JP2001072472A - Jig for burning silicon carbide - Google Patents

Jig for burning silicon carbide

Info

Publication number
JP2001072472A
JP2001072472A JP34292399A JP34292399A JP2001072472A JP 2001072472 A JP2001072472 A JP 2001072472A JP 34292399 A JP34292399 A JP 34292399A JP 34292399 A JP34292399 A JP 34292399A JP 2001072472 A JP2001072472 A JP 2001072472A
Authority
JP
Japan
Prior art keywords
silicon carbide
jig
firing
molded body
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34292399A
Other languages
Japanese (ja)
Inventor
Takamitsu Saijo
貴満 西城
Kazuya Naruse
和也 成瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP34292399A priority Critical patent/JP2001072472A/en
Publication of JP2001072472A publication Critical patent/JP2001072472A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a jig for burning silicon carbide, scarcely producing coarse particles of silicon carbide on the surface when burning and capable of repeatedly using. SOLUTION: This jig is a plate-like jig for burning composed of a carbon material used when degreasing columnar silicon carbide forming product in which many through holes are arranged side by side in longitudinal direction at a distance from partition wall and then burning the forming product and the carbon material has 30-60% porosity. In the jig, a processing is preferably applied so as to leave a belt-like or rectangular protruded part 15 when viewed in a plane onto a face placing the silicon carbide forming product.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多数の貫通孔が長
手方向に並設された柱状の炭化珪素成形体の焼成用治具
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a jig for firing a columnar silicon carbide molded body having a large number of through holes arranged in a longitudinal direction.

【0002】[0002]

【従来の技術】バス、トラック等の車両や建設機械等の
内燃機関から排出される排気ガス中に含有されるパティ
キュレートが環境や人体に害を及ぼすことが最近問題と
なっている。この排気ガスを多孔質セラミックを通過さ
せることにより、排気ガス中のパティキュレートを捕集
して排気ガスを浄化するセラミックフィルタが種々提案
されている。
2. Description of the Related Art Recently, it has become a problem that particulates contained in exhaust gas discharged from internal combustion engines such as vehicles such as buses and trucks and construction machines cause harm to the environment and human bodies. Various ceramic filters have been proposed which purify the exhaust gas by collecting the particulates in the exhaust gas by passing the exhaust gas through a porous ceramic.

【0003】セラミックフィルタは、通常、図3に示す
ような多孔質セラミック部材30が複数個結束されてセ
ラミックフィルタ20を構成している。また、この多孔
質セラミック部材30は、図4に示すように、長手方向
に多数の貫通孔31が並設され、貫通孔31同士を隔て
る隔壁33がフィルタとして機能するようになってい
る。
In general, a ceramic filter 20 is formed by bundling a plurality of porous ceramic members 30 as shown in FIG. As shown in FIG. 4, the porous ceramic member 30 has a large number of through holes 31 arranged in a longitudinal direction, and a partition wall 33 separating the through holes 31 functions as a filter.

【0004】すなわち、多孔質セラミック部材30に形
成された貫通孔31は、図4(b)に示すように、排気
ガスの入り口側又は出口側の端部のいずれかが充填材3
2により目封じされ、一の貫通孔31に流入した排気ガ
スは、必ず貫通孔31を隔てる隔壁33を通過した後、
他の貫通孔31から流出するようになっており、排気ガ
スがこの隔壁33を通過する際、パティキュレートが隔
壁33部分で捕捉され、排気ガスが浄化される。このよ
うな多孔質セラミック部材30のなかで、特に、炭化珪
素多孔質部材は、極めて耐熱性に優れ、再生処理等も容
易であるため、種々の大型車両等に使用されている。
[0004] That is, as shown in FIG. 4B, the through hole 31 formed in the porous ceramic member 30 has a filling material 3 at either the inlet or outlet end of the exhaust gas.
The exhaust gas plugged by 2 and flowing into one through hole 31 always passes through a partition wall 33 separating the through hole 31,
When the exhaust gas passes through the partition wall 33, the particulates are captured at the partition wall 33 and the exhaust gas is purified. Among such porous ceramic members 30, particularly, a silicon carbide porous member is extremely excellent in heat resistance and easy to regenerate, so that it is used for various large vehicles and the like.

【0005】従来、このような炭化珪素多孔質部材を製
造する際には、まず、セラミック粉末とバインダーと分
散媒液とを混合して成形体製造用の混合組成物を調製し
た後、この混合組成物の押出成形等を行うことにより、
炭化珪素成形体を作製する。
Conventionally, when producing such a silicon carbide porous member, first, a ceramic powder, a binder, and a dispersion medium are mixed to prepare a mixed composition for producing a molded body, and then the mixed composition is prepared. By extruding the composition, etc.,
A silicon carbide compact is produced.

【0006】そして、次に、得られた炭化珪素成形体を
ヒータ等を用いて乾燥させ、一定の強度を有し、容易に
取り扱うことができる図5に示す炭化珪素成形体の乾燥
体40を製造する。この乾燥工程の後、炭化珪素成形体
40を酸素含有雰囲気下において、400〜600℃に
加熱することにより、有機バインダー成分中の溶剤を揮
発させるとともに、樹脂成分を分解消失させる脱脂工程
を行い、続いて、脱脂後の炭化珪素成形体(以下、脱脂
済成形体という)を焼結させる焼成工程を行い、炭化珪
素多孔質部材30を製造していた。
Then, the obtained silicon carbide molded body is dried using a heater or the like to obtain a dried silicon carbide molded body 40 shown in FIG. 5 which has a certain strength and can be easily handled. To manufacture. After this drying step, by heating the silicon carbide molded body 40 to 400 to 600 ° C. in an oxygen-containing atmosphere, a solvent in the organic binder component is volatilized, and a degreasing step of decomposing and eliminating the resin component is performed. Subsequently, a firing step of sintering the degreased silicon carbide molded body (hereinafter, referred to as a degreased molded body) was performed to manufacture the silicon carbide porous member 30.

【0007】通常、脱脂工程では、炭化珪素成形体40
を板状体等の治具の上に載置して脱脂炉に運び込んだ
後、脱脂を行い、続いて、脱脂工程が終了した成形体
を、そのまま焼成炉に運び込み、不活性ガス雰囲気下、
2000〜2200℃に加熱することにより焼成してい
た。上記工程において、炭化珪素成形体40を載置する
ために用いられる治具は、焼成工程における高温に対し
ても耐え得る特性を有する材料である必要があり、この
ような耐熱性の材料として、緻密な構造を有する炭素材
料が用いられていた。
Usually, in the degreasing step, the silicon carbide compact 40
After being placed on a jig such as a plate-shaped body and carried into a degreasing furnace, degreasing is performed.Then, the molded body after the degreasing step is carried as it is to a firing furnace, and in an inert gas atmosphere,
It was fired by heating to 2000 to 2200 ° C. In the above process, the jig used to place the silicon carbide molded body 40 needs to be a material having characteristics that can withstand high temperatures in the firing process. As such a heat-resistant material, A carbon material having a dense structure has been used.

【0008】しかしながら、このような緻密な構造を有
する炭素材料からなる治具(以下、炭化珪素焼成用治具
という)を用いた焼成工程においては、以下のような問
題点があった。すなわち、炭化珪素成形体は、その製造
条件に起因して炭化珪素粉末中に約3%程度のSiO2
を含有しており、焼成時に炭化珪素成形体から上記Si
2 が昇華して放出され、SiOガスと炭化珪素焼成用
治具を構成する炭素との下記反応式(1)
However, the firing process using a jig made of a carbon material having such a dense structure (hereinafter, referred to as a silicon carbide firing jig) has the following problems. That is, about 3% of SiO 2 is contained in the silicon carbide powder due to the manufacturing conditions.
And the above-mentioned Si
O 2 is sublimated and released, and the following reaction formula (1) of SiO gas and carbon constituting the jig for firing silicon carbide is used.

【0009】SiO+2C→SiC+CO・・・(1)SiO + 2C → SiC + CO (1)

【0010】に示す反応が進行し、炭化珪素が炭化珪素
焼成用治具表面に生成する。また、炭化珪素焼成用治具
は、緻密であるため、SiOガスが成形体と治具との界
面に滞留しやすく、そのため、生成した炭化珪素を種結
晶として粒子が粗大化する。さらに、炭化珪素粉末が高
温のために一部蒸発し、炭化珪素表面に形成された炭化
珪素粒子上で再結晶化する現象もみられる。その結果、
炭化珪素焼成用治具の表面に粗大粒子が生成し、表面の
平滑性が失われてしまっていた。この粗大粒子は、炭化
珪素成形体と炭化珪素焼成用治具とが接している部分に
多く見られた。
The reaction shown in [1] proceeds, and silicon carbide is generated on the surface of the jig for firing silicon carbide. Further, since the silicon carbide firing jig is dense, the SiO gas easily stays at the interface between the molded body and the jig, so that the generated silicon carbide is used as a seed crystal to coarsen the particles. Further, a phenomenon is also observed in which silicon carbide powder partially evaporates due to high temperature and recrystallizes on silicon carbide particles formed on the surface of silicon carbide. as a result,
Coarse particles were generated on the surface of the jig for firing silicon carbide, and the smoothness of the surface was lost. These coarse particles were often found in a portion where the silicon carbide compact and the jig for firing silicon carbide were in contact with each other.

【0011】このような表面に炭化珪素粒子の粗大粒子
を有する炭化珪素焼成用治具では、次に、炭化珪素成形
体を載置し、焼成工程を行う際に、この粗大粒子に起因
して炭化珪素成形体の表面に傷が付きやすく、炭化珪素
成形体の機械的特性を劣化させる原因となっていた。ま
た、炭化珪素焼成用治具の表面に生成した炭化珪素は、
極めて硬いため取り除くことが困難であり、そのため、
従来の炭化珪素焼成用治具は再利用することが難しかっ
た。
In such a jig for firing silicon carbide having coarse particles of silicon carbide particles on its surface, when the silicon carbide compact is placed and the firing step is performed, the jig is caused by the coarse particles. The surface of the silicon carbide molded body is easily scratched, causing deterioration of the mechanical properties of the silicon carbide molded body. Also, silicon carbide generated on the surface of the silicon carbide firing jig is:
Extremely hard and difficult to remove,
It was difficult to reuse a conventional jig for firing silicon carbide.

【0012】[0012]

【発明が解決しようとする課題】本発明は、これらの問
題を解決するためになされたもので、焼成時に表面で炭
化珪素の粗大粒子が生成しにくく、繰り返し使用するこ
とができる炭化珪素焼成用治具を提供することを目的と
するものである。
SUMMARY OF THE INVENTION The present invention has been made in order to solve these problems, and it is difficult to form large particles of silicon carbide on the surface during firing, and it is possible to use silicon carbide for firing repeatedly. It is intended to provide a jig.

【0013】[0013]

【課題を解決するための手段】本発明の炭化珪素焼成用
治具は、多数の貫通孔が隔壁を隔てて長手方向に並設さ
れた柱状の炭化珪素成形体を脱脂した後、焼成する際に
用いる炭素材料からなる板状の焼成用治具であって、上
記炭素材料は、30〜60%の気孔率を有することを特
徴とする。
SUMMARY OF THE INVENTION The present invention provides a jig for sintering silicon carbide in which a plurality of through-holes are degreased and fired after forming a columnar silicon carbide molded body which is juxtaposed in a longitudinal direction across a partition wall. A plate-like firing jig made of a carbon material used for the above, wherein the carbon material has a porosity of 30 to 60%.

【0014】[0014]

【発明の実施の形態】以下、本発明の炭化珪素焼成用治
具について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a jig for firing silicon carbide of the present invention will be described.

【0015】本発明の炭化珪素焼成用治具は、炭素材料
からなる板状の焼成用治具であり、上記炭素材料は、3
0〜60%の気孔率を有する。このような範囲の気孔率
を有する炭素材料は、SiOガスを通過しやすく、この
炭素材料を使用することにより、焼成時に脱脂済成形体
から発生するSiOガスと炭化珪素焼成用治具を構成す
る炭素とが表面のみでなく、その内部で反応し、炭化珪
素焼成用治具表面に炭化珪素の粗大粒子が生成すること
を抑制することができる。
The jig for firing silicon carbide according to the present invention is a plate-shaped firing jig made of a carbon material.
It has a porosity of 0-60%. A carbon material having a porosity in such a range easily passes SiO gas, and by using this carbon material, a SiO gas generated from a degreased molded body during firing and a jig for firing silicon carbide are constituted. It is possible to suppress the generation of coarse particles of silicon carbide on the surface of the jig for firing silicon carbide by reacting with carbon not only on the surface but also inside the surface.

【0016】上記炭素材料の気孔率が30%未満では、
発生したSiOが炭化珪素焼成用治具を通過しにくく、
表面に滞留しやすいため、炭化珪素焼成用治具表面に炭
化珪素の粗大粒子が生成するのを抑制することができ
ず、一方、気孔率が60%を超えると炭化珪素焼成用治
具の強度が低下し、炭化珪素焼成用治具としての使用で
きない場合があるため上記範囲に限定される。
If the porosity of the carbon material is less than 30%,
The generated SiO is difficult to pass through the jig for firing silicon carbide,
Since the silicon carbide firing jig easily stays on the surface, it is impossible to suppress the generation of coarse particles of silicon carbide on the surface of the silicon carbide firing jig. On the other hand, when the porosity exceeds 60%, the strength of the silicon carbide firing jig is reduced. Is reduced, and may not be used as a jig for firing silicon carbide.

【0017】上記炭素材料が有する気孔の気孔径は、大
きいほど好ましいが、機械的な特性を考慮し、通常、5
0〜300μm程度のものが用いられる。
The pore diameter of the pores of the carbon material is preferably as large as possible.
Those having a thickness of about 0 to 300 μm are used.

【0018】上記炭化珪素焼成用治具を構成する炭素材
料としては、上記範囲の気孔率を有するものであれば特
に限定されず、例えば、ポーラスカーボン等を挙げるこ
とができる。上記ポーラスカーボンの具体例としては、
例えば、G100(東海カーボン社製)、PC5060
G(東海カーボン社製)等を挙げることができる。
The carbon material constituting the silicon carbide firing jig is not particularly limited as long as it has a porosity in the above range, and examples thereof include porous carbon. Specific examples of the above porous carbon include:
For example, G100 (manufactured by Tokai Carbon Co., Ltd.), PC5060
G (manufactured by Tokai Carbon Co., Ltd.) and the like.

【0019】上記炭化珪素焼成用治具は、上記炭化珪素
成形体を載置する面に溝加工が施されているものが好ま
しい。溝加工を施すことにより、SiOガスが溝の内部
を通過するため、溝の内部では炭化珪素の粗大粒子が生
成しやすいが、表面では、炭化珪素の粗大粒子が生成し
にくく、炭化珪素が炭化珪素焼成用治具表面で粗大粒子
化するのを防止することができる。
The jig for firing silicon carbide preferably has a groove formed on a surface on which the silicon carbide compact is placed. By performing the groove processing, coarse particles of silicon carbide are likely to be generated inside the groove because the SiO gas passes through the inside of the groove, but coarse particles of silicon carbide are hardly generated on the surface, and The formation of coarse particles on the surface of the silicon firing jig can be prevented.

【0020】上記溝加工は、1.0〜2.0mmの深
さ、1.0〜2.0mmの幅の溝を0.5〜1.5mm
の間隔で施すことが好ましい。
The above groove processing is performed by forming a groove having a depth of 1.0 to 2.0 mm and a width of 1.0 to 2.0 mm by 0.5 to 1.5 mm.
It is preferable to apply at intervals.

【0021】また、上記炭化珪素焼成用治具は、上記炭
化珪素成形体を載置する面に、平面視帯状又は矩形状の
突起部が残るように、加工が施されているものが好まし
い。すなわち、本発明では、溝加工を施す際に、その溝
の幅を広げ、溝加工が施されていない突起部の面積が溝
の面積と比べてかなり小さくなるように溝加工を施して
もよい。
Preferably, the jig for firing silicon carbide is processed so that a band-shaped or rectangular projection in plan view remains on the surface on which the silicon carbide molded body is placed. That is, in the present invention, when performing the groove processing, the groove width may be widened, and the groove processing may be performed such that the area of the protrusion that is not subjected to the groove processing is considerably smaller than the area of the groove. .

【0022】また、図1(a)、(b)に示すように、
板状の炭化珪素焼成用治具11に溝加工を施すかわり
に、辺部(縁部)の突起も切削し、辺部から離れた部分
に、平面視帯状の突起部15だけが残るように加工を施
してもよい。突起部15の形状は、平面視帯状に限られ
ず、平面視矩形状等であってもよい。
As shown in FIGS. 1A and 1B,
Instead of performing the groove processing on the plate-like silicon carbide firing jig 11, the protrusions on the sides (edges) are also cut so that only the band-shaped protrusions 15 in plan view remain in the portions away from the sides. Processing may be performed. The shape of the projection 15 is not limited to a band shape in plan view, and may be a rectangular shape in plan view.

【0023】すなわち、残された突起部は、脱脂済成形
体を載置する部分となる。従って、これらを載置するこ
とができるような形状に突起部が形成されていれば、そ
の形状は問わない。上記脱脂済成形体を載置するため、
上記突起部は、少なくとも2箇所残されていることが望
ましい。
That is, the remaining protrusions are portions on which the degreased molded body is placed. Therefore, the shape is not limited as long as the protrusion is formed in such a shape that they can be placed. To place the degreased molded body,
It is desirable that at least two protrusions are left.

【0024】このような突起部が残るように加工を施す
ことにより、脱脂済成形体との接触面積も小さくなるた
め、ほとんどのSiOガスは突起部以外の部分を流れ
る。従って、さらに突起部の表面が粗化されにくくな
り、製造する多孔質炭化珪素部材の強度低下をより効果
的に防止することができる。
By processing so that such projections remain, the contact area with the degreased molded body is also reduced, so that most of the SiO gas flows through portions other than the projections. Therefore, the surface of the projection is less likely to be roughened, and a decrease in the strength of the porous silicon carbide member to be manufactured can be more effectively prevented.

【0025】焼成においては、突起部における伝熱によ
る熱伝導と、突起部以外からの放射による熱伝導によ
り、焼結の進行状態がかなり影響される。従って、上記
突起部の厚さやその幅(接触面積)は、炭化珪素焼成用
治具の熱伝導率と焼成条件とを考慮して設定すればよい
が、通常、突起部の厚さは、1〜10mmの範囲が好ま
しい。
In sintering, the progress of sintering is considerably affected by the heat conduction by heat transfer at the projections and the heat conduction by radiation from portions other than the projections. Therefore, the thickness and the width (contact area) of the protrusion may be set in consideration of the thermal conductivity of the jig for firing silicon carbide and the firing conditions. A range from 10 to 10 mm is preferred.

【0026】また、上述したように、上記突起部の位置
は限定されず、炭化珪素焼成用治具の両端部にあっても
よく、両端が削除され、それ以外の部分にあってもよ
い。
Further, as described above, the position of the projection is not limited, and may be at both ends of the silicon carbide firing jig, or both ends may be deleted and other portions may be provided.

【0027】上記炭化珪素焼成用治具は、上記炭素材料
からなる板状体の表面に炭化珪素からなる被覆層が形成
されているものが好ましい。この炭化珪素被覆層の厚さ
は、20〜60μmが好ましい。上記被覆層を形成する
ことにより、焼成時に炭化珪素成形体からSiOガスが
発生しても、炭化珪素焼成用治具の表面に、SiOガス
と反応し易い炭素の単体が存在しないため、炭化珪素が
炭化珪素焼成用治具表面に生成しにくくなる。
The jig for firing silicon carbide is preferably a jig in which a coating layer made of silicon carbide is formed on the surface of a plate made of the carbon material. The thickness of the silicon carbide coating layer is preferably from 20 to 60 μm. By forming the coating layer, even if SiO gas is generated from the silicon carbide molded body at the time of firing, there is no carbon simple substance which easily reacts with the SiO gas on the surface of the jig for firing silicon carbide. Are hardly generated on the surface of the jig for firing silicon carbide.

【0028】上記炭化珪素焼成用治具の厚さは特に限定
されないが、5〜20mmが好ましい。上記厚さが5m
m未満では、薄すぎるため、機械的な強度が充分でな
く、使用時に破損が発生しやすく、一方、20mmを超
えると、発生したSiOガスが炭化珪素焼成用治具の内
部を通過しにくくなり、また、経済的に不利になるから
である。
The thickness of the jig for firing silicon carbide is not particularly limited, but is preferably 5 to 20 mm. The above thickness is 5m
If it is less than m, the mechanical strength is not sufficient because it is too thin, and breakage tends to occur during use. On the other hand, if it exceeds 20 mm, the generated SiO gas becomes difficult to pass through the jig for firing silicon carbide. It is also economically disadvantageous.

【0029】次に、本発明の炭化珪素焼成用治具を用い
た焼成方法について説明する。本発明で脱脂、焼成の対
象となる炭化珪素成形体は、炭化珪素粉末とバインダー
と分散媒液との混合組成物からなるものである。
Next, a firing method using the jig for firing silicon carbide of the present invention will be described. The silicon carbide molded object to be degreased and fired in the present invention is made of a mixed composition of silicon carbide powder, a binder, and a dispersion medium.

【0030】上記炭化珪素粉末の粒径は特に限定される
ものではないが、後の焼成過程で収縮が少ないものが好
ましく、例えば、0.3〜50μm程度の平均粒子径を
有する粉末100重量部と0.1〜1.0μm程度の平
均粒子径を有する粉末5〜65重量部とを組み合わせた
ものが好ましい。
The particle size of the silicon carbide powder is not particularly limited, but preferably has a small shrinkage in the subsequent firing step, for example, 100 parts by weight of a powder having an average particle size of about 0.3 to 50 μm. It is preferable to use a combination of a powder having an average particle diameter of about 0.1 to 1.0 μm and 5 to 65 parts by weight.

【0031】上記バインダーとしては特に限定されず、
例えば、メチルセルロース、カルボキシメチルセルロー
ス、ヒドロキシエチルセルロース、ポリエチレングリコ
ール、フェノール樹脂、エポキシ樹脂等を挙げることが
できる。上記バインダーの配合量は、通常、炭化珪素粉
末100重量部に対して、1〜10重量部程度が好まし
い。
The binder is not particularly limited.
For example, methylcellulose, carboxymethylcellulose, hydroxyethylcellulose, polyethylene glycol, phenol resin, epoxy resin and the like can be mentioned. Generally, the amount of the binder is preferably about 1 to 10 parts by weight based on 100 parts by weight of the silicon carbide powder.

【0032】上記分散媒液としては特に限定されず、例
えば、ベンゼン等の有機溶媒;メタノール等のアルコー
ル、水等を挙げることができる。上記分散媒液は、混合
組成物の粘度が一定範囲内となるように、適量配合され
る。これら炭化珪素粉末とバインダーと分散媒液等と
は、アトライター等で混合された後、ニーダー等で充分
に混練され、押し出し成形法等により、多数の貫通孔が
隔壁を隔てて長手方向に並設された柱状の炭化珪素成形
体が作製される。
The dispersion medium is not particularly restricted but includes, for example, organic solvents such as benzene; alcohols such as methanol, and water. The dispersion medium is mixed in an appropriate amount so that the viscosity of the mixed composition falls within a certain range. The silicon carbide powder, the binder, the dispersion medium and the like are mixed with an attritor or the like, and then sufficiently kneaded with a kneader or the like, and a number of through-holes are arranged in the longitudinal direction across the partition by extrusion molding or the like. The provided columnar silicon carbide molded body is manufactured.

【0033】この炭化珪素成形体は、酸素含有雰囲気
下、400〜600℃に加熱されることにより、バイン
ダー等が揮散するとともに、分解、消失し、ほぼ炭化珪
素粉末のみが残留する。この工程の後、下記する条件の
焼成が行われる。
When the silicon carbide molded body is heated to 400 to 600 ° C. in an oxygen-containing atmosphere, the binder and the like volatilize, and decompose and disappear, leaving almost only silicon carbide powder. After this step, firing is performed under the following conditions.

【0034】図2は、本発明の炭化珪素焼成用治具を用
いた、炭化珪素成形体の焼成方法の一例を図示した断面
図である。
FIG. 2 is a cross-sectional view illustrating an example of a method of firing a silicon carbide compact using the silicon carbide firing jig of the present invention.

【0035】この焼成工程では、図2に示すように、る
つぼ13内に、炭化珪素成形体12が載置された炭化珪
素焼成用治具11を、るつぼ13の底に密着しないよう
に設置する。その後、るつぼ13の周囲に設置したヒー
タ14により加熱を行い、脱脂工程を経た炭化珪素成形
体12を焼成する。焼成は、窒素、アルゴン等の不活性
ガス雰囲気下、2000〜2200℃で加熱を行うこと
により行う。
In this firing step, as shown in FIG. 2, the silicon carbide firing jig 11 on which the silicon carbide molded body 12 is placed is placed in the crucible 13 so as not to adhere to the bottom of the crucible 13. . Thereafter, heating is performed by heater 14 provided around crucible 13, and silicon carbide molded body 12 that has undergone the degreasing step is fired. The firing is performed by heating at 2000 to 2200 ° C. in an atmosphere of an inert gas such as nitrogen or argon.

【0036】この焼成工程では、炭化珪素成形体12中
から発生したSiOガスは、炭化珪素焼成用治具11の
気孔率が高いため、炭化珪素焼成用治具11の内部を通
過しやすく、そのため、従来と比較して表面の炭素と反
応するSiOの量が大きく減少し、炭化珪素の生成が抑
制されるとともに、粗大化しにくくなる。一方、従来の
緻密な炭素材料においては、その表面付近で、発生した
SiOが滞留しやすいため、炭素と反応し、生成した炭
化珪素が粗大化しやすい。
In the firing step, the SiO gas generated from the silicon carbide compact 12 easily passes through the silicon carbide firing jig 11 because the porosity of the silicon carbide firing jig 11 is high. The amount of SiO which reacts with carbon on the surface is greatly reduced as compared with the conventional case, and the generation of silicon carbide is suppressed and the silicon carbide is hardly coarsened. On the other hand, in a conventional dense carbon material, generated SiO tends to stay near its surface, so that it reacts with carbon and generated silicon carbide tends to be coarse.

【0037】図2においては、炭化珪素焼成用治具11
をるつぼ13の内部に載置しているが、本発明において
は、炭化珪素成形体12が載置された炭化珪素焼成用治
具11をそのまま焼成炉に載置してもよい。また、その
場合、炭化珪素焼成用治具11の周囲に支持部材を固定
することにより、上に載置した炭化珪素焼成用治具と炭
化珪素成形体12と接触しないようにすれば、炭化珪素
焼成用治具を何段かに積み重ねてもよい。
In FIG. 2, jig 11 for firing silicon carbide is provided.
However, in the present invention, the silicon carbide firing jig 11 on which the silicon carbide compact 12 is mounted may be directly mounted in a firing furnace. In this case, by fixing a support member around the silicon carbide firing jig 11 so that the silicon carbide firing jig placed above does not come into contact with the silicon carbide molded body 12, silicon carbide The firing jigs may be stacked in several stages.

【0038】また、上記炭化珪素焼成用治具は、上記し
た焼成工程のみならず、焼成工程より低温度で行われる
脱脂工程においても、炭化珪素成形体を載置するための
治具として使用することができる。そのため、炭化珪素
焼結体の製造においては、脱脂工程から焼成工程に至る
一連の工程を、炭化珪素成形体を載せ代えることなく行
うことができる。
The silicon carbide firing jig is used as a jig for mounting the silicon carbide molded body not only in the above firing step but also in a degreasing step performed at a lower temperature than the firing step. be able to. Therefore, in the production of the silicon carbide sintered body, a series of steps from the degreasing step to the firing step can be performed without replacing the silicon carbide molded body.

【0039】[0039]

【実施例】以下に実施例を掲げて本発明を更に詳しく説
明するが、本発明はこれら実施例のみに限定されるもの
ではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0040】実施例1 平均粒子径30μmのα型炭化珪素粉末70重量部、平
均粒子径0.28μmのβ型炭化珪素粉末30重量部、
メチルセルロース5重量部、分散剤4重量部、水20重
量部を配合して均一に混合することにより、原料の混合
組成物を調製した。この混合組成物を押出成形機に充填
し、押出速度2cm/分にて図5に示すような炭化珪素
成形体40を作製した。この炭化珪素成形体40は、そ
の大きさが33mm×33mm×300mmで、貫通孔
41の数が31個/cm2 、隔壁43の厚さが0.35
mmであった。
Example 1 70 parts by weight of α-type silicon carbide powder having an average particle diameter of 30 μm, 30 parts by weight of β-type silicon carbide powder having an average particle diameter of 0.28 μm,
5 parts by weight of methylcellulose, 4 parts by weight of a dispersant, and 20 parts by weight of water were blended and uniformly mixed to prepare a mixed composition of raw materials. This mixed composition was charged into an extruder, and a silicon carbide molded body 40 as shown in FIG. 5 was produced at an extrusion speed of 2 cm / min. This silicon carbide molded body 40 has a size of 33 mm × 33 mm × 300 mm, the number of through holes 41 is 31 / cm 2 , and the thickness of partition 43 is 0.35
mm.

【0041】次に、炭化珪素成形体40の乾燥を行った
後、G100(東海カーボン社製)からなる炭化珪素焼
成用治具に載置し、5%の酸素濃度を有する空気と窒素
との混合ガス雰囲気下、450℃で加熱することにより
脱脂工程を行った。次に、炭化珪素成形体40を炭化珪
素焼成用治具に載置したまま、焼成装置に搬入し、22
00℃に加熱することにより炭化珪素成形体の焼成を行
い、炭化珪素焼結体を得た。
Next, after drying the silicon carbide compact 40, it is placed on a silicon carbide firing jig made of G100 (manufactured by Tokai Carbon Co., Ltd.), and air and nitrogen having an oxygen concentration of 5% are mixed. The degreasing step was performed by heating at 450 ° C. in a mixed gas atmosphere. Next, the silicon carbide molded body 40 is carried into the firing apparatus while being placed on the silicon carbide firing jig, and
The silicon carbide molded body was fired by heating to 00 ° C. to obtain a silicon carbide sintered body.

【0042】得られた炭化珪素焼結体をそのまま、曲げ
強度測定器にかけ、135mmのスパンの条件で3点曲
げ試験を行い、曲げ強度を測定し、そのワイブル係数を
算出した。その結果、平均曲げ強度が48MPa、ワイ
ブル係数mが19.5であった。なお、上記平均曲げ強
度及びワイブル係数は、同じ炭化珪素焼成用治具を繰り
返し5回使用し、2回目〜5回目の使用で得られた焼結
体について算出した。また、5回の焼成工程終了後、炭
化珪素焼成用治具の炭化珪素成形体載置面を目視観察し
たところ、粒径が50μm以上の炭化珪素の粗大結晶は
ほとんど見られなかった。
The obtained silicon carbide sintered body was directly used by a bending strength measuring instrument, and a three-point bending test was performed under a span of 135 mm, the bending strength was measured, and the Weibull coefficient was calculated. As a result, the average bending strength was 48 MPa, and the Weibull coefficient m was 19.5. In addition, the said average bending strength and the Weibull coefficient were calculated about the sintered compact obtained by using the same jig for sintering silicon carbide 5 times, and using the 2nd-5th time. After the completion of the five firing steps, the silicon carbide molded body mounting surface of the silicon carbide firing jig was visually observed, and almost no coarse crystals of silicon carbide having a particle size of 50 μm or more were found.

【0043】実施例2 実施例1で使用した炭化珪素焼成用治具と同素材からな
る炭化珪素焼成用治具のハニカム成形体載置面に、1m
m間隔で、幅1.0mm、深さ1.0mmの溝を形成し
た炭化珪素焼成用治具を用いた以外は、実施例1と同様
にして炭化珪素焼結体を得た。得られた炭化珪素焼結体
について、実施例1と同様にして曲げ強度を測定し、そ
のワイブル係数を算出したところ、平均曲げ強度が47
MPa、ワイブル係数mが18.3であった。また、5
回の焼成工程終了後、炭化珪素焼成用治具の炭化珪素成
形体載置面を目視観察したところ、粒径が50μm以上
の炭化珪素の粗大結晶はほとんど見られなかった。
Example 2 1 m of the silicon carbide firing jig made of the same material as that used in Example 1
A silicon carbide sintered body was obtained in the same manner as in Example 1, except that a jig for firing silicon carbide having grooves of 1.0 mm in width and 1.0 mm in depth formed at m intervals was used. The bending strength of the obtained silicon carbide sintered body was measured in the same manner as in Example 1, and the Weibull coefficient was calculated.
MPa and Weibull coefficient m were 18.3. Also, 5
After the completion of the two firing steps, the mounting surface of the silicon carbide molded body of the jig for firing silicon carbide was visually observed, and almost no coarse crystals of silicon carbide having a particle size of 50 μm or more were found.

【0044】実施例3 実施例1で使用した炭化珪素焼成用治具と同素材からな
る炭化珪素焼成用治具の表面に炭化珪素からなる40μ
mの厚さの被覆層を形成した炭化珪素焼成用治具を用い
た以外は、実施例1と同様にして炭化珪素焼結体を得
た。得られた炭化珪素焼結体について、実施例1と同様
にして曲げ強度を測定し、そのワイブル係数を算出した
ところ、平均曲げ強度が47MPa、ワイブル係数mが
18.9であった。また、5回の焼成工程終了後、炭化
珪素焼成用治具の炭化珪素成形体載置面を目視観察した
ところ、粒径が50μm以上の炭化珪素の粗大結晶はほ
とんど見られなかった。
Example 3 A silicon carbide firing jig made of the same material as the silicon carbide firing jig used in Example 1 had a surface coated with 40 μm of silicon carbide.
A silicon carbide sintered body was obtained in the same manner as in Example 1, except that a jig for firing silicon carbide having a coating layer having a thickness of m was used. The bending strength of the obtained silicon carbide sintered body was measured in the same manner as in Example 1, and the Weibull coefficient was calculated. The average bending strength was 47 MPa and the Weibull coefficient m was 18.9. After the completion of the five firing steps, the silicon carbide molded body mounting surface of the silicon carbide firing jig was visually observed, and almost no coarse crystals of silicon carbide having a particle size of 50 μm or more were found.

【0045】実施例4 実施例1で使用した炭化珪素焼成用治具と同素材からな
る炭化珪素焼成用治具のハニカム成形体載置面に、厚さ
3mm、幅10mmの平面視帯状の突起部を形成した炭
化珪素焼成用治具を用いた以外は、実施例1と同様にし
て炭化珪素焼結体を得た。得られた炭化珪素焼結体につ
いて、実施例1と同様にして曲げ強度を測定し、そのワ
イブル係数を算出したところ、平均曲げ強度が52MP
a、ワイブル係数mが27.5であった。また、5回の
焼成工程終了後、炭化珪素焼成用治具の平面視帯状の突
起部を目視観察したところ、粒径が50μm以上の炭化
珪素の粗大結晶はほとんど見られなかった。
Example 4 A silicon carbide firing jig made of the same material as the silicon carbide firing jig used in Example 1 had a 3 mm-thick and 10 mm-wide band-like projection on a surface on which the formed honeycomb body was placed. A silicon carbide sintered body was obtained in the same manner as in Example 1, except that a jig for firing silicon carbide having formed portions was used. The bending strength of the obtained silicon carbide sintered body was measured in the same manner as in Example 1, and the Weibull coefficient was calculated.
a, the Weibull coefficient m was 27.5. After the completion of the five firing steps, the band-shaped projections of the silicon carbide firing jig were visually observed, and almost no coarse crystals of silicon carbide having a particle size of 50 μm or more were found.

【0046】比較例1 炭化珪素焼成用治具として、ET−10(イビデン社
製、気孔率15%)からなる炭化珪素焼成用治具を用
い、焼成を2回行った以外は、実施例1と同様にして炭
化珪素焼結体を得た。2回目の焼成により得られた炭化
珪素焼結体について、実施例1と同様にして曲げ強度を
測定し、そのワイブル係数を算出したところ、平均曲げ
強度が41MPa、ワイブル係数mが9.01であっ
た。また、2回の焼成工程終了後、炭化珪素焼成用治具
の炭化珪素成形体載置面を目視観察したところ、炭化珪
素成形体載置面の全面にその粒径が50μm以上の大き
さの炭化珪素の結晶が見られ、特に、炭化珪素成形体と
接触していた部分で多くの炭化珪素の結晶が見られた。
Comparative Example 1 A silicon carbide firing jig made of ET-10 (manufactured by IBIDEN, having a porosity of 15%) was used as a silicon carbide firing jig, and firing was performed twice, except that the firing was performed twice. In the same manner as in the above, a silicon carbide sintered body was obtained. The bending strength of the silicon carbide sintered body obtained by the second firing was measured in the same manner as in Example 1, and the Weibull coefficient was calculated. The average bending strength was 41 MPa and the Weibull coefficient m was 9.01. there were. Further, after the two firing steps, the surface of the silicon carbide molded body on which the silicon carbide molded body was placed was visually observed, and the particle size of the silicon carbide molded body was 50 μm or more over the entire surface of the silicon carbide molded body. Crystals of silicon carbide were observed, and in particular, many silicon carbide crystals were observed in portions that were in contact with the silicon carbide compact.

【0047】このように、実施例1〜4で作製した炭化
珪素焼結体は、平均曲げ強度が44MPa以上で、ワイ
ブル係数が15以上と目的とする特性を有する炭化珪素
焼結体が得られたのに対し、比較例1で作製した炭化珪
素焼結体は、平均曲げ強度、ワイブル係数ともに低く、
使用するのに充分な機械的強度を有していなかった。
As described above, the silicon carbide sintered bodies prepared in Examples 1 to 4 have the average bending strength of 44 MPa or more and the Weibull coefficient of 15 or more, and have the desired characteristics. On the other hand, the silicon carbide sintered body produced in Comparative Example 1 had a low average bending strength and a low Weibull coefficient,
It did not have enough mechanical strength to be used.

【0048】[0048]

【発明の効果】本発明の炭化珪素焼成用治具は、上述の
通りであるので、焼成時に表面で炭化珪素の粗大粒子が
生成しにくく、その結果、繰り返し使用することができ
る。
According to the jig for firing silicon carbide of the present invention, as described above, coarse particles of silicon carbide are less likely to be generated on the surface during firing, and as a result, it can be used repeatedly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は、突起部が残るように加工が施された
本発明の炭化珪素焼成用治具を模式的に示した断面図で
あり、(b)は、その平面図である。
FIG. 1A is a cross-sectional view schematically showing a jig for firing silicon carbide of the present invention processed so as to leave a projection, and FIG. 1B is a plan view thereof. .

【図2】本発明の炭化珪素焼成用治具を用いた、炭化珪
素成形体の焼成方法の一例を図示した断面図である。
FIG. 2 is a cross-sectional view illustrating an example of a method for firing a silicon carbide molded body using the jig for firing silicon carbide of the present invention.

【図3】セラミックフィルタを模式的に示す斜視図であ
る。
FIG. 3 is a perspective view schematically showing a ceramic filter.

【図4】(a)は、セラミックフィルタを構成する多孔
質セラミック部材を模式的に示す斜視図であり、(b)
は、その長手方向に平行な縦断面図である。
FIG. 4A is a perspective view schematically showing a porous ceramic member constituting a ceramic filter, and FIG.
Is a longitudinal sectional view parallel to the longitudinal direction.

【図5】本発明の炭化珪素焼成用治具を用いて焼成させ
る炭化珪素成形体を模式的に示した斜視図である。
FIG. 5 is a perspective view schematically showing a silicon carbide molded body fired using the silicon carbide firing jig of the present invention.

【符号の説明】[Explanation of symbols]

11 炭化珪素焼成用治具 12、40 炭化珪素成形体 13 るつぼ 14 ヒータ 15 突起部 20 セラミックフィルタ 30 多孔質セラミック部材 31、41 貫通孔 32 充填材 33、43 隔壁 DESCRIPTION OF SYMBOLS 11 Jig for silicon carbide firing 12, 40 Silicon carbide molded body 13 Crucible 14 Heater 15 Projection 20 Ceramic filter 30 Porous ceramic member 31, 41 Through hole 32 Filler 33, 43 Partition wall

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 多数の貫通孔が隔壁を隔てて長手方向に
並設された柱状の炭化珪素成形体を脱脂した後、焼成す
る際に用いる炭素材料からなる板状の焼成用治具であっ
て、前記炭素材料は、30〜60%の気孔率を有するこ
とを特徴とする炭化珪素焼成用治具。
1. A plate-like firing jig made of a carbon material used for degreasing and firing a columnar silicon carbide molded body in which a large number of through holes are juxtaposed in a longitudinal direction across a partition wall. A jig for firing silicon carbide, wherein the carbon material has a porosity of 30 to 60%.
【請求項2】 炭化珪素成形体を載置する面に溝加工が
施されている請求項1記載の炭化珪素焼成用治具。
2. The jig for firing silicon carbide according to claim 1, wherein a groove is formed on a surface on which the silicon carbide compact is placed.
【請求項3】 炭化珪素成形体を載置する面に、平面視
帯状又は矩形状の突起部が残るように、加工が施されて
いる請求項1記載の炭化珪素焼成用治具。
3. The jig for firing silicon carbide according to claim 1, wherein the jig for firing silicon carbide is processed so that a band-shaped or rectangular projection in plan view remains on a surface on which the silicon carbide molded body is placed.
【請求項4】 表面に炭化珪素からなる被覆層が形成さ
れている請求項1、2又は3記載の炭化珪素焼成用治
具。
4. The jig for firing silicon carbide according to claim 1, wherein a coating layer made of silicon carbide is formed on the surface.
JP34292399A 1999-06-29 1999-12-02 Jig for burning silicon carbide Pending JP2001072472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34292399A JP2001072472A (en) 1999-06-29 1999-12-02 Jig for burning silicon carbide

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-183211 1999-06-29
JP18321199 1999-06-29
JP34292399A JP2001072472A (en) 1999-06-29 1999-12-02 Jig for burning silicon carbide

Publications (1)

Publication Number Publication Date
JP2001072472A true JP2001072472A (en) 2001-03-21

Family

ID=26501738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34292399A Pending JP2001072472A (en) 1999-06-29 1999-12-02 Jig for burning silicon carbide

Country Status (1)

Country Link
JP (1) JP2001072472A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1825979A1 (en) * 2006-02-28 2007-08-29 Ibiden Co., Ltd. Manufacturing method of honeycomb structured body
EP1974884A1 (en) 2007-03-30 2008-10-01 Ibiden Co., Ltd. Method for manufacturing honeycomb structured body
JP2009502709A (en) * 2005-07-28 2009-01-29 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン Baking support for ceramics and method for obtaining the same
US8163753B2 (en) 2003-10-31 2012-04-24 Otsuka Pharmaceutical Co., Ltd. 2,3-dihydro-6-nitroimidazo (2,1-b) oxazole compounds for the treatment of tuberculosis
EP2978000A4 (en) * 2013-03-18 2016-05-11 Intermetallics Co Ltd Grain boundary diffusion process jig, and container for grain boundary diffusion process jig

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8163753B2 (en) 2003-10-31 2012-04-24 Otsuka Pharmaceutical Co., Ltd. 2,3-dihydro-6-nitroimidazo (2,1-b) oxazole compounds for the treatment of tuberculosis
JP2009502709A (en) * 2005-07-28 2009-01-29 サン−ゴバン サントル ドゥ ルシェルシェ エ デトゥードゥ ユーロペン Baking support for ceramics and method for obtaining the same
EP1825979A1 (en) * 2006-02-28 2007-08-29 Ibiden Co., Ltd. Manufacturing method of honeycomb structured body
EP1974884A1 (en) 2007-03-30 2008-10-01 Ibiden Co., Ltd. Method for manufacturing honeycomb structured body
EP2978000A4 (en) * 2013-03-18 2016-05-11 Intermetallics Co Ltd Grain boundary diffusion process jig, and container for grain boundary diffusion process jig

Similar Documents

Publication Publication Date Title
EP1832565A1 (en) Jig for silicon carbide firing and method for producing porous silicon carbide body
KR100911641B1 (en) Silicon carbide containing particle, process for production of silicon carbide sintered material, silicon carbide sintered material and filter
US7951324B2 (en) Method for manufacturing honeycomb structure
EP1647790B1 (en) Method of manufacturing porous ceramic body
US10350532B2 (en) Porous alpha-SiC-containing shaped body having a contiguous open pore structure
US6699429B2 (en) Method of making silicon nitride-bonded silicon carbide honeycomb filters
JP2011046607A (en) Device for manufacturing ceramic structure and method for manufacturing ceramic structure
EP2105424B1 (en) Method for manufacturing a honeycomb structured body
JP4288644B2 (en) Ceramic honeycomb structure and manufacturing method thereof
JP2016067993A (en) Manufacturing method of honeycomb filter
JP2001072472A (en) Jig for burning silicon carbide
JPH01145378A (en) Silicon carbide honeycomb structure and production thereof
JP2004292197A (en) Method of manufacturing honeycomb structure
JP2612878B2 (en) Method for producing silicon carbide honeycomb structure
JPH10167854A (en) Production of high strength porous alpha-sic sintered compact
JP4111676B2 (en) Method for producing porous silicon carbide sintered body
EP1577279B1 (en) Method for producing ceramic structure
JP4633449B2 (en) Silicon carbide based porous material and method for producing the same
JP4381011B2 (en) Silicon carbide honeycomb structure and ceramic filter using the same
JP2851106B2 (en) Method for producing porous silicon carbide sintered body
JP2001220240A (en) Method for firing silicon carbide molded body
JP2001019560A (en) Degreasing jig for formed ceramic article
JPH01192765A (en) Production of silicon carbide honeycomb structural body
JP3689408B2 (en) Silicon carbide honeycomb structure and ceramic filter using the same
JP2002273131A (en) Honeycomb filter and method for manufacturing the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040323

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091104