JP2004223358A - Silicon carbide honeycomb structure and ceramic filter using the same - Google Patents
Silicon carbide honeycomb structure and ceramic filter using the same Download PDFInfo
- Publication number
- JP2004223358A JP2004223358A JP2003012360A JP2003012360A JP2004223358A JP 2004223358 A JP2004223358 A JP 2004223358A JP 2003012360 A JP2003012360 A JP 2003012360A JP 2003012360 A JP2003012360 A JP 2003012360A JP 2004223358 A JP2004223358 A JP 2004223358A
- Authority
- JP
- Japan
- Prior art keywords
- silicon carbide
- honeycomb structure
- strength
- thermal shock
- young
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Filtering Materials (AREA)
- Ceramic Products (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、耐熱衝撃性に優れるセラミックスハニカム構造体と、そのハニカム構造体で構成されてなるセラミックフィルターに関する。
【0002】
【従来の技術】
近年、各種排気ガスに含まれる有害物質による地球環境汚染問題が深刻さを増してきており、その対策が緊急の課題となっている。有害物質を排気ガスから捕集するフィルターの代表的なものの一つとして、ディーゼルエンジンの排気ガスに含まれる粒子状物質(以下「PM」という)を捕集するディーゼルパティキュレートフィルター(以下「DPF」という。)が挙げられる。
【0003】
DPFとして、コーディエライト又は炭化珪素を主成分とし、入口端面から出口端面へ延びる多数の貫通孔を有するハニカム構造の多孔質セラミックス構造体が知られている。多数の貫通孔はセル壁と呼ばれる多孔質壁で隔てられており、また多数の貫通孔の入口端面と出口端面は市松模様に交互に封止され、入口端面が封止された貫通孔は出口端面で開放され、入口端面が開放された貫通孔は出口端面で封止されているものである。
【0004】
DPFは、ディーゼル機関の排気ガス系統の一部として取り付けられ、入口端面の開放された貫通孔から排気ガスが流入し、多孔体であるセル壁を透過する際にPMが捕集され、PMを含まない排気ガスとなって出口端面の開放された貫通孔より流出する。従ってセル壁はPMを含む排気ガスが容易に透過でき、その際にPMのほとんど又は全てを捕集できるような気孔径及び気孔率を有していることが必要である。
【0005】
DPFのセル壁にPMが捕集され堆積してくると、通気抵抗が増大してくるので、捕集されたPMを定期的に除去する必要がある。ディーゼル機関の排気ガス中のPM主成分は煤であり、従ってその除去には空気中で燃焼させる方法が簡便で一般的である。しかし煤が燃焼する際には大きな発熱が生じるため、フィルター内部で短時間に温度勾配が生じ、それに応じた熱衝撃が加わることになる。
【0006】
コーディエライトは熱膨張係数が小さいことから、このような熱衝撃に対しては強いが、高温での耐食性に問題が有る。その点炭化珪素は高温でも耐食性に優れており、自動車用ディーゼルエンジンの排気ガスに用いる場合の様に、高温になることが想定される場合に有用である。しかし炭化珪素は熱膨張係数が比較的高いことから、耐熱衝撃性に懸念がある。すなわち、PMの燃焼時に発生する熱衝撃によってフィルターに大きなクラックが生じ、それによってPMの捕集漏れが発生してしまうという問題である。
【0007】
炭化珪素質の多孔体を用いたハニカム構造体として耐熱衝撃性の向上を試みた例としては、強度とヤング率の比を強度(MPa)/ヤング率(GPa) ≧1.1としたものが開示されている(特許文献1参照)。
【0008】
【特許文献1】特開2002−154876号公報
【0009】
前記公知技術には、水中投下法による耐熱衝撃性試験で、温度差ΔT=500℃においての残存強度が初期強度に対して50〜70%であり、従来の一般的な再結晶炭化珪素質多孔体の場合(残存強度30%)よりは耐熱衝撃性が向上していることが開示されている。ただそれでも初期強度の70%以下に低下しており十分でないし、また、前記技術に於いては前記効果を得るために、炭化珪素に金属珪素を添加しているが、金属珪素が存在することによる焼結体の耐食性が低下することも懸念される。
【0010】
【発明が解決しようとする課題】
本発明の目的は、セラミックスフィルターや触媒担体に用いた時に、実使用条件下での高温において、十分な耐食性を有し、大きな熱衝撃に耐えられる多孔質炭化珪素質ハニカム構造体を、また、前記の高耐熱衝撃性の多孔質炭化珪素ハニカム構造体で構成されてなるDPF等に好適なセラミックフィルターを提供することにある。
【0011】
【課題を解決するための手段】
本発明者らは、上記目的を達成する為に鋭意研究した結果、ハニカム構造体を構成する炭化珪素質多孔体の強度σ(MPa)とヤング率(GPa)からなるパラメーターE/σ2の値が特定な値以上の場合とするときに、ハニカム構造体の耐熱衝撃性を著しく向上されることを見出し、本発明に至ったものである。
