JP2004221563A - Wafer heating device - Google Patents

Wafer heating device Download PDF

Info

Publication number
JP2004221563A
JP2004221563A JP2003429421A JP2003429421A JP2004221563A JP 2004221563 A JP2004221563 A JP 2004221563A JP 2003429421 A JP2003429421 A JP 2003429421A JP 2003429421 A JP2003429421 A JP 2003429421A JP 2004221563 A JP2004221563 A JP 2004221563A
Authority
JP
Japan
Prior art keywords
temperature
wafer
plate
ceramic body
shaped ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003429421A
Other languages
Japanese (ja)
Other versions
JP4344603B2 (en
Inventor
Takeshi Kato
剛 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003429421A priority Critical patent/JP4344603B2/en
Publication of JP2004221563A publication Critical patent/JP2004221563A/en
Application granted granted Critical
Publication of JP4344603B2 publication Critical patent/JP4344603B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems with a wafer heating device that it takes too much time for wafer temperatures to become stable when wafer change is made on a plate type ceramic, and also that the overshoot amount of wafer temperature is too large. <P>SOLUTION: In the wafer heating device where two or more belt-like resistance heaters are formed on the surface or inside the plate type ceramic, recesses are arranged in the corresponding position to each of the resistance heaters of the plate type ceramic, and temperature measurement elements are arranged in the relative recess, the main feature of the wafer heating device is that the power flux density in the neighborhood of the corresponding temperature measurement element of at least one belt-like resistance heater arranged in the outermost periphery of the plate type ceramic is designed to be smaller than the average power flux density of the belt-like resistance heaters. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、主にウェハを加熱するのに用いるセラミックヒーターに関するものであり、例えば、半導体ウェハや液晶基板あるいは回路基板等のウェハ上に半導体薄膜を生成したり、前記ウェハ上に塗布されたレジスト液を乾燥焼き付けしてレジスト膜を形成するのに好適なものである。   The present invention relates to a ceramic heater mainly used to heat a wafer, for example, to form a semiconductor thin film on a wafer such as a semiconductor wafer or a liquid crystal substrate or a circuit board, or to apply a resist coated on the wafer This is suitable for forming a resist film by drying and baking the solution.

例えば、半導体製造装置の製造工程における、半導体薄膜の成膜処理、エッチング処理、レジスト膜の焼き付け処理等においては、半導体ウェハ(以下、ウェハと略す)を加熱するためにウェハ加熱装置が用いられている。   For example, in a semiconductor thin film forming process, an etching process, a resist film baking process, and the like in a manufacturing process of a semiconductor manufacturing apparatus, a wafer heating device is used to heat a semiconductor wafer (hereinafter, abbreviated as a wafer). I have.

従来の半導体製造装置は、まとめて複数のウェハを成膜処理するバッチ式のものが使用されていたが、ウェハの大きさが8インチから12インチと大型化するにつれ、処理精度を高めるために、一枚づつ処理する枚葉式と呼ばれる手法が近年実施されている。しかしながら、枚葉式にすると1回当たりの処理数が減少するため、ウェハの処理時間の短縮が必要とされている。このため、ウェハ支持部材に対して、ウェハの加熱時間の短縮、ウェハの吸着・脱着の迅速化と同時に加熱温度精度の向上が要求されていた。   Conventional semiconductor manufacturing equipment has used a batch type in which a plurality of wafers are formed at a time. However, as the size of wafers increases from 8 inches to 12 inches, it is necessary to improve processing accuracy. In recent years, a technique called a single-wafer processing for processing one sheet at a time has been implemented. However, in the case of the single-wafer method, the number of processes per one time is reduced, and therefore, it is necessary to shorten the processing time of the wafer. For this reason, it has been required for the wafer support member to shorten the heating time of the wafer, speed up the suction and desorption of the wafer, and improve the heating temperature accuracy.

このうちウェハ上へのレジスト膜の形成にあたっては、図4に示すような、窒化アルミニウムや炭化珪素等のセラミックスからなる板状セラミックス体32の一方の主面を、ウェハWを載せる載置面33とし、他方の主面には絶縁層34を介して抵抗発熱体35および給電部36が設置され、さらに弾性体38により導通端子37が給電部36に押圧固定された構造のセラミックヒーター31が用いられていた。そして、前記板状セラミックス体32は支持体41にボルト47により固定され、さらに板状セラミックス体32の内部には測温素子40が挿入され、これにより板状セラミックス体32の温度を所定の温度に保つように、導通端子37から抵抗発熱体35に供給される電力を調節するシステムとなっていた。また、導通端子37は、板状構造部43に絶縁材39を介して固定されていた。   In forming the resist film on the wafer, one main surface of a plate-shaped ceramic body 32 made of ceramics such as aluminum nitride or silicon carbide is used as shown in FIG. A ceramic heater 31 having a structure in which a resistance heating element 35 and a power supply section 36 are provided on the other main surface via an insulating layer 34 and a conductive terminal 37 is pressed and fixed to the power supply section 36 by an elastic body 38 is used. Had been. The plate-shaped ceramic body 32 is fixed to the support body 41 by bolts 47, and a temperature measuring element 40 is inserted into the plate-shaped ceramic body 32, whereby the temperature of the plate-shaped ceramic body 32 is set to a predetermined temperature. In such a system, the power supplied from the conduction terminal 37 to the resistance heating element 35 is adjusted so as to maintain the temperature. Further, the conduction terminal 37 was fixed to the plate-like structure 43 via an insulating material 39.

そして、セラミックヒーター31の載置面33には、有底孔45に挿入された支持ピン44が設置されており、ウェハWを載置面33に載せた際にウェハWが載置面33から非接触となるようにしている。そして、該支持ピン44上にレジスト液が塗布されたウェハWを載せたあと、抵抗発熱体35を発熱させることにより、板状セラミックス体32を介して載置面33上のウェハWを加熱し、レジスト液を乾燥焼付けしてウェハW上にレジスト膜を形成するようになっていた。   A support pin 44 inserted into the bottomed hole 45 is provided on the mounting surface 33 of the ceramic heater 31, and when the wafer W is mounted on the mounting surface 33, the wafer W is removed from the mounting surface 33. Non-contact is made. After the wafer W coated with the resist solution is placed on the support pins 44, the resistance heating element 35 is heated to heat the wafer W on the placement surface 33 via the plate-shaped ceramic body 32. Then, the resist solution is dried and baked to form a resist film on the wafer W.

また、板状セラミックス体32を構成するセラミック材料としては、窒化物セラミックスまたは炭化物セラミックスが用いられていた。   Further, as the ceramic material constituting the plate-shaped ceramic body 32, nitride ceramics or carbide ceramics has been used.

近年半導体配線の微細化の為に用いられるようになってきた化学増幅型レジストの熱処理に於いては、ウェハWを板状セラミックス体31の上に差し替えした際に温度が安定するまでの過渡特性、ウェハW面内の温度バラツキが、露光後のレジストの化学増幅処理に極めて重要であり、従来に増して、緻密かつ応答性の良い温度制御が必要となってきた。   In the heat treatment of a chemically amplified resist that has been used for miniaturization of semiconductor wiring in recent years, a transient characteristic until the temperature is stabilized when the wafer W is replaced on the plate-shaped ceramic body 31 is obtained. The temperature variation in the surface of the wafer W is extremely important for the chemical amplification treatment of the resist after exposure, and it is necessary to control the temperature more precisely and more responsively than before.

特許文献1には、板状セラミックス体32として窒化物セラミックを使用し、発熱体近傍の温度を測定しながら、温度制御する方法が開示されている。このウェハ加熱装置31に電力を投入すると、ウェハWの載置面33の温度が上がり始めるが、載置面33の外周部の温度の方の表面温度が低くなることから、外周部の熱引きによる温度低下を考慮し、板状セラミックス体32の温度分布は、定常時の設定温度に対して温度分布が均一になるように抵抗発熱体35が設計されていた。すなわち、載置面33の外周部からの熱引きを考慮して、抵抗発熱体35の外周部の抵抗が抵抗発熱体35の中央部の抵抗よりも大きくして、中央部と外周部の温度差の小さい板状セラミックス体32となっていた。
特開2001−135460号公報
Patent Document 1 discloses a method in which a nitride ceramic is used as the plate-shaped ceramic body 32 and the temperature is controlled while measuring the temperature in the vicinity of the heating element. When power is supplied to the wafer heating device 31, the temperature of the mounting surface 33 of the wafer W starts to rise. However, since the surface temperature of the outer peripheral portion of the mounting surface 33 becomes lower, the heat is removed from the outer peripheral portion. The resistance heating element 35 is designed so that the temperature distribution of the plate-shaped ceramic body 32 becomes uniform with respect to the set temperature in a steady state in consideration of the temperature drop due to the temperature. That is, in consideration of the heat removal from the outer peripheral portion of the mounting surface 33, the resistance of the outer peripheral portion of the resistance heating element 35 is made larger than the resistance of the central portion of the resistance heating element 35, and the temperature of the central portion and the outer peripheral portion is increased. A plate-like ceramic body 32 having a small difference was obtained.
JP 2001-135460 A

しかしながら、ウェハWを板状セラミックス体32の上に差し替えた際に温度が安定するまでの過渡時のウェハ面内の温度のオーバーシュート量が大きいという課題があった。   However, when the wafer W is replaced on the plate-shaped ceramic body 32, there is a problem that the amount of overshoot of the temperature in the wafer surface during transition until the temperature is stabilized is large.

また、大型の300mm以上のウェハWを加熱するウェハ加熱装置においては、設定温度に加熱した場合、中央と外周の昇温カーブが異なってしまい、ウェハWの面内の温度が一定になるまでの温度安定時間が大きいとの課題があった。   Further, in a wafer heating apparatus that heats a large wafer W of 300 mm or more, when heated to a set temperature, the temperature rise curves at the center and the outer periphery are different, and the temperature in the plane of the wafer W becomes constant. There was a problem that the temperature stabilization time was long.

本発明においては、板状セラミックの温度挙動に着目し、板状セラミックス体の表面または内部に複数の帯状の抵抗発熱体を形成し、上記板状セラミックス体の各発熱抵抗体に対応する位置に凹部を設けるとともに該凹部に測温素子を備えたウェハ加熱装置において、上記板状セラミックス体の最外周に配設した複数の帯状の抵抗発熱体の少なくとも一つは、対応する測温素子の近傍の電力密度が、上記帯状の抵抗発熱体の平均電力密度より小さいことを特徴とする。   In the present invention, paying attention to the temperature behavior of the plate-shaped ceramic, a plurality of belt-shaped resistance heating elements are formed on the surface or inside of the plate-shaped ceramic body, and are formed at positions corresponding to the respective heating resistors of the plate-shaped ceramic body. In a wafer heating apparatus provided with a concave portion and provided with a temperature measuring element in the concave portion, at least one of the plurality of band-shaped resistance heating elements disposed on the outermost periphery of the plate-shaped ceramic body is in the vicinity of the corresponding temperature measuring element. Is smaller than the average power density of the belt-shaped resistance heating element.

また、上記板状セラミックス体の最外周に配設した複数の帯状の抵抗発熱体のうち少なくとも一つは、該抵抗発熱体を囲む領域の中心部に測温素子を備えたことを特徴とする。   Further, at least one of the plurality of strip-shaped resistance heating elements disposed on the outermost periphery of the plate-shaped ceramic body is provided with a temperature measuring element at a central portion of a region surrounding the resistance heating element. .

また、上記測温素子の近傍の電力密度は、上記抵抗発熱体の平均電力密度の40〜90%であることを特徴とする。   The power density in the vicinity of the temperature measuring element is 40 to 90% of the average power density of the resistance heating element.

また、上記板状セラミックス体の熱伝導率に対して8.3〜150%の熱伝導率を有する充填剤で前記測温素子を前記凹部に固定したことを特徴とする。   Further, the temperature measuring element is fixed to the recess with a filler having a thermal conductivity of 8.3 to 150% with respect to the thermal conductivity of the plate-shaped ceramic body.

また、前記充填剤の気孔率が0.1%〜50%であることを特徴とする。   Further, the porosity of the filler is 0.1% to 50%.

更に、前記充填剤の熱膨張係数が前記板状セラミックス体の熱膨張係数に対し43〜214%であることを特徴とする。   Further, the thermal expansion coefficient of the filler is 43 to 214% with respect to the thermal expansion coefficient of the plate-shaped ceramic body.

