

Claims (17)

メチルビニルエーテル無水マレイン酸共重合体を多官能イソシアネート化合物で架橋させてなる吸液性架橋樹脂の粉末と、バインダ樹脂とを含有することを特徴とする吸液性組成物。A liquid-absorbent composition comprising a binder resin and a powder of a liquid-absorbent crosslinked resin obtained by crosslinking a methyl vinyl ether maleic anhydride copolymer with a polyfunctional isocyanate compound. 該粉末が、0.1〜150μmの平均粒径を有する請求項1記載の吸液性組成物。The liquid absorbing composition according to claim 1, wherein the powder has an average particle size of 0.1 to 150 µm. 該メチルビニルエーテル無水マレイン酸共重合体の重量平均分子量が50000〜1200000である請求項1又は2記載の吸液性組成物。3. The liquid-absorbing composition according to claim 1, wherein the weight average molecular weight of the methyl vinyl ether maleic anhydride copolymer is 50,000 to 12,000,000. メチルビニルエーテル無水マレイン酸共重合体の構成モノマーユニット100モルに対する多官能イソシアネート化合物のモル数が、0.1〜2モルである請求項1〜3のいずれかに記載の吸液性組成物。The liquid-absorbent composition according to any one of claims 1 to 3, wherein the mole number of the polyfunctional isocyanate compound is 0.1 to 2 moles per 100 moles of the monomer units of the methyl vinyl ether maleic anhydride copolymer. 多官能イソシアネート化合物が3官能イソシアネート化合物である請求項1〜4のいずれかに記載の吸液性組成物。The liquid absorbing composition according to any one of claims 1 to 4, wherein the polyfunctional isocyanate compound is a trifunctional isocyanate compound. 支持基材の片面に、メチルビニルエーテル無水マレイン酸共重合体が多官能イソシアネート化合物で架橋されてなる吸液性架橋樹脂層が形成されていることを特徴とする吸液性シート。A liquid-absorbent sheet, wherein a liquid-absorbent crosslinked resin layer formed by cross-linking a methyl vinyl ether maleic anhydride copolymer with a polyfunctional isocyanate compound is formed on one surface of a supporting substrate. 支持基材の他面に粘着層が形成されている請求項6記載の吸液性シート。The liquid-absorbent sheet according to claim 6, wherein an adhesive layer is formed on the other surface of the support substrate. 該吸液性架橋樹脂層が、粘着剤を含有する請求項6記載の吸液性シート。The liquid-absorbent sheet according to claim 6, wherein the liquid-absorbent crosslinked resin layer contains a pressure-sensitive adhesive. 該メチルビニルエーテル無水マレイン酸共重合体の重量平均分子量が50000〜1200000である請求項6〜8のいずれかに記載の吸液性シート。The liquid-absorbent sheet according to any one of claims 6 to 8, wherein the weight average molecular weight of the methyl vinyl ether maleic anhydride copolymer is 50,000 to 1200,000. メチルビニルエーテル無水マレイン酸共重合体の構成モノマーユニット100モルに対する多官能イソシアネート化合物のモル数が、0.1〜2モルである請求項6〜9のいずれかに記載の吸液性シート。The liquid-absorbent sheet according to any one of claims 6 to 9, wherein the number of moles of the polyfunctional isocyanate compound is 0.1 to 2 moles per 100 moles of the constituent monomer units of the methyl vinyl ether maleic anhydride copolymer. 多官能イソシアネート化合物が3官能イソシアネート化合物である請求項6〜10のいずれかに記載の吸液性シート。The liquid absorbing sheet according to any one of claims 6 to 10, wherein the polyfunctional isocyanate compound is a trifunctional isocyanate compound. メチルビニルエーテル無水マレイン酸共重合体を、SP値が9〜14の溶剤中に3〜35重量%となるように溶解させ、その溶液に多官能イソシアネート化合物を添加して架橋反応を行うことを特徴とする吸液性架橋樹脂の製造方法。A methyl vinyl ether maleic anhydride copolymer is dissolved in a solvent having an SP value of 9 to 14 so as to be 3 to 35% by weight, and a cross-linking reaction is performed by adding a polyfunctional isocyanate compound to the solution. A method for producing a liquid-absorbent crosslinked resin. 該メチルビニルエーテル無水マレイン酸共重合体の重量平均分子量が50000〜1200000である請求項12記載の製造方法。The method according to claim 12, wherein the weight average molecular weight of the methyl vinyl ether maleic anhydride copolymer is 50,000 to 1200,000. メチルビニルエーテル無水マレイン酸共重合体の構成モノマーユニット100モルに対する多官能イソシアネート化合物のモル数が、0.1〜2モルである請求項12又は13記載の製造方法。14. The method according to claim 12, wherein the mole number of the polyfunctional isocyanate compound is 0.1 to 2 moles per 100 moles of the constituent monomer units of the methyl vinyl ether maleic anhydride copolymer. 多官能イソシアネート化合物が3官能イソシアネート化合物である請求項12〜14のいずれかに記載の製造方法。The method according to any one of claims 12 to 14, wherein the polyfunctional isocyanate compound is a trifunctional isocyanate compound. 電池ケース内に、非水電解液電池セルと、配線回路基板と、非水電解液電池セルから電解液の漏液が生じた場合にその電解液を吸収するための電解液吸収部材とが設置されている非水電解液電池パックにおいて、該電解液吸収部材が、請求項1〜5のいずれかに記載の吸液性組成物から形成されたものであることを特徴とする非水電解液電池パック。In the battery case, a non-aqueous electrolyte battery cell, a printed circuit board, and an electrolyte absorbing member for absorbing the electrolyte when the electrolyte leaks from the non-aqueous electrolyte battery cell are installed. In a non-aqueous electrolyte battery pack, the electrolyte-absorbing member is formed from the liquid-absorbing composition according to any one of claims 1 to 5. Battery pack. 電池ケース内に、非水電解液電池セルと、配線回路基板と、非水電解液電池セルから電解液の漏液が生じた場合にその電解液を吸収するための電解液吸収部材とが設置されている非水電解液電池パックにおいて、該電解液吸収部材が、請求項6〜11のいずれかに記載の吸液性シートから形成されたものであることを特徴とする非水電解液電池パック。In the battery case, a non-aqueous electrolyte battery cell, a printed circuit board, and an electrolyte absorbing member for absorbing the electrolyte when the electrolyte leaks from the non-aqueous electrolyte battery cell are installed. In a non-aqueous electrolyte battery pack, the electrolyte absorbing member is formed from the liquid-absorbent sheet according to any one of claims 6 to 11. pack.
JP2003012838A 2003-01-21 2003-01-21 Liquid absorbing composition, liquid absorbing sheet and non-aqueous electrolyte battery pack Expired - Fee Related JP4352707B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003012838A JP4352707B2 (en) 2003-01-21 2003-01-21 Liquid absorbing composition, liquid absorbing sheet and non-aqueous electrolyte battery pack
PCT/JP2003/016331 WO2004065483A1 (en) 2003-01-21 2003-12-19 Liquid-absorbing composition, liquid-absorbing sheet, and nonaqueous electrolyte battery pack
CNB2003801090185A CN100422258C (en) 2003-01-21 2003-12-19 Liquid-absorbing composition, liquid-absorbing sheet, and nonaqueous electrolyte battery pack
US10/519,357 US7732078B2 (en) 2003-01-21 2003-12-19 Non-aqueous electrolyte battery pack comprising a liquid-absorbent composition
KR1020057005583A KR20050099956A (en) 2003-01-21 2003-12-19 Liquid-absorbing composition, liquid-absorbing sheet, and nonaqueous electrolyte battery pack
TW092136841A TW200414580A (en) 2003-01-21 2003-12-25 Liquid-absorbing composition, liquid-absorbing sheet, and nonaqueous electrolyte battery pack
HK06106528.2A HK1086588A1 (en) 2003-01-21 2006-06-07 Liquid-absorbing composition, liquid-absorbing sheet, and nonaqueous electrolyte battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003012838A JP4352707B2 (en) 2003-01-21 2003-01-21 Liquid absorbing composition, liquid absorbing sheet and non-aqueous electrolyte battery pack

Publications (2)

Publication Number Publication Date
JP2004224869A true JP2004224869A (en) 2004-08-12
JP4352707B2 JP4352707B2 (en) 2009-10-28

Family

ID=32767345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003012838A Expired - Fee Related JP4352707B2 (en) 2003-01-21 2003-01-21 Liquid absorbing composition, liquid absorbing sheet and non-aqueous electrolyte battery pack

Country Status (7)

Country Link
US (1) US7732078B2 (en)
JP (1) JP4352707B2 (en)
KR (1) KR20050099956A (en)
CN (1) CN100422258C (en)
HK (1) HK1086588A1 (en)
TW (1) TW200414580A (en)
WO (1) WO2004065483A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013069646A (en) * 2011-09-26 2013-04-18 Fdk Twicell Co Ltd Cell unit

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006079250A1 (en) * 2005-01-31 2006-08-03 Hua Qiao University A super water absorbent resin-based solid polymer electrolyte, a method of preparing the same and the use thereof
US9728809B2 (en) * 2007-01-04 2017-08-08 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, battery pack and vehicle
JP5144582B2 (en) * 2009-04-23 2013-02-13 トヨタ自動車株式会社 Leakage transmission suppression structure for power storage devices
DE102009045271A1 (en) 2009-10-02 2011-04-07 Robert Bosch Gmbh Emergency cooling device
DE102012000593A1 (en) 2012-01-14 2013-07-18 Daimler Ag Battery for e.g. electric car, has binding material that is enclosed in fluid-tight packaging, where binding material is utilized for sealing leakage of defective individual cell during absorption of substance in larger volume
EP2731164B1 (en) * 2012-11-12 2017-06-28 Samsung SDI Co., Ltd. Battery system
KR102124054B1 (en) * 2012-11-14 2020-06-17 삼성전자주식회사 Polymer, electrode for lithium battery including the same, and lithium battery including the electrode
US20140302361A1 (en) * 2013-04-08 2014-10-09 Samsung Sdi Co., Ltd. Rechargeable battery
TWI524578B (en) * 2013-12-31 2016-03-01 原瑞電池科技股份有限公司 Battery module
CN104966848A (en) * 2015-06-19 2015-10-07 储盈新能源科技(上海)有限公司 Polymer for lithium ion battery, preparation method of polymer, lithium ion battery gel electrolyte and preparation method thereof
JP6977272B2 (en) * 2017-02-08 2021-12-08 凸版印刷株式会社 Exterior materials for power storage devices and power storage devices
CN112599841B (en) * 2020-12-15 2022-02-22 厦门海辰新能源科技有限公司 Liquid storage membrane, preparation method thereof and lithium ion battery with liquid storage membrane

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1030686A (en) 1973-06-20 1978-05-02 James R. Gross Absorbent articles and methods for their preparation
JPS5613501B2 (en) 1973-11-14 1981-03-28
JPS6038368B2 (en) * 1981-09-12 1985-08-31 日東電工株式会社 Manufacturing method of patch
JPH0738879B2 (en) * 1990-11-13 1995-05-01 テルモ株式会社 Medical tape and method of manufacturing the same
JP3939776B2 (en) * 1995-12-20 2007-07-04 ダイセル化学工業株式会社 Laminated body and method for producing the same
JPH09175002A (en) * 1995-12-28 1997-07-08 Sumitomo Seika Chem Co Ltd Resin composition for ink-jet recording material
TW454015B (en) * 1996-10-07 2001-09-11 Kuraray Co Water resistant composition
WO1998034484A1 (en) * 1997-02-10 1998-08-13 Takeda Chemical Industries, Ltd. Aqueous suspension of agrochemical
JP2000306559A (en) 1999-04-20 2000-11-02 Fuji Elelctrochem Co Ltd Pack battery
JP2001351588A (en) 2000-06-02 2001-12-21 Sony Corp Battery pack

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013069646A (en) * 2011-09-26 2013-04-18 Fdk Twicell Co Ltd Cell unit

Also Published As

Publication number Publication date
WO2004065483A1 (en) 2004-08-05
CN1738861A (en) 2006-02-22
TW200414580A (en) 2004-08-01
US20060022634A1 (en) 2006-02-02
TWI309897B (en) 2009-05-11
US7732078B2 (en) 2010-06-08
CN100422258C (en) 2008-10-01
HK1086588A1 (en) 2006-09-22
JP4352707B2 (en) 2009-10-28
KR20050099956A (en) 2005-10-17

Similar Documents

Publication Publication Date Title
TW541741B (en) Battery active material powder mixture, electrode composition for batteries, secondary cell electrode, secondary cell, carbonaceous material powder mixture for electrical double-layer capacitors, polarizable electrode composition, polarizable electrode
JP4352707B2 (en) Liquid absorbing composition, liquid absorbing sheet and non-aqueous electrolyte battery pack
CN103443230B (en) Fill the swelling adhesive tape in gap
US5541019A (en) Metal hydride electrochemical cell having a polymer electrolyte
JP3873931B2 (en) Absorbent sheet and non-aqueous electrolyte battery pack
US20100036060A1 (en) Electrolyte compositions
CN102132442B (en) Battery separator and manufacture method thereof and lithium rechargeable battery and manufacture method thereof
CN104854741A (en) Positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using positive electrode, and method for producing positive electrode
JP3628263B2 (en) Release agent composition having antistatic ability
JP4597294B2 (en) Polymer solid electrolyte lithium ion secondary battery
US20110070481A1 (en) Protective material and energy storage module using the same
JP4222149B2 (en) Absorbent sheet and non-aqueous electrolyte battery pack
JP4164005B2 (en) Electrolyte composition
JP2005285377A (en) Polysiloxane-polyolefin complex gel electrolyte, and lithium battery using the same
TW200421649A (en) Liquid absorbing sheet and nonaqueous electrolyte battery pack
JP4352764B2 (en) Absorbent sheet and non-aqueous electrolyte battery pack
US11069896B2 (en) Protective coating of metal
CN100339405C (en) Liquid absorbing sheet and non-aqueous electrolyte battery pack
WO2001047055A1 (en) Polymer solid electrolyte lithium ion secondary cell
JPH04215415A (en) Electric double layer capacitor
JP2003100277A (en) Separator containing hydrophilic gel and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051121

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090720

R150 Certificate of patent or registration of utility model

Ref document number: 4352707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees