JPH08215522A - Filter for exhaust gas and production thereof - Google Patents

Filter for exhaust gas and production thereof

Info

Publication number
JPH08215522A
JPH08215522A JP16946095A JP16946095A JPH08215522A JP H08215522 A JPH08215522 A JP H08215522A JP 16946095 A JP16946095 A JP 16946095A JP 16946095 A JP16946095 A JP 16946095A JP H08215522 A JPH08215522 A JP H08215522A
Authority
JP
Japan
Prior art keywords
exhaust gas
gas filter
pore
forming agent
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16946095A
Other languages
Japanese (ja)
Inventor
Shinji Wada
信二 和田
Nobuaki Nagai
伸明 永井
Yuichi Murano
雄一 村野
Yukinori Ikeda
幸則 池田
Makoto Ogawa
誠 小川
Koichi Watanabe
浩一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16946095A priority Critical patent/JPH08215522A/en
Priority to US08/665,876 priority patent/US5846276A/en
Priority to GB9613537A priority patent/GB2302826B/en
Priority to DE19626375A priority patent/DE19626375B4/en
Publication of JPH08215522A publication Critical patent/JPH08215522A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)

Abstract

PURPOSE: To provide a filter for exhaust gas having high melting point, excellent heat resistance, high resistance against abnormal combustion, a small coefft. of thermal expansion, high strength against fatique due to thermal hysteresis, and excellent durability, and to provide production method thereof. CONSTITUTION: This filter for exhaust gas is equipped with a honeycomb columnar body essentially comprising aluminum titanate. The honeycomb columnar body has 29-63% porosity. The coefft. α of thermal expansion of this body in the extruding direction and in the perpendicular direction to the extrusion direction when the honeycomb body is produced satisfies |α|<=1.8×10<-6> deg.C<-1> . The pores have 8 to 42 average pore diameter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はディーゼルエンジン等の
燃焼機関から排出される排気ガスに含まれるスス等の粒
子状物質を捕集・処理する排ガスフィルター及びその製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas filter for collecting and treating particulate matter such as soot contained in exhaust gas discharged from a combustion engine such as a diesel engine and a method for producing the same.

【0002】[0002]

【従来の技術】近年、環境問題が深刻化したことに伴い
ディーゼルエンジン等の燃焼機関から排気される排気ガ
スとともに大気中に分散されるスス等の粒子状物質の処
理が注目を集めている。これらの粒子状物質は排気管の
途中に接続された排ガスフィルターにより捕集される。
排ガスフィルターは粒子状物質の捕集を進めると捕集能
力が次第に低下するため所定の捕集量に達すると粒子状
物質を燃焼し排ガスフィルターを再生せねばならない。
排ガスフィルターの再生は主として電気ヒータ方式が用
いられる。電気ヒータ方式では排ガスの流入側もしくは
流出側に電気ヒータを据付、電気ヒータを加熱し粒子状
物質を加熱し発火させ燃焼させる。燃焼温度は供給空気
量により制御される。粒子状物質は全体が一度に燃焼す
るのではなく端部から徐々に燃焼が進行するので、排ガ
スフィルターに温度勾配が生じ熱応力や熱衝撃が発生す
る。この際、粒子状物質の捕集量を正確に検知すること
ができず目標捕集量に対して±40%の捕集量の変動が
頻繁に発生するため異常燃焼が発生する可能性がある。
この際異常燃焼とは設定値より多くの粒子状物質が捕集
された場合再生時に急激な燃焼が行われ温度が1000
℃以上に上がる現象をいう。排ガスフィルターはこの異
常燃焼に耐える耐熱性が必要である。また、排ガスフィ
ルターは再生処理による熱履歴により生じる熱応力や熱
衝撃に基づく疲労破壊が生じないように低熱膨張係数及
び耐熱衝撃性が強く要求される。また、粒子状物質の捕
集効率が高く圧力損失の少ないことも求められ、これら
の特性のバランスが極めて重要である。これらの要求を
満たすため排ガスフィルターは各方面から検討が行われ
種々の開発が行われている。
2. Description of the Related Art In recent years, as environmental problems have become more serious, attention has been paid to the treatment of particulate matter such as soot dispersed in the atmosphere together with exhaust gas exhausted from a combustion engine such as a diesel engine. These particulate matters are collected by an exhaust gas filter connected in the middle of the exhaust pipe.
When the exhaust gas filter collects particulate matter, its collection ability gradually decreases. Therefore, when a predetermined amount of collection is reached, the particulate matter must be burned to regenerate the exhaust gas filter.
An electric heater system is mainly used for regeneration of the exhaust gas filter. In the electric heater method, an electric heater is installed on the inflow side or the outflow side of the exhaust gas, and the electric heater is heated to heat the particulate matter to ignite and burn it. The combustion temperature is controlled by the amount of supplied air. Since the particulate matter does not burn as a whole at once, but gradually burns from the end, a temperature gradient occurs in the exhaust gas filter, and thermal stress or thermal shock occurs. At this time, the trapped amount of the particulate matter cannot be accurately detected, and the trapped amount fluctuates ± 40% with respect to the target trapped amount frequently, which may cause abnormal combustion. .
At this time, abnormal combustion means that if more particulate matter than the set value is collected, rapid combustion is performed during regeneration and the temperature is 1000
A phenomenon that rises above ℃. Exhaust gas filters must have heat resistance to withstand this abnormal combustion. Further, the exhaust gas filter is strongly required to have a low coefficient of thermal expansion and thermal shock resistance so that fatigue stress due to thermal stress or thermal shock caused by thermal history due to the regeneration treatment does not occur. Further, it is required that the collection efficiency of the particulate matter is high and the pressure loss is small, and the balance of these characteristics is extremely important. In order to meet these requirements, exhaust gas filters have been studied from various sides and various developments have been made.

【0003】例えば、排ガスフィルターに用いる材料と
してコージェライト焼結体(2MgO・2Al23・5
SiO2)が挙げられる。コージェライトの結晶は一般
的に異方的な熱膨張を示し熱膨張係数がa軸では2.0
×10-6-1、c軸では−0.9×10-6-1と異なっ
ている。しかしながら、原料に含まれるカオリンやタル
ク等の板状結晶が押し出し工程で剪断力を受け格子と平
行な方向に分散されるので焼結工程でこの板状結晶が焼
結結晶の成長起点となりコージェライトの結晶のc軸は
押し出し方向に僅かながら多く配向された状態となる。
従って、コージェライトの結晶方向と板状結晶との組み
合わせで押し出し方向の熱膨張係数は0.4〜0.7×
10-6-1となり押し出し方向に垂直な方向の熱膨張係
数は0.9〜1.5×10-6-1となり全方向に渡って
熱膨張係数が小さくなり熱衝撃に有利に働くことが検討
されている。
For example, as a material used for an exhaust gas filter, a cordierite sintered body (2MgO.2Al 2 O 3 .5) is used.
SiO 2 ). Cordierite crystals generally exhibit anisotropic thermal expansion and the coefficient of thermal expansion is 2.0 on the a-axis.
It differs from x10 -6 ° C -1 and -0.9x10 -6 ° C -1 on the c-axis. However, the plate crystals such as kaolin and talc contained in the raw material receive shearing force in the extrusion process and are dispersed in the direction parallel to the lattice. The c-axis of the crystal is slightly oriented in the extruding direction.
Therefore, the coefficient of thermal expansion in the extruding direction is 0.4 to 0.7 × in the combination of the crystallographic direction of cordierite and the plate-like crystal.
It becomes 10 -6 ° C -1 , and the coefficient of thermal expansion in the direction perpendicular to the extrusion direction is 0.9 to 1.5 x 10 -6 ° C -1 , which makes the coefficient of thermal expansion small in all directions, which is advantageous for thermal shock. Is being considered.

【0004】また、他の排ガスフィルター用の材料とし
てチタン酸アルミニウム(Al23・TiO2)が挙げ
られる。チタン酸アルミニウムは溶融温度が1600℃
以上と高く排ガスフィルターの再生時に発生する異常燃
焼に対して抵抗力があり耐熱性に優れている。しかしな
がら、チタン酸アルミニウムの結晶の熱膨張係数はa軸
が11.8×10-6-1、b軸が19.4×10
-6-1、c軸が−2.6×10-6-1であり結晶方向に
より異方性を有している。また、チタン酸アルミニウム
は押し出し成形時に押し出し方向にc軸方向が配向する
と同時に焼結時の粒成長で押し出し方向に柱状又は板状
に結晶粒が延びて成長する。従って、押し出し方向の熱
膨張係数は室温から800℃の範囲で約−1.0×10
-6-1、押し出し方向と垂直な方向の熱膨張係数は約
3.0×10-6-1という高い値を示す傾向にあった。
Further, another material for exhaust gas filters is aluminum titanate (Al 2 O 3 .TiO 2 ). Aluminum titanate has a melting temperature of 1600 ° C.
As above, it is resistant to abnormal combustion that occurs when the exhaust gas filter is regenerated and has excellent heat resistance. However, the coefficient of thermal expansion of a crystal of aluminum titanate is 11.8 × 10 −6 ° C. −1 on the a-axis and 19.4 × 10 −6 on the b-axis.
It has an anisotropy of −6 ° C. −1 , a c-axis of −2.6 × 10 −6 ° C. −1 , and a crystal orientation. Also, in the case of aluminum titanate, the c-axis direction is oriented in the extrusion direction during extrusion molding, and at the same time, crystal grains grow in columnar or plate-like shapes in the extrusion direction due to grain growth during sintering. Therefore, the coefficient of thermal expansion in the extrusion direction is approximately -1.0 x 10 in the range of room temperature to 800 ° C.
-6 ° C. -1, thermal expansion coefficient of the extrusion direction and the direction perpendicular tended to show a high value of about 3.0 × 10 -6-1.

【0005】次に、従来の排ガスフィルターの製造方法
について説明する。まず、セラミック粉末に造孔剤を混
合分散させペースト状とした後にハニカムダイスを通し
て押し出しハニカム構造体に成形する。次に、このハニ
カム構造体を焼成し造孔剤を焼失させると同時にハニカ
ム構造体を強固に結合させ排ガスフィルターを製造す
る。
Next, a conventional method for manufacturing an exhaust gas filter will be described. First, a pore-forming agent is mixed and dispersed in ceramic powder to form a paste, which is then extruded through a honeycomb die to form a honeycomb structure. Next, the honeycomb structure is fired to burn off the pore-forming agent, and at the same time, the honeycomb structure is firmly bonded to produce an exhaust gas filter.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上記従来
の排ガスフィルターでは、異常燃焼により排ガスフィル
ターが1400℃付近の高温になった場合コージェライ
トでは溶融が起こり溶損を発生する。排ガスフィルター
内部で溶損が発生すると形状変化に伴う粒子状物質の捕
集能力が低下するばかりでなく排ガスフィルター内部で
粒子状物質の捕集量の部分的ばらつきが起こるので新た
な溶損を誘発する可能性が高く排ガスフィルターの機能
が低下して圧力損失が大きくディーゼルエンジンに異常
をきたすという問題点を有していた。また、チタン酸ア
ルミニウムは融点が高いので上記の異常燃焼に対する抵
抗力が強く耐熱性に優れるが結晶方向による熱膨張係数
の異方性があるとともに製造時の焼結工程の粒成長で結
晶方位が揃い排ガスフィルター全体の熱膨張係数が高く
なる。従って、再生処理を繰り返すと排ガスフィルター
に熱膨張と熱収縮の繰り返し応力が発生し熱疲労を起こ
し最終的にはクラックが発生し排ガスフィルターが破損
するという問題点を有していた。
However, in the above-mentioned conventional exhaust gas filter, when the exhaust gas filter reaches a high temperature around 1400 ° C. due to abnormal combustion, the cordierite is melted to cause melting loss. When melting loss occurs inside the exhaust gas filter, not only the ability to collect particulate matter due to shape change decreases but also the amount of particulate matter trapped inside the exhaust gas filter partially varies, causing new melting loss. However, there is a problem that the function of the exhaust gas filter is deteriorated, the pressure loss is large, and the diesel engine becomes abnormal. In addition, since aluminum titanate has a high melting point and thus has a high resistance to abnormal combustion and is excellent in heat resistance, it has anisotropy in the coefficient of thermal expansion depending on the crystal direction and the crystal orientation due to grain growth in the sintering step during manufacturing. The thermal expansion coefficient of the entire exhaust gas filter becomes high. Therefore, when the regeneration treatment is repeated, repeated stress of thermal expansion and thermal contraction occurs in the exhaust gas filter, thermal fatigue occurs, and finally cracks occur and the exhaust gas filter is damaged.

【0007】本発明は上記従来の問題点を解決するもの
で、融点が高く耐熱性に優れ異常燃焼に対する抵抗力が
高いと同時に熱膨張係数が小さく熱履歴による疲労に強
く耐久性に優れる排ガスフィルターの提供、及び、耐熱
性及び耐熱疲労性に優れる排ガスフィルターを生産性及
び量産性良く製造でき製造歩留りの高い排ガスフィルタ
ー及びその製造方法の提供を目的とする。
The present invention solves the above-mentioned conventional problems, and is an exhaust gas filter having a high melting point, excellent heat resistance, high resistance to abnormal combustion, small thermal expansion coefficient, fatigue resistance due to thermal history and excellent durability. In addition, an exhaust gas filter having excellent heat resistance and heat fatigue resistance can be manufactured with high productivity and mass productivity, and an exhaust gas filter with high manufacturing yield and a manufacturing method thereof are provided.

【0008】[0008]

【課題を解決するための手段】この目的を達成するため
に本発明の請求項1に記載の排ガスフィルターは、チタ
ン酸アルミニウムを主成分とするハニカム柱状体を備え
た排ガスフィルターであって、ハニカム柱状体が29〜
63%の気孔率を有し、かつ、ハニカム柱状体の製造時
の押し出し方向及び押し出し方向と垂直な方向の熱膨張
係数αが|α|≦1.8×10-6-1で、気孔が8〜4
2μmの平均気孔径を有する構成を有している。
In order to achieve this object, an exhaust gas filter according to claim 1 of the present invention is an exhaust gas filter provided with a honeycomb columnar body containing aluminum titanate as a main component. The columns are 29-
Porosity having a porosity of 63%, a coefficient of thermal expansion α in the extrusion direction and a direction perpendicular to the extrusion direction during manufacturing of the honeycomb columnar body is | α | ≦ 1.8 × 10 −6 ° C. −1 . Is 8-4
It has a structure having an average pore diameter of 2 μm.

【0009】本発明の請求項2に記載の排ガスフィルタ
ーの製造方法は、平均粒子径が3〜25μmの主成分を
チタン酸アルミニウムとする粉末100重量部に対し
て、平均粒子径が20〜61μmであり平均アスペクト
比が1〜2.0である造孔剤粉末を10〜60重量部混
合し、必要に応じて結合剤、可塑剤、及び、水を添加し
混合物とする混合工程と、混合工程で混合された混合物
をハニカム柱状体形状に押し出し成形する成形工程と、
成形工程で押し出された成形物を加熱し造孔剤粉末を焼
失させ気孔を形成すると同時に成形物を焼結する焼成工
程と、を備えた構成を有している。
In the method for producing an exhaust gas filter according to claim 2 of the present invention, the average particle size is 20 to 61 μm with respect to 100 parts by weight of a powder containing aluminum titanate as a main component having an average particle size of 3 to 25 μm. And a mixing step of mixing 10 to 60 parts by weight of the pore-forming agent powder having an average aspect ratio of 1 to 2.0 and, if necessary, adding a binder, a plasticizer, and water to form a mixture. A molding step of extruding the mixture mixed in the step into a honeycomb columnar body shape;
And a firing step of heating the molded product extruded in the molding process to burn off the pore-forming agent powder to form pores and at the same time sinter the molded product.

【0010】本発明の請求項3に記載の排ガスフィルタ
ーの製造方法は、請求項2において、焼成工程におい
て、昇温速度が1〜30℃/時間である構成を有してい
る。
The method for producing an exhaust gas filter according to a third aspect of the present invention is the method for producing an exhaust gas filter according to the second aspect, wherein the heating rate is 1 to 30 ° C./hour in the firing step.

【0011】本発明の請求項4に記載の排ガスフィルタ
ーの製造方法は、請求項2又は3の内いずれか1におい
て、造孔剤粉末が、活性炭、コークス、合成樹脂、澱
粉、及び、黒鉛の内少なくとも1以上からなる構成を有
している。
According to a fourth aspect of the present invention, there is provided the method for producing an exhaust gas filter according to the second or third aspect, wherein the pore-forming agent powder is activated carbon, coke, synthetic resin, starch or graphite. At least one of them is included.

【0012】ここで、ハニカム構造体は29〜63%の
気孔率を有するのが好ましい。気孔率が29%未満にな
るにつれ圧力損失が高くなり排気機能が低下し好ましく
ない。気孔率が63%を越えるにつれ捕集効率が低くな
り粒子状物質が外部に排出され環境上問題となり好まし
くない。ハニカム柱状体の製造時の押し出し方向及び押
し出し方向と垂直な方向の熱膨張係数αが|α|≦1.
8×10-6-1であるのが好ましい。熱膨張係数αが
1.8×10-6-1を越えるにつれ粒子状物質の再生処
理時に生じる熱応力により熱膨張や熱収縮が発生し熱疲
労を起こす傾向となり好ましくない。気孔は8〜42μ
mの平均気孔径が好ましい。平均気孔径が8μm未満に
なるにつれ圧力損失が高くなり排気ガスの排出が十分で
なくディーゼルエンジンの機能を低下させる傾向となり
好ましくない。平均気孔率が42μmを越えるにつれ粒
子状物質が排ガスフィルターを透過し捕集効率が悪化し
好ましくない傾向となる。チタン酸アルミニウム粉末の
平均粒子径は3〜25μmが好適に用いられる。平均粒
子径が3μm未満となるにつれ焼成時の収縮が大きく変
形する傾向となり好ましくない。平均粒径が25μmを
越えるにつれ焼結時の原子の拡散による焼結性が十分で
なく強度が低下する傾向となり好ましくない。造孔剤粒
子の平均粒子径は20〜61μmが好適に用いられる。
平均粒子径が20μm未満或いは61μmを越えるにつ
れハニカム構造体の平均気孔径を8〜42μmとできな
い傾向となり好ましくない。造孔剤粒子の平均アスペク
ト比は1〜2.0が好適に用いられる。平均アスペクト
比が1未満又は2を越えるにつれ押し出し時にチタン酸
アルミニウムのc軸が配向し排ガスフィルターの熱膨張
係数が大きくなる傾向があり好ましくない。造孔剤粉末
が3〜25μmの主成分をチタン酸アルミニウムとする
粉末100重量部に対して10〜60重量部混合するの
が好ましい。造孔剤を10重量部未満或いは60重量部
を越えて配合すると気孔率が29〜63%の範囲に納ま
らない傾向となり好ましくない。昇温速度は1〜30℃
/時間であるのが好ましい。昇温速度が1℃/時間未満
になるにつれ只時間がかかるだけで生産性が劣り好まし
くない。昇温速度が30℃/時間を越えるにつれ昇温時
に熱応力が発生しクラックが発生し破損する可能性が高
く製造歩留りが低下し量産性に劣る傾向となり好ましく
ない。
Here, the honeycomb structure preferably has a porosity of 29 to 63%. When the porosity is less than 29%, the pressure loss increases and the exhaust function deteriorates, which is not preferable. When the porosity exceeds 63%, the collection efficiency decreases, and the particulate matter is discharged to the outside, which is an environmental problem and is not preferable. When the honeycomb columnar body is manufactured, the thermal expansion coefficient α in the extrusion direction and the direction perpendicular to the extrusion direction is | α | ≦ 1.
It is preferably 8 × 10 -6 ° C -1 . As the thermal expansion coefficient α exceeds 1.8 × 10 -6 ° C -1 , the thermal stress generated during the regenerating treatment of the particulate matter tends to cause thermal expansion and contraction and thermal fatigue, which is not preferable. 8-42μ pores
An average pore size of m is preferred. When the average pore diameter is less than 8 μm, the pressure loss increases, exhaust gas is not sufficiently discharged, and the function of the diesel engine tends to deteriorate, which is not preferable. As the average porosity exceeds 42 μm, the particulate matter permeates the exhaust gas filter and the collection efficiency deteriorates, which is not preferable. The average particle size of the aluminum titanate powder is preferably 3 to 25 μm. When the average particle size is less than 3 μm, shrinkage during firing tends to be greatly deformed, which is not preferable. When the average particle size exceeds 25 μm, the sinterability due to the diffusion of atoms during sintering is insufficient and the strength tends to decrease, which is not preferable. The average particle diameter of the pore-forming agent particles is preferably 20 to 61 μm.
If the average particle size is less than 20 μm or more than 61 μm, the average pore size of the honeycomb structure tends to be 8 to 42 μm, which is not preferable. The average aspect ratio of the pore-forming agent particles is preferably 1 to 2.0. When the average aspect ratio is less than 1 or more than 2, the c-axis of aluminum titanate tends to be oriented during extrusion and the thermal expansion coefficient of the exhaust gas filter tends to increase, which is not preferable. The pore-forming agent powder is preferably mixed in an amount of 10 to 60 parts by weight with respect to 100 parts by weight of a powder containing aluminum titanate as a main component having a particle size of 3 to 25 μm. If the pore-forming agent is blended in an amount of less than 10 parts by weight or more than 60 parts by weight, the porosity tends to fall outside the range of 29 to 63%, which is not preferable. Temperature rising rate is 1 to 30 ° C
/ Hour is preferred. When the temperature rising rate is less than 1 ° C./hour, it takes only a short time and the productivity is poor, which is not preferable. When the temperature rising rate exceeds 30 ° C./hour, thermal stress is generated at the time of temperature rising, cracks are likely to occur and breakage is high, and the manufacturing yield tends to be low, resulting in poor mass productivity, which is not preferable.

【0013】[0013]

【作用】この構成によって、平均気孔径が8〜42μm
に気孔率が29〜63%に形成されるので粒子状物質の
捕集効率が高いと同時に圧力損失が少なく排気ガスを十
分に排気することができる。また、熱膨張係数を1.8
×10-6-1以下にできるので粒子状物質の再生処理時
に経験する熱履歴により発生する熱応力が少なく耐熱疲
労性に優れる。さらに材質がチタン酸アルミニウムから
なるので融点が高く異常燃焼時の高温にも耐えることが
できる。従って、耐熱性と耐熱疲労性の両方の性能を両
立して向上できる。
With this structure, the average pore diameter is 8 to 42 μm.
Since the porosity is formed to be 29 to 63%, the particulate matter trapping efficiency is high and at the same time the pressure loss is small and exhaust gas can be exhausted sufficiently. Further, the coefficient of thermal expansion is 1.8.
Since the temperature can be controlled to be not more than × 10 -6 ° C -1, the thermal stress generated by the thermal history experienced during the regenerating treatment of the particulate matter is small and the thermal fatigue resistance is excellent. Furthermore, since the material is aluminum titanate, it has a high melting point and can withstand high temperatures during abnormal combustion. Therefore, both heat resistance and heat fatigue resistance can be improved at the same time.

【0014】また、主成分をチタン酸アルミニウムとす
る粉末の粒径を3〜25μmに造孔剤粉末の粒径を20
〜61μmに平均アスペクト比を1〜2.0に配合割合
を10〜60重量部に制御したので粒子状物質の捕集効
率と圧力損失の優れた気孔径及び気孔率を得ることがで
きる。また、押し出し時にかかる剪断力を造孔剤が受け
るのでチタン酸アルミニウムの結晶方位は略ランダムな
方向に配置され焼結後のハニカム構造体も異方性が生じ
難く全体としての熱膨張係数を小さくできる。昇温速度
を1〜30℃/時間に設定したので生産性を損なうこと
なく造孔剤の焼失をスムーズにかつ完全に行え、また、
昇温時の熱応力によるクラックの発生も防止できる。造
孔剤として、活性炭、コークス、合成樹脂、澱粉、黒鉛
の内いずれか1以上を用いたので、押し出し時の剪断力
を受ける強度を有し、また、焼結時に完全に近い状態で
焼失し気孔を形成することができる。
Further, the particle size of the powder containing aluminum titanate as a main component is 3 to 25 μm, and the particle size of the pore-forming agent powder is 20.
Since the average aspect ratio is controlled to 1 to 2.0 and the compounding ratio is controlled to 10 to 60 parts by weight, it is possible to obtain the pore diameter and the porosity excellent in the trapping efficiency of the particulate matter and the pressure loss. Further, since the pore-forming agent receives the shearing force applied at the time of extrusion, the crystal orientation of aluminum titanate is arranged in a substantially random direction, and the honeycomb structure after sintering is less likely to cause anisotropy and has a small thermal expansion coefficient as a whole. it can. Since the temperature rising rate is set to 1 to 30 ° C / hour, the pore-forming agent can be burned off smoothly and completely without impairing the productivity.
It is also possible to prevent the occurrence of cracks due to thermal stress when the temperature is raised. Since any one or more of activated carbon, coke, synthetic resin, starch, and graphite was used as a pore-forming agent, it has the strength to receive shearing force during extrusion, and it is burned off in a nearly complete state during sintering. Pores can be formed.

【0015】[0015]

【実施例】【Example】

(実施例1〜11、比較例1〜9)以下本発明の第1実
施例について、図面を参照しながら説明する。図1は第
1実施例における排ガスフィルターの要部斜視図であ
り、図2は第1実施例における排ガスフィルターの格子
の部分拡大断面図であり、図3は第1実施例における排
ガスフィルターの要部断面側面図である。図1乃至図3
において、1は直径が144mm程度、長さが155m
m程度のハニカム柱状体からなる第1実施例における排
ガスフィルター、2は排気ガス及びスス等の粒子状物質
が通過する通気部、3は断面が四角形状、六角形状、多
角形状、或いは、円形状の格子状に形成され排ガスが透
過しまた粒子状物質が側壁に堆積する内部に多数の気孔
が形成された厚さが0.4mm程度の格子部、4は格子
部3の端部に交互に埋設され浸入路と排出路を区別する
長さが5〜7mm程度の目封じ、5は格子部3の間隔を
表す幅が4mm程度のピッチ、6は排気ガスの移動方向
を示す排ガス進行方向である。
(Examples 1 to 11 and Comparative Examples 1 to 9) Hereinafter, a first example of the present invention will be described with reference to the drawings. 1 is a perspective view of an essential part of an exhaust gas filter in the first embodiment, FIG. 2 is a partially enlarged sectional view of a lattice of an exhaust gas filter in the first embodiment, and FIG. 3 is a schematic view of an exhaust gas filter in the first embodiment. It is a partial cross section side view. 1 to 3
In 1, the diameter is about 144 mm and the length is 155 m
Exhaust gas filter in the first embodiment consisting of honeycomb columnar bodies of about m, 2 is a ventilation part through which particulate matter such as exhaust gas and soot passes, and 3 is a quadrangular, hexagonal, polygonal or circular cross section. Is formed in a lattice shape, through which exhaust gas permeates and particulate matter is deposited on the side wall, and a large number of pores are formed inside the lattice portion having a thickness of about 0.4 mm, and 4 are alternately arranged at the end portions of the lattice portion 3. A buried plug having a length of about 5 to 7 mm that distinguishes an inflow path from an inflow path, 5 is a pitch having a width of about 4 mm representing the distance between the lattice portions 3, and 6 is an exhaust gas advancing direction indicating a moving direction of exhaust gas. is there.

【0016】以上のように構成された排ガスフィルター
について、以下その製造方法を説明する。実施例1〜1
1として平均粒子径10μmのチタン酸アルミニウム粉
末と平均粒子径20〜61μmで平均アスペクト比1.
2〜2.0の造孔剤粉末を主成分をチタン酸アルミニウ
ムとする粉末100重量部に対し10〜60重量部の割
合で結合剤メチルセルロースとともに混合した。造孔剤
としては活性炭、コークス、ポリエチレン樹脂、ポリス
チレン樹脂、ポリオレフィン樹脂、小麦澱粉、馬鈴薯澱
粉、黒鉛を用いた。各原料の形状及び配合割合を(表
1)に示した。
The method of manufacturing the exhaust gas filter having the above structure will be described below. Examples 1 to 1
1, aluminum titanate powder having an average particle diameter of 10 μm and an average particle diameter of 20 to 61 μm and an average aspect ratio of 1.
The pore-forming agent powder of 2 to 2.0 was mixed with the binder methylcellulose in a ratio of 10 to 60 parts by weight with respect to 100 parts by weight of a powder containing aluminum titanate as a main component. As the pore forming agent, activated carbon, coke, polyethylene resin, polystyrene resin, polyolefin resin, wheat starch, potato starch, and graphite were used. The shape and blending ratio of each raw material are shown in (Table 1).

【0017】[0017]

【表1】 [Table 1]

【0018】混合はミキサーを用い乾式混合で行った。
次に、可塑剤グリセリンを3〜6重量部、水を31〜3
8重量部添加してニーダーで混合した後に3本ローラで
さらに均一に分散混合させた。混合された試料を真空押
し出し成形装置に投入しハニカム柱状体1の形状に押し
出し成形した後に乾燥した。次に、ハニカム柱状の成形
物を焼成炉に投入し気孔を形成すると同時に焼成し排ガ
スフィルターを製造した。この際の昇温速度は10℃/
時間で1500℃まで加熱し4時間保持して焼成を行っ
た。
Mixing was performed by dry mixing using a mixer.
Next, 3 to 6 parts by weight of plasticizer glycerin and 31 to 3 parts of water are added.
After adding 8 parts by weight and mixing with a kneader, the mixture was further uniformly dispersed and mixed with three rollers. The mixed sample was put into a vacuum extrusion molding apparatus, extruded into the shape of the honeycomb columnar body 1, and then dried. Next, the honeycomb columnar molded article was placed in a firing furnace to form pores and simultaneously fired to manufacture an exhaust gas filter. The heating rate at this time is 10 ° C /
Firing was performed by heating to 1500 ° C. for 4 hours and holding for 4 hours.

【0019】次に、原料及び排ガスフィルターの形状及
び構造の測定方法を説明する。各原料の平均粒子径はレ
ーザー式粒度分布計測器を用いて測定を行った。本実施
例のチタン酸アルミニウムを主成分とする粉末の平均粒
子径は10μmであり中央値は8〜9μmであり中央値
が平均粒子径よりやや小さい偏った分布を成していた。
Next, a method for measuring the shape and structure of the raw material and the exhaust gas filter will be described. The average particle diameter of each raw material was measured using a laser type particle size distribution measuring device. The average particle size of the powder containing aluminum titanate as the main component of this example was 10 μm, and the median value was 8 to 9 μm, and the distribution was such that the median value was slightly smaller than the average particle size.

【0020】アスペクト比とは長軸と短軸の比率をいい
偏形の程度を示す一指標である。平均アスペクト比は造
孔剤試料を走査型電子顕微鏡で拡大した後各辺を計測し
10個の試料の平均により求めた。
The aspect ratio is the ratio of the major axis to the minor axis and is an index showing the degree of deformation. The average aspect ratio was obtained by enlarging the pore-forming agent sample with a scanning electron microscope, measuring each side, and averaging 10 samples.

【0021】排ガスフィルターの平均気孔径と気孔率は
水銀ポロシメータを用いて測定した。結晶粒子の配向性
は結晶粒子20個についてそれぞれ顕微鏡観察を行っ
た。
The average pore diameter and porosity of the exhaust gas filter were measured using a mercury porosimeter. Regarding the orientation of the crystal grains, 20 crystal grains were microscopically observed.

【0022】熱膨張係数は熱分析(TMA)測定装置に
より計測を行った。以上の測定結果を(表1)に示し
た。
The coefficient of thermal expansion was measured by a thermal analysis (TMA) measuring device. The above measurement results are shown in (Table 1).

【0023】次に、排ガスフィルターの性能試験につい
て説明する。各実施例の耐熱性を調べるために電気炉中
に1550℃の温度で10時間保持した後に電気炉から
取りだし外観を観察した。
Next, the performance test of the exhaust gas filter will be described. In order to examine the heat resistance of each example, the sample was held in an electric furnace at a temperature of 1550 ° C. for 10 hours, then taken out of the electric furnace and the appearance was observed.

【0024】圧力損失値及び捕集効率は捕集再生試験装
置を用いて測定した。捕集再生試験装置の構成は捕集入
口側に熱風発生部とアセチレンカーボン噴霧部、捕集出
口側にアセチレンカーボンを燃焼させる電気ヒータ部と
空気供給部を備えた。格子部4の側壁に熱電対を装入し
温度を測定する温度測定部と、捕集入口側と捕集出口側
の圧力差を測定する圧力測定部と、を備えた。圧力損失
値は以下のようにして求めた。電気ヒータ部を加熱し空
気供給部の空気の供給量を制御して排ガスフィルターを
300℃の温度に安定させた。アセチレンカーボン噴霧
部からアセチレンカーボンを排ガスフィルターに導入し
30分間に渡ってアセチレンカーボンを捕集した。この
捕集完了直前の捕集入口側と捕集出口側の圧力差を圧力
測定部により測定し圧力損失値とした。また、捕集効率
は使用したアセチレンカーボン量と排ガスフィルターに
捕集したアセチレンカーボン量との比率から求めた。
The pressure loss value and the collection efficiency were measured using a collection regeneration test device. The collection and regeneration test apparatus was equipped with a hot air generator and an acetylene carbon sprayer on the collection inlet side, and an electric heater and an air supply unit for burning acetylene carbon on the collection outlet side. A temperature measuring unit for charging a thermocouple to the side wall of the lattice unit 4 to measure the temperature and a pressure measuring unit for measuring the pressure difference between the collection inlet side and the collection outlet side were provided. The pressure loss value was obtained as follows. The electric heater was heated to control the amount of air supplied from the air supply to stabilize the exhaust gas filter at a temperature of 300 ° C. Acetylene carbon was introduced into the exhaust gas filter from the acetylene carbon spraying section, and the acetylene carbon was collected for 30 minutes. The pressure loss value was obtained by measuring the pressure difference between the collection inlet side and the collection outlet side immediately before the completion of the collection with a pressure measuring unit. The collection efficiency was obtained from the ratio of the amount of acetylene carbon used and the amount of acetylene carbon collected in the exhaust gas filter.

【0025】熱衝撃性は次のようにして評価した。前述
の捕集再生試験装置のアセチレンカーボンの捕集重量を
測定した後に電気ヒータ部で捕集したアセチレンカーボ
ンを燃焼させて再生し、その捕集・燃焼による再生のサ
イクルを一回として、このサイクルを繰り返して捕集効
率の極端に低下したところの回数を再生回数として熱衝
撃性の評価値とした。
The thermal shock resistance was evaluated as follows. After measuring the collected weight of acetylene carbon of the above-mentioned collection and regeneration test device, the acetylene carbon collected by the electric heater is burned to be regenerated, and the cycle of the collection and combustion is set as one cycle. By repeating the above, the number of times when the collection efficiency was extremely lowered was taken as the number of times of regeneration and used as the evaluation value of the thermal shock resistance.

【0026】以上の評価の結果を(表1)に示した。
(表1)から明らかなように、実施例1〜実施例11の
排ガスフィルターでは熱膨張係数は押し出し方向が0.
7〜0.8×10-6-1、垂直方向が1.5〜1.8×
10-6-1と両方向とも極めて小さいことが判明した。
それは結晶粒子の配向が略ランダムと異方性を持たない
からであることが判った。また、平均気孔径は8〜42
μmの値を示し、気孔率は29〜63%の値を示した。
耐熱試験の結果実施例1〜実施例11に渡って僅かに収
縮するだけで溶損等は発生せず耐熱性に優れることが判
明した。圧力損失は約700〜約2000mmaqの間
であり捕集効率は71〜84%の範囲で排ガスの透過能
と粒子状物質の捕集能とが適度に調和されて両立してい
ることが判明した。耐衝撃性を表す再生回数は100回
行っても劣化が生じず極めて耐衝撃性が高いことが判明
した。
The results of the above evaluations are shown in (Table 1).
As is clear from (Table 1), in the exhaust gas filters of Examples 1 to 11, the coefficient of thermal expansion was 0.
7-0.8x10 -6 ° C -1 , vertical direction 1.5-1.8x
It was found to be extremely small in both directions at 10 -6 ° C -1 .
It was found that the orientation of crystal grains was almost random and did not have anisotropy. The average pore diameter is 8 to 42.
The value was μm, and the porosity was 29 to 63%.
As a result of the heat resistance test, it was proved that the material had excellent heat resistance without causing melting loss and the like even with slight shrinkage in Examples 1 to 11. It was found that the pressure loss was between about 700 and about 2000 mmaq and the collection efficiency was in the range of 71 to 84%, and the exhaust gas permeation capacity and the particulate matter collection capacity were appropriately harmonized and compatible with each other. . It was found that the impact resistance is extremely high, without deterioration even after 100 times of reproduction.

【0027】次に、比較例1〜9として本発明の範囲か
ら部分的に外れた原料を用いて排ガスフィルターを製造
した。製造方法は実施例1〜11と同様に行い、得られ
た比較例1〜9の構造及び評価試験も同様に行った。結
果を(表2)に示した。
Next, as Comparative Examples 1 to 9, exhaust gas filters were manufactured by using raw materials partially outside the scope of the present invention. The manufacturing method was the same as in Examples 1 to 11, and the structures and evaluation tests of the obtained Comparative Examples 1 to 9 were also performed in the same manner. The results are shown in (Table 2).

【0028】[0028]

【表2】 [Table 2]

【0029】(表2)から明らかなように、造孔剤を用
いなかった比較例1では圧力損失及び捕集効率を測定で
きず排ガスフィルターの機能を全く果たしてないことが
判明した。造孔剤の配合割合を多くした比較例2では捕
集効率が68%と低く又耐熱衝撃性の劣ることが判明し
た。耐熱衝撃性の劣化は強度が低下し熱履歴による応力
に抗しきれなかったためである。造孔剤の平均粒子径の
小さな比較例3では圧力損失が3220mmaqと大き
いことが判明した。造孔剤の平均粒子径の大きな比較例
4では捕集効率が49%と低いことが判明した。チタン
酸アルミニウム粒子径の大きな比較例5及び6は耐熱衝
撃性を示す再生回数が21回や29回と低いことが判明
した。造孔剤の平均アスペクト比の大きな比較例7乃至
9も再生回数が15以下と極めて低いことが判明した。
比較例1及び比較例5乃至9の熱膨張係数は垂直方向で
2.2〜2.9×10-6-1と大きくなっている。これ
は比較例1では造孔剤がないため押し出し時にチタン酸
アルミニウム粉末が剪断力を受けc軸が配向するためで
ある。また、比較例5及び6では粒子径が大きく比較例
7乃至9では造孔剤の平均アスペクト比が大きいので押
し出し時の剪断力の応力場を乱すことがなくチタン酸ア
ルミニウム粉末のc軸が配向されるからである。
As is clear from (Table 2), in Comparative Example 1 in which the pore-forming agent was not used, the pressure loss and the collection efficiency could not be measured, and it was found that the exhaust gas filter did not function at all. In Comparative Example 2 in which the proportion of the pore-forming agent was increased, it was found that the collection efficiency was as low as 68% and the thermal shock resistance was inferior. The deterioration of the thermal shock resistance is because the strength was lowered and it was not possible to withstand the stress due to the thermal history. In Comparative Example 3 in which the average particle diameter of the pore-forming agent was small, it was found that the pressure loss was as large as 3220 mmaq. In Comparative Example 4 in which the average particle size of the pore-forming agent was large, it was found that the collection efficiency was as low as 49%. It was found that Comparative Examples 5 and 6 having a large particle size of aluminum titanate showed a low thermal shock resistance of 21 or 29 times of regeneration. It was found that Comparative Examples 7 to 9 having a large average aspect ratio of the pore-forming agent also had an extremely low number of reproductions of 15 or less.
The thermal expansion coefficients of Comparative Example 1 and Comparative Examples 5 to 9 are as large as 2.2 to 2.9 × 10 −6 ° C. −1 in the vertical direction. This is because in Comparative Example 1, the aluminum titanate powder was subjected to shearing force during extrusion and the c-axis was oriented because there was no pore-forming agent. In Comparative Examples 5 and 6, the particle size is large, and in Comparative Examples 7 to 9, the average aspect ratio of the pore-forming agent is large, so that the c-axis of the aluminum titanate powder is oriented without disturbing the stress field of shearing force during extrusion. Because it is done.

【0030】次に、本実施例の焼成工程における昇温速
度の影響について説明する。焼成工程における昇温速度
を1℃/時間、10℃/時間、30℃/時間、50℃/
時間の4段階に設定し他は実施例3と同様にして排ガス
フィルターを製造した。1〜30℃/時間の昇温速度の
場合は排ガスフィルターの構造及び評価試験の結果は良
好な成績を得た。昇温速度が50℃/時間の場合は焼成
工程においてクラックが発生し破損した。これは急速な
昇温によって造孔剤が急激な燃焼反応を起こし部分的な
温度差が生じこの温度差が極端に大きくなると熱応力に
よりクラックが発生するからである。
Next, the influence of the temperature rising rate in the firing process of this embodiment will be described. The heating rate in the firing step is 1 ° C./hour, 10 ° C./hour, 30 ° C./hour, 50 ° C. /
An exhaust gas filter was manufactured in the same manner as in Example 3 except that the time was set to four stages. When the heating rate was 1 to 30 ° C./hour, the structure of the exhaust gas filter and the result of the evaluation test were good. When the temperature rising rate was 50 ° C./hour, cracks occurred and were damaged during the firing process. This is because the pore-forming agent causes a rapid combustion reaction due to a rapid temperature rise, and a partial temperature difference occurs. When this temperature difference becomes extremely large, thermal stress causes cracks.

【0031】以上のように本実施例によれば、チタン酸
アルミニウムからなり平均気孔径と気孔率及び熱膨張係
数を最適に制御したので、異常燃焼にも耐えうる耐熱性
を有するとともに熱膨張係数が小さく耐熱衝撃性に対す
る抗力が高い。また、圧力損失が少ないとともに捕集効
率も高くバランスの取れた排ガス特性を有する。また、
造孔剤に活性炭、コークス、ポリエチレン樹脂、ポリス
チレン樹脂、ポリオレフィン樹脂、小麦澱粉、馬鈴薯澱
粉、及び、黒鉛を用いたので焼成工程で確実に焼失され
気孔を確実に形成でき作業性に優れ生産性や量産性に富
む。
As described above, according to this embodiment, the average pore diameter, the porosity, and the coefficient of thermal expansion are made of aluminum titanate and are optimally controlled, so that they have heat resistance capable of withstanding abnormal combustion and also have a coefficient of thermal expansion. Is small and has high resistance to thermal shock resistance. In addition, the exhaust gas characteristics are well balanced with high pressure collection efficiency with low pressure loss. Also,
Activated carbon, coke, polyethylene resin, polystyrene resin, polyolefin resin, wheat starch, potato starch, and graphite are used as the pore-forming agent, so it can be surely burned out in the firing process and pores can be reliably formed, resulting in excellent workability and productivity. Rich in mass productivity.

【0032】[0032]

【発明の効果】以上のように本発明は、チタン酸アルミ
ニウムを主成分とするハニカム柱状体を備えた排ガスフ
ィルターであって、ハニカム柱状体が29〜63%の気
孔率を有し、かつ、ハニカム柱状体の製造時の押し出し
方向及び押し出し方向と垂直な方向の熱膨張係数αが|
α|≦1.8×10-6-1で、気孔が8〜42μmの平
均気孔径を有するので、粒子状物質を捕集する捕集効率
が高くかつ排ガスの透過時の圧力損失が小さく両者のバ
ランスが取れ優れた捕集効率を得ることができる。ま
た、融点が高く異常燃焼時の高温でも溶融することなく
形状を保ち耐熱性に優れるとともに熱膨張係数が小さい
ので粒子状物質の再生処理時に生じる熱履歴においても
膨張及び収縮の変形量が少なく疲労破壊を起こし難く耐
熱衝撃性に優れる排ガスフィルターを実現できるもので
ある。
As described above, the present invention is an exhaust gas filter including a honeycomb columnar body containing aluminum titanate as a main component, the honeycomb columnar body having a porosity of 29 to 63%, and When the honeycomb columnar body is manufactured, the thermal expansion coefficient α in the extrusion direction and the direction perpendicular to the extrusion direction is
Since α | ≦ 1.8 × 10 −6 ° C. −1 and the pores have an average pore diameter of 8 to 42 μm, the trapping efficiency for trapping particulate matter is high and the pressure loss during permeation of exhaust gas is small. Both can be balanced and excellent collection efficiency can be obtained. In addition, since it has a high melting point, does not melt even at high temperatures during abnormal combustion, retains its shape, has excellent heat resistance, and has a small coefficient of thermal expansion, the amount of deformation of expansion and contraction is small even in the thermal history that occurs during the regeneration treatment of particulate matter and fatigue. It is possible to realize an exhaust gas filter that does not easily break and has excellent thermal shock resistance.

【0033】又、本発明は、平均粒子径が3〜25μm
の主成分をチタン酸アルミニウムとする粉末100重量
部に対して平均粒子径が20〜61μmであり平均アス
ペクト比が1〜2である造孔剤粉末を10〜60重量部
混合し必要に応じて結合剤、可塑剤、及び、水を添加し
混合物とする混合工程を備えたので、最適の平均粒子径
及び気孔率を安定して生産性及び量産性良く製造でき
る。また、適度な形状の造孔剤を用いたので押し出し時
の剪断力を造孔剤が受けチタン酸アルミニウムのc軸の
配向を防止でき全体の熱膨張係数を小さくでき耐熱疲労
及び耐熱衝撃性を向上できる排ガスフィルターの製造方
法を実現できるものである。
In the present invention, the average particle size is 3 to 25 μm.
10 to 60 parts by weight of a pore-forming agent powder having an average particle diameter of 20 to 61 μm and an average aspect ratio of 1 to 2 with respect to 100 parts by weight of a powder containing aluminum titanate as a main component of Since a mixing step of adding a binder, a plasticizer, and water to form a mixture is provided, the optimum average particle diameter and porosity can be stably produced with good productivity and mass productivity. In addition, since a pore-forming agent with an appropriate shape is used, the pore-forming agent receives the shearing force during extrusion and can prevent the orientation of the c-axis of aluminum titanate, reducing the overall coefficient of thermal expansion and reducing thermal fatigue and thermal shock resistance. It is possible to realize an improved exhaust gas filter manufacturing method.

【0034】又、本発明は、焼成工程において、昇温速
度が1〜30℃/時間であるので、造孔剤の焼失が確実
にスムーズに進行し部分的な異常加熱もなく安定に気孔
が形成され生産性及び量産性に優れる排ガスフィルター
の製造方法を実現できるものである。
Further, according to the present invention, since the heating rate is 1 to 30 ° C./hour in the firing step, the burning of the pore-forming agent proceeds reliably and smoothly, and the pores are stably formed without partial abnormal heating. It is possible to realize a method of manufacturing an exhaust gas filter that is formed and is excellent in productivity and mass productivity.

【0035】又、本発明は、造孔剤粉末が、活性炭、コ
ークス、合成樹脂、澱粉、及び、黒鉛の内少なくとも1
以上からなるので、加熱時の焼失が確実に行われ安定に
気孔が形成され製造歩留りが高く生産性及び量産性に優
れる排ガスフィルターの製造方法を実現できるものであ
る。
In the present invention, the pore-forming agent powder is at least one of activated carbon, coke, synthetic resin, starch and graphite.
As described above, it is possible to realize a method for manufacturing an exhaust gas filter which is surely burned during heating, has stable pores, has a high manufacturing yield, and is excellent in productivity and mass productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例における排ガスフィルターの要部斜
視図
FIG. 1 is a perspective view of a main part of an exhaust gas filter according to a first embodiment.

【図2】第1実施例における排ガスフィルターの格子の
部分拡大断面図
FIG. 2 is a partially enlarged sectional view of a lattice of an exhaust gas filter in the first embodiment.

【図3】第1実施例における排ガスフィルターの要部断
面側面図
FIG. 3 is a side sectional view of an essential part of the exhaust gas filter in the first embodiment.

【符号の説明】[Explanation of symbols]

1 第1実施例における排ガスフィルター 2 通気部 3 格子部 4 目封じ 5 ピッチ 6 排ガス進行方向 1 Exhaust gas filter in 1st Example 2 Ventilation part 3 Lattice part 4 Plugging 5 Pitch 6 Exhaust gas advancing direction

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池田 幸則 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 小川 誠 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 渡辺 浩一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yukinori Ikeda 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Makoto Ogawa, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. ( 72) Inventor Koichi Watanabe 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】チタン酸アルミニウムを主成分とするハニ
カム柱状体を備えた排ガスフィルターであって、前記ハ
ニカム柱状体が29〜63%の気孔率を有し、かつ、前
記ハニカム柱状体の製造時の押し出し方向及び押し出し
方向と垂直な方向の熱膨張係数αが|α|≦1.8×1
-6-1で、気孔が8〜42μmの平均気孔径を有する
ことを特徴とする排ガスフィルター。
1. An exhaust gas filter comprising a honeycomb columnar body containing aluminum titanate as a main component, wherein the honeycomb columnar body has a porosity of 29 to 63%, and at the time of manufacturing the honeycomb columnar body. Coefficient of thermal expansion α in the direction of extrusion and in the direction perpendicular to the direction of extrusion is | α | ≦ 1.8 × 1
An exhaust gas filter having a mean pore diameter of 0 to 42 µm at 0 -6 ° C -1 .
【請求項2】平均粒子径が3〜25μmの主成分をチタ
ン酸アルミニウムとする粉末100重量部に対して、平
均粒子径が20〜61μmであり平均アスペクト比が1
〜2.0である造孔剤粉末を10〜60重量部混合し、
必要に応じて結合剤、可塑剤、及び、水を添加し混合物
とする混合工程と、前記混合工程で混合された混合物を
ハニカム柱状体形状に押し出し成形する成形工程と、前
記成形工程で押し出された成形物を加熱し前記造孔剤粉
末を焼失させ気孔を形成すると同時に成形物を焼結する
焼成工程と、を備えたことを特徴とする排ガスフィルタ
ーの製造方法。
2. 100 parts by weight of a powder containing aluminum titanate as a main component having an average particle diameter of 3 to 25 μm has an average particle diameter of 20 to 61 μm and an average aspect ratio of 1.
Mixing 10 to 60 parts by weight of the pore-forming agent powder of ~ 2.0,
If necessary, a binder, a plasticizer, and a mixing step of adding water to form a mixture, a molding step of extruding the mixture mixed in the mixing step into a honeycomb columnar shape, and an extrusion step of the molding step. And a baking step of heating the molded product to burn off the pore-forming agent powder to form pores and at the same time sinter the molded product.
【請求項3】前記焼成工程において、昇温速度が1〜3
0℃/時間であることを特徴とする請求項2に記載の排
ガスフィルターの製造方法。
3. The temperature rising rate is 1 to 3 in the firing step.
The exhaust gas filter manufacturing method according to claim 2, wherein the temperature is 0 ° C./hour.
【請求項4】前記造孔剤粉末が、活性炭、コークス、合
成樹脂、澱粉、及び、黒鉛の内少なくとも1以上からな
ることを特徴とする請求項2又は3の内いずれか1に記
載の排ガスフィルターの製造方法。
4. The exhaust gas according to claim 2, wherein the pore-forming agent powder comprises at least one of activated carbon, coke, synthetic resin, starch, and graphite. Filter manufacturing method.
JP16946095A 1994-12-15 1995-07-05 Filter for exhaust gas and production thereof Pending JPH08215522A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP16946095A JPH08215522A (en) 1994-12-15 1995-07-05 Filter for exhaust gas and production thereof
US08/665,876 US5846276A (en) 1995-07-05 1996-06-19 Exhaust gas filter
GB9613537A GB2302826B (en) 1995-07-05 1996-06-27 Exhust Gas Filter
DE19626375A DE19626375B4 (en) 1995-07-05 1996-07-01 Exhaust filter and method of making the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-311912 1994-12-15
JP31191294 1994-12-15
JP16946095A JPH08215522A (en) 1994-12-15 1995-07-05 Filter for exhaust gas and production thereof

Publications (1)

Publication Number Publication Date
JPH08215522A true JPH08215522A (en) 1996-08-27

Family

ID=26492788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16946095A Pending JPH08215522A (en) 1994-12-15 1995-07-05 Filter for exhaust gas and production thereof

Country Status (1)

Country Link
JP (1) JPH08215522A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0873775A1 (en) * 1997-04-22 1998-10-28 Matsushita Electric Industrial Co., Ltd. Exhaust gas filter and method of producing the same
EP1375525A2 (en) * 2001-03-14 2004-01-02 Sekisui Chemical Co., Ltd. Hollow polymer particles, method for preparing hollow polymer particles, porous ceramic filter, and method for preparing porous ceramic filter
WO2006030811A1 (en) * 2004-09-14 2006-03-23 Ngk Insulators, Ltd. Porous honeycomb filter
JP2008545612A (en) * 2005-05-31 2008-12-18 コーニング インコーポレイテッド Aluminum titanate ceramic forming batch mixture and green body containing a combination of pore formers, and production and firing method of the mixture and green body
JP2009507972A (en) * 2005-09-14 2009-02-26 イーテーエン ナノヴェイション アクチェンゲゼルシャフト Layer or coating and composition for its production
JP2009184903A (en) * 2008-01-09 2009-08-20 Sumitomo Chemical Co Ltd Process for production of aluminum titanate-based ceramic
JP2010519169A (en) * 2007-02-27 2010-06-03 コーニング インコーポレイテッド Ceramic material for 4-way and nitrogen oxide adsorbent and method for producing the same
WO2010079806A1 (en) * 2009-01-07 2010-07-15 住友化学株式会社 Molded porous ceramic article, and method for manufacturing same
JP2010180120A (en) * 2009-01-07 2010-08-19 Sumitomo Chemical Co Ltd Method for manufacturing aluminum titanate based sintered compact and porous ceramics shaped body, and test method of porous ceramics shaped body
JP2010528963A (en) * 2007-05-31 2010-08-26 コーニング インコーポレイテッド Aluminum titanate ceramic forming batch mixture with pore former and green body
JP2010215482A (en) * 2009-03-19 2010-09-30 Sumitomo Chemical Co Ltd Method for producing molded porous ceramic article and molded porous ceramic article
JP2013226557A (en) * 2007-02-09 2013-11-07 Nissan Motor Co Ltd Manufacturing method of catalytic converter
WO2015080254A1 (en) * 2013-11-28 2015-06-04 京セラ株式会社 Honeycomb structure and gas treatment device provided with same
WO2015080255A1 (en) * 2013-11-29 2015-06-04 京セラ株式会社 Honeycomb structure, and gas treatment device provided therewith
JP2021501118A (en) * 2017-10-31 2021-01-14 コーニング インコーポレイテッド A batch composition containing pre-reacted spherical inorganic particles and a spherical pore-forming agent, and a method for producing a honeycomb body from the batch composition.

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0873775A1 (en) * 1997-04-22 1998-10-28 Matsushita Electric Industrial Co., Ltd. Exhaust gas filter and method of producing the same
EP1375525A2 (en) * 2001-03-14 2004-01-02 Sekisui Chemical Co., Ltd. Hollow polymer particles, method for preparing hollow polymer particles, porous ceramic filter, and method for preparing porous ceramic filter
US7319114B2 (en) 2001-03-14 2008-01-15 Sekisui Chemical Co., Ltd. Hollow polymer particles, method for preparing hollow polymer particles, porous ceramic filter, and method for preparing porous ceramic filter
EP1375525A4 (en) * 2001-03-14 2009-11-04 Sekisui Chemical Co Ltd Hollow polymer particles, method for preparing hollow polymer particles, porous ceramic filter, and method for preparing porous ceramic filter
WO2006030811A1 (en) * 2004-09-14 2006-03-23 Ngk Insulators, Ltd. Porous honeycomb filter
JPWO2006030811A1 (en) * 2004-09-14 2008-05-15 日本碍子株式会社 Porous honeycomb filter
KR100865101B1 (en) * 2004-09-14 2008-10-24 니뽄 가이시 가부시키가이샤 Porous honeycomb filter
JP4954705B2 (en) * 2004-09-14 2012-06-20 日本碍子株式会社 Porous honeycomb filter
JP2009227580A (en) * 2005-05-31 2009-10-08 Corning Inc Method for firing green body containing pore former, and aluminum titanate ceramic forming batch material
JP2009190968A (en) * 2005-05-31 2009-08-27 Corning Inc Method of firing green body containing pore former and aluminum titanate ceramic-forming batch material
JP2008545612A (en) * 2005-05-31 2008-12-18 コーニング インコーポレイテッド Aluminum titanate ceramic forming batch mixture and green body containing a combination of pore formers, and production and firing method of the mixture and green body
JP2009507972A (en) * 2005-09-14 2009-02-26 イーテーエン ナノヴェイション アクチェンゲゼルシャフト Layer or coating and composition for its production
JP2013226557A (en) * 2007-02-09 2013-11-07 Nissan Motor Co Ltd Manufacturing method of catalytic converter
JP2010519169A (en) * 2007-02-27 2010-06-03 コーニング インコーポレイテッド Ceramic material for 4-way and nitrogen oxide adsorbent and method for producing the same
JP2010528963A (en) * 2007-05-31 2010-08-26 コーニング インコーポレイテッド Aluminum titanate ceramic forming batch mixture with pore former and green body
JP2012162455A (en) * 2008-01-09 2012-08-30 Sumitomo Chemical Co Ltd Method for producing aluminum titanate-based ceramics
JP2009184903A (en) * 2008-01-09 2009-08-20 Sumitomo Chemical Co Ltd Process for production of aluminum titanate-based ceramic
JP2010180120A (en) * 2009-01-07 2010-08-19 Sumitomo Chemical Co Ltd Method for manufacturing aluminum titanate based sintered compact and porous ceramics shaped body, and test method of porous ceramics shaped body
WO2010079806A1 (en) * 2009-01-07 2010-07-15 住友化学株式会社 Molded porous ceramic article, and method for manufacturing same
JP2010215482A (en) * 2009-03-19 2010-09-30 Sumitomo Chemical Co Ltd Method for producing molded porous ceramic article and molded porous ceramic article
WO2015080254A1 (en) * 2013-11-28 2015-06-04 京セラ株式会社 Honeycomb structure and gas treatment device provided with same
WO2015080255A1 (en) * 2013-11-29 2015-06-04 京セラ株式会社 Honeycomb structure, and gas treatment device provided therewith
JP2021501118A (en) * 2017-10-31 2021-01-14 コーニング インコーポレイテッド A batch composition containing pre-reacted spherical inorganic particles and a spherical pore-forming agent, and a method for producing a honeycomb body from the batch composition.

Similar Documents

Publication Publication Date Title
US5846276A (en) Exhaust gas filter
JP5687681B2 (en) High porosity filter for 4-way exhaust gas treatment
JP4459052B2 (en) Diesel particulate filter made of mullite / aluminum titanate
US7208108B2 (en) Method for producing porous ceramic article
EP0450899B1 (en) Method of producing porous ceramic filter, using cordierite composition including talc and silica powders
JP4870657B2 (en) Ceramic honeycomb structure and manufacturing method thereof
JPH08215522A (en) Filter for exhaust gas and production thereof
JP3925225B2 (en) Exhaust gas purification filter and manufacturing method thereof
KR101191845B1 (en) Ceramic honeycomb structure and ceramic body used for extrusion-molding the structure
EP1491734A1 (en) Ceramic honeycomb filter
US20100205921A1 (en) Cordierite-based ceramic honeycomb filter and its production method
WO2003082771A1 (en) Porous material and method for production thereof
JP2004001365A (en) Method for manufacturing honeycomb structure, and honeycomb structure
JP2005530616A (en) Aluminum magnesium silicate structure for DPF applications
JPH05254958A (en) Low thermal expansion, high porosity cordierite body and fabrication thereof
JP2004510676A (en) Lithium aluminosilicate ceramic
JP2003154224A (en) Method for manufacturing silicon nitride-coupled silicon carbide honeycomb filter
JPH0577442B2 (en)
WO2005005019A1 (en) Honeycomb filter for clarifying exhaust gas and method for manufacture thereof
WO2004060830A1 (en) Method of baking ceramic honeycomb structure
JPWO2008084844A1 (en) Manufacturing method of honeycomb structure
JP2007045686A (en) Method for manufacturing porous ceramic structure
JP3712785B2 (en) Exhaust gas filter and exhaust gas purification device
KR20100014262A (en) Plugged honeycomb structure
JP2009143763A (en) Silicon carbide-based porous body