本発明によれば、板状セラミックス体の表面または内部に複数の帯状の抵抗発熱体を形成し、上記板状セラミックス体の各抵抗発熱体に対応する位置に凹部を設けると共に該凹部に測温素子を備えたウェハ加熱装置において、上記板状セラミックス体の最外周に配設した複数の帯状の抵抗発熱体の少なくとも一つは、対応する測温素子の近傍の電力密度が、上記帯状の抵抗発熱体の平均電力密度より小さくなるようにしたことによって、ウェハの温度が均一となりオーバシュート量が小さくなった。また、ウェハ温度が設定温度となるまでの温度安定時間が小さくなった。   According to the present invention, a plurality of belt-shaped resistance heating elements are formed on the surface or inside of the plate-shaped ceramic body, and a concave portion is provided at a position corresponding to each resistance heating element of the plate-shaped ceramic body, and a temperature is measured in the concave portion. In the wafer heating device provided with the elements, at least one of the plurality of belt-shaped resistance heating elements disposed on the outermost periphery of the plate-shaped ceramic body has a power density near the corresponding temperature measuring element, and the band-shaped resistance heating element has a resistance. By making the power density lower than the average power density of the heating element, the temperature of the wafer becomes uniform and the amount of overshoot is reduced. Further, the temperature stabilization time until the wafer temperature reaches the set temperature is reduced.

更に、温度サイクルを繰り返しても温度安定時間が変化する虞が小さく優れた特性を示した。   Furthermore, even when the temperature cycle was repeated, there was little possibility that the temperature stabilization time would change, and excellent characteristics were exhibited.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

図1は本発明に係るウェハ加熱装置1の一例を示す断面図で、炭化珪素、炭化硼素、窒化硼素、窒化珪素または窒化アルミニウムを主成分とするセラミックスからなる板状セラミックス体2の一方の主面を、ウェハWを載せる載置面3とするとともに、他方の主面12にガラス又は樹脂等からなる絶縁層4を介して抵抗発熱体5を形成したものである。   FIG. 1 is a cross-sectional view showing an example of a wafer heating apparatus 1 according to the present invention, which is one main plate-shaped ceramic body 2 made of ceramics containing silicon carbide, boron carbide, boron nitride, silicon nitride or aluminum nitride as a main component. The surface is the mounting surface 3 on which the wafer W is mounted, and the resistance heating element 5 is formed on the other main surface 12 via the insulating layer 4 made of glass or resin.

抵抗発熱体5のパターン形状としては、略円弧状や直線状からなる略同心円状をしたものや渦巻き状をしたものなど、載置面3を均一に加熱できるパターン形状であれば良い。均熱性を改善するため、抵抗発熱体5を複数の抵抗発熱体5a、5b、5c、5d、5e、5fに分割することが好ましい。   As the pattern shape of the resistance heating element 5, any pattern shape that can uniformly heat the mounting surface 3, such as a substantially concentric circular or linear concentric or spiral shape, may be used. In order to improve the heat uniformity, it is preferable to divide the resistance heating element 5 into a plurality of resistance heating elements 5a, 5b, 5c, 5d, 5e, and 5f.

また、板状セラミックス体2には各抵抗発熱体5a、5b、5c、5d、5e、5fに囲まれた各測温素子10a、10b、10c、10d、10e、10fを保持する凹部21a、21b、21c、21d、21e、21fが形成されている。各測温素子10a、10b、10c、10d、10e、10fとは、測温体10の先端部に位置する感熱部である。これらのこれらの各測温素子10a、10b、10c、10d、10e、10fは演算部82と制御部81に接続され、演算部82で制御する電圧値等の計算を行い、これに基づき、制御部81から各発熱体5に対して所定の電圧を印可し、ウェハWの温度を均一化することができるようになっている。   Further, the plate-shaped ceramic body 2 has concave portions 21a, 21b holding the temperature measuring elements 10a, 10b, 10c, 10d, 10e, 10f surrounded by the resistance heating elements 5a, 5b, 5c, 5d, 5e, 5f. , 21c, 21d, 21e and 21f are formed. Each of the temperature measuring elements 10 a, 10 b, 10 c, 10 d, 10 e, and 10 f is a heat-sensitive portion located at the tip of the temperature measuring body 10. Each of these temperature measuring elements 10a, 10b, 10c, 10d, 10e, and 10f is connected to an arithmetic unit 82 and a control unit 81, and calculates a voltage value and the like controlled by the arithmetic unit 82, and controls based on the calculation. A predetermined voltage is applied to each heating element 5 from the section 81 so that the temperature of the wafer W can be made uniform.

また、各抵抗発熱体5は、金や銀、パラジウム、白金等の材質からなる給電部6が形成され、該給電部6に導通端子7を弾性体8を介して押圧固定することにより、導通が確保されている。   Each of the resistance heating elements 5 is provided with a power supply portion 6 made of a material such as gold, silver, palladium, or platinum, and a conductive terminal 7 is pressed and fixed to the power supply portion 6 via an elastic body 8 so as to be conductive. Is secured.

さらに、板状セラミックス体2と支持体11の外周にボルト17を貫通させ、板状セラミックス体2側より弾性体8、座金18を介在させてナット19を螺着することにより支持体11に弾性的に固定している。これにより、板状セラミックス体2の温度を変更したり載置面3にウェハWを載せ板状セラミックス体2の温度が変動した場合に支持体11変形が発生しても、上記弾性体8によってこれを吸収し、これにより板状セラミックス体2の反りを防止し、ウェハWの表面に温度差が発生することを防止できる。   Further, a bolt 17 is passed through the outer periphery of the plate-shaped ceramic body 2 and the support 11, and a nut 19 is screwed from the plate-shaped ceramic body 2 side with an elastic body 8 and a washer 18 interposed therebetween, thereby elastically attaching the support 11. Fixed. Accordingly, even if the temperature of the plate-shaped ceramic body 2 is changed or the wafer W is placed on the mounting surface 3 and the temperature of the plate-shaped ceramic body 2 fluctuates, even if the support 11 is deformed, the elastic body 8 can be used. By absorbing this, the warpage of the plate-shaped ceramic body 2 can be prevented, and the occurrence of a temperature difference on the surface of the wafer W can be prevented.

また、支持体11は複数の層から構成された板状構造体13と側壁部からなり、該板状構造体13には抵抗発熱体5に電力を供給するための導通端子7が絶縁材9を介して設置され、不図示の空気噴射口が形成されている。   The support 11 is composed of a plate-like structure 13 composed of a plurality of layers and side walls, and the plate-like structure 13 has a conductive terminal 7 for supplying power to the resistance heating element 5 with an insulating material 9. And an air injection port (not shown) is formed.

さらに、本発明の実施形態を詳細に説明する。図2は、板状セラミックス体2を抵抗発熱体5側から見た平面図であり、板状セラミックス体2には各抵抗発熱体5に対応する位置に凹部21が形成され、該凹部21には、図3に示すように測温素子10a、10b、10c、10dを配置し、充填剤22等により充填保持されている。 Further, embodiments of the present invention will be described in detail. FIG. 2 is a plan view of the plate-shaped ceramic body 2 as viewed from the resistance heating element 5 side. In the plate-shaped ceramic body 2, recesses 21 are formed at positions corresponding to the respective resistance heating elements 5. Is arranged with temperature measuring elements 10a, 10b, 10c and 10d as shown in FIG. 3, and is filled and held by a filler 22 and the like.

即ち、板状セラミックス体2の表面または内部に複数の帯状の抵抗発熱体5a、5b、5c、5d、5e、5fを形成し、上記板状セラミックス体2の対応する位置に凹部21a、21b、21c、21d、21e、21fを設けると共に該凹部21に測温素子10a、10b、10c、10dを備えている。そして、このウェハ加熱装置1において、上記板状セラミックス体2の最外周に配設した帯状の抵抗発熱体5a、5b、5c、5dの少なくとも何れか一つの帯状の抵抗発熱体5a、5b、5c、5d、例えば抵抗発熱体5aは、対応する測温素子10aの近傍の電力密度が、上記帯状の抵抗発熱体5aの平均電力密度より小さくしてある、
その理由は、板状セラミックス体2に、室温に冷却されたウェハWが載置されると板状セラミックス体2はウェハWにより温度が下がってしまう。その時の板状セラミックス体2の温度は外周部に比べて、中央部の方が電力密度が小さいので、ウェハWへの熱の伝達により温度低下が大きくなる傾向がある。従って、中央部の電力印加時間は外周部の電力印加時間に比べ長くなるため、昇温の立ち上がりが急激になりオーバーシュートしてしまう。そのためウェハWの温度が安定するまでの温度安定時間が大きかった。すなわち、本発明においては、測温素子10aの周りの電力密度を小さくすることにより、ウェハWの温度が安定するまでの時間を短くすることができるからである。
That is, a plurality of belt-shaped resistance heating elements 5a, 5b, 5c, 5d, 5e, and 5f are formed on the surface or inside of the plate-shaped ceramic body 2, and the concave portions 21a, 21b, 21c, 21d, 21e, and 21f are provided, and the concave portion 21 is provided with temperature measuring elements 10a, 10b, 10c, and 10d. In the wafer heating apparatus 1, at least one of the strip-shaped resistance heating elements 5a, 5b, 5c, and 5d disposed on the outermost periphery of the plate-shaped ceramic body 2 is used. 5d, for example, the resistance heating element 5a has a power density near the corresponding temperature measuring element 10a smaller than the average power density of the belt-shaped resistance heating element 5a.
The reason is that when the wafer W cooled to room temperature is placed on the plate-shaped ceramic body 2, the temperature of the plate-shaped ceramic body 2 is lowered by the wafer W. At this time, the temperature of the plate-shaped ceramic body 2 is lower at the central portion than at the outer peripheral portion, and therefore, the temperature tends to be large due to the transfer of heat to the wafer W. Therefore, since the power application time at the central portion is longer than the power application time at the outer peripheral portion, the rise of the temperature rises rapidly and overshoots. Therefore, the temperature stabilization time until the temperature of the wafer W stabilizes is long. That is, in the present invention, the time until the temperature of the wafer W becomes stable can be shortened by reducing the power density around the temperature measuring element 10a.

上記の電力密度とは、板状セラミックス体2に抵抗発熱体5aを形成した面12の各部の単位面積当たりに投入される電力値を示す。平均電力密度とは、抵抗発熱体5aの全抵抗値と電流から求めた電力値をその抵抗発熱体5aが形成された加熱面積で割った値である。通常抵抗発熱体5aの加熱面積は隣り合う抵抗発熱体5b、5d、5e、5fの中間線を境界線とする。   The above-mentioned power density indicates a power value applied per unit area of each part of the surface 12 where the resistance heating element 5 a is formed on the plate-shaped ceramic body 2. The average power density is a value obtained by dividing the power value obtained from the total resistance value and the current of the resistance heating element 5a by the heating area where the resistance heating element 5a is formed. The heating area of the normal resistance heating element 5a is defined by the middle line between the adjacent resistance heating elements 5b, 5d, 5e, and 5f as a boundary line.

次に、測温素子10aの近傍の電力密度の算出方法を述べる。まず、測温素子
10aの近傍とは、例えば測温素子10aに近接する抵抗発熱体5aの一部とそ
の外側に近接する発熱抵抗体5aの一部との中心点P1、P2と、測温素子10
aの中心を通る直線上において、前記2つの中心点P1、P2の間の距離をMと
して、前記中心点P1またはP2を通り帯状の抵抗発熱体5aと並行する2本の
中心線に囲まれる領域で、長さMの前記2本の中心線で囲まれた領域82を示す
。また、領域82から凹部21を除く領域を領域83とする。そして、測温素子10aの近傍の電力密度とは、上記領域83内の2本の抵抗発熱体5aの一部の抵抗値とそこを流れる電流から求めた電力値を上記領域83の面積で除した値である。
Next, a method of calculating the power density near the temperature measuring element 10a will be described. First, the vicinity of the temperature measuring element 10a means, for example, the center points P1 and P2 of a part of the resistance heating element 5a close to the temperature measuring element 10a and a part of the heating resistance element 5a close to the outside thereof. Element 10
On a straight line passing through the center of a, the distance between the two center points P1 and P2 is M, and the center line is surrounded by two center lines that pass through the center point P1 or P2 and are parallel to the belt-shaped resistance heating element 5a. FIG. 5 shows a region 82 surrounded by the two center lines having a length M. FIG. A region excluding the concave portion 21 from the region 82 is referred to as a region 83. The power density in the vicinity of the temperature measuring element 10a is obtained by dividing the power value obtained from the partial resistance value of the two resistance heating elements 5a in the area 83 and the current flowing therethrough by the area of the area 83. Value.

また、上記の長さMは、上記板状セラミックス体の凹部21の直径の1.5〜5倍の領域であることが望ましい。   The length M is desirably 1.5 to 5 times the diameter of the recess 21 of the plate-shaped ceramic body.

上記の近傍が、板状セラミックス体の凹部21の直径の1.5倍より小さいと測温素子の近傍の温度と全体の温度差が小さくなるため、昇温特性の改善効果が小さい。また、5倍より大きいと測温素子の近傍部とその他の領域との温度差が大きくなるので好ましくない。すなわち、測温素子の近傍の範囲であるMの長さが、測温素子の凹部21の外径の1.5〜5倍の領域であることが望ましく、1.5〜5倍の領域の場合、上記測温素子の近傍部の感度を上げることができる。つまり、内周側と外側の抵抗発熱体の昇温カーブを均一化することができ、ウエハWの温度が安定するまでの時間をさらに短くすることができる。   If the above vicinity is smaller than 1.5 times the diameter of the concave portion 21 of the plate-shaped ceramic body, the temperature difference between the temperature near the temperature measuring element and the entire temperature becomes small, so that the effect of improving the temperature rising characteristic is small. On the other hand, if it is larger than 5 times, the temperature difference between the vicinity of the temperature measuring element and the other area is undesirably large. That is, it is desirable that the length of M, which is a range in the vicinity of the temperature measuring element, is 1.5 to 5 times the outer diameter of the concave portion 21 of the temperature measuring element, and is 1.5 to 5 times the area. In this case, the sensitivity in the vicinity of the temperature measuring element can be increased. That is, the temperature rise curves of the inner and outer resistance heating elements can be made uniform, and the time until the temperature of the wafer W becomes stable can be further reduced.

更に好ましくは、上記測温素子10aの近傍の電力密度が、上記帯状の抵抗発熱体5aの電力密度の40〜90%であることが望ましい。測温素子10aの近傍における電力密度比が40%より小さいと、板状セラミックス体2の温度が低いと制御部へ伝達され、電力の印加時間が長くなり、板状セラミックス体2からウェハWへの熱伝達(熱の輻射)が大きくなり過ぎ、ウェハWの温度が所定の温度より大きくなってしまう。いわゆる、オーバーシュート量が大きくなる。逆に90%より大きいと、測温素子10aが外周部の板状セラミックス体2の温度の低下が小さいと判断し、出力を印可する時間が短くなるため、滑らかな昇温カーブとなる。従って、電力の印可が長い中央部の昇温は早いので、温度が安定するまでの温度安定時間が50秒以上となり好ましくない。   More preferably, the power density in the vicinity of the temperature measuring element 10a is desirably 40 to 90% of the power density of the belt-shaped resistance heating element 5a. When the power density ratio in the vicinity of the temperature measuring element 10a is smaller than 40%, the temperature of the plate-shaped ceramic body 2 is transmitted to the control unit when the temperature is low, and the time for applying power is prolonged. Heat transfer (heat radiation) becomes too large, and the temperature of the wafer W becomes higher than a predetermined temperature. The so-called overshoot increases. Conversely, if it is larger than 90%, the temperature measuring element 10a determines that the temperature of the plate-shaped ceramic body 2 in the outer peripheral portion has a small decrease, and the output application time is shortened. Therefore, since the temperature rise in the central portion where power is applied for a long time is fast, the temperature stabilization time until the temperature stabilizes is not longer than 50 seconds, which is not preferable.

なお、好ましくは、最外周の抵抗発熱体5a〜5dの全てにおいて、対応する測温素子の近傍の電力密度を各抵抗発熱体5a〜5dの平均電力密度より小さくしておくことが好ましい。   Preferably, in all of the outermost resistance heating elements 5a to 5d, the power density in the vicinity of the corresponding temperature measuring element is preferably smaller than the average power density of each of the resistance heating elements 5a to 5d.

また、上記電力密度の調整は、抵抗発熱体の線幅や厚み、線間隔等を変化させて行う。   The adjustment of the power density is performed by changing the line width, thickness, line interval, and the like of the resistance heating element.

測温素子10a、10b、10c、10dとしては、測温素子、測温抵抗体等を用いることが可能である。材質については、熱電対であれば、Pt/Rh−Pt/Rh系、Pt/Rh−Pt系、Ni/Cr/Si−Ni/Si/Mg系、Ni/Cr−Al/Mn系、Ni/Cr−Cu/Ni系、Cu−Cu/Ni系、W−Re系等が、また測温抵抗体であれば、Pt抵抗素子が使用可能であり、使用雰囲気や温度に対して適切なものを選定すればよい。例えば、大気中300℃以下で用いるような場合には、Ni/Cr−Al/Mn系やPt/Rh−Pt系やNi/Cr−Cu/Ni系等が望ましく、還元性雰囲気下においては、Fe−Cu/Ni系等が望ましい。   As the temperature measuring elements 10a, 10b, 10c, and 10d, a temperature measuring element, a temperature measuring resistor, or the like can be used. Regarding the material, if it is a thermocouple, Pt / Rh-Pt / Rh system, Pt / Rh-Pt system, Ni / Cr / Si-Ni / Si / Mg system, Ni / Cr-Al / Mn system, Ni / A Cr-Cu / Ni-based, Cu-Cu / Ni-based, W-Re-based, etc., or a Pt resistance element can be used if it is a resistance thermometer. You just have to choose. For example, when used at 300 ° C. or lower in the atmosphere, a Ni / Cr—Al / Mn system, a Pt / Rh—Pt system, a Ni / Cr—Cu / Ni system, or the like is desirable. In a reducing atmosphere, An Fe-Cu / Ni system or the like is desirable.

また、図3に示すように、測温素子10a、10b、10c、10dは、Pt抵抗素子等の測温抵抗体を用いることが望ましい。また、抵抗素子自体に樹脂コート・ガラスコート・セラミックコート等の絶縁材料をコーティングしたものを用いることも有効である。また、必要に応じて、充填保持部以降に絶縁スリーブ等を用いても良い。   Further, as shown in FIG. 3, it is desirable to use a temperature measuring resistor such as a Pt resistance element for the temperature measuring elements 10a, 10b, 10c, and 10d. It is also effective to use a resistive element that is coated with an insulating material such as a resin coat, a glass coat, or a ceramic coat. Further, if necessary, an insulating sleeve or the like may be used after the filling and holding section.

また、凹部21a、21b、21c、21dの開口部の面積は、1mm〜30mmとすることが望ましい。該凹部21a、21b、21c、21dの開口部の面積が1mmより小さいと測温素子10a、10b、10c、10dの設置及び充填剤22の充填にムラが生じ易く測温がばらついてしまう。また、30mmより大きいと、抵抗発熱体5間のギャップが大きくなり、ウェハW表面の温度分布が大きくなるので好ましくない。 The recess 21a, 21b, 21c, the area of the opening of the 21d, it is desirable to 1mm 2 ~30mm 2. If the area of the openings of the recesses 21a, 21b, 21c, 21d is smaller than 1 mm 2 , unevenness is likely to occur in the installation of the temperature measuring elements 10a, 10b, 10c, 10d and the filling of the filler 22, and the temperature measurement varies. On the other hand, if it is larger than 30 mm 2 , the gap between the resistance heating elements 5 becomes large, and the temperature distribution on the surface of the wafer W becomes undesirably large.

また、凹部21a、21b、21c、21dの深さdは、板状セラミックス体2の厚みtに対し(1/4)t≦d≦(3/4)tとすることが望ましい。該深さdが(1/4)tより小さいとウェハ載置面との距離が大きくなるため測温にずれが生じ、ウェハを目的の温度に昇温させられない。また、(3/4)tより大きくなると逆に温度のオーバーシュート量が大きくなりすぎるため望ましくない。   Further, it is desirable that the depth d of the recesses 21 a, 21 b, 21 c, and 21 d be (1 /) t ≦ d ≦ (3) t with respect to the thickness t of the plate-shaped ceramic body 2. If the depth d is smaller than (1/4) t, the distance from the wafer mounting surface becomes large, causing a deviation in the temperature measurement, and the wafer cannot be heated to the target temperature. On the other hand, if it is larger than (3/4) t, the overshoot amount of the temperature becomes too large, which is not desirable.

また、凹部21a、21b、21c、21dの底面とそれぞれに対応した測温素子10a、10b、10c、10dの先端との距離Lが、0≦L≦1.0mmであることがより望ましい。距離Lが1mmをこえると温度検知の応答性が遅れオーバーシュート量が大きめになるが、1.0mm以下とすることで、オーバーシュート量がより小さくなる。   Further, it is more preferable that the distance L between the bottom surfaces of the concave portions 21a, 21b, 21c, and 21d and the tips of the corresponding temperature measuring elements 10a, 10b, 10c, and 10d is 0 ≦ L ≦ 1.0 mm. If the distance L exceeds 1 mm, the response of the temperature detection is delayed and the overshoot amount becomes large, but if the distance L is set to 1.0 mm or less, the overshoot amount becomes smaller.

更に、凹部21a、21b、21c、21dに挿入設置する測温素子10a、10b、10c、10dの大きさは、30mm以下が望ましい。30mmより大きいと、測温素子10a、10b、10c、10d自体の熱容量が大きくなりすぎる為、素線を通しての熱引きが大きくなり温度検知に遅れが生じ、オーバーシュート量が大きくなり過ぎるため好ましくない。 Further, the size of the temperature measuring elements 10a, 10b, 10c, and 10d inserted and installed in the recesses 21a, 21b, 21c, and 21d is desirably 30 mm 2 or less. If it is larger than 30 mm 2 , the heat capacity of the temperature measuring elements 10 a, 10 b, 10 c, and 10 d itself becomes too large, so that the heat extraction through the wires becomes large, and the temperature detection is delayed, and the amount of overshoot becomes too large. Absent.

また、板状セラミックス体2の各抵抗発熱体5に対応する位置に凹部21を設けるとともに、該凹部21の測温素子10a、10b、10c、10dの位置は、板状セラミックス体1の最外周に配設した複数の帯状の抵抗発熱体5を囲む領域Rの重心G部付近に位置することが望ましい。重心Gから最外周部の凹部21の中心までの距離が、領域Rの板状セラミックス体2の直径方向の最大長さLの30%以上となると、外周の抵抗発熱体は、中心部の熱が集まり易いという影響を受けてしまい、外周部の上昇が遅くなり安定するまで時間が長くなり好ましくない。   A concave portion 21 is provided at a position corresponding to each resistance heating element 5 of the plate-shaped ceramic body 2, and the position of the temperature measuring elements 10 a, 10 b, 10 c, and 10 d of the concave portion 21 is set at the outermost periphery of the plate-shaped ceramic body 1. Is desirably located in the vicinity of the center of gravity G of the region R surrounding the plurality of belt-shaped resistance heating elements 5 disposed at the center. When the distance from the center of gravity G to the center of the concave portion 21 in the outermost peripheral portion becomes 30% or more of the maximum length L in the diametric direction of the plate-shaped ceramic body 2 in the region R, the resistance heating element on the outer peripheral portion heats the central portion. Is easily collected, and the rise of the outer peripheral portion becomes slow, and it takes a long time to be stabilized, which is not preferable.

更に、凹部21に測温素子10a、10b、10c、10dを保持するために用いる充填剤22は、板状セラミックス体2の熱伝導率に対し8.3〜150%の熱伝導率のものを用いる。熱伝導率の比率が8.3%未満になると、抵抗発熱体5より発生したジュール熱が、板状セラミックス体2を介して載置面3に伝わる速度に対し、充填剤22を介して測温素子10a、10b、10c、10dに伝わる速度が遅すぎる為、温度検知に遅れが生じ、オーバーシュート量が大きくなり過ぎるため好ましくない。また、150%を越えると、ジュール熱が板状セラミックス体2を介して載置面3に伝わる速度に対し、充填剤22を介して測温素子10a、10b、10c、10dに伝わる速度が速過ぎる為、載置面3が所定の温度に到達する前に、測温素子10a、10b、10c、10dが温度検知をし、抵抗発熱体5への電力供給を早く止めてしまい、その結果、昇温が遅くなる為、好ましくない。さらに好ましくは、板状セラミックス体2の熱伝導率に対して25〜100%の熱伝導率の充填剤を用いる方が良い。   Further, the filler 22 used to hold the temperature measuring elements 10 a, 10 b, 10 c, and 10 d in the concave portion 21 has a thermal conductivity of 8.3 to 150% with respect to the thermal conductivity of the plate-shaped ceramic body 2. Used. When the ratio of the thermal conductivity is less than 8.3%, the speed at which the Joule heat generated from the resistance heating element 5 is transmitted to the mounting surface 3 via the plate-shaped ceramic body 2 is measured via the filler 22. Since the speed transmitted to the temperature elements 10a, 10b, 10c, and 10d is too slow, a delay occurs in temperature detection, and the amount of overshoot becomes too large, which is not preferable. If it exceeds 150%, the speed at which Joule heat is transmitted to the mounting surface 3 via the plate-shaped ceramic body 2 is faster than the speed at which the Joule heat is transmitted to the temperature measuring elements 10a, 10b, 10c, and 10d via the filler 22. Before the mounting surface 3 reaches a predetermined temperature, the temperature measuring elements 10a, 10b, 10c, and 10d detect the temperature, and stop supplying power to the resistance heating element 5 early. As a result, It is not preferable because the temperature rise is slow. More preferably, it is better to use a filler having a thermal conductivity of 25 to 100% with respect to the thermal conductivity of the plate-shaped ceramic body 2.