【0012】
即ち、本発明は、炭化珪素質多孔体からなるハニカム構造体であって、その炭化珪素質多孔体の強度をσ(MPa)、ヤング率をE(GPa)とした場合に、E/σ2が2.5×10−2以上であることを特徴とするハニカム構造体である。
【0013】
また、本発明は、前記の強度とヤング率の関係を満たす炭化珪素質多孔体において、その強度を(σ)が2MPa以上45MPa以下であることを特徴とする炭化珪素質ハニカム構造体である。
【0014】
また、本発明は、上記の強度とヤング率の関係を満たす炭化珪素質多孔体において、そのヤング率(E)が0.5GPa以上25GPa以下であることを特徴とする炭化珪素質ハニカム構造体である。
【0015】
更に、本発明は、前記炭化珪素質ハニカム構造体を用いて構成されることを特徴とするセラミックフィルターである。
【0016】
【発明の実施の形態】
耐熱衝撃性を表す指標の一つとしては、熱衝撃破壊抵抗係数(R)が挙げられる。このRは、破壊強度をσ、ポアソン比をν、ヤング率をE、熱膨張係数をαとした場合に、下記式(1)で表される。
【0017】
【数2】
【0018】
ここでν、αは同じ材料であれば変化はほとんど見られない材料固有の値であり、σ及びEについてはその材料の微構造などによって大きく変化する値である。従って前記特許文献1で述べられているようにσ/Eを耐熱衝撃性の指標として用いる例は多い。
【0019】
しかし、耐熱衝撃性を表す別の指標として、下記式(2)で示されるような、熱衝撃損傷抵抗係数(R’)というものが一方で知られている。
【0020】
【数3】
【0021】
ここでE、σ、νは式(1)と同じである。前述のRはクラックの発生に対する抵抗性の指標であるのに対し、R’は発生したクラックの進展に対する抵抗性の指標となる。強度は一般的にはクラックの長さに対応することから、換言すれば、Rが大きいことは強度の低下が生じるΔTが大きいことを示し、一方R’が大きいことは強度の低下の度合が小さいことを示す。
【0022】
フィルターとして使用する場合、耐熱衝撃性として問題視するのは、熱衝撃により生じるクラックがPM漏れを生じる程度にまで大きくなってしまう場合である。ところが、ハニカム構造体を形成している炭化珪素多孔体は、平均気孔径で数μm〜数十μm、気孔率30%以上の特性を有する多孔体であることから、微細なマイクロクラックが入ることはさほど大きな問題ではない。従って、フィルターの耐熱衝撃性の指標としては、R’を適用する方がふさわしいと考えられる。
【0023】
本発明者は、前記の考え方に基づき、いろいろな炭化珪素多孔体に関する強度(σ)とヤング率(E)との関係について実験的検討を重ねた結果、そのE/σ2値が特定の値以上であるときに本発明の目的を達成できることを見出し、本発明に至ったものである。
【0024】
即ち、炭化珪素質多孔体の強度をσ(MPa)、ヤング率をE(GPa)とした場合に、E/σ2≧2.5×10−2の関係が満足されるときに、熱衝撃を受けても大きなクラックに進展しないハニカム構造体が得られるし、その結果、当該ハニカム構造体をフィルターに用いたときには、PM漏れを生じることがない、高い耐熱衝撃性を有するフィルターが得られる。
【0025】
また、本発明のハニカム構造体に於いて、ハニカム構造体を構成する炭化珪素質多孔体の強度σ(MPa)の範囲が2〜45であり、ヤング率E(GPa)が0.5〜25であることが好ましい。強度、ヤング率がそれぞれ前記範囲より小さいときには、ハニカム構造体を製造する際や、ハニカム構造体を他の部品と共に組み立ててDPF等のフィルターに適用しようとする際に変形したり、酷い時には破損したりする問題が生じることがあるからである。
【0026】
一方、強度、ヤング率がそれぞれ前記範囲より大きな場合には、格別の技術上の不都合はないものの、当該特性を有する炭化珪素多孔体を得るには高温で長時間の焼結操作を必要としたり、炭化珪素多孔体中の気孔径や気孔率等の特性を犠牲にせざるを得なくなることがある。また、本発明の目的を達成する上で、ハニカム構造体を構成する炭化珪素質多孔体の強度σ(MPa)の2〜19が、ヤング率E(GPa)の0.7〜10がそれぞれより好ましい範囲である。
【0027】
本発明のハニカム構造体においては、セル壁に形成される気孔の平均気孔径と気孔率については特に制限はない。しかし、フィルターとしての使用を考える場合には、セル壁の気孔率としては40%以上、特に50〜80%が好ましく、また平均気孔径については5〜50μmであることが好ましい。セル壁の気孔率が40%未満では通気時の圧力損失が高くなり、一方80%を超える場合には強度が低下し、ハンドリング性が不良となる。また、セル壁の平均気孔径が5μm未満ではセル壁内部でのPMの目詰まりしやすく、50μmを超える場合には逆にPMの漏れが発生する可能性が出てくるとともに、強度の保持が困難になってくる。なお、本発明におけるセル壁の平均気孔径とは、水銀圧入法により求めたものをいう。
【0028】
強度σ、ヤング率Eはともに気孔率、気孔径の影響を受けることから、耐熱衝撃性を気孔率や気孔径で制御することも考えられる。しかし強度やヤング率に対しては、気孔率・気孔径の他、組織の微細構造の影響も大きく、またそれらが複雑に絡んでいることから、明確な相関を得ることは困難である。従って強度・ヤング率が上記の関係を満たす、という基準でハニカム構造体を構成する炭化珪素多孔体を選択する方が良い。
【0029】
次に、本発明のハニカム構造体を製造する方法について説明する。本発明のハニカム構造体は、炭化珪素粉末、あるいは炭化珪素粉末と窒化珪素粉末の混合物に炭素質物質の所定量を加えた混合物をハニカム形状の成形体に成形し、それを非酸化性雰囲気中で加熱し、焼結させることによって製造することができる。また窒化珪素粉末の代わりに金属珪素粉末を用い、窒素雰囲気中で加熱することによっても、同様に製造することが可能である。
【0030】
まずハニカム形状の成形体の作製にあたっては、炭化珪素粉末、または炭化珪素粉末と窒化珪素粉末の混合粉、あるいは炭化珪素粉末と窒化珪素粉末の混合粉末に、窒化珪素粉末または金属珪素粉末が反応して炭化珪素になるのに必要な分以上の炭素質物質を加えた混合物に、適量の水と有機バインダーを添加し、混合して押出成形用の坏土を得る。混合・混練については、乾式、湿式混合等の均一に混合できる方法であれば何れの方法でも採用することができる。有機バインダーにも特に制限はなく、メチルセルロースやポリビニルアルコール等、あるいはそれらを主成分とする一般的なもので良い。
【0031】
なお、炭素質物質は、酸化性雰囲気中で熱処理することにより容易に除去することができることから、その添加量及び粒度を調節することによって、ハニカム構造体の気孔率、気孔径等を制御することができる。
【0032】
ついで、得られた坏土を押出成形法などにより所望のハニカム形状に成形し、乾燥、脱脂工程を経て加熱し焼結する。焼結は、窒素、アルゴン等の非酸化性雰囲気中で行う。この際、焼結方法には特に制限はなく、ヒーター加熱炉、高周波加熱炉等一般的な加熱炉を用いる事ができる。またその他に、窒化珪素粉末を原料に含むなどして炭化珪素中に若干の窒素を固溶させた場合には、導電性が発現することから、公知の通電焼結法(特許文献2参照)を用い、焼結を短時間で行うことも可能である。
【0033】
【特許文献2】特開平10−52618号公報
【0034】
焼結温度は、1800℃〜2500℃であることが好ましい。焼結温度が1800℃未満では、炭化珪素の粒成長や焼結が不十分である他、未反応の窒化珪素及び炭素質物質が残存するなどで耐熱性が低下する可能性がある。一方2500℃を超えると結晶転移や昇華などが生じ、極端な粒成長により強度が低下する。
【0035】
また、本発明のハニカム構造体からなるフィルターの製造にあたっては、ハニカム貫通孔をそれぞれの両端面で目封じすることによって製造することができる。その目封じ方法については、特許文献3等に記載された方法等によって行うことができる。
【0036】
【特許文献3】特開平9−19613号公報
【0037】
なお、本発明のフィルターは、前記ハニカム構造体を用いて構成されているので、実使用条件下での高温において十分な耐食性を有し、しかも大きな熱衝撃に耐えられるという特徴を有している。
【0038】
【実施例】
(実施例1〜6、比較例1〜2)
炭化珪素粉末(平均粒径10μm)、窒化珪素粉末(平均粒径5μ)、及び炭素粉末2種(平均粒径25μmのものと50μmのもの)を表1に示す割合とした混合物100質量部に対し、水20質量部、バインダーとしてメチルセルロースを表1に示す質量部配合し、ヘンシェル混合機で10分間混合して混練物を調整した。
【0039】
【表1】
【0040】
ついで、前記混練物を真空押出成形機を用い、成形圧力8MPaの条件で、シート状成形体とハニカム状成形体とを押出成形した。シート状成形体は厚さ2mmで長さ100mmであり、ハニカム成形体は、外形寸法100mm、セル寸法2.0mm角、壁厚0.4mmで、長さ100mmとした。得られたシート状成形体及びハニカム成形体を乾燥後、窒素雰囲気中、450℃×1hrの脱脂を行ってから、窒素雰囲気中2200℃で1時間焼成し、焼結体を得た。さらにこの焼結体を大気1100℃で3時間熱処理し、残存する炭素を焼失させた。
【0041】
得られたシート状焼結体のそれぞれから適当な大きさの試験片を切出し、水銀ポロシメーターによって平均細孔直径を測定すると共に、アルキメデス法によって気孔率を測定した。また別にシート状焼結体を切断加工し、40×10×2mmのテストピースを多数作製して、強度試験より三点曲げ強さ(単に強度という)σを測定し、またその際の荷重と変位量から静的ヤング率計算式を用いてヤング率Eを算出した。以上の結果を表2に示す。なお、X線回折にて結晶相を同定したところ、炭化珪素のみからなっていることが確認された。
【0042】
【表2】
【0043】
得られたハニカム状焼結体を切断加工し、3×3セルのハニカムテストピースを多数作製して、その一部について初期強度を測定した。残りの一部については大気中電気炉で所定温度に加熱して20分保持後、水中に投下することで熱衝撃を加え、その残存強度を測定した。その結果を表2に示す。実施例1〜6では、強度σ(MPa)、ヤング率E(GPa)とがE/σ2≧2.5×10−2をみたしており、初期強度に対する残存強度の比が70%以上であり、比較例1、2がそれぞれ38%、32%であるのに対し、格段に耐熱衝撃性に優れることが明らかである。
【0044】
(実施例7)実施例1と同じ原料配合及び操作で作製した混練物を真空押出成形機を用い、成形圧力8MPaの条件で、外形寸法100mm、セル寸法2.0mm角、壁厚0.4mmのハニカム形状に押出成形してから、長さ140mmに切断した。得られたハニカム成形体を乾燥後、ハニカム形状の成形体の貫通孔の入口端面と出口端面を炭化珪素質封止材で市松模様に交互に封止し、窒素雰囲気中、450℃×1hrの脱脂を行ってから、窒素雰囲気中2200℃で1時間焼成し、焼結体を得た。さらにこの焼結体を大気1100℃で3時間熱処理し、残存する炭素を焼失させて、炭化珪素質ハニカムフィルターを作製した。
【0045】
得られた炭化珪素質ハニカムフィルターに煤を8g担持し、空気気流中700℃に加熱して煤を燃焼させた。その後フィルターを観察したところ、クラックは見られなかった。
【0046】
(比較例3)比較例1と同じ原料配合及び操作で作製した混練物を真空押出成形機を用い、成形圧力8MPaの条件で、外形寸法100mm、セル寸法2.0mm角、壁厚0.4mmのハニカム形状に押出成形してから、長さ140mmに切断した。得られたハニカム成形体を乾燥後、ハニカム形状の成形体の貫通孔の入口端面と出口端面を炭化珪素質封止材で市松模様に交互に封止し、窒素雰囲気中、450℃×1hrの脱脂を行ってから、窒素雰囲気中2200℃で1時間焼成し、焼結体を得た。さらにこの焼結体を大気1100℃で3時間熱処理し、残存する炭素を焼失させて、炭化珪素質ハニカムフィルターを作製した。
【0047】
得られた炭化珪素質ハニカムフィルターに煤を8g担持し、空気気流中700℃に加熱して煤を燃焼させた。その後フィルターを観察したところ、円筒縦方向にクラックが発生した。
【0048】
【発明の効果】
本発明のハニカム構造体は、それを構成する炭化珪素質多孔体について、強度とヤング率とが特定条件を満足し極めて耐熱衝撃性に優れるので、大きな熱衝撃を受けた際にも強度低下が小さい特性を有していることから、また、X線回折結果からあきらかな通りに炭化珪素以外の成分を含まず耐食性にも優れることから、セラミックスフィルターや触媒担体に好適に用いることができるので、産業上有用である。
【0049】
また、本発明のセラミックフィルターは、前記特徴のあるハニカム構造体を用いているので、耐熱衝撃性に優れ、実使用時於ける熱衝撃を受けても大きなクラックに進展することがなく、PM漏れを生じることを防止できる特徴があり、産業上非常に有用である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a ceramic honeycomb structure having excellent thermal shock resistance, and a ceramic filter constituted by the honeycomb structure.
[0002]
[Prior art]
BACKGROUND ART In recent years, the problem of global environmental pollution due to harmful substances contained in various exhaust gases has been increasing in severity, and countermeasures have become an urgent issue. A typical example of a filter that collects harmful substances from exhaust gas is a diesel particulate filter (hereinafter “DPF”) that collects particulate matter (hereinafter “PM”) contained in exhaust gas of a diesel engine. .).
[0003]
As the DPF, a porous ceramic structure having a honeycomb structure, having cordierite or silicon carbide as a main component and having a large number of through holes extending from an inlet end face to an outlet end face, is known. A large number of through holes are separated by a porous wall called a cell wall, and the inlet end face and the outlet end face of the many through holes are alternately sealed in a checkered pattern, and the through hole with the sealed inlet end face is an outlet. The through-hole that is open at the end face and the open end face is sealed at the outlet end face.
[0004]
The DPF is installed as a part of an exhaust gas system of a diesel engine. When exhaust gas flows in through an open through hole at an inlet end face, PM is collected when passing through a porous cell wall, and PM is collected. Exhaust gas is not contained and flows out from the through hole opened at the outlet end face. Therefore, it is necessary that the cell wall has a pore diameter and a porosity so that the exhaust gas containing PM can easily permeate and, at that time, most or all of the PM can be collected.
[0005]
When the PM is collected and deposited on the cell walls of the DPF, the ventilation resistance increases. Therefore, it is necessary to periodically remove the collected PM. The main component of PM in the exhaust gas of a diesel engine is soot, and therefore, a simple and common method for removing it is to burn it in air. However, when the soot burns, a large amount of heat is generated, so that a temperature gradient is generated within the filter in a short time, and a thermal shock corresponding thereto is applied.
[0006]
Cordierite has a small coefficient of thermal expansion and thus is strong against such thermal shock, but has a problem in corrosion resistance at high temperatures. In that respect, silicon carbide has excellent corrosion resistance even at high temperatures, and is useful in cases where high temperatures are expected, such as when used for exhaust gas of automobile diesel engines. However, since silicon carbide has a relatively high coefficient of thermal expansion, there is a concern about thermal shock resistance. That is, there is a problem that a large crack is generated in the filter due to a thermal shock generated when the PM is burned, thereby causing a PM trapping leak.
[0007]
An example of an attempt to improve the thermal shock resistance of a honeycomb structure using a silicon carbide-based porous body is one in which the ratio of strength to Young's modulus is strength (MPa) / Young's modulus (GPa) ≧ 1.1. It is disclosed (see Patent Document 1).
[0008]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2002-154876
According to the known technique, in a thermal shock resistance test by a water drop method, the residual strength at a temperature difference ΔT = 500 ° C. is 50 to 70% of the initial strength, and a conventional general recrystallized silicon carbide porous material is used. It is disclosed that the thermal shock resistance is improved as compared with the case of a body (residual strength 30%). However, it still falls below 70% of the initial strength, which is not sufficient. In addition, in the above-mentioned technology, metallic silicon is added to silicon carbide in order to obtain the above-mentioned effects. It is also feared that the corrosion resistance of the sintered body is reduced by the above.
[0010]
[Problems to be solved by the invention]
An object of the present invention is to provide a porous silicon carbide-based honeycomb structure having sufficient corrosion resistance at high temperatures under actual use conditions when used for a ceramic filter or a catalyst carrier and capable of withstanding a large thermal shock, An object of the present invention is to provide a ceramic filter suitable for a DPF or the like, which is constituted by the porous silicon carbide honeycomb structure having high thermal shock resistance.
[0011]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above object, and found that the value of the parameter E / σ 2 consisting of the strength σ (MPa) and the Young's modulus (GPa) of the silicon carbide porous body constituting the honeycomb structure. It is found that when the value of is equal to or more than a specific value, the thermal shock resistance of the honeycomb structure is significantly improved, and the present invention has been accomplished.
[0012]
That is, the present invention is a honeycomb structure made of silicon carbide-based porous body, the strength of the silicon carbide based porous material sigma (MPa), when the Young's modulus and E (GPa), E / σ 2 Is 2.5 × 10 −2 or more.
[0013]
Further, the present invention is a silicon carbide-based honeycomb structure, wherein the strength (σ) of the silicon carbide-based porous body satisfying the relationship between the strength and the Young's modulus is 2 MPa or more and 45 MPa or less.
[0014]
In addition, the present invention provides a silicon carbide based honeycomb structure characterized by having a Young's modulus (E) of 0.5 GPa or more and 25 GPa or less in a silicon carbide based porous material satisfying the above relationship between strength and Young's modulus. is there.
[0015]
Furthermore, the present invention is a ceramic filter characterized by being configured using the above-mentioned silicon carbide honeycomb structure.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
One of the indices indicating the thermal shock resistance is a thermal shock fracture resistance coefficient (R). This R is expressed by the following equation (1), where σ is the breaking strength, ν is the Poisson's ratio, E is the Young's modulus, and α is the coefficient of thermal expansion.
[0017]
(Equation 2)
[0018]
Here, ν and α are values peculiar to the material that hardly changes when the material is the same, and σ and E are values that greatly change depending on the microstructure of the material. Therefore, as described in Patent Document 1, there are many examples in which σ / E is used as an index of thermal shock resistance.
[0019]
However, as another index representing the thermal shock resistance, a thermal shock damage resistance coefficient (R ′) as shown by the following equation (2) is known.
[0020]
[Equation 3]
[0021]
Here, E, σ, and ν are the same as in equation (1). The aforementioned R is an index of resistance to the occurrence of cracks, whereas R 'is an index of resistance to the development of cracks. Since the strength generally corresponds to the length of the crack, in other words, a large R indicates a large ΔT at which the strength decreases, while a large R ′ indicates a small degree of the strength reduction. Indicates small.
[0022]
When used as a filter, what is regarded as a problem in terms of thermal shock resistance is a case where cracks caused by thermal shock are large enough to cause PM leakage. However, since the silicon carbide porous material forming the honeycomb structure is a porous material having an average pore diameter of several μm to several tens μm and a porosity of 30% or more, fine microcracks may occur. Is not a big problem. Therefore, it is considered that R ′ is more appropriate as an index of the thermal shock resistance of the filter.
[0023]
The present inventor repeatedly conducted experimental studies on the relationship between the strength (σ) and the Young's modulus (E) of various porous silicon carbide bodies based on the above-described concept, and as a result, the E / σ 2 value was a specific value. In the above, it has been found that the object of the present invention can be achieved, and the present invention has been accomplished.
[0024]
That is, when the strength of the silicon carbide-based porous body is σ (MPa) and the Young's modulus is E (GPa), when the relationship of E / σ 2 ≧ 2.5 × 10 −2 is satisfied, thermal shock Thus, a honeycomb structure that does not develop into large cracks even when subjected to heat is obtained. As a result, when the honeycomb structure is used as a filter, a filter that does not leak PM and has high thermal shock resistance can be obtained.
[0025]
Further, in the honeycomb structure of the present invention, the range of the strength σ (MPa) of the silicon carbide-based porous body constituting the honeycomb structure is 2 to 45, and the Young's modulus E (GPa) is 0.5 to 25. It is preferable that When the strength and Young's modulus are respectively smaller than the above ranges, the honeycomb structure may be deformed when manufacturing the honeycomb structure or when assembling the honeycomb structure with other parts to apply to a filter such as a DPF, or may be damaged when severe. This is because a problem may occur.
[0026]
On the other hand, when the strength and Young's modulus are respectively larger than the above ranges, although there is no particular technical disadvantage, a long-time sintering operation at a high temperature is required to obtain a silicon carbide porous body having the characteristics. In some cases, it is necessary to sacrifice characteristics such as pore diameter and porosity in the silicon carbide porous body. In order to achieve the object of the present invention, the strength σ (MPa) of the silicon carbide porous body constituting the honeycomb structure is 2 to 19, and the Young's modulus E (GPa) is 0.7 to 10 respectively. This is a preferred range.
[0027]
In the honeycomb structure of the present invention, the average pore diameter and the porosity of the pores formed in the cell wall are not particularly limited. However, in consideration of use as a filter, the porosity of the cell wall is preferably 40% or more, particularly preferably 50 to 80%, and the average pore diameter is preferably 5 to 50 μm. If the porosity of the cell wall is less than 40%, the pressure loss at the time of ventilation increases, while if it exceeds 80%, the strength decreases and the handling property becomes poor. If the average pore diameter of the cell wall is less than 5 μm, PM is easily clogged inside the cell wall. If the average pore diameter exceeds 50 μm, there is a possibility that PM leakage may occur, while maintaining strength. It becomes difficult. In addition, the average pore diameter of the cell wall in the present invention means a value determined by a mercury intrusion method.
[0028]
Since both the strength σ and the Young's modulus E are affected by the porosity and the pore diameter, it is conceivable to control the thermal shock resistance by the porosity and the pore diameter. However, the strength and Young's modulus are greatly affected by the microstructure of the structure in addition to the porosity and pore diameter, and they are complicatedly entangled. Therefore, it is difficult to obtain a clear correlation. Therefore, it is better to select the silicon carbide porous body constituting the honeycomb structure on the basis that the strength and Young's modulus satisfy the above relationship.
[0029]
Next, a method for manufacturing the honeycomb structure of the present invention will be described. The honeycomb structure of the present invention is obtained by forming a mixture of a silicon carbide powder or a mixture of a silicon carbide powder and a silicon nitride powder with a predetermined amount of a carbonaceous substance into a honeycomb-shaped molded body, and forming the mixture in a non-oxidizing atmosphere. And by sintering. Alternatively, it can be manufactured similarly by using metal silicon powder instead of silicon nitride powder and heating in a nitrogen atmosphere.
[0030]
First, in manufacturing a honeycomb-shaped molded body, silicon nitride powder or metal silicon powder reacts with silicon carbide powder, a mixed powder of silicon carbide powder and silicon nitride powder, or a mixed powder of silicon carbide powder and silicon nitride powder. An appropriate amount of water and an organic binder are added to a mixture containing at least a carbonaceous substance necessary for forming silicon carbide by mixing to obtain a kneaded material for extrusion molding. Regarding mixing and kneading, any method such as dry mixing and wet mixing can be adopted as long as mixing can be performed uniformly. The organic binder is not particularly limited, and may be methylcellulose, polyvinyl alcohol, or the like, or a general material containing them as a main component.
[0031]
Since the carbonaceous substance can be easily removed by heat treatment in an oxidizing atmosphere, it is necessary to control the porosity, the pore diameter, and the like of the honeycomb structure by adjusting the addition amount and the particle size. Can be.
[0032]
Next, the obtained kneaded material is formed into a desired honeycomb shape by an extrusion molding method or the like, and is heated and sintered through a drying and degreasing process. Sintering is performed in a non-oxidizing atmosphere such as nitrogen or argon. At this time, the sintering method is not particularly limited, and a general heating furnace such as a heater heating furnace and a high-frequency heating furnace can be used. In addition, when a slight amount of nitrogen is dissolved in silicon carbide by including silicon nitride powder as a raw material or the like, conductivity is exhibited, and therefore, a known electric current sintering method (see Patent Document 2) And sintering can be performed in a short time.
[0033]
[Patent Document 2] JP-A-10-52618
The sintering temperature is preferably from 1800C to 2500C. When the sintering temperature is lower than 1800 ° C., the grain growth and sintering of silicon carbide are insufficient, and the heat resistance may decrease due to the remaining unreacted silicon nitride and carbonaceous material. On the other hand, when the temperature exceeds 2500 ° C., crystal transition or sublimation occurs, and the strength is reduced due to extreme grain growth.
[0035]
Further, in manufacturing a filter comprising the honeycomb structure of the present invention, the filter can be manufactured by plugging the honeycomb through holes at both end surfaces. The plugging method can be performed by a method described in Patent Document 3 or the like.
[0036]
[Patent Document 3] JP-A-9-19613
In addition, since the filter of the present invention is configured by using the honeycomb structure, it has a characteristic that it has sufficient corrosion resistance at high temperatures under actual use conditions and can withstand a large thermal shock. .
[0038]
【Example】
(Examples 1 to 6, Comparative Examples 1 and 2)
100 parts by mass of a mixture of silicon carbide powder (average particle size: 10 μm), silicon nitride powder (average particle size: 5 μm), and two types of carbon powder (average particle size: 25 μm and 50 μm) in the ratio shown in Table 1. On the other hand, 20 parts by mass of water and methylcellulose as a binder were mixed with parts by mass shown in Table 1 and mixed with a Henschel mixer for 10 minutes to prepare a kneaded material.
[0039]
[Table 1]
[0040]
Then, the kneaded product was extruded into a sheet-shaped molded product and a honeycomb-shaped molded product using a vacuum extruder under a molding pressure of 8 MPa. The sheet-shaped formed body had a thickness of 2 mm and a length of 100 mm, and the honeycomb formed body had an outer size of 100 mm, a cell size of 2.0 mm square, a wall thickness of 0.4 mm, and a length of 100 mm. After drying the obtained sheet-like molded body and honeycomb molded body, they were degreased at 450 ° C. × 1 hr in a nitrogen atmosphere, and then fired at 2200 ° C. for 1 hour in a nitrogen atmosphere to obtain a sintered body. Further, this sintered body was heat-treated at 1100 ° C. for 3 hours in the atmosphere to burn out remaining carbon.
[0041]
A test piece of an appropriate size was cut out from each of the obtained sheet-shaped sintered bodies, and the average pore diameter was measured by a mercury porosimeter, and the porosity was measured by an Archimedes method. Separately, a sheet-like sintered body is cut and processed to prepare a large number of test pieces of 40 × 10 × 2 mm, and a three-point bending strength (simply called strength) σ is measured by a strength test. The Young's modulus E was calculated from the displacement using a static Young's modulus calculation formula. Table 2 shows the above results. When the crystal phase was identified by X-ray diffraction, it was confirmed that the crystal phase was composed of only silicon carbide.
[0042]
[Table 2]
[0043]
The obtained honeycomb-shaped sintered body was cut to prepare a large number of honeycomb test pieces of 3 × 3 cells, and the initial strength was measured for a part thereof. The remaining part was heated to a predetermined temperature in an electric furnace in the atmosphere, held for 20 minutes, and then dropped into water to apply a thermal shock, and the residual strength was measured. Table 2 shows the results. In Examples 1 to 6, the strength σ (MPa) and the Young's modulus E (GPa) satisfy E / σ 2 ≧ 2.5 × 10 −2 , and the ratio of the residual strength to the initial strength is 70% or more. Comparative Examples 1 and 2 are 38% and 32%, respectively, while it is clear that the thermal shock resistance is remarkably excellent.
[0044]
(Example 7) A kneaded material produced by the same raw material blending and operation as in Example 1 was molded using a vacuum extrusion molding machine under the conditions of a molding pressure of 8 MPa, an outer dimension of 100 mm, a cell dimension of 2.0 mm square, and a wall thickness of 0.4 mm. And then cut to a length of 140 mm. After drying the obtained honeycomb formed body, the inlet end face and the outlet end face of the through-hole of the honeycomb shaped formed body are alternately sealed in a checkered pattern with a silicon carbide sealing material, and heated at 450 ° C. × 1 hr in a nitrogen atmosphere. After performing degreasing, it was baked at 2200 ° C. for 1 hour in a nitrogen atmosphere to obtain a sintered body. Further, this sintered body was heat-treated at 1100 ° C. for 3 hours in the atmosphere to burn off remaining carbon, thereby producing a silicon carbide honeycomb filter.
[0045]
8 g of soot was loaded on the obtained silicon carbide honeycomb filter, and the soot was heated to 700 ° C. in an air stream to burn the soot. Thereafter, when the filter was observed, no crack was observed.
[0046]
(Comparative Example 3) A kneaded product produced by the same raw material blending and operation as in Comparative Example 1 was molded using a vacuum extrusion molding machine under the conditions of a molding pressure of 8 MPa, an outer dimension of 100 mm, a cell dimension of 2.0 mm square, and a wall thickness of 0.4 mm. And then cut to a length of 140 mm. After drying the obtained honeycomb formed body, the inlet end face and the outlet end face of the through-hole of the honeycomb shaped formed body are alternately sealed in a checkered pattern with a silicon carbide sealing material, and heated at 450 ° C. × 1 hr in a nitrogen atmosphere. After performing degreasing, it was baked at 2200 ° C. for 1 hour in a nitrogen atmosphere to obtain a sintered body. Further, this sintered body was heat-treated at 1100 ° C. for 3 hours in the atmosphere to burn off remaining carbon, thereby producing a silicon carbide honeycomb filter.
[0047]
8 g of soot was loaded on the obtained silicon carbide honeycomb filter, and the soot was heated to 700 ° C. in an air stream to burn the soot. Then, when the filter was observed, cracks occurred in the vertical direction of the cylinder.
[0048]
【The invention's effect】
The strength and Young's modulus of the silicon carbide-based porous body constituting the honeycomb structure of the present invention satisfy specific conditions and are extremely excellent in thermal shock resistance, so that the strength decreases even when subjected to a large thermal shock. Because it has small properties, and because it does not contain components other than silicon carbide and is also excellent in corrosion resistance as apparent from X-ray diffraction results, it can be suitably used for ceramic filters and catalyst carriers. Industrially useful.
[0049]
Further, since the ceramic filter of the present invention uses the honeycomb structure having the characteristics described above, it has excellent thermal shock resistance, does not develop into a large crack even when subjected to a thermal shock in actual use, and has a high PM leakage. This is a feature that can prevent the occurrence of, and is very useful industrially.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003012360A JP3689408B2 (en) | 2003-01-21 | 2003-01-21 | Silicon carbide honeycomb structure and ceramic filter using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003012360A JP3689408B2 (en) | 2003-01-21 | 2003-01-21 | Silicon carbide honeycomb structure and ceramic filter using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004223358A true JP2004223358A (en) | 2004-08-12 |
JP3689408B2 JP3689408B2 (en) | 2005-08-31 |
Family
ID=32900992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003012360A Expired - Lifetime JP3689408B2 (en) | 2003-01-21 | 2003-01-21 | Silicon carbide honeycomb structure and ceramic filter using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3689408B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010024072A (en) * | 2008-07-16 | 2010-02-04 | Tokyo Yogyo Co Ltd | Honeycomb assembly |
US8498028B2 (en) | 2008-12-04 | 2013-07-30 | Pfu Limited | Image scanning apparatus, computer readable medium, and image scanning method |
-
2003
- 2003-01-21 JP JP2003012360A patent/JP3689408B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010024072A (en) * | 2008-07-16 | 2010-02-04 | Tokyo Yogyo Co Ltd | Honeycomb assembly |
US8498028B2 (en) | 2008-12-04 | 2013-07-30 | Pfu Limited | Image scanning apparatus, computer readable medium, and image scanning method |
Also Published As
Publication number | Publication date |
---|---|
JP3689408B2 (en) | 2005-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1493724B1 (en) | Porous material and method for production thereof | |
JP4459052B2 (en) | Diesel particulate filter made of mullite / aluminum titanate | |
US6815038B2 (en) | Honeycomb structure | |
US6620751B1 (en) | Strontium feldspar aluminum titanate for high temperature applications | |
KR100960769B1 (en) | Aluminum titanate-based ceramic article | |
US6746748B2 (en) | Honeycomb structure and process for production thereof | |
JP2002201082A (en) | Honeycomb structured body and method of manufacturing the same | |
JPWO2005094967A1 (en) | Honeycomb structure and manufacturing method thereof | |
EP2067756B1 (en) | Silicon carbide based porous material and method for preparation thereof | |
JP4980299B2 (en) | Silicon carbide based porous material | |
JP2008043852A (en) | Ceramics filter | |
JPH08215522A (en) | Filter for exhaust gas and production thereof | |
JP3642836B2 (en) | Silicon carbide honeycomb structure and manufacturing method thereof | |
JP2009143763A (en) | Silicon carbide-based porous body | |
JP4381011B2 (en) | Silicon carbide honeycomb structure and ceramic filter using the same | |
KR20080098536A (en) | Porous object based on silicon carbide and process for producing the same | |
JP3689408B2 (en) | Silicon carbide honeycomb structure and ceramic filter using the same | |
JP4997090B2 (en) | Porous fired body and method for producing the same | |
CN108025984B (en) | Method for producing a body comprising porous alpha silicon carbide and body produced by the method | |
JP2004002130A (en) | Ceramic porous body and its forming process | |
CN116669830B (en) | Silicon carbide ceramic honeycomb structure and method for producing same | |
JP2001072472A (en) | Jig for burning silicon carbide | |
JP4773043B2 (en) | Ceramic filter structure | |
JP2004142979A (en) | Method for manufacturing porous honeycomb structure and honeycomb formed body | |
JP2003175307A (en) | Silicon nitride filter and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050112 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050114 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050311 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050607 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050610 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3689408 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080617 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090617 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090617 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100617 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110617 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110617 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120617 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130617 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140617 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |