WO2015080255A1 - Honeycomb structure, and gas treatment device provided therewith - Google Patents

Honeycomb structure, and gas treatment device provided therewith Download PDF

Info

Publication number
WO2015080255A1
WO2015080255A1 PCT/JP2014/081592 JP2014081592W WO2015080255A1 WO 2015080255 A1 WO2015080255 A1 WO 2015080255A1 JP 2014081592 W JP2014081592 W JP 2014081592W WO 2015080255 A1 WO2015080255 A1 WO 2015080255A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb structure
plane
ray intensity
crystal
sealing material
Prior art date
Application number
PCT/JP2014/081592
Other languages
French (fr)
Japanese (ja)
Inventor
徳留 修
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2015080255A1 publication Critical patent/WO2015080255A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0012Honeycomb structures characterised by the material used for sealing or plugging (some of) the channels of the honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/34Non-shrinking or non-cracking materials
    • C04B2111/343Crack resistant materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/48Honeycomb supports characterised by their structural details characterised by the number of flow passages, e.g. cell density
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/60Discontinuous, uneven properties of filter material, e.g. different material thickness along the longitudinal direction; Higher filter capacity upstream than downstream in same housing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a honeycomb structure used for a filter or the like for purifying exhaust gas, and a gas processing apparatus including the honeycomb structure.
  • a filter made of a honeycomb structure is used to collect fine particles contained in exhaust gas generated from an internal combustion engine, an incinerator, a boiler, and the like.
  • Granular titanium titanate having a ratio of less than 1.3 is used by mixing in a weight ratio of columnar aluminum titanate: particulate aluminum titanate to a ratio in the range of 95: 5 to 60:40.
  • a honeycomb filter in which the number average major axis diameter of aluminum oxide is smaller than the number average minor axis diameter of columnar aluminum titanate has been proposed.
  • the present invention provides a honeycomb structure in which cracking due to thermal stress is suppressed when the collected particulates are repeatedly burned and removed by having a high thermal shock resistance, and a gas including the honeycomb structure. It is an object to provide a processing apparatus.
  • a honeycomb structure of the present invention includes an outer wall, a plurality of partition walls provided on the inner side of the outer wall, and a sealing material, and the outer wall and the partition wall or a space surrounded by the partition walls is a fluid.
  • the X-ray intensity of the (101) plane of the partition crystal which is a crystal of aluminum titanate in the first section cut along the flow path so that the flow path is divided, is the X-ray intensity of the (230) plane. It is characterized by being higher than.
  • the gas treatment apparatus of the present invention is characterized in that the honeycomb structure having the above-described structure is provided in a case to which an exhaust gas introduction pipe is connected.
  • the honeycomb structure of the present invention since it has high thermal shock resistance, it is possible to suppress the occurrence of cracks due to thermal stress when the collected particulates are repeatedly burned and removed.
  • the honeycomb structure of the present invention is provided in the case, so that the collected particulates are repeatedly burned and removed. Since cracks due to thermal stress are less likely to occur, the reliability is high and fine particles can be collected efficiently over a long period of time.
  • FIG. 1 An example of the honeycomb structure of the present embodiment is shown, in which (a) is a perspective view and (b) is a cross-sectional view taken along line B-B ′ in (a).
  • An example of the end face of the honeycomb structure of the present embodiment is shown, (a) is a partially enlarged view on the inlet side, and (b) is a partially enlarged view on the outlet side.
  • Another example of the end face of the honeycomb structure of the present embodiment is shown, (a) is a partially enlarged view on the inflow side, and (b) is a partially enlarged view on the outflow side.
  • It is a schematic sectional drawing of the gas treatment apparatus which shows an example of this embodiment typically.
  • honeycomb structure of the present embodiment and a gas processing apparatus using the honeycomb structure will be described.
  • Fig. 1 (a) is a perspective view showing an example of the honeycomb structure of the present embodiment
  • Fig. 1 (b) is a cross-sectional view taken along the line B-B 'in Fig. 1 (a).
  • the honeycomb structure 1 in the example shown in FIGS. 1A and 1B includes an outer wall 2, a plurality of partition walls 3 provided inside the outer wall 2, and a sealing material 4.
  • the partition wall 3 or a space surrounded by the partition walls 3 serves as a fluid flow path 5, and the inlet or outlet of the flow path 5 is sealed with a sealing material 4.
  • the inflow passage 5 has an inflow port opened and an outflow port sealed with a sealing material 4a, and an outflow port opened and the inflow port sealed with a sealing material 4b.
  • the flow passage 5a and the flow passage 5b are arranged adjacent to each other. And in FIG.1 (b), the left side is an inflow port, and the right side is an outflow port.
  • the honeycomb structure 1 has a cylindrical shape in which the flow passage 5 extends in the axial direction A.
  • the EG that has entered the flow passage 5a that is open on the inlet side is indicated by an arrow because the outlet side of the flow passage 5a is sealed by the sealing material 4a.
  • the liquid flows out from the adjacent flow passage 5b through the partition wall 3 toward the outflow side.
  • the fine particles contained in the EG are mainly collected by the partition walls 3 in such a flow.
  • the partition wall 3 is made of a sintered body mainly composed of aluminum titanate, and is cut along the flow path 5 so that the flow path 5 is divided.
  • the X-ray intensity of the (101) plane of the partition crystal, which is an aluminum titanate crystal in the cross section, is higher than the X-ray intensity of the (230) plane.
  • disconnected along the flow path 5 so that the flow path 5 may be divided with the cross section cut
  • the honeycomb structure 1 of the present embodiment satisfying such a configuration has high thermal shock resistance, cracks generated in the partition walls 3 can be suppressed when the collected particulates are repeatedly burned and removed. Note that, when the first cross section is observed, there is a partition crystal in which micro cracks are confirmed, and the presence of the partition crystal in which micro cracks are confirmed can cause high thermal shock resistance. This is considered to be due to the effect of relaxing the thermal stress due to the difference in the linear expansion coefficient between the axial direction A and the radial direction in FIG.
  • the value of I 101 / I 230 is 1.2 or more and 1.6. It is preferable that: When satisfying such a configuration, the anisotropy of linear expansion between the axial direction A and the radial direction in the partition wall 3 is reduced. Therefore, the difference in the linear expansion coefficient between the axial direction A and the radial direction of the partition wall 3 is reduced, and the generation of cracks due to thermal stress when the collected particulates are repeatedly removed by combustion can be suppressed.
  • the honeycomb structure 1 has a high mechanical strength in the radial direction and the pressure loss is hardly increased. In addition, it is possible to further suppress the occurrence of cracks due to thermal stress when the collected fine particles are repeatedly burned and removed.
  • the sealing material 4 is made of a sintered body mainly composed of aluminum titanate, and is a sealing material crystal that is an aluminum titanate crystal in the second cross section along the flow path 5 of the honeycomb structure 1. It is preferable that the X-ray intensity of the P (101) plane is higher than the X-ray intensity of the P (230) plane.
  • P is assigned to the mirror index of the encapsulant crystal, and the X-ray intensity of each mirror index of the encapsulant crystal is I. P is attached.
  • the second cross section has the same cutting direction as the first cross section.
  • the sealing material 4 since the sealing material 4 has high thermal shock resistance, cracks generated between the sealing material crystals constituting the sealing material 4 when the collected particulates are repeatedly burned and removed. Can be suppressed.
  • the sealing material crystal in which microcracks are confirmed when the second cross section is observed, there is a sealing material crystal in which microcracks are confirmed, and the sealing material crystal in which microcracks are confirmed can have high thermal shock resistance. This is considered to be due to the action of relaxing thermal stress due to the difference in the linear expansion coefficient between the axial direction A and the radial direction in the sealing material 4 due to the presence.
  • the sealing material 4 has high thermal shock resistance as described above, not only can the crack of the sealing material 4 itself be suppressed, but also the inlet side where the sealing material 4 is provided or Since the progress of cracks to the partition wall 3 in the vicinity of the outflow port can be suppressed, the thermal shock resistance of the honeycomb structure 1 can be enhanced.
  • the value of I P101 / I P230 is It is preferable that it is 1.8 or more and 2.5 or less.
  • the sealing material crystal in the second section the X-ray intensity of P (101) plane and I P101, when the X-ray intensity of P (002) plane was I P002, the value of I P002 / I P101 Is preferably 0.05 or more and 0.30 or less.
  • the mechanical strength in the radial direction of the honeycomb structure 1 in the sealing material 4 is increased. Therefore, in particular, the diameters of the inlet and outlet of the honeycomb structure 1 where the sealing material 4 is located. The mechanical strength in the direction is further increased.
  • the value of 230) a second X-ray intensity of P (232) plane of the sealing material crystal and I P232 in cross section, P (230) when the X-ray intensity of the plane was I P230 I P232 / ( It is preferable that the value of I P232 + I P230 ) is different. In such a configuration, since the inclination of the lattice planes of the partition crystal and the sealing material crystal are different, the partition crystal and the sealing material crystal between the partition 3 and the sealing material 4 are used.
  • the main component in the sintered compact which comprises the partition 3 and the sealing material 4 is a component of content larger than 50 mass% among 100 mass% of all the components which comprise a sintered compact.
  • Identification of the crystal structure of the component constituting the sintered body may be performed using an X-ray diffractometer and collated with a JCPDS card. Further, the content may be obtained by measuring using an ICP emission spectroscopic analyzer or a fluorescent X-ray analyzer and converting it according to the identified component. Further, in the first cross section and the second cross section What is necessary is just to measure the X-ray intensity in each surface of a partition crystal or a sealing material crystal using an X-ray diffractometer.
  • FIGS. 2 (a) and 3 (a) are partially enlarged views on the inlet side, showing an example of the end face of the honeycomb structure of the present embodiment
  • FIGS. 2 (b) and 3 (b) are flow diagrams. It is the elements on larger scale by the side of an exit.
  • the opening shape of the flow passage 5a at the end face shown in FIG. 2A is an octagonal shape
  • the opening shape of the flow passage 5b at the end face shown in FIG. 2B is a square shape.
  • the opening shape of the flow path 5a in the end surface shown in FIG. 3A is a flat hexagonal shape
  • the opening shape of the flow path 5b in the end surface shown in FIG. 3B is a regular hexagonal shape.
  • FIGS. 3A and 3B are views in which the inlet side and the outlet side of one honeycomb structure are partially enlarged, and the flow passage 5b is opened more than the flow passage 5a. An example of a large area is shown.
  • the diameter of the flow passage 5a opened on the inlet side is 1.55 times or more and 1.95 times or less than the diameter of the flow passage 5b opened on the outlet side. It is preferable that Thus, when the diameter ratio is 1.55 times or more and 1.95 times or less, the respective surface areas of the partition wall 3 and the sealing material 4 capable of adsorbing the fine particles can be increased while maintaining the mechanical strength. Therefore, the amount of collected fine particles can be increased.
  • the diameter of each of the flow passages 5a and 5b is a diameter of an inscribed circle in contact with the partition wall 3 on the end surface on the inlet side, and is measured using an optical microscope with a magnification of, for example, 50 times to 100 times. can do.
  • the flow passage 5b has a larger opening area than the flow passage 5a, and the inflow side is opened.
  • the flow passage 5a has a flat hexagonal shape
  • the flow passage 5b sealed on the inlet side has a regular hexagonal shape
  • the inlet side opens to surround each side of the flow passage 5b sealed on the inlet side.
  • the sintered body mainly composed of aluminum titanate constituting the partition walls 3 and the sealing material 4 of the honeycomb structure 1 of the present embodiment includes magnesium and iron
  • the magnesium titanate crystal includes magnesium and iron. Is preferably dissolved.
  • magnesium is dissolved in aluminum titanate crystals, it is possible to suppress a decrease in corrosion resistance of sulfur oxide fine particles formed by oxidation of sulfur contained in EG.
  • iron is dissolved in the crystal of aluminum titanate, it is possible to suppress deterioration in heat resistance deterioration due to adhesion of sulfur oxide fine particles formed by oxidation of sulfur contained in EG.
  • magnesium and iron are values converted into magnesium titanate and iron titanate in 100% by mass of all components constituting the sintered body mainly composed of aluminum titanate. It is preferable to include the following.
  • the content when magnesium is converted to magnesium titanate and the content when iron is converted to iron titanate are the contents of Mg and Fe using an ICP emission spectrometer or an X-ray fluorescence analyzer. May be converted into MgTiO 3 (magnesium titanate) and Fe 2 TiO 5 (iron titanate), respectively.
  • magnesium or iron is dissolved in the aluminum titanate crystal is determined using a scanning electron microscope or transmission electron microscope equipped with an energy dispersive X-ray spectrometer. This refers to the case where magnesium or iron is confirmed when X-rays are irradiated.
  • silicon oxide is present between crystals of aluminum titanate. This is because silicon oxide can strongly bond aluminum titanate crystals to each other, suppress abnormal grain growth of aluminum titanate crystals, and increase mechanical strength.
  • the silicon oxide is preferably 0.4% by mass or more and 1.2% by mass or less in terms of SiO 2 out of 100% by mass of all components constituting a sintered body mainly composed of aluminum titanate, for example. is there.
  • the partition walls 3 in the honeycomb structure 1 of the present embodiment preferably have a porosity of 38% to 56% and an average pore diameter of 5 ⁇ m to 26 ⁇ m.
  • the porosity and average pore diameter of the partition walls 3 are within this range, an increase in pressure loss can be suppressed.
  • the sealing material 4 has a porosity of 50% to 65% and an average pore diameter of 12 ⁇ m to 18 ⁇ m.
  • it is necessary is just to obtain
  • the sealing material 4a for sealing the outflow port in the honeycomb structure 1 of the present embodiment has a smaller area ratio of the grain boundary phase than the sealing material 4b for sealing the inflow port.
  • the difference in the area ratio of the grain boundary phase is preferably 0.4% or more and 0.8% or less.
  • the honeycomb structure 1 collects most of the fine particles by the partition walls 3 when collecting the fine particles, but also collects the fine particles by the sealing material 4a that seals the outlet. Therefore, when the collected fine particles are burned and removed, the temperature of the sealing material 4a that seals the outlet is likely to be higher than that of the inlet. At this time, when the configuration is as described above, since the area ratio of the grain boundary phase of the sealing material 4a for sealing the outlet is small, the heat resistance is improved and the temperature at the time of combustion removal can be endured. .
  • the area ratio of the grain boundary phase in order to obtain the area ratio of the grain boundary phase, first, a reflected electron image is taken using a scanning electron microscope with respect to a cross-section obtained by mirror finishing the sealing material 4a and the sealing material 4b. Then, the crystal phase and the grain boundary phase are binarized using the photographed image, and the ratio of the area of the grain boundary phase to the area of 100% of the total area of the crystal phase and the grain boundary phase is expressed as the area ratio of the grain boundary phase. And it is sufficient.
  • the area ratio of the grain boundary phase the part not including pores is photographed. As photographing conditions, for example, the magnification is 3000 times, and the photographing range is 18 ⁇ m in width and 12 ⁇ m in length. You can do it.
  • such a honeycomb structure 1 has, for example, a columnar shape having an outer diameter D of 140 to 270 mm, a length L in the axial direction A of 100 to 250 mm, and a cylindricity of 2.5 mm or less.
  • the number of the flow passages 5 in the cross section (radial direction) perpendicular to A is 5 to 124 per 100 mm 2 (32 to 800 CPSI).
  • the thickness of the partition 3 is 0.05 mm or more and 0.25 mm or less
  • the thickness of the sealing material 4 is 1 mm or more and 5 mm or less.
  • CPSI stands for Cells Per Square Inches.
  • the effective filtration area of the honeycomb structure 1 is preferably 1.1 m 2 / L or more from the viewpoint of reducing both the pressure loss caused by repeated collection and the thermal stress caused by burning fine particles. More preferably, it is 1.4 m 2 / L or more. In addition, the upper limit of an effective filtration area is 2.0 m ⁇ 2 > / L, for example.
  • the effective filtration area in the honeycomb structure 1 refers to the total surface area of the partition walls 3 (excluding the portion in contact with the sealing material 4) in contact with the fluid per honeycomb structure 1L (liter).
  • FIG. 4 is a schematic cross-sectional view of a gas processing apparatus schematically showing an example of this embodiment.
  • the honeycomb structure 1 of the present embodiment is accommodated in the case 8 with the outer periphery held by the gripping material 7, and the diesel engine is placed in the inlet 8 a of the case 8.
  • An EG introduction pipe 9 communicating with an internal combustion engine (not shown) such as a gasoline engine is connected, and an exhaust pipe (not shown) is connected to the outlet 8b.
  • the gripping material 7 is preferably a heat insulating material. In this case, heat generated in the honeycomb structure 1 is transferred to the case 8 due to combustion removal of the fine particles, and the case 8 is deformed or deteriorated. Can be suppressed.
  • the gripping material 7 is preferably made of at least one of ceramic fiber, glass fiber, carbon fiber, and ceramic whisker, for example.
  • the case 8 is made of, for example, stainless steel such as SUS303, SUS304, and SUS316, and has a central portion formed in a cylindrical shape and both end portions formed in a truncated cone shape.
  • honeycomb structure 1 of the present embodiment can use not only exhaust gas which is gas but also liquid.
  • clean water or sewage can be used as the fluid, and the gas treatment device 100 of the present embodiment can also be applied for liquid filtration.
  • a ceramic powder for forming the honeycomb structure 1 of the present embodiment first, dry mixing is performed on a blended raw material prepared by mixing 53 to 59% by mass of aluminum oxide powder and the remainder as titanium oxide powder. Get the next raw material. Next, the obtained primary raw material is calcined at 1435 ° C. or higher and 1560 ° C. or lower in an air atmosphere for 1 hour or more and 5 hours or less to obtain a ceramic powder composed of pseudo-brookite type aluminum titanate crystals. (First calcined powder) is obtained.
  • the ceramic powder for forming the honeycomb structure 1 aluminum oxide powder is 36 to 42% by mass, magnesium oxide powder is 9 to 15% by mass, and the remainder is titanium oxide powder.
  • the prepared raw material is dry-mixed to obtain a primary raw material.
  • the obtained primary material is calcined at 1435 ° C or higher and 1560 ° C or lower for 1 hour to 5 hours in an air atmosphere, whereby pseudo brookite in which magnesium is dissolved in aluminum titanate crystals.
  • a ceramic powder (second calcined powder) made of type crystals can be obtained.
  • the ceramic powder forming the honeycomb structure 1 As still another example for obtaining the ceramic powder forming the honeycomb structure 1, first, 27 to 33% by mass of aluminum oxide powder, 7 to 13% by mass of magnesium oxide powder, ferric oxide A primary raw material is obtained by dry-mixing the prepared raw material prepared by mixing 13 to 17% by mass of the above powder and the remainder as titanium oxide powder. Next, the obtained primary raw material is calcined in an air atmosphere at a temperature of 1435 ° C. or higher and 1560 ° C. or lower and held for 1 hour or longer and 5 hours or shorter, so that magnesium and iron are solidified into aluminum titanate crystals. A ceramic powder (third calcined powder) made of melted pseudo-brookite crystals can be obtained.
  • each powder used for obtaining the primary raw material has a purity of 99.0% by mass or more, particularly 99.5% by mass or more.
  • the calcined powder obtained using an electric grinding machine in which a fixed grindstone and a rotating grindstone are arranged facing each other in the vertical direction is crushed, and a stainless steel product having a particle size defined by JIS R 6001: 1998 is F150. Mesh pass using mesh.
  • the crushing conditions for example, the grindstone particle size, the grindstone material, the distance between the grinding surfaces of the grindstone, and the rotational speed of the rotating grindstone are F24 to F46, aluminum oxide, 100 ⁇ m or less (excluding 0 ⁇ m), 100 rpm. If it is 700 rpm or less, a ceramic powder having a D 50 particle size of 50 ⁇ m or more and 80 ⁇ m or less can be obtained.
  • the interval between the grinding surfaces of the grindstone is preferably 33 ⁇ m or more and 47 ⁇ m or less.
  • silicon oxide powder having an average particle diameter of 1 to 3 ⁇ m and an addition amount of 0.4 to 1.2 parts by mass with respect to 100 parts by mass of the ceramic powder.
  • a pore-forming agent such as graphite, starch or polyethylene resin having an average particle size of 10 ⁇ m to 25 ⁇ m and an addition amount of 1 to 13 parts by mass with respect to 100 parts by mass of the ceramic powder.
  • the X-ray intensity of the (101) plane of the aluminum titanate crystal of the partition wall 3 in the first section cut along the flow path 5 so that the flow path 5 is divided is ( 230)
  • the durometer hardness specified in JIS K 6253-2012 should be A47 or higher.
  • the durometer hardness may be set to A48 or more and A52 or less.
  • the durometer hardness may be set to A49 or more and A51 or less.
  • the hardness of the clay may be adjusted by appropriately adjusting the amount of slip agent added.
  • this clay is molded by an extruder equipped with a screw.
  • This extrusion molding machine is equipped with a mold, and the mold has an inner diameter that determines the outer diameter of the molded body, for example, 155 mm or more and 300 mm or less, and is used to form the outer wall 2 and the partition walls 3 of the honeycomb structure 1. Has a slit.
  • the clay is put into an extrusion molding machine equipped with a molding die as described above, pressure is applied to produce a honeycomb-shaped molded body, and the obtained molded body has a predetermined length, for example, 170 mm or more and 180 mm or less. Disconnect.
  • the molding pressure at the time of extrusion molding may be 6 MPa or more and 15 MPa or less.
  • the molded body is mounted so that the axial direction A is perpendicular to the mounting surface, and dried by a microwave dryer.
  • the sealing material 4 for alternately sealing each of the inlet side and the outlet side of the plurality of flow paths 5 of the dried body obtained by drying the formed body is prepared. Specifically, first, masking is performed on a portion where the sealing material 4a is not formed on the end surface (OF) on the outlet side. And after winding the strip
  • the slurry is an oxidation in which one of the above-described ceramic powders has, for example, an average particle size of 1 ⁇ m or more and 3 ⁇ m or less and an addition amount of 0.4 parts by mass or more and 1.2 parts by mass or less with respect to 100 parts by mass of the ceramic powder.
  • silicon powder and a pore-forming agent such as graphite, starch or polyethylene resin whose addition amount is 1 to 13 parts by mass with respect to 100 parts by mass of ceramic powder
  • add a dispersant and water Obtained by mixing.
  • the strip-shaped body is made of, for example, a foamed polyethylene sheet, kraft paper whose surface is covered with a propylene resin, and the thickness is preferably 1 mm or more and 3 mm or less.
  • the end surface on the inlet side of the dried body is immersed in the slurry in the same manner as described above. Then, after drying the slurry to be the sealing material 4b on the end face side on the inlet side, the slurry is put in a firing furnace and held at a temperature of 1380 ° C. to 1500 ° C. for 2 to 10 hours, whereby the honeycomb of this embodiment The structure 1 can be obtained.
  • the honeycomb structure 1 in which the X-ray intensity of the P (101) plane of the sealing material crystal in the second cross section cut along the flow path 5 is higher than the X-ray intensity of the P (230) plane is obtained.
  • the viscosity of the slurry at room temperature may be 0.8 Pa ⁇ s or more.
  • the viscosity of the slurry may be adjusted by appropriately adjusting the amount of the dispersant with respect to the amount of water.
  • the viscosity of the slurry may be 2 Pa ⁇ s or more and 2.6 Pa ⁇ s or less.
  • the viscosity of the slurry may be less 2.1 Pa ⁇ s or more 2.5 Pa ⁇ s.
  • the value of I P002 / I P101 in order to obtain the honeycomb structure 1 having a thickness of 0.05 or more and 0.30 or less, after dipping in the slurry, a pressure of 0.02 MPa or more and 0.03 MPa or less may be applied to the end surface of the dipped one.
  • the end surface on the outlet side is immersed in the slurry, and then the molding pressure of 0.0022 to 0.0026 at the end of the extrusion is applied to the end surface on the outlet side.
  • Double pressure should be applied.
  • the pressure applied to the end surface on the outlet side may be 0.022 MPa or more and 0.026 MPa or less.
  • the value of I 232 / (I 232 + I 230) is smaller than the value of I P232 / (I P232 + I P230).
  • the gas treatment device 20 of the present embodiment accommodates the introduction pipe 9 in the flow of the case 8 after the outer periphery of the honeycomb structure 1 manufactured by the above-described method is accommodated in the case 8 while being held by the holding material 7. It can be obtained by connecting the exhaust pipe to the inlet 8a and the outlet 8b of the case 8 respectively.
  • honeycomb structure 1 of the present embodiment has been described by taking as an example the case where it is used in the gas treatment device 20 that repeatedly burns and removes the collected fine particles, the honeycomb structure 1 of the present embodiment It can also be used without any problem in a gas processing apparatus that continuously burns and removes the collected fine particles.
  • the obtained primary raw material is calcined at a temperature of 1450 ° C. in an air atmosphere for 3 hours and calcined, so that a temporary quackiteite crystal in which magnesium and iron are dissolved in aluminum titanate is obtained.
  • a baked powder was obtained.
  • the calcined powder obtained using an electric grinding machine (Mascoloyder (registered trademark) manufactured by Masuko Sangyo Co., Ltd.) in which a fixed grindstone and a rotating grindstone are arranged facing each other in the vertical direction is crushed, and JIS R 6001 :
  • a ceramic powder having a D 50 of 58 ⁇ m was obtained by mesh passing using a stainless steel mesh having a particle size defined by 1998 of F150.
  • the grain size of the grindstone was 36.7 mm
  • the material of the grindstone was aluminum oxide
  • the spacing between the grinding surfaces of the grindstone was F36
  • the rotational speed of the rotating grindstone was 400 rpm.
  • the D 50 of the obtained ceramic powder was measured according to the laser diffraction method described in JIS Z 8825-1: 2001 (ISO13320-1: 1999).
  • the obtained ceramic powder has an average particle size of 2 ⁇ m and an addition amount of 0.8 parts by mass with respect to 100 parts by mass of the ceramic powder, and an average particle size of 15 ⁇ m, 7 parts by mass of polyethylene resin, plasticizer, slip agent, and water were added to 100 parts by mass of the powder, and mixed and stirred using a universal stirrer. Thereafter, the mixture was kneaded using a kneader to obtain a plasticized clay. The hardness of the clay was adjusted as appropriate by the amount of the slip agent added, and the hardness of the clay used for each sample was as shown in Table 1.
  • the hardness of the clay shown in Table 1 is a durometer hardness value measured in accordance with JIS K 6253-2012.
  • the inner diameter for determining the outer diameter of the formed body is 170 mm
  • the clay is put into a screw type extrusion molding machine equipped with a forming die having slits for forming the outer wall and partition walls of the honeycomb structure. And a pressure of 18 MPa was applied to produce a honeycomb-shaped formed body.
  • the obtained formed body was cut at a length of 175 mm, and a second formed body was cut at a length of 12 mm. And made.
  • each molded body is mounted so that the axial direction A is perpendicular to the mounting surface. And dried with a microwave dryer to obtain a first dried body and a second dried body.
  • the sealing material is applied to the end surface on the outlet side.
  • Masking was done on the part that was not formed.
  • belt-shaped body whose full length is longer than the outer periphery of a 1st dry body around the outer periphery by the side of the outflow port of a 1st dry body
  • 1st The end face on the outlet side of the dried body was immersed in slurry previously stored in a cylindrical container. At this time, the height of the liquid surface of the slurry was 4.2 mm.
  • belt shaped object was 20 mm.
  • the slurry is a ceramic powder having an average particle diameter of 2 ⁇ m and an addition amount of 0.8 parts by mass with respect to 100 parts by mass of the ceramic powder, and an addition amount with respect to 100 parts by mass of the ceramic powder. 7 parts by mass of starch, a dispersant, and water were added and mixed. The viscosity of this slurry was 1.8 Pa ⁇ s. And the thing which is 2 mm in thickness and consists of a foaming polyethylene sheet was used for the strip
  • a belt-like body having a longer overall length than the outer periphery of the first dried body is wound around the outer periphery of the first dried body on the inlet side, and an adhesive tape After fixing the belt-like body to the first dry body by the above, the end face on the inlet side of the first dry body was immersed in the slurry stored in the cylindrical container.
  • test piece 1 A sample obtained by firing the first dried body (hereinafter referred to as test piece 1) has a length L in the axial direction A shown in FIG. 1 of 152 mm, and a sample obtained by firing the second dried body ( Hereinafter, it is referred to as a test piece 2.
  • the length L in the axial direction A shown in FIG. 1 is 10 mm, and the number of the flow passages 5 in the first cross section per unit area is 300 CPSI.
  • Sample No. The porosity of the partition walls 1 to 9 was determined by mercury porosimetry and found to be 50% by volume.
  • a first cross section cut along the flow path is formed using the test piece 2 so that the flow path is divided, and an aluminum titanate having the first cross section is formed using an X-ray diffractometer.
  • the X-ray intensities of the (101) plane, (230) plane and (002) plane of the partition crystal, which is a crystal of, were measured, and I 101 / I 230 and I 002 / (I 002 + I 230 ) were calculated.
  • the value of I 101 / I 230 is the sample is greater than 1 is that the higher the X-ray intensity of the X-ray intensity (230) plane of the (101) plane.
  • each sample was held by a case and attached to the gas processing apparatus shown in FIG. And after connecting this gas processing apparatus to a carbon generator (Nippon Kanomax Co., Ltd., model S4102), the flow rate of dry air containing fine particles from this apparatus at a temperature of 25 ° C. per unit time is 2.27 Nm 3 / Then, the particulate matter was collected in the honeycomb structure, and then regeneration was performed by burning and removing the collected particulate matter under the conditions of a combustion temperature of 1250 ° C. and a combustion time of 10 minutes. This collection and regeneration was defined as one cycle, and this cycle was repeated. After regeneration, the partition walls were visually observed, and the number of cycles in which cracks were first confirmed was shown in Table 1.
  • sample no. 2 to 9 are sample Nos.
  • the number of cycles in which cracks were confirmed was larger than 1
  • the partition wall was made of a sintered body mainly composed of aluminum titanate, and the X-ray intensity of the (101) plane of the partition crystal in the first cross section was It was found that the occurrence of cracks due to thermal stress can be suppressed by being higher than the X-ray intensity of the (230) plane.
  • sample No. Sample No. 5 was prepared by the same method as that used to manufacture sample No. 5. 10-15 were obtained.
  • Example 1 Thereafter, as in Example 1, the first cross section was formed, and the X-ray intensities of the (002) plane and (101) plane of the partition crystal in the first cross section were measured using an X-ray diffractometer, I 002 / I 101 was calculated.
  • a cubic specimen having a side length of 10 mm was cut out from only the partition wall of each sample, and the compressive strength in the radial direction of the honeycomb structure was measured in accordance with JASO M 505-87.
  • sample No. Sample No. 5 was prepared by the same method as that used to manufacture sample No. 5. 16-28 were obtained.
  • the viscosity of the slurry is a value measured according to JIS Z 8803-2011 by appropriately adjusting the amount of the dispersant with respect to water.
  • a second cross section cut along the flow path of the sealing material is formed using the test piece 2, and the sealing, which is an aluminum titanate crystal in the second cross section, is formed using an X-ray diffractometer.
  • the X-ray intensities of the P (101) plane, the P (230) plane, and the P (002) plane of the stopping material crystal were measured, and I P101 / I P230 and I P002 / (I P002 + I P230 ) were calculated.
  • a sample having a value of I P101 / I P230 exceeding 1 indicates that the X-ray intensity of the P (101) plane is higher than the X-ray intensity of the P (230) plane.
  • sample No. Samples Nos. 17 to 28 were sample The number of cycles in which cracks were confirmed was greater than 16, the sealing material was made of a sintered body mainly composed of aluminum titanate, and the P (101) plane of the sealing material crystal in the second cross section It has been found that the occurrence of cracks due to thermal stress can be suppressed when the X-ray intensity is higher than the X-ray intensity of the P (230) plane.
  • Example 1 The sample of Example 1 except that the pressure at the time of extrusion was 10 MPa, and the pressure (end face pressure) applied to the end face on the outlet side after the end face on the outlet side was immersed in the slurry was set to the values shown in Table 4 No.
  • Sample No. 5 was prepared by a method similar to the method for producing Sample No. 5. 29-35 were obtained.
  • Example 3 Thereafter, as in Example 3, a second cross section is formed, and the X-ray intensities of the P (002) plane and the P (101) plane of the encapsulant crystal in the second cross section are obtained using an X-ray diffractometer. Was measured and I P002 / I P101 was calculated. In addition, a cubic specimen having a side length of 10 mm was cut out from the portion including the sealing material on the end face of each sample, and the compressive strength in the radial direction of the honeycomb structure was measured in accordance with JASO M 505-87. did. Further, a confirmation test for cracks in the sealing material was performed in the same manner as in Example 3. The results are shown in Table 4.
  • Sample No. Nos. 31 to 33 show that the effect of suppressing the occurrence of cracks is high.
  • the X-ray intensity of the (232) plane of the partition crystal in the first section is I 232
  • the value of I 232 / (I 232 + I 230 ) when the X-ray intensity of the (230) plane is I 230 and the X-ray intensity of the P (232) plane of the sealing material crystal in the second cross section are expressed as I P232
  • the value of I P232 / (I P232 + I P230 ) when the X-ray intensity of the P (230) plane is I P230 these values were different.
  • honeycomb structure 2 outer wall 3: partition wall 4: sealing material 5: flow path 7: gripping material 8: case 9: introduction pipe 20: Gas processing equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Filtering Materials (AREA)

Abstract

[Problem] To provide a honeycomb structure in which the generation of cracks, which is caused by the thermal stress when repeatedly burning and removing collected fine particles, is inhibited as a consequence of the honeycomb structure exhibiting high thermal shock resistance. To also provide a gas treatment device provided with said honeycomb structure. [Solution] A honeycomb structure (1) provided with an outer wall (2), multiple partitioning walls (3) disposed on the inside of the outer wall (2), and a sealing material (4), wherein: spaces surrounded by the outer wall (2) and the partitioning walls (3) or by the partitioning walls (3) function as circulation paths (5) for a fluid; the flow inlets or the flow outlets of the circulation paths (5) are sealed by means of the sealing material (4); the partitioning walls (3) are formed from a sintered body which contains aluminum titanate as the main component; and the X-ray strength of the (101) surface of the partitioning wall crystal, which is the crystal of aluminum titanate, is higher than the X-ray strength of the (230) surface in a first cross-section which is cut along the circulation paths (5) so that the circulation paths (5) become divided.

Description

ハニカム構造体およびこれを備えるガス処理装置Honeycomb structure and gas processing apparatus including the same
 本発明は、排気ガスを浄化するためのフィルタ等に用いられるハニカム構造体およびこれを備えるガス処理装置に関するものである。 The present invention relates to a honeycomb structure used for a filter or the like for purifying exhaust gas, and a gas processing apparatus including the honeycomb structure.
 従来、内燃機関、焼却炉およびボイラー等から発生する排気ガス中に含まれる微粒子等を捕集するのにハニカム構造体からなるフィルタが用いられている。 Conventionally, a filter made of a honeycomb structure is used to collect fine particles contained in exhaust gas generated from an internal combustion engine, an incinerator, a boiler, and the like.
 このようなフィルタとして、特許文献1では、チタン酸アルミニウムからなるハニカムフィルタであって、アスペクト比(=個数平均長軸径/個数平均短軸径)が1.3以上である柱状チタン酸アルミニウムと、アスペクト比が1.3未満である粒状チタン酸アルミニウムとを、柱状チタン酸アルミニウム:粒状チタン酸アルミニウムの重量比で、95:5~60:40の範囲内の割合となるように混合して用い、粒状チタン酸アルミニウムの個数平均長軸径が、柱状チタン酸アルミニウムの個数平均短軸径よりも小さいハニカムフィルタが提案されている。 As such a filter, Patent Document 1 discloses a honeycomb filter made of aluminum titanate having a columnar aluminum titanate having an aspect ratio (= number average major axis diameter / number average minor axis diameter) of 1.3 or more, and an aspect ratio. Granular titanium titanate having a ratio of less than 1.3 is used by mixing in a weight ratio of columnar aluminum titanate: particulate aluminum titanate to a ratio in the range of 95: 5 to 60:40. A honeycomb filter in which the number average major axis diameter of aluminum oxide is smaller than the number average minor axis diameter of columnar aluminum titanate has been proposed.
特開2011-6285号公報Japanese Unexamined Patent Publication No. 2011-6285
 一般的に、このようなハニカム構造体は、捕集して堆積した微粒子を燃焼除去することによって再生が図られている。そのため、今般においては、燃焼除去を繰り返したときの熱応力による亀裂の発生が抑制されたハニカム構造体が要求されている。 Generally, such a honeycomb structure is regenerated by burning and removing fine particles collected and deposited. Therefore, in recent years, there has been a demand for a honeycomb structure in which generation of cracks due to thermal stress when combustion removal is repeated is suppressed.
 それゆえ、本発明は、高い耐熱衝撃性を有することによって、捕集した微粒子の燃焼除去を繰り返したときの熱応力による亀裂の発生が抑制されたハニカム構造体と、このハニカム構造体を備えるガス処理装置とを提供することを目的とする。 Therefore, the present invention provides a honeycomb structure in which cracking due to thermal stress is suppressed when the collected particulates are repeatedly burned and removed by having a high thermal shock resistance, and a gas including the honeycomb structure. It is an object to provide a processing apparatus.
 本発明のハニカム構造体は、外壁と、該外壁の内側に設けられた複数の隔壁と、封止材とを備え、前記外壁および前記隔壁、または、前記隔壁同士で囲まれた空間が流体の流通路となり、該流通路の流入口または流出口が前記封止材により封止されてなるハニカム構造体であって、前記隔壁は、チタン酸アルミニウムを主成分とする焼結体からなり、前記流通路が分断されるように前記流通路に沿って切断された第1の断面におけるチタン酸アルミニウムの結晶である隔壁結晶の(101)面のX線強度が、(230)面のX線強度よりも高いことを特徴とするものである。 A honeycomb structure of the present invention includes an outer wall, a plurality of partition walls provided on the inner side of the outer wall, and a sealing material, and the outer wall and the partition wall or a space surrounded by the partition walls is a fluid. A honeycomb structure in which an inflow port or an outflow port of the flow passage is sealed with the sealing material, and the partition wall is made of a sintered body mainly composed of aluminum titanate, The X-ray intensity of the (101) plane of the partition crystal, which is a crystal of aluminum titanate in the first section cut along the flow path so that the flow path is divided, is the X-ray intensity of the (230) plane. It is characterized by being higher than.
 また、本発明のガス処理装置は、排気ガスの導入管が接続されたケース内に、上記構成のハニカム構造体を備えていることを特徴とするものである。 The gas treatment apparatus of the present invention is characterized in that the honeycomb structure having the above-described structure is provided in a case to which an exhaust gas introduction pipe is connected.
 本発明のハニカム構造体によれば、高い耐熱衝撃性を有するため捕集した微粒子の燃焼除去を繰り返したときの熱応力による亀裂の発生を抑制することができる。 According to the honeycomb structure of the present invention, since it has high thermal shock resistance, it is possible to suppress the occurrence of cracks due to thermal stress when the collected particulates are repeatedly burned and removed.
 また、本発明のガス処理装置によれば、排気ガスの導入管が接続されたケース内に、本発明のハニカム構造体を備えていることにより、捕集した微粒子の燃焼除去を繰り返したときの熱応力による亀裂が発生しにくくなっているため、信頼性が高く、長期間に亘って効率よく微粒子を捕集することができる。 In addition, according to the gas treatment device of the present invention, when the exhaust gas introduction pipe is connected, the honeycomb structure of the present invention is provided in the case, so that the collected particulates are repeatedly burned and removed. Since cracks due to thermal stress are less likely to occur, the reliability is high and fine particles can be collected efficiently over a long period of time.
本実施形態のハニカム構造体の一例を示す、(a)は斜視図であり、(b)は(a)におけるB-B’線での断面図である。An example of the honeycomb structure of the present embodiment is shown, in which (a) is a perspective view and (b) is a cross-sectional view taken along line B-B ′ in (a). 本実施形態のハニカム構造体の端面の一例を示す、(a)は流入口側の部分拡大図であり、(b)は流出口側の部分拡大図である。An example of the end face of the honeycomb structure of the present embodiment is shown, (a) is a partially enlarged view on the inlet side, and (b) is a partially enlarged view on the outlet side. 本実施形態のハニカム構造体の端面の他の例を示す、(a)は流入口側の部分拡大図であり、(b)は流出口側の部分拡大図である。Another example of the end face of the honeycomb structure of the present embodiment is shown, (a) is a partially enlarged view on the inflow side, and (b) is a partially enlarged view on the outflow side. 本実施形態の一例を模式的に示すガス処理装置の概略断面図である。It is a schematic sectional drawing of the gas treatment apparatus which shows an example of this embodiment typically.
 以下、本実施形態のハニカム構造体およびこれを用いたガス処理装置の一例について説明する。 Hereinafter, an example of the honeycomb structure of the present embodiment and a gas processing apparatus using the honeycomb structure will be described.
 図1(a)は、本実施形態のハニカム構造体の一例を示す斜視図であり、図1(b)は、図1(a)におけるB-B’線での断面図である。 Fig. 1 (a) is a perspective view showing an example of the honeycomb structure of the present embodiment, and Fig. 1 (b) is a cross-sectional view taken along the line B-B 'in Fig. 1 (a).
 図1(a)、図1(b)に示す例のハニカム構造体1は、外壁2と、外壁2の内側に設けられた複数の隔壁3と、封止材4とを備え、外壁2および隔壁3、または隔壁3同士で囲まれた空間が流体の流通路5となり、流通路5の流入口または流出口が封止材4により封止されてなる。なお、流通路5は、流入口が開口しており流出口が封止材4aによって封止されている流通路5aと、流出口が開口しており流入口が封止材4bによって封止されている流通路5bとからなり、流通路5aと流通路5bとは、隣接して配置されている。そして、図1(b)においては、左側が流入口であり、右側が流出口である。また、ハニカム構造体1は、流通路5が軸方向Aに延びる円柱状をなしている。 The honeycomb structure 1 in the example shown in FIGS. 1A and 1B includes an outer wall 2, a plurality of partition walls 3 provided inside the outer wall 2, and a sealing material 4. The partition wall 3 or a space surrounded by the partition walls 3 serves as a fluid flow path 5, and the inlet or outlet of the flow path 5 is sealed with a sealing material 4. The inflow passage 5 has an inflow port opened and an outflow port sealed with a sealing material 4a, and an outflow port opened and the inflow port sealed with a sealing material 4b. The flow passage 5a and the flow passage 5b are arranged adjacent to each other. And in FIG.1 (b), the left side is an inflow port, and the right side is an outflow port. The honeycomb structure 1 has a cylindrical shape in which the flow passage 5 extends in the axial direction A.
 そして、排気ガス(EG)の流れとしては、流入口側が開口している流通路5aに入り込んだEGは、流通路5aの流出口側が封止材4aによって封止されているため、矢印で示すように、流出口側に向かう際に隔壁3を通って隣接する流通路5bから流れ出るものである。なお、EGに含まれる微粒子は、このような流れにおいて、主に隔壁3に捕集される。 As the flow of the exhaust gas (EG), the EG that has entered the flow passage 5a that is open on the inlet side is indicated by an arrow because the outlet side of the flow passage 5a is sealed by the sealing material 4a. In this way, the liquid flows out from the adjacent flow passage 5b through the partition wall 3 toward the outflow side. The fine particles contained in the EG are mainly collected by the partition walls 3 in such a flow.
 そして、本実施形態のハニカム構造体1は、隔壁3が、チタン酸アルミニウムを主成分とする焼結体からなり、流通路5が分断されるように流通路5に沿って切断された第1の断面におけるチタン酸アルミニウムの結晶である隔壁結晶の(101)面のX線強度が、(230)面のX線強度よりも高いものである。なお、流通路5が分断されるように流通路5に沿って切断された第1の断面とは、図1(a)に示す軸方向Aに沿って切断された断面、すなわち、図1(b)に示すような隔壁3の断面のことである。 In the honeycomb structure 1 of the present embodiment, the partition wall 3 is made of a sintered body mainly composed of aluminum titanate, and is cut along the flow path 5 so that the flow path 5 is divided. The X-ray intensity of the (101) plane of the partition crystal, which is an aluminum titanate crystal in the cross section, is higher than the X-ray intensity of the (230) plane. In addition, the 1st cross section cut | disconnected along the flow path 5 so that the flow path 5 may be divided with the cross section cut | disconnected along the axial direction A shown to Fig.1 (a), ie, FIG. It is the cross section of the partition 3 as shown to b).
 このような構成を満たしている本実施形態のハニカム構造体1は、高い耐熱衝撃性を有するため、捕集した微粒子の燃焼除去を繰り返したときに隔壁3に生じる亀裂を抑制することができる。なお、高い耐熱衝撃性を有することができるのは、第1の断面を観察すると、マイクロクラックの確認される隔壁結晶が存在しており、このマイクロクラックが確認される隔壁結晶の存在により、隔壁3における軸方向Aと径方向との線膨張係数の差による熱応力を緩和する作用があるためであると考えられる。 Since the honeycomb structure 1 of the present embodiment satisfying such a configuration has high thermal shock resistance, cracks generated in the partition walls 3 can be suppressed when the collected particulates are repeatedly burned and removed. Note that, when the first cross section is observed, there is a partition crystal in which micro cracks are confirmed, and the presence of the partition crystal in which micro cracks are confirmed can cause high thermal shock resistance. This is considered to be due to the effect of relaxing the thermal stress due to the difference in the linear expansion coefficient between the axial direction A and the radial direction in FIG.
 また、第1の断面における隔壁結晶において、(230)面のX線強度をI230とし、(101)面のX線強度をI101としたとき、I101/I230の値が1.2以上1.6以下であることが好適である。このような構成を満たすときには、隔壁3における軸方向Aと径方向との線膨張の異方性が小さくなる。それゆえ、隔壁3の軸方向Aと径方向との線膨張係数の差が小さくなり、捕集した微粒子の燃焼除去を繰り返したときの熱応力による亀裂の発生を抑制することができる。 In the partition crystal in the first cross section, when the X-ray intensity of the (230) plane is I 230 and the X-ray intensity of the (101) plane is I 101 , the value of I 101 / I 230 is 1.2 or more and 1.6. It is preferable that: When satisfying such a configuration, the anisotropy of linear expansion between the axial direction A and the radial direction in the partition wall 3 is reduced. Therefore, the difference in the linear expansion coefficient between the axial direction A and the radial direction of the partition wall 3 is reduced, and the generation of cracks due to thermal stress when the collected particulates are repeatedly removed by combustion can be suppressed.
 また、第1の断面における隔壁結晶において、(002)面のX線強度をI002とし、(230)面のX線強度をI230としたとき、I002/(I002+I230)の値が0.33以上0.39以下であることが好適である。このような構成を満たすときには、隔壁3における軸方向Aと径方向との線膨張の異方性がさらに小さくなる。それゆえ、捕集した微粒子の燃焼除去を繰り返したときの熱応力による亀裂の発生の抑制効果がさらに高くなる。 Further, in the partition crystal in the first cross section, when the X-ray intensity of the (002) plane is I 002 and the X-ray intensity of the (230) plane is I 230 , the value of I 002 / (I 002 + I 230 ) Is preferably 0.33 or more and 0.39 or less. When such a configuration is satisfied, the anisotropy of linear expansion between the axial direction A and the radial direction in the partition wall 3 is further reduced. Therefore, the effect of suppressing the occurrence of cracks due to thermal stress when the collected particulates are repeatedly removed by combustion is further enhanced.
 また、第1の断面における隔壁結晶において、(101)面のX線強度をI101とし、(002)面のX線強度をI002としたとき、I002/I101の値が0.36以上0.50以下であることが好適である。このような構成を満たすときには、ハニカム構造体1の径方向の機械的強度が高くなるとともに、圧力損失が増加しにくいハニカム構造体1となる。また、捕集した微粒子の燃焼除去を繰り返したときの熱応力による亀裂の発生をさらに抑制することができる。 In the partition crystal in the first cross section, when the X-ray intensity of the (101) plane is I 101 and the X-ray intensity of the (002) plane is I 002 , the value of I 002 / I 101 is 0.36 or more and 0.50. It is preferable that: When such a configuration is satisfied, the honeycomb structure 1 has a high mechanical strength in the radial direction and the pressure loss is hardly increased. In addition, it is possible to further suppress the occurrence of cracks due to thermal stress when the collected fine particles are repeatedly burned and removed.
 次に、封止材4は、チタン酸アルミニウムを主成分とする焼結体からなり、ハニカム構造体1の流通路5に沿った第2の断面におけるチタン酸アルミニウムの結晶である封止材結晶のP(101)面のX線強度が、P(230)面のX線強度よりも高いことが好適である。なお、隔壁結晶および封止材結晶におけるミラー指数およびX線強度を識別するため、封止材結晶のミラー指数についてはPを付し、封止材結晶の各ミラー指数のX線強度にはIを付している。また、第2の断面は、第1の断面と切断方向は同じである。 Next, the sealing material 4 is made of a sintered body mainly composed of aluminum titanate, and is a sealing material crystal that is an aluminum titanate crystal in the second cross section along the flow path 5 of the honeycomb structure 1. It is preferable that the X-ray intensity of the P (101) plane is higher than the X-ray intensity of the P (230) plane. In order to identify the Miller index and the X-ray intensity in the partition crystal and the encapsulant crystal, P is assigned to the mirror index of the encapsulant crystal, and the X-ray intensity of each mirror index of the encapsulant crystal is I. P is attached. The second cross section has the same cutting direction as the first cross section.
 このような構成であるときには、封止材4は、高い耐熱衝撃性を有するため、捕集した微粒子の燃焼除去を繰り返したときに、封止材4を構成する封止材結晶間に生じる亀裂を抑制することができる。なお、高い耐熱衝撃性を有することができるのは、第2の断面を観察すると、マイクロクラックの確認される封止材結晶が存在しており、このマイクロクラックが確認される封止材結晶の存在により、封止材4における軸方向Aと径方向との線膨張係数の差による熱応力を緩和する作用があるためであると考えられる。 In such a configuration, since the sealing material 4 has high thermal shock resistance, cracks generated between the sealing material crystals constituting the sealing material 4 when the collected particulates are repeatedly burned and removed. Can be suppressed. In addition, when the second cross section is observed, there is a sealing material crystal in which microcracks are confirmed, and the sealing material crystal in which microcracks are confirmed can have high thermal shock resistance. This is considered to be due to the action of relaxing thermal stress due to the difference in the linear expansion coefficient between the axial direction A and the radial direction in the sealing material 4 due to the presence.
 また、このように封止材4が高い耐熱衝撃性を有していることにより、封止材4自身の亀裂を抑制することができるばかりか、封止材4が設けられた流入口側もしくは流出口側近辺での隔壁3への亀裂の進展を抑制することができるため、ハニカム構造体1の耐熱衝撃性を高めることができる。 In addition, since the sealing material 4 has high thermal shock resistance as described above, not only can the crack of the sealing material 4 itself be suppressed, but also the inlet side where the sealing material 4 is provided or Since the progress of cracks to the partition wall 3 in the vicinity of the outflow port can be suppressed, the thermal shock resistance of the honeycomb structure 1 can be enhanced.
 また、第2の断面における封止材結晶において、P(230)面のX線強度をIP230とし、P(101)のX線強度をIP101としたとき、IP101/IP230の値が1.8以上2.5以下であることが好適である。このような構成を満たすときには、封止材4における軸方向Aと径方向との線膨張の異方性が小さくなる。それゆえ、捕集した微粒子の燃焼除去を繰り返したときの熱応力による亀裂の発生を抑制することができる。 In the encapsulant crystal in the second cross section, when the X-ray intensity of the P (230) plane is I P230 and the X-ray intensity of P (101) is I P101 , the value of I P101 / I P230 is It is preferable that it is 1.8 or more and 2.5 or less. When satisfying such a configuration, the anisotropy of linear expansion between the axial direction A and the radial direction in the sealing material 4 is reduced. Therefore, it is possible to suppress the occurrence of cracks due to thermal stress when the collected fine particles are repeatedly removed by combustion.
 また、第2の断面における封止材結晶において、P(002)面のX線強度をIP002とし、P(230)面のX線強度をIP230としたとき、IP002/(IP002+IP230)の値が0.12以上0.18以下であることが好適である。このような構成であるときには、封止材4における軸方向Aと径方向との線膨張の異方性がさらに小さくなる。それゆえ、捕集した微粒子の燃焼除去を繰り返したときの熱応力による亀裂の発生の抑制効果がより高くなる。 In the encapsulant crystal in the second cross section, when the X-ray intensity of the P (002) plane is I P002 and the X-ray intensity of the P (230) plane is I P230 , I P002 / (I P002 + I The value of P230 ) is preferably from 0.12 to 0.18. In such a configuration, the anisotropy of linear expansion between the axial direction A and the radial direction in the sealing material 4 is further reduced. Therefore, the effect of suppressing the generation of cracks due to thermal stress when the collected fine particles are repeatedly burned and removed becomes higher.
 また、第2の断面における封止材結晶において、P(101)面のX線強度をIP101とし、P(002)面のX線強度をIP002としたとき、IP002/IP101の値が0.05以上0.30以下であることが好適である。このような構成を満たすときには、封止材4におけるハニカム構造体1の径方向の機械的強度が高くなるため、特に、封止材4が位置するハニカム構造体1の流入口および流出口の径方向の機械的強度がさらに高くなる。 Further, the sealing material crystal in the second section, the X-ray intensity of P (101) plane and I P101, when the X-ray intensity of P (002) plane was I P002, the value of I P002 / I P101 Is preferably 0.05 or more and 0.30 or less. When satisfying such a configuration, the mechanical strength in the radial direction of the honeycomb structure 1 in the sealing material 4 is increased. Therefore, in particular, the diameters of the inlet and outlet of the honeycomb structure 1 where the sealing material 4 is located. The mechanical strength in the direction is further increased.
 また、流出口側において、第1の断面における隔壁結晶の(232)面のX線強度をI232とし、(230)面のX線強度をI230としたときのI232/(I232+I230)の値と、第2の断面における封止材結晶のP(232)面のX線強度をIP232とし、P(230)面のX線強度をIP230としたときのIP232/(IP232+IP230)の値とが異なっていることが好適である。このような構成であるときには、隔壁結晶と封止材結晶との格子面の傾きが異なっているということであることから、隔壁3と封止材4との間における隔壁結晶と封止材結晶とは、強固に結びつくこととなり、微粒子の捕集量が流入口側よりも比較的多い流出口側において、捕集した微粒子の燃焼除去を繰り返しても、隔壁3および封止材4の間に隙間が生じにくくなり、優れた捕集効率を長期間にわたって維持することができる。 Further, on the outflow side, I 232 / (I 232 + I when the X-ray intensity of the (232) plane of the partition crystal in the first cross section is I 232 and the X-ray intensity of the (230) plane is I 230. the value of 230), a second X-ray intensity of P (232) plane of the sealing material crystal and I P232 in cross section, P (230) when the X-ray intensity of the plane was I P230 I P232 / ( It is preferable that the value of I P232 + I P230 ) is different. In such a configuration, since the inclination of the lattice planes of the partition crystal and the sealing material crystal are different, the partition crystal and the sealing material crystal between the partition 3 and the sealing material 4 are used. Means that the trapped particulate matter is repeatedly burnt and removed between the partition wall 3 and the sealing material 4 on the outlet side where the collected amount of particulates is relatively larger than the inlet side. It becomes difficult to produce a gap, and excellent collection efficiency can be maintained over a long period of time.
 なお、隔壁3および封止材4を構成する焼結体における主成分とは、焼結体を構成する全成分100質量%のうち50質量%より多い含有量の成分のことである。焼結体を構成する成分の結晶構造の同定は、X線回折装置を用いて測定し、JCPDSカードと照合すればよい。また、含有量については、ICP発光分光分析装置または蛍光X線分析装置を用いて測定し、同定された成分に応じて換算して求めればよい、さらに、第1の断面および第2の断面における隔壁結晶や封止材結晶の各面におけるX線強度は、X線回折装置を用いて測定すればよい。 In addition, the main component in the sintered compact which comprises the partition 3 and the sealing material 4 is a component of content larger than 50 mass% among 100 mass% of all the components which comprise a sintered compact. Identification of the crystal structure of the component constituting the sintered body may be performed using an X-ray diffractometer and collated with a JCPDS card. Further, the content may be obtained by measuring using an ICP emission spectroscopic analyzer or a fluorescent X-ray analyzer and converting it according to the identified component. Further, in the first cross section and the second cross section What is necessary is just to measure the X-ray intensity in each surface of a partition crystal or a sealing material crystal using an X-ray diffractometer.
 図2(a)および図3(a)は、本実施形態のハニカム構造体の端面の一例を示す、流入口側の部分拡大図であり、図2(b)および図3(b)は流出口側の部分拡大図である。図2(a)に示す、端面における流通路5aの開口形状は、八角形状であり、図2(b)に示す、端面における流通路5bの開口形状は、四角形状である。また、図3(a)に示す、端面における流通路5aの開口形状は、扁平六角形状であり、図3(b)に示す、端面における流通路5bの開口形状は、正六角形状である。なお、図2(a)、図2(b)は、1つのハニカム構造体の流入口側および流出口側を部分拡大して示した図であり、流通路5aが、流通路5bよりも開口面積が大きい例を示している。また、図3(a)、図3(b)は、1つのハニカム構造体の流入口側および流出口側を部分拡大して示した図であり、流通路5bが、流通路5aよりも開口面積が大きい例を示している。 FIGS. 2 (a) and 3 (a) are partially enlarged views on the inlet side, showing an example of the end face of the honeycomb structure of the present embodiment, and FIGS. 2 (b) and 3 (b) are flow diagrams. It is the elements on larger scale by the side of an exit. The opening shape of the flow passage 5a at the end face shown in FIG. 2A is an octagonal shape, and the opening shape of the flow passage 5b at the end face shown in FIG. 2B is a square shape. Moreover, the opening shape of the flow path 5a in the end surface shown in FIG. 3A is a flat hexagonal shape, and the opening shape of the flow path 5b in the end surface shown in FIG. 3B is a regular hexagonal shape. 2 (a) and 2 (b) are partially enlarged views of the inflow side and the outflow side of one honeycomb structure, and the flow path 5a is opened more than the flow path 5b. An example of a large area is shown. FIGS. 3A and 3B are views in which the inlet side and the outlet side of one honeycomb structure are partially enlarged, and the flow passage 5b is opened more than the flow passage 5a. An example of a large area is shown.
 図2(a)、図2(b)に示す形状であるとき、流入口側が開口した流通路5aの直径が、流出口側が開口した流通路5bの直径に対して、1.55倍以上1.95倍以下であることが好適である。このように、直径の比が1.55倍以上1.95倍以下であるときには、機械的強度を維持しつつ、微粒子を吸着することのできる隔壁3および封止材4のそれぞれの表面積を大きくすることができるため、微粒子の捕集量を増加させることができる。ここで、流通路5a,5bのそれぞれの直径とは、流入口側の端面における隔壁3に接する内接円の直径をいい、光学顕微鏡を用いて、倍率を例えば50倍以上100倍以下として測定することができる。 In the shape shown in FIGS. 2A and 2B, the diameter of the flow passage 5a opened on the inlet side is 1.55 times or more and 1.95 times or less than the diameter of the flow passage 5b opened on the outlet side. It is preferable that Thus, when the diameter ratio is 1.55 times or more and 1.95 times or less, the respective surface areas of the partition wall 3 and the sealing material 4 capable of adsorbing the fine particles can be increased while maintaining the mechanical strength. Therefore, the amount of collected fine particles can be increased. Here, the diameter of each of the flow passages 5a and 5b is a diameter of an inscribed circle in contact with the partition wall 3 on the end surface on the inlet side, and is measured using an optical microscope with a magnification of, for example, 50 times to 100 times. can do.
 また、図3(a)、図3(b)に示す形状かつ大きさの関係を満たすものであるとき、すなわち、流通路5bが、流通路5aよりも開口面積が大きく、流入口側が開口した流通路5aが扁平六角形状、流入口側が封止された流通路5bが正六角形状をしており、流入口側が封止された流通路5bの各辺を囲むように流入口側が開口した流通路5bが配置されているときには、径方向の機械的強度に優れているとともに、微粒子の捕集量を増加させることができるものとなる。 Further, when the relationship between the shape and size shown in FIGS. 3A and 3B is satisfied, that is, the flow passage 5b has a larger opening area than the flow passage 5a, and the inflow side is opened. The flow passage 5a has a flat hexagonal shape, the flow passage 5b sealed on the inlet side has a regular hexagonal shape, and the inlet side opens to surround each side of the flow passage 5b sealed on the inlet side. When the path 5b is disposed, the mechanical strength in the radial direction is excellent, and the amount of collected fine particles can be increased.
 ここで、本実施形態のハニカム構造体1の隔壁3および封止材4を構成するチタン酸アルミニウムを主成分とする焼結体は、マグネシウムや鉄を含み、チタン酸アルミニウムの結晶にマグネシウムや鉄が固溶していることが好適である。チタン酸アルミニウムの結晶にマグネシウムが固溶しているときには、EG中に含まれる硫黄が酸化してなる硫黄酸化物の微粒子に対する耐食性の低下を抑制することができる。また、チタン酸アルミニウムの結晶に鉄が固溶しているときには、EG中に含まれる硫黄が酸化してなる硫黄酸化物の微粒子が付着することによる耐熱劣化性の低下を抑制することができる。 Here, the sintered body mainly composed of aluminum titanate constituting the partition walls 3 and the sealing material 4 of the honeycomb structure 1 of the present embodiment includes magnesium and iron, and the magnesium titanate crystal includes magnesium and iron. Is preferably dissolved. When magnesium is dissolved in aluminum titanate crystals, it is possible to suppress a decrease in corrosion resistance of sulfur oxide fine particles formed by oxidation of sulfur contained in EG. Moreover, when iron is dissolved in the crystal of aluminum titanate, it is possible to suppress deterioration in heat resistance deterioration due to adhesion of sulfur oxide fine particles formed by oxidation of sulfur contained in EG.
 なお、マグネシウムや鉄は、チタン酸アルミニウムを主成分とする焼結体を構成する全成分100質量%のうち、それぞれチタン酸マグネシウムやチタン酸鉄に換算した値で、16質量%以上24質量%以下含んでいることが好適である。なお、マグネシウムをチタン酸マグネシウムに換算したときの含有量および鉄をチタン酸鉄に換算したときの含有量は、ICP発光分光分析装置または蛍光X線分析装置を用いて、MgおよびFeの含有量を求め、それぞれMgTiO(チタン酸マグネシウム)、FeTiO(チタン酸鉄)に換算すればよい。 In addition, magnesium and iron are values converted into magnesium titanate and iron titanate in 100% by mass of all components constituting the sintered body mainly composed of aluminum titanate. It is preferable to include the following. The content when magnesium is converted to magnesium titanate and the content when iron is converted to iron titanate are the contents of Mg and Fe using an ICP emission spectrometer or an X-ray fluorescence analyzer. May be converted into MgTiO 3 (magnesium titanate) and Fe 2 TiO 5 (iron titanate), respectively.
 そして、チタン酸アルミニウムの結晶にマグネシウムや鉄が固溶しているか否かについては、エネルギー分散型X線分光器を備える走査型電子顕微鏡や透過型電子顕微鏡を用いて、チタン酸アルミニウムの結晶にX線を照射した際に、マグネシウムや鉄が確認される場合のことを指す。 Whether magnesium or iron is dissolved in the aluminum titanate crystal is determined using a scanning electron microscope or transmission electron microscope equipped with an energy dispersive X-ray spectrometer. This refers to the case where magnesium or iron is confirmed when X-rays are irradiated.
 また、チタン酸アルミニウムを主成分とする焼結体において、チタン酸アルミニウムの結晶同士の間に珪素酸化物が存在していることが好適である。これは、珪素酸化物がチタン酸アルミニウムの結晶同士を強く結合することができるとともに、チタン酸アルミニウムの結晶の異常な粒成長を抑制し、機械的強度を高められるからである。特に、この珪素酸化物は、例えば、チタン酸アルミニウムを主成分とする焼結体を構成する全成分100質量%のうち、SiO換算で0.4質量%以上1.2質量%以下であることが好適である。 In the sintered body mainly composed of aluminum titanate, it is preferable that silicon oxide is present between crystals of aluminum titanate. This is because silicon oxide can strongly bond aluminum titanate crystals to each other, suppress abnormal grain growth of aluminum titanate crystals, and increase mechanical strength. In particular, the silicon oxide is preferably 0.4% by mass or more and 1.2% by mass or less in terms of SiO 2 out of 100% by mass of all components constituting a sintered body mainly composed of aluminum titanate, for example. is there.
 ところで、本実施形態のハニカム構造体1における隔壁3は、気孔率が38%以上56%以下であって、平均気孔径が5μm以上26μm以下であることが好適である。隔壁3の気孔率および平均気孔径がこの範囲であるときには、圧力損失の増加を抑制することができる。また、封止材4は、気孔率が50%以上65%以下であって、平均気孔径が12μm以上18μm以下であることが好適である。なお、隔壁3、封止材4の気孔率および平均気孔径は、水銀圧入法に準拠して求めればよい。 Incidentally, the partition walls 3 in the honeycomb structure 1 of the present embodiment preferably have a porosity of 38% to 56% and an average pore diameter of 5 μm to 26 μm. When the porosity and average pore diameter of the partition walls 3 are within this range, an increase in pressure loss can be suppressed. Moreover, it is preferable that the sealing material 4 has a porosity of 50% to 65% and an average pore diameter of 12 μm to 18 μm. In addition, what is necessary is just to obtain | require the porosity and average pore diameter of the partition 3 and the sealing material 4 based on the mercury intrusion method.
 また、本実施形態のハニカム構造体1における流出口を封止する封止材4aは、流入口を封止する封止材4bよりも粒界相の面積比率が小さいことが好適である。特に、粒界相の面積比率の差は0.4%以上0.8%以下であることが好適である。ハニカム構造体1は、微粒子の捕集に際しては、隔壁3によってほとんどの微粒子を捕集するが、流出口を封止する封止材4aによっても微粒子を捕集する。そのため、捕集した微粒子を燃焼除去する場合には、流入口よりも流出口を封止する封止材4aの温度が高くなりやすい。このとき、上述したような構成であるときには、流出口を封止する封止材4aの粒界相の面積比率が小さいことから、耐熱性が向上し、燃焼除去時の温度に耐えることができる。 Moreover, it is preferable that the sealing material 4a for sealing the outflow port in the honeycomb structure 1 of the present embodiment has a smaller area ratio of the grain boundary phase than the sealing material 4b for sealing the inflow port. In particular, the difference in the area ratio of the grain boundary phase is preferably 0.4% or more and 0.8% or less. The honeycomb structure 1 collects most of the fine particles by the partition walls 3 when collecting the fine particles, but also collects the fine particles by the sealing material 4a that seals the outlet. Therefore, when the collected fine particles are burned and removed, the temperature of the sealing material 4a that seals the outlet is likely to be higher than that of the inlet. At this time, when the configuration is as described above, since the area ratio of the grain boundary phase of the sealing material 4a for sealing the outlet is small, the heat resistance is improved and the temperature at the time of combustion removal can be endured. .
 ここで、粒界相の面積比率を求めるには、まず、封止材4aおよび封止材4bを鏡面加工した断面について、走査型電子顕微鏡を用いて反射電子像を撮影する。そして、撮影された画像を用いて結晶相および粒界相を2値化処理し、結晶相と粒界相とを併せた面積100%に対する粒界相の面積の比率を粒界相の面積比率とすればよい。なお、粒界相の面積比率を求めるにあたっては、気孔を含まない部分を撮影し、撮影条件としては、例えば、倍率を3000倍とし、その撮影範囲を、横が18μm、縦が12μmとなるようにすればよい。 Here, in order to obtain the area ratio of the grain boundary phase, first, a reflected electron image is taken using a scanning electron microscope with respect to a cross-section obtained by mirror finishing the sealing material 4a and the sealing material 4b. Then, the crystal phase and the grain boundary phase are binarized using the photographed image, and the ratio of the area of the grain boundary phase to the area of 100% of the total area of the crystal phase and the grain boundary phase is expressed as the area ratio of the grain boundary phase. And it is sufficient. In obtaining the area ratio of the grain boundary phase, the part not including pores is photographed. As photographing conditions, for example, the magnification is 3000 times, and the photographing range is 18 μm in width and 12 μm in length. You can do it.
 また、このようなハニカム構造体1は、例えば、外径Dが140~270mm、軸方向Aの長さLが100~250mmで、円筒度が2.5mm以下である円柱形状であって、軸方向Aに対して垂直な断面(径方向)における流通路5の個数は100mm当たり5~124個(32~800CPSI)である。また、隔壁3の厚みが0.05mm以上0.25mm以下であり、封止材4の厚みが1mm以上5mm以下である。なお、CPSIとはCells Per Square Inchesのことである。 Further, such a honeycomb structure 1 has, for example, a columnar shape having an outer diameter D of 140 to 270 mm, a length L in the axial direction A of 100 to 250 mm, and a cylindricity of 2.5 mm or less. The number of the flow passages 5 in the cross section (radial direction) perpendicular to A is 5 to 124 per 100 mm 2 (32 to 800 CPSI). Moreover, the thickness of the partition 3 is 0.05 mm or more and 0.25 mm or less, and the thickness of the sealing material 4 is 1 mm or more and 5 mm or less. CPSI stands for Cells Per Square Inches.
 また、ハニカム構造体1の有効濾過面積は、捕集を繰り返すことによって生じる圧力損失および微粒子を燃焼するとによって生じる熱応力をともに低減するという観点から、1.1m/L以上であることが好適で、1.4m/L以上であることがさらに好適である。なお、有効濾過面積の上限は、例えば、2.0m/Lである。そして、ハニカム構造体1における有効濾過面積とは、ハニカム構造体1L(リットル)あたりにおける流体と接する隔壁3(封止材4に接している部分を除く)の表面積の合計をいう。 The effective filtration area of the honeycomb structure 1 is preferably 1.1 m 2 / L or more from the viewpoint of reducing both the pressure loss caused by repeated collection and the thermal stress caused by burning fine particles. More preferably, it is 1.4 m 2 / L or more. In addition, the upper limit of an effective filtration area is 2.0 m < 2 > / L, for example. The effective filtration area in the honeycomb structure 1 refers to the total surface area of the partition walls 3 (excluding the portion in contact with the sealing material 4) in contact with the fluid per honeycomb structure 1L (liter).
 図4は、本実施形態の一例を模式的に示すガス処理装置の概略断面図である。 FIG. 4 is a schematic cross-sectional view of a gas processing apparatus schematically showing an example of this embodiment.
 図4に示す例のガス処理装置20は、本実施形態のハニカム構造体1が、その外周を把持材7に保持された状態でケース8に収容され、ケース8の流入口8aに、ディーゼルエンジンやガソリンエンジン等の内燃機関(図示しない)と連通するEGの導入管9が接続され、流出口8bに不図示の排気管が接続されるものである。ここで、把持材7は断熱材であることが好適であり、この場合、微粒子の燃焼除去により、ハニカム構造体1に生じた熱がケース8に伝わってケース8が変形したり劣化したりするのを抑制することができる。 In the gas processing apparatus 20 of the example shown in FIG. 4, the honeycomb structure 1 of the present embodiment is accommodated in the case 8 with the outer periphery held by the gripping material 7, and the diesel engine is placed in the inlet 8 a of the case 8. An EG introduction pipe 9 communicating with an internal combustion engine (not shown) such as a gasoline engine is connected, and an exhaust pipe (not shown) is connected to the outlet 8b. Here, the gripping material 7 is preferably a heat insulating material. In this case, heat generated in the honeycomb structure 1 is transferred to the case 8 due to combustion removal of the fine particles, and the case 8 is deformed or deteriorated. Can be suppressed.
 なお、把持材7は、例えば、セラミックファイバー、ガラスファイバー、カーボンファイバーおよびセラミックウィスカーの少なくとも1種からなることが好適である。また、ケース8は、例えば、SUS303、SUS304およびSUS316等のステンレスからなり、その中央部が円筒状に、両端部が円錐台状にそれぞれ形成されるものである。 Note that the gripping material 7 is preferably made of at least one of ceramic fiber, glass fiber, carbon fiber, and ceramic whisker, for example. The case 8 is made of, for example, stainless steel such as SUS303, SUS304, and SUS316, and has a central portion formed in a cylindrical shape and both end portions formed in a truncated cone shape.
 また、本実施形態のハニカム構造体1は、気体である排気ガスのみならず、液体を用いることも可能である。例えば、流体として上水または下水を用いることが可能であり、本実施形態のガス処理装置100を液体の濾過用としても適用することができる。 Further, the honeycomb structure 1 of the present embodiment can use not only exhaust gas which is gas but also liquid. For example, clean water or sewage can be used as the fluid, and the gas treatment device 100 of the present embodiment can also be applied for liquid filtration.
 次に、本実施形態のハニカム構造体の製造方法の一例について説明する。 Next, an example of a method for manufacturing the honeycomb structure of the present embodiment will be described.
 本実施形態のハニカム構造体1を形成するためのセラミック粉末を得るには、まず、酸化アルミニウムの粉末を53~59質量%、残部を酸化チタンの粉末として調合した調合原料を乾式混合して1次原料を得る。次に、得られた1次原料を大気雰囲気中、温度を1435℃以上1560℃以下として、1時間以上5時間以下で仮焼することにより、擬ブルッカイト型のチタン酸アルミニウムの結晶からなるセラミック粉末(第1の仮焼粉末)を得る。 In order to obtain a ceramic powder for forming the honeycomb structure 1 of the present embodiment, first, dry mixing is performed on a blended raw material prepared by mixing 53 to 59% by mass of aluminum oxide powder and the remainder as titanium oxide powder. Get the next raw material. Next, the obtained primary raw material is calcined at 1435 ° C. or higher and 1560 ° C. or lower in an air atmosphere for 1 hour or more and 5 hours or less to obtain a ceramic powder composed of pseudo-brookite type aluminum titanate crystals. (First calcined powder) is obtained.
 また、ハニカム構造体1を形成するセラミック粉末を得るための他の例としては、酸化アルミニウムの粉末を36~42質量%、酸化マグネシウムの粉末を9~15質量%および残部を酸化チタンの粉末として調合した調合原料を乾式混合して1次原料を得る。次に、得られた1次原料を大気雰囲気中、温度を1435℃以上1560℃以下として、1時間以上5時間以下で仮焼することにより、マグネシウムがチタン酸アルミニウムの結晶に固溶した擬ブルッカイト型の結晶からなるセラミック粉末(第2の仮焼粉末)を得ることができる。 As another example for obtaining the ceramic powder for forming the honeycomb structure 1, aluminum oxide powder is 36 to 42% by mass, magnesium oxide powder is 9 to 15% by mass, and the remainder is titanium oxide powder. The prepared raw material is dry-mixed to obtain a primary raw material. Next, the obtained primary material is calcined at 1435 ° C or higher and 1560 ° C or lower for 1 hour to 5 hours in an air atmosphere, whereby pseudo brookite in which magnesium is dissolved in aluminum titanate crystals. A ceramic powder (second calcined powder) made of type crystals can be obtained.
 また、ハニカム構造体1を形成するセラミック粉末を得るためのさらに他の例としては、まず、酸化アルミニウムの粉末を27~33質量%、酸化マグネシウムの粉末を7~13質量%、酸化第二鉄の粉末を13~17質量%および残部を酸化チタンの粉末として調合した調合原料を乾式混合して1次原料を得る。次に、得られた1次原料を大気雰囲気中、温度を1435℃以上1560℃以下とし、1時間以上5時間以下保持して仮焼することにより、マグネシウムおよび鉄がチタン酸アルミニウムの結晶に固溶した擬ブルッカイト型の結晶からなるセラミック粉末(第3の仮焼粉末)を得ることができる。 As still another example for obtaining the ceramic powder forming the honeycomb structure 1, first, 27 to 33% by mass of aluminum oxide powder, 7 to 13% by mass of magnesium oxide powder, ferric oxide A primary raw material is obtained by dry-mixing the prepared raw material prepared by mixing 13 to 17% by mass of the above powder and the remainder as titanium oxide powder. Next, the obtained primary raw material is calcined in an air atmosphere at a temperature of 1435 ° C. or higher and 1560 ° C. or lower and held for 1 hour or longer and 5 hours or shorter, so that magnesium and iron are solidified into aluminum titanate crystals. A ceramic powder (third calcined powder) made of melted pseudo-brookite crystals can be obtained.
 なお、マグネシウムや鉄が、チタン酸アルミニウムの結晶に固溶することができるのであれば、酸化マグネシウムの粉末や酸化第二鉄の粉末以外に、炭酸塩、水酸化物および硝酸塩などの粉末を用いてもよく、またこれらの化合物の粉末を用いてもよい。また、1次原料を得るために用いる各粉末は、その純度が99.0質量%以上、特に99.5質量%以上であることがさらに好適である。 If magnesium or iron can be dissolved in the crystal of aluminum titanate, powders such as carbonates, hydroxides, and nitrates are used in addition to magnesium oxide powder and ferric oxide powder. Alternatively, powders of these compounds may be used. Further, it is more preferable that each powder used for obtaining the primary raw material has a purity of 99.0% by mass or more, particularly 99.5% by mass or more.
 次に、固定砥石および回転砥石を上下方向に対向して配置した電動磨砕機を用いて得られた仮焼粉末を解砕し、JIS R 6001:1998で規定する粒度がF150であるステンレス製のメッシュを用いてメッシュパスする。解砕条件としては、例えば、砥石の粒度、砥石の材質、砥石の磨砕面同士の間隔および回転砥石の回転数をそれぞれF24~F46、酸化アルミニウム、100μm以下(但し、0μmを除く)、100rpm以上700rpm以下とすれば、D50の粒径が50μm以上80μm以下であるセラミック粉末を得ることができる。ここで、砥石の磨砕面同士の間隔は、33μm以上47μm以下であることが好適である。 Next, the calcined powder obtained using an electric grinding machine in which a fixed grindstone and a rotating grindstone are arranged facing each other in the vertical direction is crushed, and a stainless steel product having a particle size defined by JIS R 6001: 1998 is F150. Mesh pass using mesh. As the crushing conditions, for example, the grindstone particle size, the grindstone material, the distance between the grinding surfaces of the grindstone, and the rotational speed of the rotating grindstone are F24 to F46, aluminum oxide, 100 μm or less (excluding 0 μm), 100 rpm. If it is 700 rpm or less, a ceramic powder having a D 50 particle size of 50 μm or more and 80 μm or less can be obtained. Here, the interval between the grinding surfaces of the grindstone is preferably 33 μm or more and 47 μm or less.
 上述した製造方法によって得られたセラミック粉末に、例えば、平均粒径が1μm以上3μm以下であり、添加量がセラミック粉末100質量部に対して0.4質量部以上1.2質量部以下である酸化珪素の粉末と、平均粒径が10μm以上25μ以下であり、添加量がセラミック粉末100質量部に対して1質量部以上13質量部以下である、グラファイト、澱粉またはポリエチレン樹脂等の造孔剤とを添加する。 For example, silicon oxide powder having an average particle diameter of 1 to 3 μm and an addition amount of 0.4 to 1.2 parts by mass with respect to 100 parts by mass of the ceramic powder. And a pore-forming agent such as graphite, starch or polyethylene resin having an average particle size of 10 μm to 25 μm and an addition amount of 1 to 13 parts by mass with respect to 100 parts by mass of the ceramic powder. .
 そして、さらに可塑剤、滑り剤および水等を加えて、万能攪拌機、回転ミルまたはV型攪拌機等を使って混合・攪拌する。その後、三本ロールミルや混練機等を用いて混練し、可塑化した坏土を得る。 Then, further add a plasticizer, a slip agent, water, etc., and mix and stir using a universal stirrer, rotary mill or V-type stirrer. Thereafter, the mixture is kneaded using a three-roll mill or a kneader to obtain a plasticized clay.
 ここで、隔壁3において、流通路5が分断されるように流通路5に沿って切断された第1の断面における隔壁3のチタン酸アルミニウムの結晶の(101)面のX線強度が、(230)面のX線強度よりも高いハニカム構造体1を得るには、坏土の硬さを JIS K 6253-2012に定めるデュロメータ硬さがA47以上とすればよい。 Here, in the partition wall 3, the X-ray intensity of the (101) plane of the aluminum titanate crystal of the partition wall 3 in the first section cut along the flow path 5 so that the flow path 5 is divided is ( 230) In order to obtain a honeycomb structure 1 having a higher X-ray intensity than the plane, the durometer hardness specified in JIS K 6253-2012 should be A47 or higher.
 また、第1の断面における隔壁結晶において、(230)面のX線強度をI230とし、(101)面のX線強度をI101としたとき、I101/I230の値が1.2以上1.6以下であるハニカム構造体1を得るには、上記デュロメータ硬さをA48以上A52以下とすればよい。 In the partition crystal in the first cross section, when the X-ray intensity of the (230) plane is I 230 and the X-ray intensity of the (101) plane is I 101 , the value of I 101 / I 230 is 1.2 or more and 1.6. In order to obtain the following honeycomb structure 1, the durometer hardness may be set to A48 or more and A52 or less.
 また、第1の断面における隔壁結晶において、(002)面のX線強度をI002とし、(230)面のX線強度をI230としたとき、I002/(I002+I230)の値が、0.33以上0.39以下であるハニカム構造体1を得るには、上記デュロメータ硬さをA49以上A51以下とすればよい。なお、坏土の硬さの調整は、滑り剤の添加量を適宜調整して行なえばよい。 Further, in the partition crystal in the first cross section, when the X-ray intensity of the (002) plane is I 002 and the X-ray intensity of the (230) plane is I 230 , the value of I 002 / (I 002 + I 230 ) However, in order to obtain the honeycomb structure 1 that is 0.33 or more and 0.39 or less, the durometer hardness may be set to A49 or more and A51 or less. The hardness of the clay may be adjusted by appropriately adjusting the amount of slip agent added.
 次に、この坏土を用いてスクリューを備えた押出成形機により成形する。この押出成形機には成形型が装着され、その成形型は成形体の外径を決定する内径が、例えば155mm以上300mm以下であり、ハニカム構造体1の外壁2および隔壁3を形成するためのスリットを有している。 Next, this clay is molded by an extruder equipped with a screw. This extrusion molding machine is equipped with a mold, and the mold has an inner diameter that determines the outer diameter of the molded body, for example, 155 mm or more and 300 mm or less, and is used to form the outer wall 2 and the partition walls 3 of the honeycomb structure 1. Has a slit.
 そして、上述したような成形型が装着された押出成形機に坏土を投入し、圧力を加えてハニカム状の成形体を作製し、得られた成形体を所定長さ、例えば170mm以上180mm以下に切断する。 Then, the clay is put into an extrusion molding machine equipped with a molding die as described above, pressure is applied to produce a honeycomb-shaped molded body, and the obtained molded body has a predetermined length, for example, 170 mm or more and 180 mm or less. Disconnect.
 第1の断面における隔壁結晶において、(101)面のX線強度をI101とし、(002)面のX線強度をI002としたとき、I002/I101の値が0.36以上0.50以下であるハニカム構造体1を得るには、押出成形時の成形圧力を6MPa以上15MPa以下にすればよい。 In the partition crystal in the first cross section, when the X-ray intensity of the (101) plane is I 101 and the X-ray intensity of the (002) plane is I 002 , the value of I 002 / I 101 is 0.36 or more and 0.50 or less. In order to obtain a certain honeycomb structure 1, the molding pressure at the time of extrusion molding may be 6 MPa or more and 15 MPa or less.
 そして、切断された成形体の外壁の外周面にグリースを噴霧塗布してから、軸方向Aが載置面に垂直になるように成形体を載置してマイクロ波乾燥機にて乾燥する。 Then, after spraying grease on the outer peripheral surface of the outer wall of the cut molded body, the molded body is mounted so that the axial direction A is perpendicular to the mounting surface, and dried by a microwave dryer.
 次に、成形体を乾燥させた乾燥体の複数の流通路5の流入口側および流出口側のそれぞれを交互に封止する封止材4を作製する。具体的には、まず、流出口側の端面(OF)で封止材4aを形成しない部分にマスキングする。そして、乾燥体の外周よりも全長が長い帯状体を乾燥体の流出口側外周に巻き付け、接着テープ、融着テープまたは粘着テープ等により帯状体を乾燥体に固定した後、乾燥体の流出口側の端面側を円筒状の容器に溜められたスラリーに浸漬する。 Next, the sealing material 4 for alternately sealing each of the inlet side and the outlet side of the plurality of flow paths 5 of the dried body obtained by drying the formed body is prepared. Specifically, first, masking is performed on a portion where the sealing material 4a is not formed on the end surface (OF) on the outlet side. And after winding the strip | belt-shaped body with the full length longer than the outer periphery of a dry body around the outer peripheral side of the dry body, and fixing a strip | belt body to a dry body with an adhesive tape, a fusion | melting tape, or an adhesive tape, the outlet of a dry body The end face side is immersed in a slurry stored in a cylindrical container.
 ここでスラリーとは、上述したいずれかのセラミック粉末に、例えば、平均粒径が1μm以上3μm以下であり、添加量がセラミック粉末100質量部に対して0.4質部以上1.2質量部以下である酸化珪素の粉末と、添加量がセラミック粉末100質量部に対して1質量部以上13質量部以下であるグラファイト、澱粉またはポリエチレン樹脂等の造孔剤とを添加した後、分散剤および水等を加えて混合することで得られるものである。なお、帯状体とは、例えば、発砲ポリエチレンシート、ポプロピレン樹脂が表面に被覆されたクラフト紙等からなるものであり、その厚みは1mm以上3mm以下であることが好適である。 Here, the slurry is an oxidation in which one of the above-described ceramic powders has, for example, an average particle size of 1 μm or more and 3 μm or less and an addition amount of 0.4 parts by mass or more and 1.2 parts by mass or less with respect to 100 parts by mass of the ceramic powder. After adding silicon powder and a pore-forming agent such as graphite, starch or polyethylene resin whose addition amount is 1 to 13 parts by mass with respect to 100 parts by mass of ceramic powder, add a dispersant and water. Obtained by mixing. The strip-shaped body is made of, for example, a foamed polyethylene sheet, kraft paper whose surface is covered with a propylene resin, and the thickness is preferably 1 mm or more and 3 mm or less.
 次に、流出口側の端面側をスラリーに浸漬した乾燥体を容器から取り出し、乾燥させた後、乾燥体の流入口側の端面側を上述した方法と同じ方法で、スラリーに浸漬する。そして、流入口側の端面側の封止材4bとなるスラリーを乾燥させた後、焼成炉に入れて、1380℃~1500℃の温度で2~10時間保持することにより、本実施形態のハニカム構造体1を得ることができる。 Next, after the dried body in which the end surface on the outlet side is immersed in the slurry is taken out from the container and dried, the end surface on the inlet side of the dried body is immersed in the slurry in the same manner as described above. Then, after drying the slurry to be the sealing material 4b on the end face side on the inlet side, the slurry is put in a firing furnace and held at a temperature of 1380 ° C. to 1500 ° C. for 2 to 10 hours, whereby the honeycomb of this embodiment The structure 1 can be obtained.
 なお、流通路5に沿って切断された第2の断面における封止材結晶のP(101)面のX線強度が、P(230)面のX線強度よりも高いハニカム構造体1を得るには、常温におけるスラリーの粘度を0.8Pa・s以上とすればよい。なお、スラリーの粘度の調整は、水の量に対する分散剤の量を適宜調整して行なえばよい。 In addition, the honeycomb structure 1 in which the X-ray intensity of the P (101) plane of the sealing material crystal in the second cross section cut along the flow path 5 is higher than the X-ray intensity of the P (230) plane is obtained. For this, the viscosity of the slurry at room temperature may be 0.8 Pa · s or more. The viscosity of the slurry may be adjusted by appropriately adjusting the amount of the dispersant with respect to the amount of water.
 また、第2の断面における封止材結晶において、P(230)面のX線強度をIP230とし、P(101)のX線強度をIP101としたとき、IP101/IP230の値が1.8以上2.5以下であるハニカム構造体1を得るには、スラリーの粘度を2Pa・s以上2.6Pa・s以下とすればよい。 In the encapsulant crystal in the second cross section, when the X-ray intensity of the P (230) plane is I P230 and the X-ray intensity of P (101) is I P101 , the value of I P101 / I P230 is In order to obtain the honeycomb structure 1 that is 1.8 or more and 2.5 or less, the viscosity of the slurry may be 2 Pa · s or more and 2.6 Pa · s or less.
 また、第2の断面における封止材結晶において、P(002)面のX線強度をIP002とし、P(230)面のX線強度をIP230としたとき、IP002/(IP002+IP230)の値が0.12以上0.18以下であるハニカム構造体1を得るには、スラリーの粘度を2.1Pa・s以上2.5Pa・s以下とすればよい。 In the encapsulant crystal in the second cross section, when the X-ray intensity of the P (002) plane is I P002 and the X-ray intensity of the P (230) plane is I P230 , I P002 / (I P002 + I the value of P230) to obtain a honeycomb structure 1 is 0.12 or more 0.18 or less, the viscosity of the slurry may be less 2.1 Pa · s or more 2.5 Pa · s.
 また、第2の断面における封止材結晶において、P(101)面のX線強度をIP101とし、P(002)面のX線強度をIP002としたとき、IP002/IP101の値が0.05以上0.30以下であるハニカム構造体1を得るには、スラリーに浸漬した後、浸漬した方の端面に0.02Mpa以上0.03MPa以下の圧力を加えればよい。 Further, in the encapsulant crystal in the second cross section, when the X-ray intensity of the P (101) plane is I P101 and the X-ray intensity of the P (002) plane is I P002 , the value of I P002 / I P101 In order to obtain the honeycomb structure 1 having a thickness of 0.05 or more and 0.30 or less, after dipping in the slurry, a pressure of 0.02 MPa or more and 0.03 MPa or less may be applied to the end surface of the dipped one.
 また、流出口側において、第1の断面における隔壁結晶の(232)面のX線強度をI232とし、(230)面のX線強度をI230としたときのI232/(I232+I230)の値と、第2の断面における封止材結晶のP(232)面のX線強度をIP232とし、P(230)面のX線強度をIP230としたときのIP232/(IP232+IP230)の値とが異なっているハニカム構造体1を得るには、流出口側の端面をスラリーに浸漬した後、流出口側の端面に、押出成形時の成形圧力の0.0022~0.0026倍の圧力を加えればよい。例えば、押出成形時の成形圧力が10MPaであるとき、流出口側の端面に掛かる圧力は0.022MPa以上0.026MPa以下とすればよい。これにより、I232/(I232+I230)の値は、IP232/(IP232+IP230)の値より小さくなる。 Further, on the outflow side, I 232 / (I 232 + I when the X-ray intensity of the (232) plane of the partition crystal in the first cross section is I 232 and the X-ray intensity of the (230) plane is I 230. the value of 230), a second X-ray intensity of P (232) plane of the sealing material crystal and I P232 in cross section, P (230) when the X-ray intensity of the plane was I P230 I P232 / ( In order to obtain the honeycomb structure 1 having a value different from the value of I P232 + I P230 ), the end surface on the outlet side is immersed in the slurry, and then the molding pressure of 0.0022 to 0.0026 at the end of the extrusion is applied to the end surface on the outlet side. Double pressure should be applied. For example, when the molding pressure at the time of extrusion molding is 10 MPa, the pressure applied to the end surface on the outlet side may be 0.022 MPa or more and 0.026 MPa or less. Thus, the value of I 232 / (I 232 + I 230) is smaller than the value of I P232 / (I P232 + I P230).
 また、本実施形態のガス処理装置20は、上述した方法によって作製されたハニカム構造体1の外周を把持材7により把持した状態で、ケース8に収容した後、導入管9をケース8の流入口8aに、また、排気管をケース8の流出口8bに、それぞれ接続することにより得ることができる。 In addition, the gas treatment device 20 of the present embodiment accommodates the introduction pipe 9 in the flow of the case 8 after the outer periphery of the honeycomb structure 1 manufactured by the above-described method is accommodated in the case 8 while being held by the holding material 7. It can be obtained by connecting the exhaust pipe to the inlet 8a and the outlet 8b of the case 8 respectively.
 なお、本実施形態のハニカム構造体1について、捕集した微粒子の燃焼除去を繰り返し行なうガス処理装置20に用いられる場合を例に挙げて説明してきたが、本実施形態のハニカム構造体1は、捕集した微粒子の燃焼除去を連続的に行なうガス処理装置にも何ら問題なく用いることができる。 Although the honeycomb structure 1 of the present embodiment has been described by taking as an example the case where it is used in the gas treatment device 20 that repeatedly burns and removes the collected fine particles, the honeycomb structure 1 of the present embodiment It can also be used without any problem in a gas processing apparatus that continuously burns and removes the collected fine particles.
 以下、本発明の実施例を具体的に説明するが、本発明はこれらの実施例により限定されるものではない。 Hereinafter, examples of the present invention will be described in detail, but the present invention is not limited to these examples.
 まず、酸化アルミニウムの粉末を30質量%、酸化マグネシウムの粉末10質量%、酸化第二鉄の粉末を15質量%および残部を酸化チタンの粉末として調合した調合原料を乾式混合して1次原料を得た。ここで、各粉末の純度は、いずれも99.5質量%とした。 First, dry mix the compounded raw material prepared by mixing 30% by mass of aluminum oxide powder, 10% by mass of magnesium oxide powder, 15% by mass of ferric oxide powder and the remainder of titanium oxide powder, Obtained. Here, the purity of each powder was 99.5% by mass.
 次に、得られた1次原料を大気雰囲気中、温度を1450℃とし、3時間保持して仮焼することにより、マグネシウムおよび鉄がチタン酸アルミニウムに固溶した擬ブルッカイト型の結晶からなる仮焼粉末を得た。 Next, the obtained primary raw material is calcined at a temperature of 1450 ° C. in an air atmosphere for 3 hours and calcined, so that a temporary quackiteite crystal in which magnesium and iron are dissolved in aluminum titanate is obtained. A baked powder was obtained.
 そして、固定砥石および回転砥石を上下方向に対向して配置した電動磨砕機(増幸産業(株)製 マスコロイダー(登録商標))を用いて得られた仮焼粉末を解砕し、JIS R 6001:1998で規定する粒度がF150であるステンレス製のメッシュを用いてメッシュパスすることによりD50が58μmのセラミック粉末を得た。ここで、砥石の粒度は36.7mm、砥石の材質は酸化アルミニウム、砥石の磨砕面同士の間隔はF36、回転砥石の回転数は400rpmとした。なお、得られたセラミック粉末のD50は、JIS Z 8825-1:2001(ISO13320-1:1999)に記載のレーザー回折法に準拠して測定した。 Then, the calcined powder obtained using an electric grinding machine (Mascoloyder (registered trademark) manufactured by Masuko Sangyo Co., Ltd.) in which a fixed grindstone and a rotating grindstone are arranged facing each other in the vertical direction is crushed, and JIS R 6001 : A ceramic powder having a D 50 of 58 μm was obtained by mesh passing using a stainless steel mesh having a particle size defined by 1998 of F150. Here, the grain size of the grindstone was 36.7 mm, the material of the grindstone was aluminum oxide, the spacing between the grinding surfaces of the grindstone was F36, and the rotational speed of the rotating grindstone was 400 rpm. The D 50 of the obtained ceramic powder was measured according to the laser diffraction method described in JIS Z 8825-1: 2001 (ISO13320-1: 1999).
 そして、得られたセラミック粉末に、平均粒径が2μmであって、添加量がセラミック粉末100質量部に対して0.8質量部である酸化珪素の粉末と、平均粒径が15μmであって、セラミック粉末100質量部に対して7質量部であるポリエチレン樹脂と、可塑剤と、滑り剤と、水とを加えて、万能攪拌機を使って混合・攪拌した。その後、混練機を用いて混練し、可塑化した坏土を得た。なお、坏土の硬さは、滑り剤の添加量を適宜調整し、各試料に用いられる坏土の硬さは、表1に示す通りとした。ここで、表1に示す坏土の硬さは、JIS K 6253-2012に準拠して測定したデュロメータ硬さの値である。 The obtained ceramic powder has an average particle size of 2 μm and an addition amount of 0.8 parts by mass with respect to 100 parts by mass of the ceramic powder, and an average particle size of 15 μm, 7 parts by mass of polyethylene resin, plasticizer, slip agent, and water were added to 100 parts by mass of the powder, and mixed and stirred using a universal stirrer. Thereafter, the mixture was kneaded using a kneader to obtain a plasticized clay. The hardness of the clay was adjusted as appropriate by the amount of the slip agent added, and the hardness of the clay used for each sample was as shown in Table 1. Here, the hardness of the clay shown in Table 1 is a durometer hardness value measured in accordance with JIS K 6253-2012.
 次に、成形体の外径を決定する内径が170mmであり、ハニカム構造体の外壁および隔壁を形成するためのスリットを有している成形型が装着されたスクリュー式押出成形機に坏土を投入し、18MPaの圧力を加えてハニカム状の成形体を作製し、得られた成形体を175mmの長さで切断した第1の成形体と、12mmの長さで切断した第2の成形体とを作製した。 Next, the inner diameter for determining the outer diameter of the formed body is 170 mm, and the clay is put into a screw type extrusion molding machine equipped with a forming die having slits for forming the outer wall and partition walls of the honeycomb structure. And a pressure of 18 MPa was applied to produce a honeycomb-shaped formed body. The obtained formed body was cut at a length of 175 mm, and a second formed body was cut at a length of 12 mm. And made.
 そして、切断された第1の成形体および第2の成形体のそれぞれの外壁の外周面にグリースを噴霧塗布してから、軸方向Aが載置面に垂直になるように各成形体を載置してマイクロ波乾燥機にて乾燥して、第1の乾燥体および第2の乾燥体を得た。 And after spraying grease on the outer peripheral surface of each outer wall of the cut first molded body and second molded body, each molded body is mounted so that the axial direction A is perpendicular to the mounting surface. And dried with a microwave dryer to obtain a first dried body and a second dried body.
 次に、第1の乾燥体の複数の流通路の流入口側および流出口側のそれぞれを交互に封止する封止材を形成するために、まず、流出口側の端面で封止材を形成しない部分にマスキングした。そして、第1の乾燥体の外周よりも全長が長い帯状体を第1の乾燥体の流出口側の外周に巻き付け、接着テープにより帯状体を第1の乾燥体に固定した後、第1の乾燥体の流出口側の端面を予め円筒状の容器に溜められたスラリーに浸漬した。このとき、スラリーの液面の高さは4.2mmとした。また、容器の内周と帯状体の外周間との隙間を20mmとした。 Next, in order to form a sealing material that alternately seals the inlet side and the outlet side of the plurality of flow passages of the first dry body, first, the sealing material is applied to the end surface on the outlet side. Masking was done on the part that was not formed. And after winding the strip | belt-shaped body whose full length is longer than the outer periphery of a 1st dry body around the outer periphery by the side of the outflow port of a 1st dry body, after fixing a strip | belt-shaped body to a 1st dry body with an adhesive tape, 1st The end face on the outlet side of the dried body was immersed in slurry previously stored in a cylindrical container. At this time, the height of the liquid surface of the slurry was 4.2 mm. Moreover, the clearance gap between the inner periphery of a container and the outer periphery of a strip | belt shaped object was 20 mm.
 なおスラリーは、セラミック粉末に、平均粒径が2μmであって、添加量がセラミック粉末100質量部に対して0.8質量部である酸化珪素の粉末と、添加量がセラミック粉末100質量部に対して7質量部である澱粉と、分散剤と、水とを加えて混合したものを用いた。このスラリーの粘度は1.8Pa・sであった。そして、帯状体には厚みが2mmであり、発砲ポリエチレンシートからなるものを用いた。 The slurry is a ceramic powder having an average particle diameter of 2 μm and an addition amount of 0.8 parts by mass with respect to 100 parts by mass of the ceramic powder, and an addition amount with respect to 100 parts by mass of the ceramic powder. 7 parts by mass of starch, a dispersant, and water were added and mixed. The viscosity of this slurry was 1.8 Pa · s. And the thing which is 2 mm in thickness and consists of a foaming polyethylene sheet was used for the strip | belt shaped object.
 次に、流出口側の端面に浸入させたスラリーを乾燥させた後、第1の乾燥体の外周よりも全長が長い帯状体を第1の乾燥体の流入口側の外周に巻き付け、接着テープにより帯状体を第1の乾燥体に固定した後、第1の乾燥体の流入口側の端面を円筒状の容器に溜められたスラリーに浸漬した。 Next, after drying the slurry that has entered the end surface on the outlet side, a belt-like body having a longer overall length than the outer periphery of the first dried body is wound around the outer periphery of the first dried body on the inlet side, and an adhesive tape After fixing the belt-like body to the first dry body by the above, the end face on the inlet side of the first dry body was immersed in the slurry stored in the cylindrical container.
 そして、流入口側の端面に浸入させたスラリーを乾燥させた後、電気炉を用いて第1の乾燥体および第2の乾燥体を、1380℃の焼成温度で3時間保持することにより焼成して、試料No.1~9を得た。なお、第1の乾燥体を焼成した試料(以下、試験片1と記載する。)は、図1に示す軸方向Aの長さLが152mmであり、第2の乾燥体を焼成した試料(以下、試験片2と記載する。)は、図1に示す軸方向Aの長さLが10mmであり、第1の断面における流通路5の単位面積当たりの個数はいずれも300CPSIであった。また、試料No.1~9における隔壁3の気孔率を水銀圧入法によって求めたところ、50体積%であった。 And after drying the slurry infiltrated into the end face on the inlet side, the first and second dried bodies are fired by holding them at a firing temperature of 1380 ° C. for 3 hours using an electric furnace. Sample No. 1-9 were obtained. A sample obtained by firing the first dried body (hereinafter referred to as test piece 1) has a length L in the axial direction A shown in FIG. 1 of 152 mm, and a sample obtained by firing the second dried body ( Hereinafter, it is referred to as a test piece 2. The length L in the axial direction A shown in FIG. 1 is 10 mm, and the number of the flow passages 5 in the first cross section per unit area is 300 CPSI. Sample No. The porosity of the partition walls 1 to 9 was determined by mercury porosimetry and found to be 50% by volume.
 次に、試験片2を用いて、流通路が分断されるように流通路に沿って切断された第1の断面を形成し、X線回折装置を用いて、第1の断面のチタン酸アルミニウムの結晶である隔壁結晶の(101)面、(230)面および(002)面のX線強度を測定し、I101/I230と、I002/(I002+I230)とを算出した。なお、I101/I230の値が、1を超えている試料は、(101)面のX線強度が(230)面のX線強度よりも高いということである。 Next, a first cross section cut along the flow path is formed using the test piece 2 so that the flow path is divided, and an aluminum titanate having the first cross section is formed using an X-ray diffractometer. The X-ray intensities of the (101) plane, (230) plane and (002) plane of the partition crystal, which is a crystal of, were measured, and I 101 / I 230 and I 002 / (I 002 + I 230 ) were calculated. The value of I 101 / I 230 is the sample is greater than 1 is that the higher the X-ray intensity of the X-ray intensity (230) plane of the (101) plane.
 さらに、試験片1を用いて亀裂の確認試験を行なった。具体的には、各試料をケースに把持して図4に示すガス処理装置に取り付けた。そして、このガス処理装置をカーボン発生装置(日本カノマックス(株)製,型式S4102)に接続した後、この装置から微粒子を含む、温度25℃の乾燥空気を単位時間当たりの流量を2.27Nm/分で流してハニカム構造体に微粒子を捕集させ、その後、燃焼温度を1250℃、燃焼時間を10分とした条件で、捕集された微粒子を燃焼除去する再生を行なった。この捕集および再生を1サイクルとして、このサイクルを繰り返し、再生後に、隔壁を目視で観察し、亀裂が初めて確認されたサイクル数を表1に示した。 Furthermore, a crack confirmation test was performed using the test piece 1. Specifically, each sample was held by a case and attached to the gas processing apparatus shown in FIG. And after connecting this gas processing apparatus to a carbon generator (Nippon Kanomax Co., Ltd., model S4102), the flow rate of dry air containing fine particles from this apparatus at a temperature of 25 ° C. per unit time is 2.27 Nm 3 / Then, the particulate matter was collected in the honeycomb structure, and then regeneration was performed by burning and removing the collected particulate matter under the conditions of a combustion temperature of 1250 ° C. and a combustion time of 10 minutes. This collection and regeneration was defined as one cycle, and this cycle was repeated. After regeneration, the partition walls were visually observed, and the number of cycles in which cracks were first confirmed was shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、試料No.2~9は、試料No.1よりも亀裂が確認されたサイクル数が多くなっており、隔壁がチタン酸アルミニウムを主成分とする焼結体からなり、第1の断面における隔壁結晶の(101)面のX線強度が、(230)面のX線強度よりも高いことにより、熱応力による亀裂の発生を抑制できることがわかった。 As shown in Table 1, sample no. 2 to 9 are sample Nos. The number of cycles in which cracks were confirmed was larger than 1, the partition wall was made of a sintered body mainly composed of aluminum titanate, and the X-ray intensity of the (101) plane of the partition crystal in the first cross section was It was found that the occurrence of cracks due to thermal stress can be suppressed by being higher than the X-ray intensity of the (230) plane.
 また、(230)面のX線強度をI230とし、(101)面のX線強度をI101としたとき、I101/I230の値が1.2以上1.6以下であれば、熱応力による亀裂の発生をより抑制できることがわかった(試料No.3~7)。 Further, when the X-ray intensity of the (230) plane is I 230 and the X-ray intensity of the (101) plane is I 101 , if the value of I 101 / I 230 is 1.2 or more and 1.6 or less, cracks due to thermal stress It has been found that the generation of water can be further suppressed (Sample Nos. 3 to 7).
 さらに、I002/(I002+I230)の値が0.33以上0.39以下であれば、熱応力による亀裂の発生をさらに抑制できることがわかった(試料No.4~6)。 Furthermore, it was found that if the value of I 002 / (I 002 + I 230 ) is 0.33 or more and 0.39 or less, the occurrence of cracks due to thermal stress can be further suppressed (Sample Nos. 4 to 6).
 押出成形時における成形圧力を表2に示す成形圧力としたこと以外は、実施例1の試料No.5を作製した方法と同じ方法により、試料No.10~15を得た。 Except that the molding pressure at the time of extrusion molding was changed to the molding pressure shown in Table 2, sample No. Sample No. 5 was prepared by the same method as that used to manufacture sample No. 5. 10-15 were obtained.
 その後、実施例1と同様に、第1の断面を形成し、X線回折装置を用いて、第1の断面における隔壁結晶の(002)面および(101)面のX線強度を測定し、I002/I101を算出した。 Thereafter, as in Example 1, the first cross section was formed, and the X-ray intensities of the (002) plane and (101) plane of the partition crystal in the first cross section were measured using an X-ray diffractometer, I 002 / I 101 was calculated.
 また、各試料の隔壁のみの部分から、一辺の長さが10mmの立方体の供試体を切り出し、JASO M 505-87に準拠してハニカム構造体の径方向の圧縮破壊強度を測定した。 Further, a cubic specimen having a side length of 10 mm was cut out from only the partition wall of each sample, and the compressive strength in the radial direction of the honeycomb structure was measured in accordance with JASO M 505-87.
 また、各試料の流入口側の端面をカーボン発生装置(日本カノマックス(株)製,型式S4102 )に接続した後、この装置から微粒子を含む、温度25℃の乾燥空気を単位時間当たりの流量を2.27Nm/分として各試料に向かって噴射し、このときの流入側の端面における圧力損失に対する流出口側の端面における圧力損失の上昇値を算出した、なお、圧力損失の測定にはマノメーターを用いた。さらに、実施例1と同様の方法により亀裂の確認試験を行なった。結果を表2に示す。 In addition, after connecting the end face on the inlet side of each sample to a carbon generator (manufactured by Nippon Kanomax Co., Ltd., model S4102), dry air containing fine particles from this device at a temperature of 25 ° C. is flowed per unit time. 2.27 Nm 3 / min was injected toward each sample, and the rise in pressure loss at the outlet end face relative to the pressure loss at the inlet end face at this time was calculated. A manometer was used to measure the pressure loss. Using. Furthermore, a crack confirmation test was performed in the same manner as in Example 1. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、第1の断面における隔壁結晶において、(101)面のX線強度をI101とし、(002)面のX線強度をI002としたとき、I002/I101の値が0.36以上0.50以下であれば、径方向の機械的強度が高くなるとともに、圧力損失を増加しにくくなり、捕集した微粒子の燃焼除去を繰り返したときの熱応力による亀裂の発生をさらに抑制することができることがわかった(試料No.11~14)。 As shown in Table 2, in the partition crystal in the first cross section, when the X-ray intensity of the (101) plane is I 101 and the X-ray intensity of the (002) plane is I 002 , I 002 / I 101 If the value is 0.36 or more and 0.50 or less, the mechanical strength in the radial direction is increased, the pressure loss is hardly increased, and the generation of cracks due to thermal stress when repeated removal of the collected fine particles by combustion is further suppressed. (Sample Nos. 11 to 14).
 封止材形成時におけるスラリー粘度を表3に示す値としたこと以外は、実施例1の試料No.5を作製した方法と同じ方法により、試料No.16~28を得た。なお、スラリーの粘度は、水に対する分散剤の量を適宜調整して行ない、JIS Z 8803-2011に準拠して測定した値である。 Except that the slurry viscosity at the time of forming the sealing material was set to the value shown in Table 3, sample No. Sample No. 5 was prepared by the same method as that used to manufacture sample No. 5. 16-28 were obtained. The viscosity of the slurry is a value measured according to JIS Z 8803-2011 by appropriately adjusting the amount of the dispersant with respect to water.
 その後、試験片2を用いて、封止材の流通路に沿って切断された第2の断面を形成し、X線回折装置を用いて、第2の断面におけるチタン酸アルミニウムの結晶である封止材結晶のP(101)面、P(230)面およびP(002)面のX線強度を測定し、IP101/IP230と、IP002/(IP002+IP230)とを算出した。なお、IP101/IP230の値が、1を超えている試料は、P(101)面のX線強度がP(230)面のX線強度よりも高いということである。 Thereafter, a second cross section cut along the flow path of the sealing material is formed using the test piece 2, and the sealing, which is an aluminum titanate crystal in the second cross section, is formed using an X-ray diffractometer. The X-ray intensities of the P (101) plane, the P (230) plane, and the P (002) plane of the stopping material crystal were measured, and I P101 / I P230 and I P002 / (I P002 + I P230 ) were calculated. A sample having a value of I P101 / I P230 exceeding 1 indicates that the X-ray intensity of the P (101) plane is higher than the X-ray intensity of the P (230) plane.
 そして、実施例1と同様の方法により封止材の亀裂の確認試験を行なった。結果を表3に示す。 And the confirmation test of the crack of a sealing material was done by the same method as Example 1. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、試料No.17~28は、試料No.16よりも亀裂が確認されたサイクル数が多くなっており、封止材がチタン酸アルミニウムを主成分とする焼結体からなり、第2の断面における封止材結晶のP(101)面のX線強度が、P(230)面のX線強度よりも高いことにより、熱応力による亀裂の発生を抑制できることがわかった。 As shown in Table 3, sample No. Samples Nos. 17 to 28 were sample The number of cycles in which cracks were confirmed was greater than 16, the sealing material was made of a sintered body mainly composed of aluminum titanate, and the P (101) plane of the sealing material crystal in the second cross section It has been found that the occurrence of cracks due to thermal stress can be suppressed when the X-ray intensity is higher than the X-ray intensity of the P (230) plane.
 また、P(230)面のX線強度をIP230とし、P(101)面のX線強度をIP101としたとき、IP101/IP230の値が1.8以上2.5以下であれば、熱応力による亀裂の発生をより抑制できることがわかった(試料No.23~27)。 Further, when the X-ray intensity of the P (230) plane is IP230 and the X-ray intensity of the P (101) plane is IP101 , if the value of IP101 / IP230 is 1.8 or more and 2.5 or less, thermal stress It was found that the generation of cracks due to slabs can be further suppressed (Sample Nos. 23 to 27).
 さらに、IP002/(IP002+IP230)の値が0.12以上0.18以下であれば、熱応力による亀裂の発生をさらに抑制できることがわかった(試料No.24~26)。 Further, if the value is 0.12 or more 0.18 or less of the I P002 / (I P002 + I P230), it was found to be further suppress the occurrence of cracks due to thermal stress (Sample No.24 ~ 26).
 押出成形時の圧力を10MPaとし、流出口側の端面をスラリーに浸漬した後の流出口側の端面へ掛ける圧力(端面圧力)を表4に示す値としたこと以外は、実施例1の試料No.5を作製した方法と同様の方法により、試料No.29~35を得た。 The sample of Example 1 except that the pressure at the time of extrusion was 10 MPa, and the pressure (end face pressure) applied to the end face on the outlet side after the end face on the outlet side was immersed in the slurry was set to the values shown in Table 4 No. Sample No. 5 was prepared by a method similar to the method for producing Sample No. 5. 29-35 were obtained.
 その後、実施例3と同様に、第2の断面を形成し、X線回折装置を用いて、第2の断面における封止材結晶のP(002)面およびP(101)面のX線強度を測定し、IP002/IP101を算出した。また、各試料の端面の封止材を含む部分から、一辺の長さが10mmの立方体の供試体を切り出し、JASO M 505-87に準拠してハニカム構造体の径方向の圧縮破壊強度を測定した。さらに、実施例3と同様の方法により封止材の亀裂の確認試験を行なった。結果を表4に示す。 Thereafter, as in Example 3, a second cross section is formed, and the X-ray intensities of the P (002) plane and the P (101) plane of the encapsulant crystal in the second cross section are obtained using an X-ray diffractometer. Was measured and I P002 / I P101 was calculated. In addition, a cubic specimen having a side length of 10 mm was cut out from the portion including the sealing material on the end face of each sample, and the compressive strength in the radial direction of the honeycomb structure was measured in accordance with JASO M 505-87. did. Further, a confirmation test for cracks in the sealing material was performed in the same manner as in Example 3. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、第2の断面における封止材結晶において、P(101)面のX線強度をIP101とし、P(002)面のX線強度をIP002としたとき、IP002/IP101の値が0.05以上0.30以下であれば、径方向の機械的強度が高くなるとともに、捕集した微粒子の燃焼除去を繰り返したときの熱応力による亀裂の発生をさらに抑制することができることがわかった(試料No.30~34)。 As shown in Table 4, when the X-ray intensity of the P (101) plane is I P101 and the X-ray intensity of the P (002) plane is I P002 in the encapsulant crystal in the second cross section, I P002 If the value of / IP101 is 0.05 or more and 0.30 or less, the mechanical strength in the radial direction is increased, and the generation of cracks due to thermal stress when repeated removal of the collected fine particles can be further suppressed. (Sample Nos. 30 to 34).
 また、試料No.31~33は、亀裂の発生の抑制効果が高い結果が得られており、これらの試料の流出口側において、第1の断面における隔壁結晶の(232)面のX線強度をI232とし、(230)面のX線強度をI230としたときのI232/(I232+I230)の値と、第2の断面における封止材結晶のP(232)面のX線強度をIP232とし、P(230)面のX線強度をIP230としたときのIP232/(IP232+IP230)の値とを確認したところ、これらの値が異なっていた。 Sample No. Nos. 31 to 33 show that the effect of suppressing the occurrence of cracks is high. On the outlet side of these samples, the X-ray intensity of the (232) plane of the partition crystal in the first section is I 232 , The value of I 232 / (I 232 + I 230 ) when the X-ray intensity of the (230) plane is I 230 and the X-ray intensity of the P (232) plane of the sealing material crystal in the second cross section are expressed as I P232 And the value of I P232 / (I P232 + I P230 ) when the X-ray intensity of the P (230) plane is I P230 , these values were different.
 この結果より、これらの値が異なっていることにより、捕集した微粒子の燃焼除去を繰り返しても、隔壁および封止材の間に隙間が生じにくくなり、優れた捕集効率を長期間にわたって維持することができることがわかった。 From these results, these values are different, so that even if the collected particulates are repeatedly burned and removed, it is difficult for gaps to form between the partition walls and the sealing material, and excellent collection efficiency is maintained over a long period of time. I found out that I can do it.
1:ハニカム構造体
2:外壁
3:隔壁
4:封止材
5:流通路
7:把持材
8:ケース
9:導入管
20:ガス処理装置
1: honeycomb structure 2: outer wall 3: partition wall 4: sealing material 5: flow path 7: gripping material 8: case 9: introduction pipe
20: Gas processing equipment

Claims (10)

  1.  外壁と、該外壁の内側に設けられた複数の隔壁と、封止材とを備え、前記外壁および前記隔壁、または、前記隔壁同士で囲まれた空間が流体の流通路となり、該流通路の流入口または流出口が前記封止材により封止されてなるハニカム構造体であって、
    前記隔壁は、チタン酸アルミニウムを主成分とする焼結体からなり、前記流通路が分断されるように前記流通路に沿って切断された第1の断面におけるチタン酸アルミニウムの結晶である隔壁結晶の(101)面のX線強度が、(230)面のX線強度よりも高いことを特徴とするハニカム構造体。
    An outer wall, a plurality of partition walls provided on the inner side of the outer wall, and a sealing material, wherein the outer wall and the partition wall or a space surrounded by the partition walls serves as a fluid flow path, A honeycomb structure in which an inlet or an outlet is sealed with the sealing material,
    The partition wall is made of a sintered body mainly composed of aluminum titanate, and is a partition crystal that is a crystal of aluminum titanate in a first cross section cut along the flow path so that the flow path is divided. A honeycomb structure, wherein the X-ray intensity of the (101) plane is higher than the X-ray intensity of the (230) plane.
  2.  前記第1の断面における前記隔壁結晶において、前記(230)面のX線強度をI230とし、前記(101)面のX線強度をI101としたとき、I101/I230の値が1.2以上1.6以下であることを特徴とする請求項1に記載のハニカム構造体。 In the partition crystal in the first cross section, when the X-ray intensity of the (230) plane is I 230 and the X-ray intensity of the (101) plane is I 101 , the value of I 101 / I 230 is 1. The honeycomb structure according to claim 1, wherein the honeycomb structure is 2 or more and 1.6 or less.
  3.  前記第1の断面における前記隔壁結晶において、(002)面のX線強度をI002とし、前記(230)面のX線強度をI230としたとき、I002/(I002+I230)の値が0.33以上0.39以下であることを特徴とする請求項1または請求項2に記載のハニカム構造体。 In the partition crystal in the first cross section, when the (002) plane X-ray intensity is I 002 and the (230) plane X-ray intensity is I 230 , I 002 / (I 002 + I 230 ) The honeycomb structure according to claim 1 or 2, wherein the value is 0.33 or more and 0.39 or less.
  4.  前記第1の断面における前記隔壁結晶において、前記(101)面のX線強度をI101とし、前記(002)面のX線強度をI002としたとき、I002/I101の値が0.36以上0.50以下であることを特徴とする請求項1乃至請求項3に記載のハニカム構造体。 In the partition crystal in the first cross section, when the X-ray intensity of the (101) plane is I 101 and the X-ray intensity of the (002) plane is I 002 , the value of I 002 / I 101 is 0. The honeycomb structure according to any one of claims 1 to 3, wherein the honeycomb structure is equal to or greater than 0.36 and equal to or less than 0.50.
  5.  前記封止材は、チタン酸アルミニウムを主成分とする焼結体からなり、前記ハニカム構造体の前記流通路に沿って切断された第2の断面におけるチタン酸アルミニウムの結晶である封止材結晶のP(101)面のX線強度が、P(230)面のX線強度よりも高いことを特徴とする請求項1乃至請求項4のいずれかに記載のハニカム構造体。 The sealing material is made of a sintered body mainly composed of aluminum titanate, and is a sealing material crystal that is a crystal of aluminum titanate in a second cross section cut along the flow path of the honeycomb structure. The honeycomb structure according to any one of claims 1 to 4, wherein the X-ray intensity of the P (101) plane of the P is higher than the X-ray intensity of the P (230) plane.
  6.  前記第2の断面における前記封止材結晶において、前記P(230)面のX線強度をIP230とし、前記P(101)のX線強度をIP101としたとき、IP101/IP230の値が1.8以上2.5以下であることを特徴とする請求項5に記載のハニカム構造体。 In the sealing material crystal in the second cross section, when the X-ray intensity of the P (230) plane is I P230 and the X-ray intensity of the P (101) is I P101 , I P101 / I P230 The honeycomb structure according to claim 5, wherein the value is 1.8 or more and 2.5 or less.
  7.  前記第2の断面における前記封止材結晶において、P(002)面のX線強度をIP002とし、前記P(230)面のX線強度をIP230としたとき、IP002/(IP002+IP230)の値が0.12以上0.18以下であることを特徴とする請求項5または請求項6に記載のハニカム構造体。 In the encapsulant crystal in the second cross section, when the X-ray intensity of the P (002) plane is I P002 and the X-ray intensity of the P (230) plane is I P230 , I P002 / (I P002 The honeycomb structure according to claim 5 or 6, wherein a value of + IP230 is 0.12 or more and 0.18 or less.
  8.  前記第2の断面における前記封止材結晶において、前記P(101)面のX線強度をIP101とし、前記P(002)面のX線強度をIP002としたとき、IP002/IP101の値が0.05以上0.30以下であることを特徴とする請求項5乃至請求項7のいずれかに記載のハニカム構造体。 In the encapsulant crystal in the second cross section, when the X-ray intensity of the P (101) plane is I P101 and the X-ray intensity of the P (002) plane is I P002 , I P002 / I P101 The honeycomb structure according to any one of claims 5 to 7, wherein the value of is not less than 0.05 and not more than 0.30.
  9.  前記流出口側において、前記第1の断面における前記隔壁結晶の(232)面のX線強度をI232とし、前記(230)面のX線強度をI230としたときのI232/(I232+I230)の値と、前記第2の断面における前記封止材結晶のP(232)面のX線強度をIP232とし、前記P(230)面のX線強度をIP230としたときのIP232/(IP232+IP230)の値とが異なっていることを特徴とする請求項5乃至請求項8のいずれかに記載のハニカム構造体。 On the outlet side, I 232 / (I when the X-ray intensity of the (232) plane of the partition crystal in the first cross section is I 232 and the X-ray intensity of the (230) plane is I 230. 232 + I 230 ) and the X-ray intensity of the P (232) plane of the sealing material crystal in the second cross section as I P232 and the X-ray intensity of the P (230) plane as I P230 The honeycomb structure according to any one of claims 5 to 8, wherein a value of I P232 / (I P232 + I P230 ) is different.
  10.  排気ガスの導入管が接続されたケース内に、請求項1乃至請求項9のいずれかに記載のハニカム構造体を備えていることを特徴とするガス処理装置。 A gas treatment apparatus comprising the honeycomb structure according to any one of claims 1 to 9 in a case to which an exhaust gas introduction pipe is connected.
PCT/JP2014/081592 2013-11-29 2014-11-28 Honeycomb structure, and gas treatment device provided therewith WO2015080255A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013247851 2013-11-29
JP2013-247851 2013-11-29
JP2014046440 2014-03-10
JP2014-046440 2014-03-10

Publications (1)

Publication Number Publication Date
WO2015080255A1 true WO2015080255A1 (en) 2015-06-04

Family

ID=53199190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081592 WO2015080255A1 (en) 2013-11-29 2014-11-28 Honeycomb structure, and gas treatment device provided therewith

Country Status (1)

Country Link
WO (1) WO2015080255A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08215522A (en) * 1994-12-15 1996-08-27 Matsushita Electric Ind Co Ltd Filter for exhaust gas and production thereof
WO2008047557A1 (en) * 2006-09-28 2008-04-24 Hitachi Metals, Ltd. Method for producing ceramic honeycomb filter
JP2011206635A (en) * 2010-03-29 2011-10-20 Kyocera Corp Honeycomb structure, and exhaust gas treatment device using the same
WO2012046577A1 (en) * 2010-10-04 2012-04-12 大塚化学株式会社 Exhaust gas purification filter, and method for producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08215522A (en) * 1994-12-15 1996-08-27 Matsushita Electric Ind Co Ltd Filter for exhaust gas and production thereof
WO2008047557A1 (en) * 2006-09-28 2008-04-24 Hitachi Metals, Ltd. Method for producing ceramic honeycomb filter
JP2011206635A (en) * 2010-03-29 2011-10-20 Kyocera Corp Honeycomb structure, and exhaust gas treatment device using the same
WO2012046577A1 (en) * 2010-10-04 2012-04-12 大塚化学株式会社 Exhaust gas purification filter, and method for producing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Gomu Plastic Nanshitsubutsu Katasakei Seihin Catalog", KABUSHIKI KAISHA TECLOCK, 13 November 2000 (2000-11-13), pages 7 *

Similar Documents

Publication Publication Date Title
JP5527773B2 (en) Honeycomb structure and gas processing apparatus
JP5502000B2 (en) Honeycomb structure and particulate filter
JP4495152B2 (en) Honeycomb structure and manufacturing method thereof
US11883802B2 (en) Silicon carbide porous body and method for producing the same
JP4950492B2 (en) Manufacturing method of honeycomb filter for exhaust gas purification
CN107489493B (en) Honeycomb filter
US9045372B2 (en) Honeycomb structure body
WO2012157421A1 (en) Honeycomb filter
WO2009122539A1 (en) Honeycomb structure
JP4991778B2 (en) Honeycomb structure
EP2915572A1 (en) Honeycomb structure and gas processing device using same
JP2015066517A (en) Honeycomb structure and gas treatment device using the same
WO2015080255A1 (en) Honeycomb structure, and gas treatment device provided therewith
JP5791391B2 (en) Honeycomb structure and gas processing apparatus using the same
JPWO2009041611A1 (en) Honeycomb structure and purification apparatus using the same
JPWO2009122536A1 (en) Manufacturing method of honeycomb structure
JP2012232240A (en) Honeycomb structure, and gas treatment apparatus provided with the same
WO2012157422A1 (en) Honeycomb filter
WO2009122537A1 (en) Process for producing honeycomb structure
JP2015009205A (en) Honeycomb structure body and gas treatment device using the same
WO2013027570A1 (en) Honeycomb structure manufacturing method
JPH11114336A (en) Exhaust gas filter and its production
JP2015182950A (en) Honeycomb structure, and gas treatment device including the same
WO2015111618A1 (en) Honeycomb structure and gas treatment device equipped with same
JP2013044319A (en) Honeycomb structure body and gas treatment system using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14865239

Country of ref document: EP

Kind code of ref document: A1