更に、前記充填剤の気孔率は、0.1%〜50%の範囲にすることが好ましい。気孔率が0.1%未満になると、充填剤22の柔軟性が損なわれ、ウェハ加熱装置1に温度サイクルを加えた際、板状セラミックス体2と充填剤22との間に発生する熱応力を緩和出来なくなり、長期間、使用すると充填剤22が板状セラミックス体2より剥離してしまい、正確な温度制御が出来なくなる為、好ましくない。また50%を越えると気孔が断熱材として作用し、測定温度がなかなか安定しなくなるので好ましくない。さらに好ましくは、気孔率を0.5〜25%とする方が、耐久性が増加しとオーバーシュート量が小さく良好なものになる。   Further, the porosity of the filler is preferably in the range of 0.1% to 50%. When the porosity is less than 0.1%, the flexibility of the filler 22 is impaired, and the thermal stress generated between the plate-shaped ceramic body 2 and the filler 22 when a temperature cycle is applied to the wafer heating device 1. When the filler 22 is used for a long period of time, the filler 22 is separated from the plate-shaped ceramic body 2, so that accurate temperature control cannot be performed. On the other hand, if it exceeds 50%, the pores act as a heat insulating material, and the measurement temperature is not easily stabilized. More preferably, when the porosity is 0.5 to 25%, the durability is increased and the overshoot amount is small, which is preferable.

上記の気孔率の調整は、充填後常温でしばらく放置し脱泡を行うなどして、巻き込んだ気泡を除去することにより調整することが好ましい。また、気孔率を増加させる手法としては、樹脂にカーボンや金属粉末のようなフィラーを混合する際の回転数や時間を調整することにより、増加させることができる。   It is preferable that the porosity is adjusted by removing the entrained bubbles by leaving the container at room temperature for a while after the filling to remove bubbles. In addition, as a method of increasing the porosity, the porosity can be increased by adjusting the number of rotations and the time when a filler such as carbon or metal powder is mixed with the resin.

更に充填剤22の熱膨張係数については、板状セラミックス体2の熱膨張係数に対して50%〜200%の範囲のものが望ましい。充填剤22の熱膨張係数が上記の範囲外となると、加熱冷却の繰り返しの際に、熱膨張係数の差による応力により測温素子10が凹部21からはみ出してくるようになるので好ましくない。また、板状セラミックス体2との濡れ性も重要である。測温素子10と凹部21との間に隙間が発生するようであると、隙間が断熱層として作用し正確な温度が測定できず、所定の温度になるまでの時間が長くなるので好ましくない。さらに好ましくは、板状セラミックス体2の熱膨張係数に対して70〜140%の熱膨張係数を有する充填剤22を用いると良い。   Further, the thermal expansion coefficient of the filler 22 is preferably in the range of 50% to 200% with respect to the thermal expansion coefficient of the plate-shaped ceramic body 2. If the coefficient of thermal expansion of the filler 22 is out of the above range, it is not preferable because the temperature measuring element 10 protrudes from the recess 21 due to the stress due to the difference in the coefficient of thermal expansion during repeated heating and cooling. Further, the wettability with the plate-shaped ceramic body 2 is also important. If a gap appears between the temperature measuring element 10 and the concave portion 21, the gap acts as a heat insulating layer, so that an accurate temperature cannot be measured and a time until the temperature reaches a predetermined temperature is not preferable. More preferably, a filler 22 having a coefficient of thermal expansion of 70 to 140% of the coefficient of thermal expansion of the plate-shaped ceramic body 2 is preferably used.

また、本発明に使用する充填剤22としては、耐熱性樹脂にカーボンや窒化アルミニウム、ボロンナイトライド、金属粉末のように高熱伝導性を有する粉末を分散させたものを使用することができる。このように樹脂に、高熱伝導性粉末を分散させたタイプの充填剤22は流動性がいいので、充填時の作業性がよくなる。樹脂の種類としては、ポリイミド、ポリアミド、ポリイミドアミド等の耐熱温度が300℃以上の樹脂を用いることが好ましい。これに対し、耐熱温度が200℃以下のエポキシ樹脂、シリコン樹脂等を用いた場合、固着強度は高いが使用中に樹脂が炭化して脆くなり、測温素子10a、10b、10c、10dが剥離して正確な温度が測定できなくなる。また、熱伝導率を損なわないように充填すれば、充填剤22としてアルミナセメント等のセメント類を使用することも可能である。   Further, as the filler 22 used in the present invention, a filler in which a powder having high thermal conductivity such as carbon, aluminum nitride, boron nitride, or metal powder is dispersed in a heat-resistant resin can be used. As described above, since the filler 22 of the type in which the high thermal conductive powder is dispersed in the resin has good fluidity, workability at the time of filling is improved. As the type of the resin, it is preferable to use a resin having a heat resistance temperature of 300 ° C. or more, such as polyimide, polyamide, or polyimide amide. On the other hand, when an epoxy resin, a silicon resin, or the like having a heat resistance temperature of 200 ° C. or less is used, the bonding strength is high, but the resin is carbonized and brittle during use, and the temperature measuring elements 10a, 10b, 10c, and 10d are peeled off. As a result, an accurate temperature cannot be measured. In addition, cements such as alumina cement can be used as the filler 22 if they are filled so as not to impair the thermal conductivity.

さらに、図1において、金属製の支持体11は、側壁部と板状構造体13を有し、該板状構造体13には、その面積の5〜50%にあたる開口部が形成されている。また、該板状構造体13には、必要に応じて他に、板状セラミックス体2の抵抗発熱体5に給電するための給電部6と導通するための導通端子7、板状セラミックス体2を冷却するためのガス噴出口、板状セラミックス体2の温度を測定するための測温素子10を設置する。   Further, in FIG. 1, the metal support 11 has a side wall and a plate-like structure 13, and the plate-like structure 13 has an opening corresponding to 5 to 50% of its area. . In addition, the plate-like structure 13 may further include, as necessary, a conduction terminal 7 for conducting with a power supply portion 6 for supplying power to the resistance heating element 5 of the plate-like ceramic body 2; And a temperature measuring element 10 for measuring the temperature of the plate-shaped ceramic body 2 are installed.

また、不図示のリフトピンは支持体11内に昇降自在に設置され、ウェハWを載置面3上に載せたり、載置面3より持ち上げるために使用される。そして、このウェハ加熱装置1により半導体ウェハWを加熱するには、不図示の搬送アームにて載置面3の上方まで運ばれたウェハWをリフトピンにより支持したあと、リフトピンを降下させてウェハWを載置面3上に載せる。次に、給電部6に通電して抵抗発熱体5を発熱させ、絶縁層4及び板状セラミックス体2を介して載置面3上のウェハWを加熱する。   Further, lift pins (not shown) are installed in the support 11 so as to be able to move up and down, and are used to place the wafer W on the mounting surface 3 and to lift the wafer W from the mounting surface 3. In order to heat the semiconductor wafer W by the wafer heating device 1, the wafer W carried above the mounting surface 3 by the transfer arm (not shown) is supported by the lift pins, and the lift pins are lowered to move the wafer W On the mounting surface 3. Next, power is supplied to the power supply unit 6 to cause the resistance heating element 5 to generate heat, and the wafer W on the mounting surface 3 is heated via the insulating layer 4 and the plate-shaped ceramic body 2.

このとき、本発明によれば、板状セラミックス体2を炭化珪素質焼結体、炭化硼素質焼結体、窒化硼素質焼結体、窒化珪素質焼結体、もしくは窒化アルミニウム質焼結体により形成してあることから、熱を加えても変形が小さく、板厚を薄くできるため、所定の処理温度に加熱するまでの昇温時間及び所定の処理温度から室温付近に冷却するまでの冷却時間を短くすることができ、生産性を高めることができるとともに、60W/(m・K)以上の熱伝導率を有することから、薄い板厚でも抵抗発熱体5のジュール熱を素早く伝達し、載置面3の温度ばらつきを極めて小さくすることができる。しかも、大気中の水分等と反応してガスを発生させることもないため、半導体ウェハ上へのレジスト膜の貼付に用いたとしても、レジスト膜の組織に悪影響を与えることがなく、微細な配線を高密度に形成することが可能である。   At this time, according to the present invention, the plate-shaped ceramic body 2 is formed of a silicon carbide-based sintered body, a boron carbide-based sintered body, a boron nitride-based sintered body, a silicon nitride-based sintered body, or an aluminum nitride-based sintered body. Since it is formed by heat treatment, the deformation is small even when heat is applied, and the plate thickness can be reduced, so that the heating time until heating to the predetermined processing temperature and the cooling until cooling from the predetermined processing temperature to around room temperature are performed. Time can be shortened, productivity can be increased, and since it has a thermal conductivity of 60 W / (m · K) or more, the Joule heat of the resistance heating element 5 can be quickly transmitted even with a small thickness, Temperature variation of the mounting surface 3 can be extremely reduced. In addition, since it does not react with moisture in the atmosphere to generate gas, even when used for attaching a resist film on a semiconductor wafer, it does not adversely affect the structure of the resist film and allows fine wiring. Can be formed at a high density.

ところで、このような特性を満足するには、板状セラミックス体2の板厚を1mm〜7mmとすることが良い。これは、板厚が1mm未満であると、板厚が薄すぎるために温度ばらつきを平準化するという板状セラミックス体2としての効果が小さく、抵抗発熱体5におけるジュール熱のばらつきがそのまま載置面3の温度ばらつきとして現れるため、載置面3の均熱化が難しいからであり、逆に板厚が7mmを越えると、板状セラミックス体2の熱容量が大きくなり過ぎ、所定の処理温度に加熱するまでの昇温時間や温度変更時の冷却時間が長くなり、生産性を向上させることができないからである。   By the way, in order to satisfy such characteristics, the plate thickness of the plate-shaped ceramic body 2 is preferably set to 1 mm to 7 mm. This is because if the plate thickness is less than 1 mm, the plate thickness is too small, and the temperature variation is leveled, so that the effect as the plate-shaped ceramic body 2 is small, and the variation of the Joule heat in the resistance heating element 5 is directly mounted. This is because it appears as a temperature variation of the surface 3 and it is difficult to equalize the temperature of the mounting surface 3. Conversely, if the plate thickness exceeds 7 mm, the heat capacity of the plate-shaped ceramic body 2 becomes too large, and the temperature becomes a predetermined processing temperature. This is because the time required to increase the temperature before heating or the cooling time when changing the temperature becomes long, and the productivity cannot be improved.

また、以上詳述した本発明のウェハ加熱装置1において、図1に示すように、板状セラミックス体2の表面に、絶縁層4を介して抵抗発熱体5を形成し、抵抗発熱体5を露出させてあることから、使用条件等に合わせて載置面3の温度分布が均一となるように、抵抗発熱体5にトリミングを施して抵抗値を調整することもできる。   Further, in the wafer heating apparatus 1 of the present invention described in detail above, as shown in FIG. 1, a resistance heating element 5 is formed on a surface of a plate-shaped ceramic body 2 with an insulating layer 4 interposed therebetween. Since it is exposed, the resistance value can be adjusted by trimming the resistance heating element 5 so that the temperature distribution on the mounting surface 3 becomes uniform according to the use conditions and the like.

また、板状セラミックス体2を形成するセラミックスとしては、炭化珪素、炭化硼素、窒化硼素、窒化珪素、窒化アルミニウムのいずれか1種以上を主成分とするものを使用することができる。炭化珪素質焼結体としては、主成分の炭化珪素に対し、焼結助剤として硼素(B)と炭素(C)を含有した焼結体や、主成分の炭化珪素に対し、焼結助剤としてアルミナ(Al)とイットリア(Y)を含有し1900〜2200℃で焼成した焼結体を用いることができ、また、炭化珪素はα型を主体とするもの、あるいはβ型を主体とするもののいずれであっても構わない。 Further, as the ceramic forming the plate-shaped ceramic body 2, a ceramic mainly containing at least one of silicon carbide, boron carbide, boron nitride, silicon nitride, and aluminum nitride can be used. Examples of the silicon carbide sintered body include a sintered body containing boron (B) and carbon (C) as a sintering aid for silicon carbide as a main component, and a sintering aid for silicon carbide as a main component. As an agent, a sintered body containing alumina (Al 2 O 3 ) and yttria (Y 2 O 3 ) and fired at 1900 to 2200 ° C. can be used, and silicon carbide mainly containing α-type, or Any of those mainly composed of β-type may be used.

また、炭化硼素質焼結体としては、主成分の炭化硼素に対し、焼結助剤として炭素を3〜10重量%混合し、2000〜2200℃でホットプレス焼成することにより焼結体を得ることができる。   Further, as the boron carbide sintered body, a sintered body is obtained by mixing 3 to 10% by weight of carbon as a sintering aid with boron carbide as a main component and performing hot press firing at 2000 to 2200 ° C. be able to.

そして、窒化硼素質焼結体としては、主成分の窒化硼素に対し、焼結助剤として30〜45重量%の窒化アルミニウムと5〜10重量%の希土類元素酸化物を混合し、1900〜2100℃でホットプレス焼成することにより焼結体を得ることができる。窒化硼素の焼結体を得る方法としては、他に硼珪酸ガラスを混合して焼結させる方法があるが、この場合熱伝導率が著しく低下するので好ましくない。   As the boron nitride sintered body, 30 to 45% by weight of aluminum nitride and 5 to 10% by weight of a rare earth element oxide are mixed as a sintering aid with respect to boron nitride as a main component, and 1900 to 2100%. A sintered body can be obtained by hot press sintering at ℃. As another method for obtaining a sintered body of boron nitride, there is a method in which borosilicate glass is mixed and sintered, but this method is not preferable because the thermal conductivity is significantly reduced.

また、窒化珪素質焼結体としては、主成分の窒化珪素に対し、焼結助剤として3〜12重量%の希土類元素酸化物と0.5〜3重量%のAl、さらに焼結体に含まれるSiO量として1.5〜5重量%となるようにSiOを混合し、1650〜1750℃でホットプレス焼成することにより焼結体を得ることができる。ここで示すSiO量とは、窒化珪素原料中に含まれる不純物酸素から生成するSiOと、他の添加物に含まれる不純物としてのSiOと、意図的に添加したSiOの総和である。 Further, as the silicon nitride sintered body, 3 to 12% by weight of a rare earth element oxide and 0.5 to 3% by weight of Al 2 O 3 as a sintering aid are added to silicon nitride as a main component. The sintered body can be obtained by mixing SiO 2 so that the amount of SiO 2 contained in the binder becomes 1.5 to 5% by weight and performing hot press firing at 1650 to 1750 ° C. Here, the SiO 2 amount indicated, the SiO 2 generated from oxygen impurity contained in the silicon nitride in the raw material, and SiO 2 as an impurity contained in other additives, are deliberately SiO 2 in total added .

また、窒化アルミニウム質焼結体としては、主成分の窒化アルミニウムに対し、焼結助剤としてYやYb等の希土類元素酸化物と必要に応じてCaO等のアルカリ土類金属酸化物を添加して十分混合し、平板状に加工した後、窒素ガス中1900〜2100℃で焼成することにより得られる。 Further, as the aluminum nitride sintered body, a rare earth element oxide such as Y 2 O 3 or Yb 2 O 3 as a sintering aid and an alkaline earth element such as CaO if necessary It is obtained by adding a metal oxide, mixing well, processing into a plate shape, and then firing at 1900 to 2100 ° C. in nitrogen gas.

これらの焼結体は、その用途により材質を選択して使用する。例えば、レジスト膜の乾燥に使用する場合は、窒化物は水分と反応してアンモニアガスを発生し、これがレジスト膜に悪影響を及ぼすので使用できない。また、800℃程度の高温で使用する可能性のあるCVD用のウェハ加熱装置の場合は、ガラスを多く含む窒化硼素系の材料は、板状セラミックス体2が使用中に変形してしまい均熱性が損なわれてしまう可能性がある。   These sintered bodies are used by selecting a material according to the intended use. For example, when used for drying a resist film, the nitride reacts with moisture to generate ammonia gas, which has an adverse effect on the resist film and cannot be used. Further, in the case of a wafer heating apparatus for CVD that may be used at a high temperature of about 800 ° C., a boron nitride-based material containing a large amount of glass is deformed during use so that the plate-like ceramic body 2 is deformed. May be compromised.

さらに、板状セラミックス体2の載置面3と反対側の主面は、ガラスや樹脂からなる絶縁層4との密着性を高める観点から、平面度20μm以下、面粗さを中心線平均粗さ(Ra)で0.1μm〜0.5μmに研磨しておくことが好ましい。   Further, the main surface of the plate-shaped ceramic body 2 opposite to the mounting surface 3 has a flatness of 20 μm or less and a surface roughness of a center line average roughness from the viewpoint of enhancing the adhesion to the insulating layer 4 made of glass or resin. It is preferable that the surface is polished to a thickness (Ra) of 0.1 μm to 0.5 μm.

一方、炭化珪素質焼結体を板状セラミックス体2として使用する場合、多少導電性を有する板状セラミックス体2と抵抗発熱体5との間の絶縁を保つ絶縁層4としては、ガラス又は樹脂を用いることが可能であり、ガラスを用いる場合、その厚みが100μm未満では耐電圧が1.5kVを下回り絶縁性が保てず、逆に厚みが500μmを越えると、板状セラミックス体2を形成する炭化珪素質焼結体や窒化アルミニウム質焼結体との熱膨張差が大きくなり過ぎるために、クラックが発生して絶縁層4として機能しなくなる。その為、絶縁層4としてガラスを用いる場合、絶縁層4の厚みは100μm〜500μmの範囲で形成することが好ましく、望ましくは150μm〜400μmの範囲で形成することが良い。   On the other hand, when the silicon carbide sintered body is used as the plate-shaped ceramic body 2, the insulating layer 4 for maintaining the insulation between the plate-shaped ceramic body 2 having some conductivity and the resistance heating element 5 is made of glass or resin. When glass is used, if the thickness is less than 100 μm, the withstand voltage is below 1.5 kV, and the insulating property cannot be maintained. Conversely, if the thickness exceeds 500 μm, the plate-like ceramic body 2 is formed. Since the thermal expansion difference between the silicon carbide-based sintered body and the aluminum nitride-based sintered body becomes too large, cracks are generated and the insulating layer 4 does not function. Therefore, when glass is used as the insulating layer 4, the thickness of the insulating layer 4 is preferably in the range of 100 μm to 500 μm, and more preferably in the range of 150 μm to 400 μm.

炭化珪素質焼結体からなる板状セラミックス体2の表面に絶縁層4を形成する場合、予め表面を酸化処理することにより、0.01〜2μm厚みのSiOからなる酸化膜を形成したのち、さらにその表面に絶縁層4を形成する
また、板状セラミックス体2を、窒化アルミニウムを主成分とするセラミック焼結体で形成する場合は、板状セラミックス体2に対する抵抗発熱体5の密着性を向上させるために、ガラスからなる絶縁層4を形成する。ただし、抵抗発熱体5の中に十分なガラスを添加し、これにより十分な密着強度が得られる場合は、省略することが可能である。
When the insulating layer 4 is formed on the surface of the plate-shaped ceramic body 2 made of the silicon carbide sintered body, the surface is oxidized in advance to form an oxide film made of SiO 2 having a thickness of 0.01 to 2 μm. Further, an insulating layer 4 is formed on the surface. When the plate-shaped ceramic body 2 is formed of a ceramic sintered body containing aluminum nitride as a main component, the adhesion of the resistance heating element 5 to the plate-shaped ceramic body 2 In order to improve the quality, the insulating layer 4 made of glass is formed. However, when sufficient glass is added to the resistance heating element 5 and a sufficient adhesion strength can be obtained by this, it can be omitted.

次に、絶縁層4に樹脂を用いる場合、その厚みが30μm未満では、耐電圧が1.5kVを下回り、絶縁性が保てなくなるとともに、抵抗発熱体5にレーザー加工等によってトリミングを施した際に絶縁層4を傷付け、絶縁層4として機能しなくなり、逆に厚みが400μmを越えると、樹脂の焼付け時に発生する溶剤や水分の蒸発量が多くなり、板状セラミックス体2との間にフクレと呼ばれる泡状の剥離部ができ、この剥離部の存在により熱伝達が悪くなるため、載置面3の均熱化が阻害される。その為、絶縁層4として樹脂を用いる場合、絶縁層4の厚みは30μm〜400μmの範囲で形成することが好ましく、望ましくは60μm〜200μmの範囲で形成することが良い。   Next, when a resin is used for the insulating layer 4, if the thickness is less than 30 μm, the withstand voltage falls below 1.5 kV, the insulating property cannot be maintained, and the resistance heating element 5 is trimmed by laser processing or the like. When the thickness exceeds 400 μm, the amount of solvent and water generated during baking of the resin increases, and the insulating layer 4 is damaged. A bubble-like peeling portion called “foamed portion” is formed, and the presence of the peeling portion deteriorates heat transfer. Therefore, when a resin is used as the insulating layer 4, the thickness of the insulating layer 4 is preferably formed in the range of 30 μm to 400 μm, and more preferably in the range of 60 μm to 200 μm.

また、絶縁層4を形成する樹脂としては、200℃以上の耐熱性と、抵抗発熱体5との密着性を考慮すると、ポリイミド樹脂、ポリイミドアミド樹脂、ポリアミド樹脂等が好ましい。   In addition, as the resin forming the insulating layer 4, polyimide resin, polyimide amide resin, polyamide resin, and the like are preferable in consideration of heat resistance of 200 ° C. or more and adhesion to the resistance heating element 5.

なお、ガラスや樹脂から成る絶縁層4を板状セラミックス体2上に被着する手段としては、前記ガラスペースト又は樹脂ペーストを板状セラミックス体2の中心部に適量落とし、スピンコーティング法にて伸ばして均一に塗布するか、あるいはスクリーン印刷法、ディッピング法、スプレーコーティング法等にて均一に塗布したあと、ガラスペーストにあっては、600℃の温度で、樹脂ペーストにあっては、300℃以上の温度で焼き付ければ良い。また、絶縁層4としてガラスを用いる場合、予め炭化珪素質焼結体又は炭化硼素質焼結体から成る板状セラミックス体2を1200℃程度の温度に加熱し、絶縁層4を被着する表面を酸化処理しておくことで、ガラスから成る絶縁層4との密着性を高めることができる。   As a means for applying the insulating layer 4 made of glass or resin on the plate-shaped ceramic body 2, a suitable amount of the glass paste or resin paste is dropped on the center of the plate-shaped ceramic body 2 and stretched by a spin coating method. Or evenly by screen printing, dipping, spray coating, etc., then at 600 ° C for glass paste and 300 ° C or higher for resin paste Baking at the temperature. When glass is used as the insulating layer 4, the surface of the plate-shaped ceramic body 2 made of a silicon carbide-based sintered body or a boron carbide-based sintered body is heated in advance to a temperature of about 1200 ° C. By oxidation treatment, the adhesion to the insulating layer 4 made of glass can be enhanced.

さらに、絶縁層4上に被着する抵抗発熱体5としては、金(Au)、銀(Ag)、銅(Cu)、パラジウム(Pd)等の金属単体を、蒸着法やメッキ法にて直接被着するか、あるいは前記金属単体や酸化レニウム(Re)、ランタンマンガネート(LaMnO)等の酸化物を導電材として含む樹脂ペーストやガラスペーストを用意し、所定のパターン形状にスクリーン印刷法等にて印刷したあと焼付けて前記導電材を樹脂やガラスから成るマトリックスで結合すれば良い。マトリックスとしてガラスを用いる場合、結晶化ガラス、非晶質ガラスのいずれでも良いが、熱サイクルによる抵抗値の変化を抑えるために結晶化ガラスを用いることが好ましい。 Further, as the resistance heating element 5 to be deposited on the insulating layer 4, a simple metal such as gold (Au), silver (Ag), copper (Cu), palladium (Pd) is directly applied by a vapor deposition method or a plating method. A resin paste or a glass paste containing the above-mentioned metal alone or an oxide such as rhenium oxide (Re 2 O 3 ) or lanthanum manganate (LaMnO 3 ) as a conductive material is prepared, and the screen is formed into a predetermined pattern shape. After printing by a printing method or the like, the conductive material may be bonded by a matrix made of resin or glass by baking. When glass is used as the matrix, either crystallized glass or amorphous glass may be used, but it is preferable to use crystallized glass in order to suppress a change in resistance due to thermal cycling.

ただし、抵抗発熱体5に銀又は銅を用いる場合、マイグレーションが発生する恐れがあるため、このような場合には、抵抗発熱体5を覆うように絶縁層4と同一の材質もしくは抵抗発熱体5のマトリックス成分と同等の材質から成る保護膜を30μm程度の厚みで被覆しておけば良い。   However, when silver or copper is used for the resistance heating element 5, migration may occur. In such a case, the same material or the same resistance heating element 5 as the insulating layer 4 is used to cover the resistance heating element 5. A protective film made of a material equivalent to the matrix component may be coated with a thickness of about 30 μm.

また、抵抗発熱体5を内蔵するタイプの板状セラミックス体2に関しては、熱伝導率が高く電気絶縁性が高い窒化アルミニウム質焼結体を用いることが好ましい。この場合、窒化アルミニウムを主成分とし焼結助剤を適宜含有する原料を十分混合したのち円盤状に成形し、その表面にWもしくはWCからなるペーストを抵抗発熱体5のパターン形状にプリントし、その上に別の窒化アルミニウム成形体を重ねて密着した後、窒素ガス中1900〜2100℃の温度で焼成することにより抵抗発熱体5を内蔵した板状セラミックス体2得ることが出来る。また、抵抗発熱体5からの導通は、窒化アルミニウム質基材にスルーホールを形成し、WもしくはWCからなるペーストを埋め込んだ後焼成するようにして表面に電極を引き出すようにすれば良い。   In addition, as for the plate-shaped ceramic body 2 of the type in which the resistance heating element 5 is incorporated, it is preferable to use an aluminum nitride sintered body having high thermal conductivity and high electrical insulation. In this case, a raw material containing aluminum nitride as a main component and appropriately containing a sintering agent is sufficiently mixed, and then molded into a disk shape, and a paste made of W or WC is printed on the surface thereof in a pattern shape of the resistance heating element 5, After another aluminum nitride molded body is overlaid and adhered thereon, it is fired at a temperature of 1900 to 2100 ° C. in nitrogen gas to obtain the plate-shaped ceramic body 2 having the resistance heating element 5 built-in. In addition, conduction from the resistance heating element 5 may be achieved by forming a through hole in the aluminum nitride base material, embedding a paste made of W or WC, and firing the paste to draw out the electrode to the surface.

上記絶縁層4を形成するガラスの特性としては、結晶質又は非晶質のいずれでも良く、例えばレジスト乾燥用に使用する場合、耐熱温度が200℃以上でかつ20℃〜200℃の温度域における熱膨張係数が板状セラミックス体2を構成するセラミックスの熱膨張係数に対し−5〜+5×10−7/℃の範囲にあるものを適宜選択して用いることが好ましい。即ち、熱膨張係数が前記範囲を外れたガラスを用いると、板状セラミックス体2を形成するセラミックスとの熱膨張差が大きくなりすぎるため、ガラスの焼付け後の冷却時において、板状セラミックス体2に反りが発生したり、クラックや剥離等の欠陥が生じ易いからである。 The properties of the glass forming the insulating layer 4 may be either crystalline or amorphous. For example, when used for resist drying, the glass has a heat resistant temperature of 200 ° C. or higher and a temperature range of 20 ° C. to 200 ° C. It is preferable to appropriately select and use one having a coefficient of thermal expansion in the range of -5 to + 5 × 10 −7 / ° C. with respect to the coefficient of thermal expansion of the ceramics constituting the plate-shaped ceramic body 2. That is, if a glass having a coefficient of thermal expansion outside the above range is used, the difference in thermal expansion from the ceramics forming the plate-shaped ceramic body 2 becomes too large. This is because defects such as cracks and peeling easily occur.

熱伝導率が100W/(m・K)の炭化珪素質焼結体、板厚4mm、外径300mmの円盤状をした板状セラミックス体を複数製作し、抵抗発熱体のブロック毎の温度を測定するための測温素子設置用の深さ2.3mm×1mmφの凹部を加工する。その後、1000℃×2時間の酸化処理により表面に酸化皮膜を形成し、各板状セラミックス体の一方の主面に絶縁層を被着するため、ガラス粉末に対してバインダーとしてのエチルセルロースと有機溶剤としてのテルピネオールを混練して作製したガラスペーストをスクリーン印刷法にて敷設し、150℃に加熱して有機溶剤を乾燥させたあと、550℃で30分間脱脂処理を施し、さらに700〜900℃の温度で焼き付けを行うことにより、ガラスからなる厚み200μmの絶縁層を形成した。   Manufacture a plurality of silicon carbide sintered bodies with a thermal conductivity of 100 W / (m · K), disk-shaped plate-shaped ceramic bodies with a plate thickness of 4 mm and an outer diameter of 300 mm, and measure the temperature of each block of the resistance heating element A depth of 2.3 mm × 1 mmφ recess for installing a temperature measuring element for processing is performed. Thereafter, an oxide film is formed on the surface by an oxidation treatment at 1000 ° C. for 2 hours, and an insulating layer is applied to one main surface of each plate-shaped ceramic body. A glass paste prepared by kneading terpineol as a paste was laid by screen printing, heated to 150 ° C. to dry the organic solvent, and then degreased at 550 ° C. for 30 minutes. By baking at a temperature, an insulating layer made of glass and having a thickness of 200 μm was formed.

次いで絶縁層上に抵抗発熱体を被着するため、導電材としてAu粉末とPt粉末を添加したガラスペーストを、スクリーン印刷法にて所定のパターン形状に印刷したあと、150℃に加熱して有機溶剤を乾燥させ、さらに550℃で30分間脱脂処理を施したあと、700〜900℃の温度で焼き付けを行うことにより、厚みが50μmの抵抗発熱体を形成した。抵抗発熱体は中心部を2つと外周部を周方向に4分割した6個のとした。測温素子の周りの抵抗発熱体による電力密度の影響を確認するため、測温素子周りの電力密度をその個別の抵抗発熱体の平均電力密度に対して、20%〜120%のウェハ加熱装置を作製した。しかるのち抵抗発熱体に給電部を導電性接着剤にて固着させることにより、板状セラミックス体を製作した。   Then, in order to apply a resistance heating element on the insulating layer, a glass paste to which Au powder and Pt powder are added as a conductive material is printed in a predetermined pattern shape by a screen printing method, and then heated to 150 ° C. The solvent was dried, degreased at 550 ° C. for 30 minutes, and baked at a temperature of 700 to 900 ° C. to form a resistance heating element having a thickness of 50 μm. The number of resistance heating elements was six, with two at the center and four at the outer periphery in the circumferential direction. In order to confirm the influence of the power density due to the resistance heating element around the temperature measuring element, the wafer heating apparatus is used in which the power density around the temperature measuring element is 20% to 120% with respect to the average power density of the individual resistance heating elements. Was prepared. Thereafter, the power supply portion was fixed to the resistance heating element with a conductive adhesive to produce a plate-shaped ceramic body.

その後、各抵抗発熱体の測温部の凹部に抵抗素子からなる測温素子を、先端測温部が前記凹部の底部に接するように埋め込み、間に充填剤を充填した。この充填剤としては、樹脂(ポリイミド)を流し込んで固定した。   Thereafter, a temperature measuring element composed of a resistance element was embedded in the concave portion of the temperature measuring portion of each resistance heating element so that the tip temperature measuring portion was in contact with the bottom of the concave portion, and a filler was filled therebetween. As this filler, a resin (polyimide) was poured and fixed.

また、支持体は、主面の30%に開口部を形成した厚み2.5mmのステンレスからなる2枚の板状構造体を準備し、この内の1枚に、10本の導通端子を所定の位置に形成し、同じくステンレスからなる側壁部とネジ締めにて固定して支持体を準備した。   As the support, two plate-like structures made of stainless steel having a thickness of 2.5 mm and having an opening formed in 30% of the main surface are prepared, and ten conductive terminals are provided on one of the plate-like structures. , And fixed to the side wall portion also made of stainless steel with screws to prepare a support.

その後、前記支持体の上に、発熱パターン形成部の略中央部に該凹部を形成し、測温素子を設置し、無機系の充填剤で保持固定した板状セラミックス体を重ね、その外周部を弾性体を介してネジ締めするウェハ加熱装置とした。   Then, on the support, the concave portion is formed at a substantially central portion of the heat generating pattern forming portion, a temperature measuring element is installed, and a plate-like ceramic body held and fixed with an inorganic filler is overlapped. Was heated with a screw through an elastic body.

そして、転写法により金ペーストからなる給電部を形成し、900℃で焼き付け処理した。   Then, a power supply portion made of a gold paste was formed by a transfer method, and baked at 900 ° C.

ここでは、電力密度比と測温素子の配置の影響について調査した。また、板状セラミックス体の材質を窒化アルミニウムとし、それぞれのウェハ加熱装置の電力密度比は、90%、100%、110%、板状セラミックス体の凹部の位置の帯状の発熱体の重心Gからのずれ量Xを抵抗発熱体の板状セラミックス体の直径方向の幅の0%、10%、20%、30%と変えて、ウェハ加熱装置を作製した。そして、このようにして得られたウェハ加熱装置の導電端子に通電して150℃で保持し、載置面の上に載せたウェハ表面の温度分布をウェハの中心とウェハの半径の1/3および2/3の周上の8分割点の16点との合計17点の温度バラツキが1℃以内となるように温度コントローラーの設定温度を各抵抗発熱体毎に補正し、その設定バラツキを確認した。また、ウェハを外しウェハ加熱装置のみで60分以上保持した後、常温に維持されたウェハWを、加熱装置に投入、載置面に載せた瞬間から150℃に安定するまでのウェハWのオーバーシュート量、および150±0.5℃に安定するまでの温度安定時間を、各試料それぞれ5回づつ計測し、その最大値を測定値とした。   Here, the influence of the power density ratio and the arrangement of the temperature measuring elements was investigated. The material of the plate-shaped ceramic body is aluminum nitride, the power density ratio of each wafer heating device is 90%, 100%, 110%, and the center of gravity G of the strip-shaped heating element at the position of the concave portion of the plate-shaped ceramic body. The wafer heating device was manufactured by changing the deviation amount X of the resistance heating element to 0%, 10%, 20%, and 30% of the width in the diameter direction of the plate-shaped ceramic body. Then, a current is supplied to the conductive terminals of the wafer heating apparatus obtained in this way and the temperature is maintained at 150 ° C., and the temperature distribution on the surface of the wafer placed on the mounting surface is set to be equal to the center of the wafer and 1/3 of the radius of the wafer. The temperature setting of the temperature controller is corrected for each resistance heating element so that the temperature variation of 17 points, that is, 16 points of 8 division points on the circumference of 2/3 is within 1 ° C, and the setting variation is confirmed. did. In addition, after the wafer is removed and held by the wafer heating device alone for 60 minutes or more, the wafer W maintained at room temperature is put into the heating device, and the wafer W is overheated from the moment it is placed on the mounting surface until it is stabilized at 150 ° C. The amount of shoot and the temperature stabilization time until the temperature was stabilized at 150 ± 0.5 ° C. were measured five times for each sample, and the maximum value was taken as the measured value.

それぞれの結果は表1に示す通りである。

Figure 2004221563
Each result is as shown in Table 1.
Figure 2004221563

表1から判るように、試料No.1,2のウェハ加熱装置は、測温素子の周りの電力密度が大き過ぎるため、抵抗発熱体の温度が高いと検知し、出力のかかる時間が短くなるため、外周部の温度が緩やかに上昇しオーバシュート量が2℃、2.6℃と大きくなり、温度安定時間が61秒、67秒と大きく好ましくなかった。   As can be seen from Table 1, sample no. The wafer heating devices 1 and 2 detect that the temperature of the resistance heating element is high because the power density around the temperature measuring element is too large, and the time required for output is short, so the temperature of the outer peripheral portion rises slowly. However, the overshoot amount was large at 2 ° C. and 2.6 ° C., and the temperature stabilization time was 61 seconds and 67 seconds, which was not preferable.

これに対し、板状セラミックス体の凹部の位置を帯状の発熱体の重心Gの周方向のずれ量Xが20度、また、径方向のずれ量Yを凹部の抵抗発熱体の幅の内側20%、外側20%、電力密度比が100%より小さい試料No.3〜5は、オーバーシュート量が温度2℃未満で、温度安定時間が48秒以下と小さく良好な過渡特性を示した。   On the other hand, the position of the concave portion of the plate-shaped ceramic body is set such that the circumferential shift amount X of the center of gravity G of the strip-shaped heating element is 20 degrees, and the radial shift amount Y is set to the inner side of the width of the resistive heating element of the recess. %, Outer 20%, power density ratio is smaller than 100%. In Nos. 3 to 5, the overshoot amount was less than 2 ° C., and the temperature stabilization time was 48 seconds or less, indicating good transient characteristics.

また、測温素子の配置を変えて試験した結果、板状セラミックス体の凹部の位置を帯状の発熱体の重心Gのずれ量Xが30%の試料No.6は、ウエハ温度が安定するまでの時間が51秒とやや大きいのに対し、試料No.4,5は45秒、46秒と小さく好ましかった。   In addition, as a result of a test in which the arrangement of the temperature measuring element was changed, the position of the concave portion of the plate-shaped ceramic body was changed to the sample No. in which the displacement X of the center of gravity G of the strip-shaped heating element was 30%. In Sample No. 6, the time required for the wafer temperature to stabilize was slightly longer at 51 seconds, whereas in Sample No. 6 4 and 5 were 45 seconds and 46 seconds, which were small and preferred.

ここでは、測温素子の配置の影響について調査した。板状セラミックス体の材質を窒化アルミニウムとし、それぞれのウェハ加熱装置の板状セラミックス体の抵抗発熱体の測温素子の近傍部の領域を凹の径に対して、1.25、1.5、5、7.5倍の領域に変えて抵抗調整を行い、ウェハ加熱装置を作製した。測温素子の位置は各抵抗発熱体の重心に位置した。このようにして得られたウェハ加熱装置の導電端子に通電して150℃で保持し、実施例1と同様にして、温度の調整を行った。また、ウェハを外しウェハ加熱装置のみで60分以上保持した後、常温に維持されたウェハWを、加熱装置に投入、載置面に載せた瞬間から150±0.5℃に安定するまでの温度安定時間を、各サンプル5回づつ計測し、その最大値を測定値とした。   Here, the influence of the arrangement of the temperature measuring element was investigated. The material of the plate-shaped ceramic body is aluminum nitride, and the area near the temperature measuring element of the resistance heating element of the plate-shaped ceramic body of each wafer heating device is 1.25, 1.5, The resistance was adjusted by changing the area to 5, 7.5 times, and a wafer heating device was manufactured. The position of the temperature measuring element was located at the center of gravity of each resistance heating element. Electricity was supplied to the conductive terminals of the wafer heating apparatus thus obtained and the temperature was maintained at 150 ° C., and the temperature was adjusted in the same manner as in Example 1. Also, after removing the wafer and holding it for 60 minutes or more only with the wafer heating device, the wafer W maintained at room temperature is put into the heating device, and from when the wafer W is placed on the mounting surface until it is stabilized at 150 ± 0.5 ° C. The temperature stabilization time was measured five times for each sample, and the maximum value was taken as the measured value.

結果を、表2に示した。

Figure 2004221563
The results are shown in Table 2.
Figure 2004221563

表2から判るように、試料No.21,24は、安定するまでの時間は改善されていない。これに対し、測温素子近傍の領域が凹径に対して、1.5〜5倍のNo.22,23は、安定するまでの時間が43秒以下と小さく好ましかった。   As can be seen from Table 2, sample no. In Nos. 21 and 24, the time until stabilization is not improved. On the other hand, the area near the temperature measuring element is 1.5 to 5 times larger than the concave diameter. Samples Nos. 22 and 23 were preferable because the time until stabilization was 43 seconds or less.

ここでは、測温素子の近傍部の電力密度比の影響について調査した。板状セラミックス体の材質を窒化アルミニウムとし、測温素子の重心Gからのずれ量Xを0%とし、電力密度比(測温素子周辺の電力密度/抵抗発熱体の平均電力密度)を30%〜95%の間としてウェハ加熱装置を作製した。   Here, the influence of the power density ratio in the vicinity of the temperature measuring element was investigated. The material of the plate-shaped ceramic body is aluminum nitride, the deviation X from the center of gravity G of the temperature measuring element is 0%, and the power density ratio (power density around the temperature measuring element / average power density of the resistance heating element) is 30%. Wafer heating devices were made with a range of ~ 95%.

このようにして得られたウェハ加熱装置の導電端子に通電して150℃で保持し、実施例1と同様にして、温度の調整を行った。また、ウェハを外しウェハ加熱装置のみで60分以上保持した後、常温に維持されたウェハWを、加熱装置に投入、載置面に載せた瞬間から150±0.5℃に安定するまでの温度安定時間を、各サンプル5回づつ計測し、その最大値を測定値とした。   Electricity was supplied to the conductive terminals of the wafer heating apparatus thus obtained and the temperature was maintained at 150 ° C., and the temperature was adjusted in the same manner as in Example 1. Also, after removing the wafer and holding it for 60 minutes or more only with the wafer heating device, the wafer W maintained at room temperature is put into the heating device, and from when the wafer W is placed on the mounting surface until it is stabilized at 150 ± 0.5 ° C. The temperature stabilization time was measured five times for each sample, and the maximum value was taken as the measured value.

結果を、表3に示した。

Figure 2004221563
The results are shown in Table 3.
Figure 2004221563

表3から判るように、試料No.31のウェハ加熱装置は、常温に維持されたウェハWを、150℃に加熱した載置面に載せ、載置面に載せた瞬間から150℃に安定するまでのウェハWのオーバーシュート量が1.7℃とやや大きく
、また、150±0.5℃までに安定する時間も43秒とやや大きかった。これは、測温素子周りの電力密度が平均電力密度より小さいことから、初期の温度が低いと検知し、その後出力する時間が長く続くため、150℃を越えてしまうオーバーシュート量が1.7℃と大きくなったものと考えられる。
As can be seen from Table 3, sample no. The wafer heating device 31 places the wafer W maintained at room temperature on the mounting surface heated to 150 ° C., and the amount of overshoot of the wafer W from the moment when the wafer W is mounted on the mounting surface to stabilization at 150 ° C. is 1 The temperature was slightly large at 0.7 ° C., and the time required for stabilization to 150 ± 0.5 ° C. was also slightly large at 43 seconds. This is because the power density around the temperature measuring element is smaller than the average power density, so that it is detected that the initial temperature is low and the output time is long after that, so that the amount of overshoot exceeding 150 ° C. is 1.7. It is considered that the temperature became large.

また、試料No.32は温度安定時間が43秒で、オーバシュート量が1.1℃とやや大きかった。   Further, the sample No. In No. 32, the temperature stabilization time was 43 seconds, and the overshoot amount was slightly large at 1.1 ° C.

これに対し、試料No.32〜36は、オーバーシュート量が温度1.5℃未満で、温度安定時間が42以下と小さく良好な過渡特性を示した。   On the other hand, the sample No. In Nos. 32 to 36, the overshoot amount was less than 1.5 ° C., and the temperature stabilization time was as small as 42 or less, indicating good transient characteristics.

従って、測温素子近傍の電力密度が抵抗発熱体の平均電力密度の40から90%であると好ましいことが分った。   Therefore, it has been found that the power density near the temperature measuring element is preferably 40 to 90% of the average power density of the resistance heating element.

ここでは、測温素子を固定するための充填剤の熱伝導率の影響について調査した。この充填剤としては、熱伝導率が1〜150W/(m・K)となるように、熱伝導率が230〜420W/(m・K)であるAl、Cu、Ni等の粉末を適宜分散させた樹脂(ポリイミド)、セラミックスセメント(アルミナセメント)、ロウ材(Au−Cuロウ、Ag−Cuロウ)を流し込んで固定した。このようにして調した充填剤を用いて、それぞれの板状セラミックス体の凹部に測温素子を固定し、ウェハ加熱装置を作製した。   Here, the influence of the thermal conductivity of the filler for fixing the temperature measuring element was investigated. As this filler, a powder of Al, Cu, Ni or the like having a thermal conductivity of 230 to 420 W / (m · K) is appropriately dispersed so that the thermal conductivity becomes 1 to 150 W / (m · K). Resin (polyimide), ceramic cement (alumina cement), and brazing material (Au-Cu brazing, Ag-Cu brazing) were poured and fixed. Using the filler prepared in this manner, a temperature measuring element was fixed to the concave portion of each plate-shaped ceramic body, and a wafer heating device was manufactured.

尚、作製したウェハ加熱装置の測温素子周りの電力密度はその個別の抵抗発熱体の平均電力密度に対して80%とした。   The power density around the temperature measuring element of the manufactured wafer heating device was set to 80% with respect to the average power density of the individual resistance heating elements.

実施例1と同様な方法で温度の調整を行った。また、常温に維持されたウェハWを、ウェハ加熱装置に投入し、載置面に載せた瞬間から150℃に安定するまでのウェハWのオーバーシュート量、および150±0.5℃に安定するまでの温度安定時間を測定した。さらに、40℃以下から250℃まで2分で昇温し、3分で40℃以下に強制空冷する温度サイクルを10000サイクル実施した。その後、常温に維持されたウェハWを、ウェハ加熱装置の150℃の載置面に投入、載置面にウェハを載せた瞬間から150℃に安定するまでのウェハWのオーバーシュート量、および150±0.5℃に安定するまでの温度安定時間を測定した。   The temperature was adjusted in the same manner as in Example 1. Further, the wafer W maintained at room temperature is put into a wafer heating device, and the amount of overshoot of the wafer W from the moment it is placed on the mounting surface until it is stabilized at 150 ° C., and is stabilized at 150 ± 0.5 ° C. The temperature stabilization time until was measured. Further, 10,000 temperature cycles were performed in which the temperature was raised from 40 ° C. or lower to 250 ° C. in 2 minutes, and forced air cooling was performed to 40 ° C. or lower in 3 minutes. Thereafter, the wafer W maintained at room temperature is put on the mounting surface of the wafer heating device at 150 ° C., and the amount of overshoot of the wafer W from the moment when the wafer is mounted on the mounting surface until it is stabilized at 150 ° C. The temperature stabilization time until stabilization at ± 0.5 ° C. was measured.

それぞれの結果は表4に示す通りである。

Figure 2004221563
The results are as shown in Table 4.
Figure 2004221563

表4から判るように、試料No.41、42、51、52に示すウェハ加熱装置は、充填剤の熱伝導率が小さく応答性が悪いため、オーバーシュート量が1.2〜1.6℃とやや大きく、温度安定時間は39〜40秒とやや大きかった。   As can be seen from Table 4, sample no. In the wafer heating devices 41, 42, 51, and 52, since the thermal conductivity of the filler is small and the response is poor, the overshoot amount is slightly large at 1.2 to 1.6 ° C., and the temperature stabilization time is 39 to It was a little big for 40 seconds.

また、試料No.49、50、60は、充填剤の熱伝導率が大きい為、抵抗発熱体の発熱による熱が早く測温素子に伝わり、温度安定時間が40秒とやや大きかった。   Further, the sample No. In Nos. 49, 50 and 60, since the thermal conductivity of the filler was large, the heat generated by the resistance heating element was quickly transmitted to the temperature measuring element, and the temperature stabilization time was slightly longer at 40 seconds.

これに対し、板状セラミックス体の熱伝導率に対する充填剤の熱伝導率が8.3〜150%である試料No.43〜48とNo.54〜59は、常温に維持されたウェハWを、加熱装置に投入、載置面に載せた瞬間から150℃に安定するまでのウェハWのオーバーシュート量が1.1℃以下と小さく、また、150±0.5℃に安定するまでの温度安定時間も37秒以下となり、さらに良好な結果が得られた。   On the other hand, the sample No. in which the thermal conductivity of the filler was 8.3 to 150% with respect to the thermal conductivity of the plate-shaped ceramic body. Nos. 43 to 48 and Nos. 54 to 59 show that the amount of overshoot of the wafer W from the moment when the wafer W kept at the normal temperature is put into the heating device and placed on the mounting surface until it is stabilized at 150 ° C. is 1.1. ° C or less, and the temperature stabilization time until the temperature was stabilized at 150 ± 0.5 ° C was also 37 seconds or less, and even better results were obtained.

ここでは、測温素子を固定するための充填剤の気孔率の影響について調査した。充填剤は、平均粒径1.0μmのカーボンを分散させたポリイミド樹脂を用い、混合時の攪拌速度と真空脱泡の程度を調整することにより、充填剤の気孔率を0.1〜50%の間で調整した。なお、気孔率は、同時に調整した樹脂を別途固化させて、その嵩比重を測定し、混合比から得られる理論密度との差を換算して気孔率とした。このようにして調整した充填剤を用いて、それぞれの板状セラミックス体の凹部に測温素子を固定し、ウェハ加熱装置を作製した。   Here, the influence of the porosity of the filler for fixing the temperature measuring element was investigated. The filler is made of a polyimide resin in which carbon having an average particle diameter of 1.0 μm is dispersed, and the porosity of the filler is adjusted to 0.1 to 50% by adjusting the stirring speed and the degree of vacuum defoaming during mixing. Adjusted between. The porosity was obtained by separately solidifying the resin that was simultaneously adjusted, measuring the bulk specific gravity thereof, and converting the difference from the theoretical density obtained from the mixing ratio into the porosity. Using the filler thus adjusted, a temperature measuring element was fixed to the concave portion of each plate-shaped ceramic body, and a wafer heating device was manufactured.

そして、実施例1と同様な方法で温度サイクル試験前のオーバ-シュート量と温度安定時間を測定した。温度サイクル試験は、40℃以下から250℃まで2分で昇温し、3分で40℃以下に強制空冷する温度サイクルを1サイクルとして実施した。評価方法は実施例1と同等な手法で、10000回の温度サイクル試験後にウェハ加熱装置の載置面を150℃に1時間以上加熱した後、常温に維持されたウェハWを、ウェハ加熱装置の載置面に載せ、載置面に載せた瞬間から150±0.5℃に安定するまでの温度安定時間を、各サンプル5回づつ計測し、その最大値を測定値とした。   Then, the amount of overshoot and the temperature stabilization time before the temperature cycle test were measured in the same manner as in Example 1. In the temperature cycle test, the temperature was raised from 40 ° C. or lower to 250 ° C. in 2 minutes, and forced air cooling to 40 ° C. or lower in 3 minutes was performed as one cycle. The evaluation method is the same as that of the first embodiment. After the mounting surface of the wafer heating apparatus is heated to 150 ° C. for 1 hour or more after the temperature cycle test of 10,000 times, the wafer W maintained at the normal temperature is removed by the wafer heating apparatus. The sample was placed on the placing surface, and the temperature stabilization time from the moment of placing on the placing surface to stabilization at 150 ± 0.5 ° C. was measured five times for each sample, and the maximum value was taken as the measured value.

結果を表5に示した。

Figure 2004221563
Table 5 shows the results.
Figure 2004221563

表5から判るように、気孔が0.05%の試料No.61は、温度サイクル試験前は常温に維持されたウェハWを、加熱装置に投入、載置面に載せた瞬間から150±0.5℃に安定するまでの温度安定時間は36秒であったが、温度サイクルが10000サイクル試験後の結果は41秒となった。これは、温度サイクルの回数が大きくなると板状セラミックス体と充填剤の熱膨張差により凹部から充填剤の抜けが生じたものによると考えられる。充填剤の気孔率が60%の試料No.69も、熱サイクル前の温度安定時間は37秒で良好であったが、温度サイクルが10000回後は40秒になった。   As can be seen from Table 5, the sample No. having the pores of 0.05%. Reference numeral 61 denotes a temperature stabilization time of 36 seconds from the moment when the wafer W maintained at room temperature was put into the heating device and was placed on the mounting surface before being stabilized at 150 ± 0.5 ° C. before the temperature cycle test. However, the result after a temperature cycle test of 10,000 cycles was 41 seconds. This is considered to be due to the fact that when the number of temperature cycles increases, the filler comes off from the recess due to the difference in thermal expansion between the plate-shaped ceramic body and the filler. Sample No. with a porosity of the filler of 60%. In the case of No. 69, the temperature stabilization time before the heat cycle was good at 37 seconds, but it was 40 seconds after 10,000 times of the temperature cycles.

これに対して、充填材の気孔率が0.1〜50%の試料No.62〜68は温度サイクルによる温度安定時間の変化量は小さく安定していた。これは、気孔が充填剤の弾性を向上させ、充填剤とセラミック基板の熱膨張差による応力を吸収しているものと判断できる。   On the other hand, the sample No. in which the porosity of the filler was 0.1 to 50%. In Nos. 62 to 68, the amount of change in the temperature stabilization time due to the temperature cycle was small and stable. This indicates that the pores improve the elasticity of the filler and absorb the stress caused by the difference in thermal expansion between the filler and the ceramic substrate.

ここでは、測温素子を固定するための充填剤の熱膨張係数の影響について調査した。板状セラミックス体の材質を窒化アルミニウムとし、充填剤の熱膨張係数を1.5〜14.3×10−6/℃と変化させた充填剤を用いて、それぞれのウェハ加熱装置の板状セラミックス体の凹部に測温素子を固定し、ウェハ加熱装置を作製した。 Here, the influence of the thermal expansion coefficient of the filler for fixing the temperature measuring element was investigated. Each of the plate-shaped ceramics of each wafer heating device is formed by using a filler whose material is aluminum nitride and whose coefficient of thermal expansion is changed to 1.5 to 14.3 × 10 −6 / ° C. The temperature measuring element was fixed in the concave portion of the body, and a wafer heating device was manufactured.

このようにして得られたウェハ加熱装置の導電端子に通電して150℃で保持し、実施例5と同様にして、温度の調整を行った。また、ウェハを外しウェハ加熱装置のみで60分以上保持した後、常温に維持されたウェハWを、加熱装置に投入、載置面に載せた瞬間から150±0.5℃に安定するまでの温度安定時間を、各サンプル5回づつ計測し、その最大値を測定値とした。   Electricity was supplied to the conductive terminals of the wafer heating apparatus thus obtained and the temperature was maintained at 150 ° C., and the temperature was adjusted in the same manner as in Example 5. Also, after removing the wafer and holding it for 60 minutes or more only with the wafer heating device, the wafer W maintained at room temperature is put into the heating device, and from when the wafer W is placed on the mounting surface until it is stabilized at 150 ± 0.5 ° C. The temperature stabilization time was measured five times for each sample, and the maximum value was taken as the measured value.

また、実施例5と同様に温度サイクルを10000サイクル実施し、温度安定時間を測定した。評価は具体的には、充填剤として熱伝導率が1W/(m・K)であるポリイミド樹脂にカーボン、Al、Cu等の金属を分散させたものを用いて評価した。   In addition, 10,000 temperature cycles were performed in the same manner as in Example 5, and the temperature stabilization time was measured. Specifically, the evaluation was performed using a filler obtained by dispersing a metal such as carbon, Al, or Cu in a polyimide resin having a thermal conductivity of 1 W / (m · K) as a filler.

結果を、表6に示した。

Figure 2004221563
The results are shown in Table 6.
Figure 2004221563

表6から判るように、充填剤の熱膨張係数が板状セラミックス体の熱膨張係数に対して29%の試料No.71と熱膨張係数の比率が286%であるNo.79とは、サイクル前の温度安定時間は34秒、35秒と優れていたが、10000サイクル後の温度安定時間は41秒、40秒と大きくなった。試料No.71,79は熱膨張係数の比が大きいので、熱サイクルにより測温素子の移動が起こり、温度安定時間がやや大きくなったった。   As can be seen from Table 6, Sample No. 2 in which the thermal expansion coefficient of the filler was 29% of the thermal expansion coefficient of the plate-shaped ceramic body. No. 71 having a thermal expansion coefficient of 286%. With 79, the temperature stabilization time before the cycle was excellent as 34 seconds and 35 seconds, but the temperature stabilization time after 10,000 cycles was as large as 41 seconds and 40 seconds. Sample No. Since the ratio of the thermal expansion coefficients of 71 and 79 was large, the temperature measurement element was moved by the thermal cycle, and the temperature stabilization time was slightly longer.

これに対し、前記熱膨張係数の比が43〜214%である試料No.72〜78は、No.71、79のような熱サイクルによる測温素子の移動が発生し難いことから、温度サイクルにより温度安定時間が大きくなる虞が小さくこのましい事が分った。   On the other hand, the sample No. having the thermal expansion coefficient ratio of 43 to 214%. Nos. 72 to 78 are Nos. Since it is difficult for the temperature measuring element to move due to the thermal cycle as in the cases of 71 and 79, it has been found that the possibility that the temperature cycle becomes longer due to the temperature cycle is small and this is preferable.

本発明のウェハ加熱装置を示す断面図である。It is a sectional view showing the wafer heating device of the present invention. 本発明のウェハ加熱装置の板状セラミックス体を示す平面図である。FIG. 3 is a plan view showing a plate-shaped ceramic body of the wafer heating device of the present invention. 本発明のウェハ加熱装置の測温素子設置部を示す断面図である。It is sectional drawing which shows the temperature measuring element installation part of the wafer heating apparatus of this invention. 従来のウェハ加熱装置を示す断面図である。It is sectional drawing which shows the conventional wafer heating apparatus.

符号の説明Explanation of reference numerals

1:ウェハ加熱装置
2:板状セラミックス体
3:載置面
4:絶縁層
5:抵抗発熱体
6:給電部
7:導通端子
8:弾性体
10:測温素子
11:支持体
21:凹部
22:充填剤
81:制御部
82:記憶部
W:半導体ウェハ
t:厚み
1: Wafer heating device 2: Plate-shaped ceramic body 3: Mounting surface 4: Insulating layer 5: Resistance heating element 6: Power supply unit 7: Conductive terminal 8: Elastic body 10: Temperature measuring element 11: Support body 21: Concave part 22 : Filler 81: Control unit 82: Storage unit W: Semiconductor wafer t: Thickness

Claims (6)

板状セラミックス体の表面または内部に複数の帯状の抵抗発熱体を形成し、上記板状セラミックス体の各抵抗発熱体に対応する位置に凹部を設けるとともに該凹部に測温素子を備えたウェハ加熱装置において、上記板状セラミックス体の最外周に配設した複数の帯状の抵抗発熱体のうち少なくとも一つは、対応する測温素子の近傍の電力密度が、上記帯状の抵抗発熱体の平均電力密度より小さいことを特徴とするウェハ加熱装置。 A plurality of belt-shaped resistance heating elements are formed on the surface or inside of the plate-shaped ceramic body, a recess is provided at a position corresponding to each resistance heating element of the plate-shaped ceramic body, and a wafer heating element having a temperature measuring element in the recess is provided. In the apparatus, at least one of the plurality of strip-shaped resistance heating elements disposed on the outermost periphery of the plate-shaped ceramic body has a power density near a corresponding temperature measuring element, and an average power of the strip-shaped resistance heating elements. A wafer heating device having a lower density. 上記板状セラミックス体の最外周に配設した複数の帯状の抵抗発熱体のうち少なくとも一つは、該抵抗発熱体を囲む領域の中心部に測温素子を備えたことを特徴とする請求項1に記載のウェハ加熱装置。 The at least one of the plurality of belt-shaped resistance heating elements disposed on the outermost periphery of the plate-shaped ceramic body has a temperature measuring element at a center of a region surrounding the resistance heating element. 2. The wafer heating device according to 1. 上記測温素子の近傍の電力密度は、上記抵抗発熱体の平均電力密度の40〜90%であることを特徴とする請求項1または2に記載のウェハ加熱装置。 3. The wafer heating apparatus according to claim 1, wherein a power density near the temperature measuring element is 40 to 90% of an average power density of the resistance heating element. 4. 上記板状セラミックス体の熱伝導率に対して8.3〜150%の熱伝導率を有する充填剤で前記測温素子を前記凹部に固定したことを特徴とする請求項1〜3いずれかに記載のウェハ加熱装置。 4. The temperature measuring element is fixed to the recess with a filler having a thermal conductivity of 8.3 to 150% with respect to a thermal conductivity of the plate-shaped ceramic body. The wafer heating device as described in the above. 前記充填剤の気孔率が0.1%〜50%であることを特徴とする請求項4記載のウェハ加熱装置。 The wafer heating apparatus according to claim 4, wherein the porosity of the filler is 0.1% to 50%. 前記充填剤の熱膨張係数が前記板状セラミックス体の熱膨張係数に対し43〜214%であることを特徴とする請求項4または5に記載のウェハ加熱装置。 The wafer heating apparatus according to claim 4, wherein a thermal expansion coefficient of the filler is 43% to 214% with respect to a thermal expansion coefficient of the plate-shaped ceramic body.
JP2003429421A 2002-12-25 2003-12-25 Wafer heating device Expired - Fee Related JP4344603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003429421A JP4344603B2 (en) 2002-12-25 2003-12-25 Wafer heating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002375532 2002-12-25
JP2003429421A JP4344603B2 (en) 2002-12-25 2003-12-25 Wafer heating device

Publications (2)

Publication Number Publication Date
JP2004221563A true JP2004221563A (en) 2004-08-05
JP4344603B2 JP4344603B2 (en) 2009-10-14

Family

ID=32911101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003429421A Expired - Fee Related JP4344603B2 (en) 2002-12-25 2003-12-25 Wafer heating device

Country Status (1)

Country Link
JP (1) JP4344603B2 (en)

Also Published As

Publication number Publication date
JP4344603B2 (en) 2009-10-14

Similar Documents

Publication Publication Date Title
JP2001244059A (en) Ceramic heating resistor and its applied wafer heating device
JP4658913B2 (en) Wafer support member
JP3502827B2 (en) Wafer heating device
JP3904986B2 (en) Wafer support member
JP3981300B2 (en) Wafer support member
JP4025497B2 (en) Wafer heating device
JP3872256B2 (en) Wafer heating device
JP3559549B2 (en) Wafer heating device
JP3771795B2 (en) Wafer heating device
JP4593770B2 (en) Wafer heating device
JP3805318B2 (en) Wafer heating device
JP2004152914A (en) Wafer heating device
JP4975146B2 (en) Wafer heating device
JP2005019477A (en) Wafer heating equipment
JP3906026B2 (en) Wafer heating device
JP2004221563A (en) Wafer heating device
JP4332059B2 (en) Wafer heating device
JP2001189276A (en) Wafer heating apparatus
JP2003223970A (en) Wafer heating device
JP3559548B2 (en) Wafer heating device
JP2001313243A (en) Wafer heater
JP2002329566A (en) Wafer heating device
JP3784253B2 (en) Wafer heating device
JP2001237166A (en) Wafer heating device
JP4189243B2 (en) Wafer support member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4344603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees