JP2004221319A - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device Download PDF

Info

Publication number
JP2004221319A
JP2004221319A JP2003006898A JP2003006898A JP2004221319A JP 2004221319 A JP2004221319 A JP 2004221319A JP 2003006898 A JP2003006898 A JP 2003006898A JP 2003006898 A JP2003006898 A JP 2003006898A JP 2004221319 A JP2004221319 A JP 2004221319A
Authority
JP
Japan
Prior art keywords
semiconductor chip
electrodes
film substrate
resin
sealing resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003006898A
Other languages
Japanese (ja)
Inventor
Toshiyuki Fukuda
敏行 福田
Hiroyuki Imamura
博之 今村
Yuji Imamura
雄二 今村
Masato Hagino
正人 萩野
Michinari Tetani
道成 手谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003006898A priority Critical patent/JP2004221319A/en
Publication of JP2004221319A publication Critical patent/JP2004221319A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L24/743Apparatus for manufacturing layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92122Sequential connecting processes the first connecting process involving a bump connector
    • H01L2224/92125Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a layer connector

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a semiconductor device using a COF (chip-on film) method capable of preventing the generation of any void in the periphery of an electrode pad in sealing with resin due to the narrowly pitching of a clearance between the electrode/electrode pad of a semiconductor chip. <P>SOLUTION: When an Au bump 4 of a semiconductor chip 1 is connected to predetermined conductor wiring 6 of a film substrate 5, a semiconductor chip 1 is connected in a status 20 where a film base material 5 is bent so that a clearance between the semiconductor chip 1 and the film base material 5 can be made large. In this status, resin 7 is injected from the semiconductor chip 1 side face by a nozzle 8, and the film base material 6 is pressurized by a tool 22 so that the resin 7 can be exposed from the semiconductor chip 1 side face. Thus, any void generated in the neighborhood of the Au bump 4 can be pushed out and eliminated at the time of injecting the resin. Then, the resin 7 is hardened. Thus, it is possible to prevent any void (clearance) in the periphery of the electrode in sealing with resin, and to realize the highly reliable semiconductor device. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、フィルム基材を用いたチップオンフィルム(COF)工法に関する半導体装置の製造方法に関するものである。
【0002】
【従来の技術】
近年、ノートPC、液晶TV、携帯電話、カーナビゲーションなどに代表されるように、液晶ディスプレイの需要は爆発的に急増している。液晶で画像を表現する方式はSTN、TFTと言った方式が主流であるが、画像の色彩の鮮やかさ、高輝度、動画への対応などで液晶を駆動する半導体装置、液晶ドライバーも日々高性能化が要求される。
【0003】
従来、液晶ドライバーと呼ばれる半導体装置は、
(1)液晶のガラス基板周縁上に実装するCOG(チップ・オン・グラス)工法(2)TCP(テープキャリアパッケージ)と呼ばれるパッケージを液晶のガラス基板周縁上に実装する工法
が採用されてきた。上記(2)のTCPの中には、TAB(テープ・オートメイテッド・ボンディング)工法とCOF(チップオンフィルム)工法が存在する。
【0004】
TAB工法について図面を参照しながら説明する。図9(a)はTAB工法を説明するための製造工程の斜視図であり、図9(b)は同工程の断面図である。図9に示すとおり、半導体チップ1を接続する部分にフィルム基材5にデバイスホール25が開口されている。ここでデバイスホール25にフィルム基材5より配線6をわずかに突出させ、半導体チップ1の電極パッド上のAuバンプ4と接合する(これをインナーリードボンディング(ILB)と言う)。その後、デバイスホール25にノズル8より樹脂7を滴下し半導体チップ1の表面を覆う。
【0005】
しかしながら、このTAB工法に変わってCOF工法が近年、増加してきている。このCOF工法はデバイスホールが無く、導体配線を形成したフィルム基板上で半導体チップを接続する。この構成は狭ピッチ化した半導体チップのAuバンプをより安定してフィルム基板上の導体配線に接続できる利点がある。
【0006】
COF工法を用いた従来の半導体装置について図面を参照しながら説明する。
【0007】
まず図6は従来の半導体装置に使用する半導体チップの電極パッドのレイアウトを示す平面図およびその一部を拡大した図である。
【0008】
図6に示すように、主に液晶駆動ドライバーとなる半導体チップ1は、その表面形状が長方形であり、映像を映し出すために液晶画面上を交錯する数百から数千本の走査線を電気信号によって駆動させる必要がある。それら1本1本の走査線をそれぞれ駆動させるため1つの半導体チップ1には、数百本以上のI/O端子となる電極パッド2を有する必要がある。しかしながら半導体チップ1の配線ルールは日毎に微小化し、それに対応して隣り合う電極パッド2のピッチも狭ピッチ化が進んでいる。現在の電極パッドピッチは約40〜50μm程度であるが、今後、狭ピッチ化は進展し40μm未満となるのも目前になってきている。このために半導体チップを直接、液晶のガラス基板周縁上に実装するチップオングラス(COG)工法やCOF工法のようにフィルム基材の配線に接続する場合、図6のように半導体チップ1の電極パッド2の配列を2列以上で千鳥配列にすることは公知である(例えば、特許文献1参照)。
【0009】
図7(a)はCOF工法による従来の半導体装置の製造方法を示す斜視図、図7(b)はその断面図であり、図7(c)はその一部分を拡大した断面図である。
【0010】
COFの構成は、複数のAuバンプ4を半導体チップ1の電極パッド2上に有し、Auバンプ4は複数の導体配線6を有するフィルム基材5の導体配線6に接続され、半導体チップ1とフィルム基材5の間は、Auバンプ4を含む半導体チップ1の表面となる電気回路側の全面を樹脂7で覆うように封止されている。フィルム基材5は複数の半導体装置を連続して製造出来るように、一つの半導体装置となる同一の配線6パターンが連続に連なっている。
【0011】
この半導体装置の製造方法は、平面上に載置されたフィルム基材5の導体配線6を有する表面に、半導体チップ1のAuバンプ4を有する表面を下にして対向させ熱圧着することにより導体配線6とAuバンプ4を接続する工程と、Auバンプ4を含む半導体チップ1表面側とフィルム基材5の間に液状の樹脂7を注入して覆い硬化する樹脂封止工程とを有している。
【0012】
また、従来、半導体チップの電極パッド間が狭ピッチ化のため、樹脂封止時に電極パッド間近辺に発生するボイドを解決する方法としてフィルム基材のパターンを改善する工夫がなされてきた(例えば、特許文献2参照)。
【0013】
【特許文献1】
特開昭62−152154号公報(第1−2頁、第2図)
【特許文献2】
特開2002−124526号公報(第5−6頁、図1、図2)
【0014】
【発明が解決しようとする課題】
しかしながら従来の半導体装置では、半導体チップの電極パッドが狭ピッチ化されかつ千鳥配列されているため、樹脂封止時に電極パッド近辺にボイドが発生するという問題があった。
【0015】
この問題について図8を参照して説明する。図8は、樹脂封止時に半導体チップの電極パッド間にボイドが発生する様子を示したものであり、図8(a)はその平面図であり、図8(b)は図8(a)のY−Y’断面図である。図8(a)に示す、矢印の樹脂注入方向から、接続された半導体チップ1の側面に沿ってノズル8(図7)によって液状の樹脂7を塗布、半導体チップ1とフィルム基材5の間へ注入する。そのときフィルム基材5の配線6と接続されたAuバンプ4の間より樹脂7が進入する。このときバンプ4近傍で空気の巻き込みを起こし、ボイド19(空隙)が発生する。ここで半導体チップ1とフィルム基材5の間はわずか10〜30μmしかなく、導体配線6間の隙間も10〜25μmである。
【0016】
本発明は、上記従来の問題を解決するもので、COF工法を用いた半導体装置において、半導体チップの電極(電極パッド)の狭ピッチ化による樹脂封止時の電極周辺のボイドの発生を防止することができる半導体装置の製造方法を提供することを目的とする。
【0017】
【課題を解決するための手段】
本発明の半導体装置の製造方法は、矩形状の表面に配列された複数の電極上にバンプが形成されかつ複数の電極のうち矩形状の表面の少なくとも一辺に沿った電極が千鳥配列された半導体チップの表面と、配線電極が形成されたフィルム基板の表面とを対向させてバンプと配線電極とを接続する工程と、半導体チップとフィルム基板との間に封止樹脂を注入する工程と、封止樹脂を硬化させる工程とを含む半導体装置の製造方法であって、以下の点を特徴とする。
【0018】
本発明の請求項1に記載の半導体装置の製造方法は、バンプと配線電極とを接続する際、半導体チップとフィルム基板との間隔が半導体チップの電極が存在する周辺部よりも電極が存在しない中央部の方が大きくなるように中央部に対向するフィルム基板の部分を外側へ撓ませた状態で接続し、封止樹脂を注入後で硬化させる前に、フィルム基板を半導体チップ側と反対側から押圧することを特徴とする。
【0019】
この請求項1によれば、フィルム基板に撓みを持たせた状態で半導体チップを接続し、封止樹脂を注入後で硬化させる前に、フィルム基板を半導体チップ側と反対側から押圧することにより、フィルム基板の外側への撓みをとって封止樹脂を半導体チップとフィルム基板の間からはみ出させるとともに、樹脂注入時に発生したボイドを外に押し出すことができるため、半導体チップの電極の狭ピッチ化による樹脂封止時の電極周辺のボイドの発生を防止できる。
【0020】
本発明の請求項2に記載の半導体装置の製造方法は、封止樹脂を注入する工程は、半導体チップおよびフィルム基板を水平面に対し傾斜させた状態にし半導体チップの位置が高い方の辺とフィルム基板との隙間から封止樹脂を注入することを特徴とする。
【0021】
この請求項2によれば、半導体チップおよびフィルム基板を水平面に対し傾斜させた状態にして高い方の隙間から封止樹脂を注入することにより、封止樹脂の流れを改善できるため、半導体チップの電極の狭ピッチ化による樹脂封止時の電極周辺のボイドの発生を防止できる。
【0022】
本発明の請求項3に記載の半導体装置の製造方法は、バンプと配線電極とを接続した後、封止樹脂を注入する直前に、フィルム基板を封止樹脂を注入するときに加熱する第1の温度よりも低い第2の温度で加熱する工程を有することを特徴とする。
【0023】
この請求項3によれば、封止樹脂を注入する直前に、フィルム基板を封止樹脂を注入するときに加熱する温度よりも低い温度で加熱することにより、フィルム基板の封止樹脂との濡れ性を向上させることができ、封止樹脂の流れを改善できるため、半導体チップの電極の狭ピッチ化による樹脂封止時の電極周辺のボイドの発生を防止できる。
【0024】
本発明の請求項4に記載の半導体装置の製造方法は、請求項3に記載の半導体装置の製造方法において、第2の温度は、30〜60[℃]であることを特徴とする。このように温度設定することが好ましい。
【0025】
本発明の請求項5に記載の半導体装置の製造方法は、バンプと配線電極とを接続する工程の前に、半導体チップの表面に電極の間を通って封止樹脂の注入方向に向けて枝分かれした突起を形成する工程を有することを特徴とする。
【0026】
この請求項5によれば、半導体チップの表面に上述の突起を形成することにより、封止樹脂を注入する際、封止樹脂の流動を促進することができ、半導体チップの電極の狭ピッチ化による樹脂封止時の電極周辺のボイドの発生を防止できる。
【0027】
本発明の請求項6に記載の半導体装置の製造方法は、バンプと配線電極とを接続する工程の前に、半導体チップの表面またはフィルム基板の表面にプラズマを照射する工程を有することを特徴とする。
【0028】
この請求項6によれば、半導体チップの表面またはフィルム基板の表面にプラズマを照射することにより、半導体チップまたはフィルム基板の表面の封止樹脂との濡れ性を向上させることができ、封止樹脂の流れを改善できるため、半導体チップの電極の狭ピッチ化による樹脂封止時の電極周辺のボイドの発生を防止できる。
【0029】
本発明の請求項7に記載の半導体装置の製造方法は、請求項1〜4のうちいずれかに記載の半導体装置の製造方法において、バンプと配線電極とを接続する工程の前に、半導体チップの表面に電極の間を通って封止樹脂の注入方向に向けて枝分かれした突起を形成する工程を有することを特徴とする。
【0030】
この請求項7によれば、請求項1〜4のうちいずれかの効果に加え、半導体チップの表面に上述の突起を形成することにより、封止樹脂を注入する際、封止樹脂の流動を促進することができ、半導体チップの電極の狭ピッチ化による樹脂封止時の電極周辺のボイドの発生をより防止できる。
【0031】
本発明の請求項8に記載の半導体装置の製造方法は、請求項1〜5および7のうちいずれかに記載の半導体装置の製造方法において、バンプと配線電極とを接続する工程の前に、半導体チップの表面またはフィルム基板の表面にプラズマを照射する工程を有することを特徴とする。
【0032】
この請求項8によれば、請求項1〜5および7のうちいずれかの効果に加え、半導体チップの表面またはフィルム基板の表面にプラズマを照射することにより、半導体チップまたはフィルム基板の表面の封止樹脂との濡れ性を向上させることができ、封止樹脂の流れを改善できるため、半導体チップの電極の狭ピッチ化による樹脂封止時の電極周辺のボイドの発生をより防止できる。
【0033】
本発明の請求項9に記載の半導体装置の製造方法は、請求項1〜8のうちいずれかに記載の半導体装置の製造方法において、封止樹脂を注入する工程は、半導体チップの千鳥配列された電極に沿った辺とフィルム基板との隙間から封止樹脂を注入することを特徴とする。
【0034】
この請求項9のように、半導体チップの千鳥配列された電極に沿った辺とフィルム基板との隙間から封止樹脂を注入することが好ましい。
【0035】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、以下で述べる各実施の形態はいずれも、COF工法による半導体装置について説明したものであり、その半導体装置の製造工程のうち主に本発明の特徴点について説明する。
【0036】
(第1の実施の形態)
図1は本発明の第1の実施の形態である、半導体装置の製造工程の一部を示す断面図である。
【0037】
図1では、半導体装置の製造工程の内、半導体チップ1の接続工程と樹脂封止工程を示している。フィルム基材5の所定の導体配線6に半導体チップ1のAuバンプ4を接続する工程において、半導体チップ1とフィルム基材5の間の隙間が大きくなるようにフィルム基材5を撓ませた状態20で、ボンディングツール17で半導体チップ1を押圧して接続し、樹脂封止工程で樹脂7をその隙間に入るようにノズル8で半導体チップ1側面から注入し、その後にフィルム基材6をツール22で押圧して半導体チップ1側面より樹脂7をはみ出させる。これによりバンプ4近傍に発生したボイドを外に押し出し消失することができる。この後、樹脂7を硬化させる。ここで例えば、本実施の形態ではフィルム基材5をボンディングステージ16の吸着孔21で吸着しながら半導体チップ1を接続することによりフィルム基材5の撓ませた状態20を作り出している。
【0038】
以上のように本実施の形態によれば、フィルム基材6に撓みを持たせた状態で半導体チップ1を接続し、樹脂7を塗布し硬化する前に撓みを元に戻し、樹脂7を半導体チップ1からはみ出させることにより、樹脂7注入時に発生したボイドを外に押し出すことができるため、半導体チップ1の電極パッド2の狭ピッチ化による樹脂封止時の電極パッド2周辺のボイドの発生を防止できる。
【0039】
(第2の実施の形態)
図2は本発明の第2の実施の形態である、半導体装置の製造工程の一部を示す図であり、図2(a)は斜視図、図2(b)は断面図である。
【0040】
図2に示すように、半導体装置の製造工程の内、樹脂封止工程を示しており、封止樹脂の流動性を良好にするため、樹脂封止工程の樹脂塗布ステージ11は5゜から45゜の傾斜角14を持つ。例えば本実施の形態では傾斜角14を30゜とし、この斜角でノズル8から半導体チップ1の所定の側面に沿って樹脂7を注入する。この後、樹脂7を硬化させる。
【0041】
以上のように本実施の形態によれば、樹脂封止時の樹脂塗布ステージ11に角度14をもたせ樹脂7の流れを改善することにより、半導体チップ1の電極パッド2の狭ピッチ化による樹脂封止時の電極パッド2周辺のボイドの発生を防止できる。また、さらに樹脂塗布ステージ11にひねり角度をつけて、樹脂注入始めの半導体チップ1の角部箇所が一番高い位置にすることでより高い効果を得られる。これは液体が狭い部分に浸透する毛細管現象と重力の2つを利用したものである。ここで更に樹脂塗布ステージ11に角度14を付けて樹脂封止する効果として、樹脂7を滴下した直後は樹脂7が重力に従って半導体チップ1が置かれた下方に向かおうとするため、樹脂7が上方に広がりにくくなり、その結果、封止樹脂の領域を小さく成形できる利点もある。
【0042】
(第3の実施の形態)
図3は本発明の第3の実施の形態である、半導体装置の製造工程の一部を示す断面図であり、図3(a)は図3(b)の樹脂塗布ステージ11上の拡大図である。
【0043】
図3は、半導体装置の製造工程の内、樹脂封止工程を示している。半導体チップ1とフィルム基材5の間に樹脂7を注入し、Auバンプ4を含む半導体チップ1の表面となる電気回路側の全面を樹脂7で覆う樹脂封止工程において、封止樹脂7の流動性を良好にするため、樹脂封止7塗布前に、フィルム基材5直下に事前加熱ヒーター10を設置する。そして封止樹脂7塗布時の温度よりも10℃から40℃低い温度(ただし、30〜60℃の範囲内)でプリヒートする。例えば本実施の形態の場合、ヒーター10の温度は50℃に設定されている。そして次に樹脂封止塗布時は封止樹脂7の粘度が低粘度で濡れ性が向上するような温度に設定する。例えば本実施の形態の場合、樹脂塗布ステージ11の温度は80℃に設定されている。また他の方法として、温度雰囲気にさらす方法や、赤外線で部分的に温度を上げる方法を用いてもよい。樹脂封止塗布直後は封止樹脂7がある程度固化し、他の部分へ流れ出さないようにするために必要な温度、例えば本実施の形態の場合、仮硬化炉または本硬化炉12内の温度は120℃の熱を負荷する。更に、封止樹脂7のシリンジ24を電熱コイル13で熱し、塗布直前の封止樹脂7を30℃から60℃の温度で保持する。例えば本実施の形態の場合では40℃で熱している。
【0044】
以上のように本実施の形態によれば、樹脂7を塗布する直前にヒーター10で加熱することにより、フィルム基材5の樹脂7との濡れ性を向上させ樹脂7の流れを改善でき、半導体チップ1とフィルム基材5の間を速やかに樹脂7が浸透し、半導体チップ1の電極パッド2の狭ピッチ化による樹脂封止時の電極パッド2周辺のボイドの発生を防止できる。
【0045】
更に、樹脂7のシリンジ24にもヒーター(電熱コイル13)を取付け、樹脂粘度を低下させることにより、樹脂7の流れがより改善されて、半導体チップ1とフィルム基材5の間をより速やかに樹脂7が浸透し、ボイドの発生をより防止できる。
【0046】
図4は本実施の形態に使用した、液状エポキシ樹脂である封止樹脂7の温度と粘度特性の相関を示すグラフの一例であり、横軸に温度、縦軸に粘度を示している。
【0047】
図4に示すように、液状エポキシ樹脂の温度と粘度の相関は常温である20℃では粘度は約1Pa・Sであるが、40℃で0.20Pa・S、60℃で0.03Pa・Sとなる。しかしながら、温度が80℃を越えると樹脂の硬化反応が始まることから、実際には樹脂7塗布前の温度負荷は60℃以下に抑える必要がある。
【0048】
(第4の実施の形態)
図5は本発明の第5の実施の形態で使用する半導体チップの一例を示す平面図とその拡大図である。
【0049】
図5に示すように、半導体チップ1の電極パッド2の少なくとも一部が千鳥配列になっており、半導体チップ1の電極パッド2を除く部分にポリイミドで毛細血管状の突起パターン3を形成している。この毛細血管状のパターン3で樹脂封止工程での樹脂7の流れを助長し、電極パッド2間周辺のボイドを解消する。毛細血管状のパターン3の線幅は0.01μm〜0.5μm程度の線幅で設定し、木の枝のように先端に行くにほど枝分かれしたデザインとなる。
【0050】
毛細血管状のパターン3は半導体チップ1上に樹脂によって相互進入高分子網目(Interpenetrating polymer networks)を形成することであり、線状ポリマーの分子間同士が緻密な架橋して人体の毛細管のように網目が絡み合った構造にできる。例えばエポキシ樹脂を主成分として形成する場合、例えばグリシジルメタクリレート系エキポキシ樹脂とアクリルモノマーの組成に橋かけ剤としてエチレングリコールジメタアクリレートを1〜3%加えることで形成できる。
【0051】
以上のように、半導体チップ1表面に千鳥配列された電極パッド2の間を通る毛細血管状のパターン3を形成することで、半導体チップ1の接続工程の後の樹脂封止工程において樹脂7の流動を促進することができ、半導体チップ1の電極パッド2の狭ピッチ化による樹脂封止時の電極パッド2周辺のボイドの発生を防止できる。
【0052】
また、半導体チップ1とフィルム基材5とを接続する工程より前に、半導体チップ1またはフィルム基材5の表面にさらにプラズマ照射15を施すことにより、半導体チップ1またはフィルム基材5の表面の封止樹脂7との濡れ性を向上し、封止樹脂7の流れ性を改善してもよい。つまりこのプラズマ照射15により、例えば照射対象物質がポリイミド材であればカルボキシル基やアミノ基等の反応性官能基を生成し濡れ性を向上すると共に、表面をエッチング(粗化)し、アンカー効果で密着性を向上させることができる。
【0053】
なお、半導体チップ1の表面に毛細血管状のパターン3を形成するだけでもその効果は得られ、また、半導体チップ1またはフィルム基材5の表面にプラズマ照射15を施すだけでもその効果は得られる。
【0054】
また、前述した第1、第2、第3の実施の形態において、さらに半導体チップ1の表面に毛細血管状のパターン3を形成したり、半導体チップ1またはフィルム基材5の表面にプラズマ照射15を施すことにより、よりボイドの発生を防止することができる。
【0055】
なお、上記の第1〜第4の実施の形態における半導体装置は、図5あるいは図6に示されるように、半導体チップ1の4辺に沿って電極パッド2があり、そのうち1辺の電極パッド2が千鳥配置になってあってもよいし、複数辺、また場合によっては4辺とも千鳥配置になってあってもよい。また、ノズル8からの封止樹脂7の塗布(注入)は千鳥配置のある1辺のみとはかぎらず、複数辺になる場合もある。
【0056】
なお、特開2002−124526号公報(前述の特許文献2)では、半導体チップのコーナー部にダミーパターンを設置することにより、封止樹脂の注入方向に対するダム的な役割をさせて、チップコーナー部からの封止樹脂の注入速度を低減させ、場所による樹脂の注入速度ばらつきを低減するのが目的であり、この場合、チップ内の大きいボイドに対してはいくらかの効果を見込めるかもしれないが、突起電極が千鳥配置である場合のボイドに対しては発生原因に対し何ら対処しておらず、何の効果もない。これに対し本発明の実施の形態では、まず図1の場合では電極パッド2およびAuバンプ4が千鳥配置された部分にボイドが発生しても外に追い出すように工夫しており、また図2、図3の場合および図5のプラズマ照射15では千鳥配置というデザインばらつきによる封止樹脂注入速度のばらつきを無視できる程度に樹脂の注入速度を促進させている。また、図5の毛細血管状のパターン3では千鳥配置というデザインばらつきを目立たなくするようにパターンを設置している。よってそれぞれの方法において千鳥配置というデザインのばらつき起因で発生するボイドを低減できる。
【0057】
【発明の効果】
以上のように本発明によれば、半導体チップの電極を狭ピッチ化することによって従来発生していた樹脂封止時の電極周辺のボイド(空隙)を解消することができ、信頼性の高い半導体装置を実現できる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態である半導体装置の製造工程の一部を示す断面図である。
【図2】本発明の第2の実施の形態である半導体装置の製造工程の一部を示す斜視図および断面図である。
【図3】本発明の第3の実施の形態である半導体装置の製造工程の一部を示す断面図および拡大図である。
【図4】本発明の第3の実施の形態における封止樹脂の温度と粘度特性の相関を示す図である。
【図5】本発明の第4の実施の形態の半導体装置に使用する半導体チップの一例を示す平面図およびその拡大図である。
【図6】従来の半導体装置に使用する半導体チップの一例を示す平面図およびその拡大図である。
【図7】従来の半導体装置の製造工程の一部を示す斜視図と断面図およびその拡大図である。
【図8】従来の課題を示す、半導体装置の一部の平面図および断面図である。
【図9】TAB工法による従来の半導体装置の製造工程の一部を示す斜視図と断面図である。
【符号の説明】
1 半導体チップ
2 電極パッド
3 半導体チップ上の毛細血管状のパターン
4 Auバンプ
5 フィルム基材
6 導体配線
7 封止樹脂
8 ノズル
9 ヒーター
10 事前加熱ヒーター
11 樹脂塗布ステージ
12 仮硬化炉または本硬化炉
13 シリンジ加熱コイル
14 ステージ角度
15 プラズマ照射
16 ボンディングステージ
17 ボンディングツール
18 スプロケットホール
19 ボイド
20 フィルム基材のたわみ
21 吸着孔
22 封止樹脂押し出しツール
23 ソルダーレジスト
24 シリンジ
25 デバイスホール
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor device manufacturing method related to a chip-on-film (COF) method using a film substrate.
[0002]
[Prior art]
In recent years, demand for liquid crystal displays, such as notebook PCs, liquid crystal TVs, mobile phones, and car navigation systems, has exploded. The main method of expressing images with liquid crystal is the STN or TFT method, but semiconductor devices and liquid crystal drivers that drive liquid crystals with vivid image color, high brightness, and compatibility with moving images are also highly efficient. Is required.
[0003]
Conventionally, semiconductor devices called liquid crystal drivers are:
(1) COG (chip-on-glass) method of mounting on the periphery of a liquid crystal glass substrate (2) A method of mounting a package called TCP (tape carrier package) on the periphery of a liquid crystal glass substrate has been adopted. The TCP of the above (2) includes a TAB (tape automated bonding) method and a COF (chip-on-film) method.
[0004]
The TAB method will be described with reference to the drawings. FIG. 9A is a perspective view of a manufacturing process for explaining the TAB method, and FIG. 9B is a cross-sectional view of the same process. As shown in FIG. 9, a device hole 25 is opened in the film base 5 at a portion where the semiconductor chip 1 is connected. Here, the wiring 6 is slightly projected from the film substrate 5 into the device hole 25, and is bonded to the Au bump 4 on the electrode pad of the semiconductor chip 1 (this is called inner lead bonding (ILB)). After that, the resin 7 is dropped from the nozzle 8 into the device hole 25 to cover the surface of the semiconductor chip 1.
[0005]
However, the COF method has been increasing in recent years instead of the TAB method. This COF method has no device holes and connects semiconductor chips on a film substrate on which conductor wiring is formed. This configuration has an advantage that the Au bumps of the semiconductor chip having a reduced pitch can be more stably connected to the conductor wiring on the film substrate.
[0006]
A conventional semiconductor device using the COF method will be described with reference to the drawings.
[0007]
First, FIG. 6 is a plan view showing a layout of electrode pads of a semiconductor chip used in a conventional semiconductor device and a partially enlarged view thereof.
[0008]
As shown in FIG. 6, a semiconductor chip 1 mainly serving as a liquid crystal driving driver has a rectangular surface shape, and hundreds to thousands of scanning lines intersecting on a liquid crystal screen for displaying an image. Need to be driven by In order to drive each of these scanning lines, one semiconductor chip 1 needs to have several hundred or more electrode pads 2 serving as I / O terminals. However, the wiring rule of the semiconductor chip 1 has been miniaturized every day, and the pitch of the adjacent electrode pads 2 has been narrowed accordingly. The current electrode pad pitch is about 40 to 50 μm, but in the future, the pitch is becoming narrower and it is about to become smaller than 40 μm. For this purpose, when the semiconductor chip is directly connected to the wiring of the film base as in a chip-on-glass (COG) method or a COF method in which the semiconductor chip is mounted on the periphery of a liquid crystal glass substrate, as shown in FIG. It is known that the arrangement of the pads 2 is staggered in two or more rows (for example, see Patent Document 1).
[0009]
7A is a perspective view showing a conventional method of manufacturing a semiconductor device by the COF method, FIG. 7B is a cross-sectional view thereof, and FIG. 7C is a cross-sectional view in which a part thereof is enlarged.
[0010]
The configuration of the COF has a plurality of Au bumps 4 on the electrode pads 2 of the semiconductor chip 1, and the Au bumps 4 are connected to the conductor wires 6 of the film base 5 having the plurality of conductor wires 6, and The space between the film bases 5 is sealed so as to cover the entire surface of the semiconductor chip 1 including the Au bumps 4 on the electric circuit side, which is the surface of the semiconductor chip 1, with the resin 7. The film substrate 5 has the same wiring 6 pattern as one semiconductor device continuously connected so that a plurality of semiconductor devices can be manufactured continuously.
[0011]
In this method of manufacturing a semiconductor device, the semiconductor chip 1 is thermocompressed by being opposed to the surface of the film substrate 5 having the conductor wiring 6 placed on a flat surface with the surface of the semiconductor chip 1 having the Au bumps 4 facing down. A step of connecting the wiring 6 and the Au bump 4 and a resin sealing step of injecting a liquid resin 7 between the surface side of the semiconductor chip 1 including the Au bump 4 and the film substrate 5 to cover and cure the resin. I have.
[0012]
Further, conventionally, since the pitch between the electrode pads of the semiconductor chip is reduced, a method of improving the pattern of the film base material has been devised as a method of solving a void generated near the electrode pad during resin sealing (for example, Patent Document 2).
[0013]
[Patent Document 1]
JP-A-62-152154 (page 1-2, FIG. 2)
[Patent Document 2]
JP-A-2002-124526 (pages 5 to 6, FIGS. 1 and 2)
[0014]
[Problems to be solved by the invention]
However, in the conventional semiconductor device, since the electrode pads of the semiconductor chip are narrowed and staggered, there is a problem that voids are generated near the electrode pads during resin sealing.
[0015]
This problem will be described with reference to FIG. FIG. 8 shows a state in which voids are generated between electrode pads of a semiconductor chip at the time of resin sealing. FIG. 8A is a plan view thereof, and FIG. 8B is a plan view thereof. 5 is a sectional view taken along line YY ′ of FIG. 8A, a liquid resin 7 is applied by a nozzle 8 (FIG. 7) along the side surface of the connected semiconductor chip 1 from the resin injection direction indicated by the arrow, and the liquid resin 7 is applied between the semiconductor chip 1 and the film base 5. Inject into At that time, the resin 7 enters between the Au bumps 4 connected to the wirings 6 of the film base 5. At this time, air is entrained in the vicinity of the bumps 4, and voids 19 (voids) are generated. Here, the space between the semiconductor chip 1 and the film substrate 5 is only 10 to 30 μm, and the gap between the conductor wirings 6 is 10 to 25 μm.
[0016]
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problem, and in a semiconductor device using the COF method, prevents generation of voids around an electrode at the time of resin sealing due to a narrow pitch of an electrode (electrode pad) of a semiconductor chip. It is an object of the present invention to provide a method for manufacturing a semiconductor device that can be used.
[0017]
[Means for Solving the Problems]
The method of manufacturing a semiconductor device according to the present invention is directed to a semiconductor device in which bumps are formed on a plurality of electrodes arranged on a rectangular surface, and among the plurality of electrodes, electrodes along at least one side of the rectangular surface are staggered. Connecting the bumps and the wiring electrodes with the surface of the chip and the surface of the film substrate on which the wiring electrodes are formed facing, injecting a sealing resin between the semiconductor chip and the film substrate; A method of manufacturing a semiconductor device including a step of curing a resin.
[0018]
In the method of manufacturing a semiconductor device according to the first aspect of the present invention, when the bump and the wiring electrode are connected, the distance between the semiconductor chip and the film substrate is smaller than that of the peripheral portion where the electrode of the semiconductor chip exists. The part of the film substrate facing the center is connected in a bent state so that the center part becomes larger, and after the sealing resin is injected and cured, the film substrate is on the side opposite to the semiconductor chip side. From the pressure.
[0019]
According to the first aspect, the semiconductor chip is connected in a state where the film substrate is deflected, and after the sealing resin is injected and cured, the film substrate is pressed from the side opposite to the semiconductor chip side. In addition, the sealing resin protrudes from between the semiconductor chip and the film substrate by bending outwardly of the film substrate, and the voids generated during the resin injection can be pushed out, thereby narrowing the pitch of the electrodes of the semiconductor chip. This can prevent the generation of voids around the electrodes during resin sealing.
[0020]
In the method of manufacturing a semiconductor device according to claim 2 of the present invention, in the step of injecting the sealing resin, the semiconductor chip and the film substrate are inclined with respect to a horizontal plane, and the side where the semiconductor chip is located at the higher side and the film It is characterized in that a sealing resin is injected from a gap with the substrate.
[0021]
According to the second aspect, the flow of the sealing resin can be improved by injecting the sealing resin from the higher gap while the semiconductor chip and the film substrate are inclined with respect to the horizontal plane, so that the flow of the semiconductor chip can be improved. The generation of voids around the electrodes during resin sealing due to the narrow pitch of the electrodes can be prevented.
[0022]
According to a third aspect of the present invention, in the method of manufacturing a semiconductor device, after the bump and the wiring electrode are connected, the film substrate is heated when the sealing resin is injected immediately before the sealing resin is injected. And heating at a second temperature lower than the second temperature.
[0023]
According to the third aspect, immediately before the sealing resin is injected, the film substrate is heated at a temperature lower than the temperature at which the film substrate is heated when the sealing resin is injected. Since the flowability of the sealing resin can be improved and the pitch of the electrodes of the semiconductor chip can be narrowed, the generation of voids around the electrodes during resin sealing can be prevented.
[0024]
According to a fourth aspect of the present invention, in the method of manufacturing a semiconductor device according to the third aspect, the second temperature is 30 to 60 ° C. It is preferable to set the temperature in this manner.
[0025]
In the method of manufacturing a semiconductor device according to a fifth aspect of the present invention, before the step of connecting the bump and the wiring electrode, the surface of the semiconductor chip branches between the electrodes in the direction of injection of the sealing resin. The method is characterized by including a step of forming a projected portion.
[0026]
According to the fifth aspect, by forming the projections on the surface of the semiconductor chip, the flow of the sealing resin can be promoted when the sealing resin is injected, and the pitch of the electrodes of the semiconductor chip can be reduced. This can prevent the generation of voids around the electrodes during resin sealing.
[0027]
The method of manufacturing a semiconductor device according to claim 6 of the present invention includes a step of irradiating the surface of the semiconductor chip or the surface of the film substrate with plasma before the step of connecting the bump and the wiring electrode. I do.
[0028]
According to the sixth aspect, by irradiating the surface of the semiconductor chip or the film substrate with plasma, the wettability of the surface of the semiconductor chip or the film substrate with the sealing resin can be improved. Flow can be improved, so that the generation of voids around the electrodes at the time of resin sealing due to the narrow pitch of the electrodes of the semiconductor chip can be prevented.
[0029]
A method of manufacturing a semiconductor device according to a seventh aspect of the present invention is the method of manufacturing a semiconductor device according to any one of the first to fourth aspects, wherein the semiconductor chip is mounted before the step of connecting the bump and the wiring electrode. A step of forming a projection branched on the surface of the substrate toward the injection direction of the sealing resin by passing between the electrodes.
[0030]
According to the seventh aspect, in addition to the effect of any one of the first to fourth aspects, by forming the above-described protrusion on the surface of the semiconductor chip, the flow of the sealing resin is prevented when the sealing resin is injected. This can further promote the generation of voids around the electrodes during resin sealing due to the narrow pitch of the electrodes of the semiconductor chip.
[0031]
According to a method of manufacturing a semiconductor device according to claim 8 of the present invention, in the method of manufacturing a semiconductor device according to any one of claims 1 to 5 and 7, before the step of connecting the bump and the wiring electrode, A step of irradiating the surface of the semiconductor chip or the surface of the film substrate with plasma.
[0032]
According to the eighth aspect, in addition to the effect of any one of the first to fifth and seventh aspects, the surface of the semiconductor chip or the film substrate is irradiated with plasma to seal the surface of the semiconductor chip or the film substrate. Since the wettability with the sealing resin can be improved and the flow of the sealing resin can be improved, the generation of voids around the electrodes at the time of resin sealing due to the narrow pitch of the electrodes of the semiconductor chip can be further prevented.
[0033]
According to a ninth aspect of the present invention, in the method of manufacturing a semiconductor device according to any one of the first to eighth aspects, the step of injecting the sealing resin includes the step of staggering the semiconductor chips. The sealing resin is injected from a gap between the side along the electrode and the film substrate.
[0034]
As in the ninth aspect, it is preferable to inject the sealing resin from the gap between the side along the staggered electrodes of the semiconductor chip and the film substrate.
[0035]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each of the embodiments described below, a semiconductor device manufactured by the COF method is described, and the features of the present invention in the manufacturing process of the semiconductor device will be mainly described.
[0036]
(First Embodiment)
FIG. 1 is a cross-sectional view showing a part of a manufacturing process of a semiconductor device according to a first embodiment of the present invention.
[0037]
FIG. 1 shows a connecting step of the semiconductor chip 1 and a resin sealing step in the manufacturing steps of the semiconductor device. In the step of connecting the Au bumps 4 of the semiconductor chip 1 to the predetermined conductor wirings 6 of the film substrate 5, the film substrate 5 is bent so that the gap between the semiconductor chip 1 and the film substrate 5 becomes large. At 20, the semiconductor chip 1 is pressed and connected by a bonding tool 17, and in a resin sealing step, the resin 7 is injected from the side of the semiconductor chip 1 with the nozzle 8 so as to enter the gap. Pressing at 22 causes the resin 7 to protrude from the side surface of the semiconductor chip 1. As a result, the voids generated near the bumps 4 can be pushed out and disappear. Thereafter, the resin 7 is cured. Here, for example, in the present embodiment, the semiconductor substrate 1 is connected while the film base 5 is being sucked by the suction holes 21 of the bonding stage 16 to create a bent state 20 of the film base 5.
[0038]
As described above, according to the present embodiment, the semiconductor chip 1 is connected in a state where the film base member 6 has a flexure, and the flexure is returned to its original state before the resin 7 is applied and cured, and the resin 7 is converted into a semiconductor. By protruding from the chip 1, voids generated at the time of injecting the resin 7 can be pushed out. Therefore, generation of voids around the electrode pads 2 at the time of resin sealing due to narrowing of the pitch of the electrode pads 2 of the semiconductor chip 1 can be prevented. Can be prevented.
[0039]
(Second embodiment)
2A and 2B are diagrams showing a part of a manufacturing process of a semiconductor device according to a second embodiment of the present invention. FIG. 2A is a perspective view, and FIG. 2B is a sectional view.
[0040]
As shown in FIG. 2, the resin sealing step in the manufacturing process of the semiconductor device is shown. In order to improve the fluidity of the sealing resin, the resin coating stage 11 in the resin sealing step is set at 5 ° to 45 °.傾斜 has an inclination angle of 14. For example, in this embodiment, the inclination angle 14 is 30 °, and the resin 7 is injected from the nozzle 8 along a predetermined side surface of the semiconductor chip 1 at this inclination angle. Thereafter, the resin 7 is cured.
[0041]
As described above, according to the present embodiment, the resin coating stage 11 is provided with the angle 14 at the time of resin sealing to improve the flow of the resin 7, and thereby the resin sealing by narrowing the pitch of the electrode pads 2 of the semiconductor chip 1 The generation of voids around the electrode pad 2 at the time of stopping can be prevented. Further, a higher effect can be obtained by giving a twist angle to the resin application stage 11 and setting the corner portion of the semiconductor chip 1 at the beginning of the resin injection to the highest position. This utilizes two things: capillary action, in which liquid penetrates into a narrow part, and gravity. Here, as an effect of further enclosing the resin application stage 11 at an angle 14 and sealing the resin, immediately after the resin 7 is dropped, the resin 7 tends to go downward under the position where the semiconductor chip 1 is placed according to gravity. There is also an advantage that it is difficult to spread upward, and as a result, the area of the sealing resin can be formed small.
[0042]
(Third embodiment)
FIG. 3 is a cross-sectional view showing a part of a manufacturing process of a semiconductor device according to a third embodiment of the present invention, and FIG. 3A is an enlarged view on a resin application stage 11 of FIG. It is.
[0043]
FIG. 3 shows a resin sealing step in the manufacturing steps of the semiconductor device. In a resin sealing step of injecting a resin 7 between the semiconductor chip 1 and the film base 5 and covering the entire surface of the semiconductor chip 1 including the Au bumps 4 on the electric circuit side, which is the surface, with the resin 7, Before the resin sealing 7 is applied, a pre-heater 10 is provided immediately below the film substrate 5 in order to improve the fluidity. Then, preheating is performed at a temperature lower by 10 ° C. to 40 ° C. than the temperature at the time of applying the sealing resin 7 (however, within a range of 30 to 60 ° C.). For example, in the case of the present embodiment, the temperature of the heater 10 is set to 50 ° C. Then, at the time of resin sealing application, the temperature is set so that the viscosity of the sealing resin 7 is low and the wettability is improved. For example, in the case of the present embodiment, the temperature of the resin application stage 11 is set to 80 ° C. As another method, a method of exposing to a temperature atmosphere or a method of partially increasing the temperature by infrared rays may be used. Immediately after the application of the resin sealing, the temperature required to prevent the sealing resin 7 from solidifying to some extent and not flowing to other parts, for example, in the case of the present embodiment, the temperature in the temporary curing furnace or the main curing furnace 12 Applies 120 ° C. heat. Further, the syringe 24 of the sealing resin 7 is heated by the electric heating coil 13 to hold the sealing resin 7 immediately before application at a temperature of 30 ° C. to 60 ° C. For example, in the case of the present embodiment, heating is performed at 40 ° C.
[0044]
As described above, according to the present embodiment, by heating with the heater 10 immediately before the application of the resin 7, the wettability of the film substrate 5 with the resin 7 can be improved, and the flow of the resin 7 can be improved. The resin 7 quickly penetrates between the chip 1 and the film base 5, and the generation of voids around the electrode pads 2 during resin sealing due to the narrow pitch of the electrode pads 2 of the semiconductor chip 1 can be prevented.
[0045]
Further, a heater (electric heating coil 13) is also attached to the syringe 24 of the resin 7 to reduce the viscosity of the resin, so that the flow of the resin 7 is further improved, and the space between the semiconductor chip 1 and the film base 5 is more quickly increased. The resin 7 permeates and the generation of voids can be further prevented.
[0046]
FIG. 4 is an example of a graph showing the correlation between the temperature and the viscosity characteristics of the sealing resin 7 which is a liquid epoxy resin used in the present embodiment, and the horizontal axis shows the temperature and the vertical axis shows the viscosity.
[0047]
As shown in FIG. 4, the correlation between the temperature and the viscosity of the liquid epoxy resin is about 1 Pa · S at 20 ° C., which is room temperature, but is 0.20 Pa · S at 40 ° C. and 0.03 Pa · S at 60 ° C. It becomes. However, since the curing reaction of the resin starts when the temperature exceeds 80 ° C., the temperature load before application of the resin 7 needs to be suppressed to 60 ° C. or less in practice.
[0048]
(Fourth embodiment)
FIG. 5 is a plan view showing an example of a semiconductor chip used in the fifth embodiment of the present invention and an enlarged view thereof.
[0049]
As shown in FIG. 5, at least a part of the electrode pads 2 of the semiconductor chip 1 is arranged in a staggered pattern, and a capillary-shaped projection pattern 3 is formed of polyimide on a portion other than the electrode pads 2 of the semiconductor chip 1. I have. The capillary-shaped pattern 3 promotes the flow of the resin 7 in the resin sealing step, and eliminates voids between the electrode pads 2. The line width of the capillary-shaped pattern 3 is set to a line width of about 0.01 μm to 0.5 μm, and the design becomes more branched like a tree branch toward the tip.
[0050]
The capillary-shaped pattern 3 is to form interpenetrating polymer networks by a resin on the semiconductor chip 1, and the molecules of the linear polymer are densely cross-linked to form a capillary like a human body. A structure in which meshes are intertwined can be formed. For example, when an epoxy resin is formed as a main component, it can be formed, for example, by adding 1 to 3% of ethylene glycol dimethacrylate as a crosslinking agent to the composition of a glycidyl methacrylate-based epoxy resin and an acrylic monomer.
[0051]
As described above, by forming the capillary-shaped pattern 3 passing between the electrode pads 2 arranged in a staggered manner on the surface of the semiconductor chip 1, the resin 7 is sealed in the resin sealing step after the connection step of the semiconductor chip 1. The flow can be promoted, and the generation of voids around the electrode pads 2 during resin sealing due to the narrow pitch of the electrode pads 2 of the semiconductor chip 1 can be prevented.
[0052]
Further, before the step of connecting the semiconductor chip 1 and the film substrate 5, the surface of the semiconductor chip 1 or the film substrate 5 is further subjected to plasma irradiation 15 so that the surface of the semiconductor chip 1 or the film substrate 5 is The wettability with the sealing resin 7 may be improved to improve the flowability of the sealing resin 7. That is, for example, when the irradiation target substance is a polyimide material, the plasma irradiation 15 generates a reactive functional group such as a carboxyl group or an amino group to improve the wettability, and also etches (roughens) the surface to provide an anchor effect. Adhesion can be improved.
[0053]
The effect can be obtained only by forming the capillary-shaped pattern 3 on the surface of the semiconductor chip 1, and the effect can be obtained only by applying the plasma irradiation 15 to the surface of the semiconductor chip 1 or the film substrate 5. .
[0054]
In the first, second, and third embodiments described above, a capillary-shaped pattern 3 is further formed on the surface of the semiconductor chip 1, and plasma irradiation 15 is performed on the surface of the semiconductor chip 1 or the film base 5. By performing the above, the generation of voids can be further prevented.
[0055]
In the semiconductor devices according to the first to fourth embodiments, as shown in FIG. 5 or FIG. 6, there are electrode pads 2 along four sides of the semiconductor chip 1, and one of the electrode pads 2 2 may be in a staggered arrangement, or a plurality of sides, or in some cases, four sides may be in a staggered arrangement. Further, the application (injection) of the sealing resin 7 from the nozzle 8 is not limited to only one side having a staggered arrangement, but may be on a plurality of sides.
[0056]
In Japanese Unexamined Patent Application Publication No. 2002-124526 (the aforementioned Patent Document 2), a dummy pattern is provided at a corner portion of a semiconductor chip so that the semiconductor chip functions as a dam in the direction of injection of the sealing resin. The purpose is to reduce the injection speed of the sealing resin from the, and to reduce the variation of the injection speed of the resin depending on the location.In this case, some effects may be expected for large voids in the chip, No action is taken against the cause of the voids when the protruding electrodes are arranged in a staggered arrangement, and there is no effect. On the other hand, in the embodiment of the present invention, first, in the case of FIG. 1, even if a void is generated in a portion where the electrode pads 2 and the Au bumps 4 are arranged in a staggered manner, it is devised so as to be driven out. In the case of FIG. 3 and the plasma irradiation 15 of FIG. 5, the resin injection speed is promoted to such an extent that the sealing resin injection speed variation due to the staggered design variation can be ignored. Further, in the capillary-shaped pattern 3 in FIG. 5, the patterns are arranged so as to make the staggered design variation less noticeable. Therefore, in each method, it is possible to reduce the voids generated due to the design variation of the staggered arrangement.
[0057]
【The invention's effect】
As described above, according to the present invention, by narrowing the pitch of the electrodes of the semiconductor chip, it is possible to eliminate voids (voids) around the electrodes at the time of resin sealing, which has conventionally occurred, and to obtain a highly reliable semiconductor. The device can be realized.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a part of a manufacturing process of a semiconductor device according to a first embodiment of the present invention.
FIGS. 2A and 2B are a perspective view and a cross-sectional view illustrating a part of a manufacturing process of a semiconductor device according to a second embodiment of the present invention; FIGS.
3A and 3B are a cross-sectional view and an enlarged view showing a part of a manufacturing process of a semiconductor device according to a third embodiment of the present invention.
FIG. 4 is a diagram showing a correlation between temperature and viscosity characteristics of a sealing resin according to a third embodiment of the present invention.
FIG. 5 is a plan view showing an example of a semiconductor chip used in a semiconductor device according to a fourth embodiment of the present invention, and an enlarged view thereof.
FIG. 6 is a plan view showing an example of a semiconductor chip used in a conventional semiconductor device and an enlarged view thereof.
FIG. 7 is a perspective view, a cross-sectional view, and an enlarged view showing a part of a manufacturing process of a conventional semiconductor device.
8A and 8B are a plan view and a cross-sectional view of a part of a semiconductor device showing a conventional problem.
FIG. 9 is a perspective view and a cross-sectional view showing a part of a conventional semiconductor device manufacturing process by a TAB method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Semiconductor chip 2 Electrode pad 3 Capillary pattern on semiconductor chip 4 Au bump 5 Film base 6 Conductor wiring 7 Sealing resin 8 Nozzle 9 Heater 10 Preheater 11 Resin application stage 12 Temporary curing furnace or full curing furnace 13 Syringe heating coil 14 Stage angle 15 Plasma irradiation 16 Bonding stage 17 Bonding tool 18 Sprocket hole 19 Void 20 Deflection of film base material 21 Suction hole 22 Sealing resin extrusion tool 23 Solder resist 24 Syringe 25 Device hole

Claims (9)

矩形状の表面に配列された複数の電極上にバンプが形成されかつ前記複数の電極のうち前記矩形状の表面の少なくとも一辺に沿った電極が千鳥配列された半導体チップの前記表面と、配線電極が形成されたフィルム基板の表面とを対向させて前記バンプと前記配線電極とを接続する工程と、前記半導体チップと前記フィルム基板との間に封止樹脂を注入する工程と、前記封止樹脂を硬化させる工程とを含む半導体装置の製造方法であって、
前記バンプと前記配線電極とを接続する際、前記半導体チップと前記フィルム基板との間隔が前記半導体チップの前記電極が存在する周辺部よりも前記電極が存在しない中央部の方が大きくなるように前記中央部に対向する前記フィルム基板の部分を外側へ撓ませた状態で接続し、前記封止樹脂を注入後で硬化させる前に、前記フィルム基板を前記半導体チップ側と反対側から押圧することを特徴とする半導体装置の製造方法。
A bump is formed on a plurality of electrodes arranged on a rectangular surface, and the surface of the semiconductor chip in which electrodes along at least one side of the rectangular surface among the plurality of electrodes are arranged in a staggered manner; Connecting the bumps and the wiring electrodes with the surface of the film substrate having the surface formed thereon facing thereto, injecting a sealing resin between the semiconductor chip and the film substrate, Curing the semiconductor device, comprising:
When connecting the bumps and the wiring electrodes, the distance between the semiconductor chip and the film substrate is larger in a central part where the electrodes are not present than in a peripheral part where the electrodes of the semiconductor chip are present. The portion of the film substrate facing the central portion is connected in an outwardly bent state, and after the sealing resin is injected and cured, the film substrate is pressed from the side opposite to the semiconductor chip side. A method for manufacturing a semiconductor device, comprising:
矩形状の表面に配列された複数の電極上にバンプが形成されかつ前記複数の電極のうち前記矩形状の表面の少なくとも一辺に沿った電極が千鳥配列された半導体チップの前記表面と、配線電極が形成されたフィルム基板の表面とを対向させて前記バンプと前記配線電極とを接続する工程と、前記半導体チップと前記フィルム基板との間に封止樹脂を注入する工程と、前記封止樹脂を硬化させる工程とを含む半導体装置の製造方法であって、
前記封止樹脂を注入する工程は、前記半導体チップおよびフィルム基板を水平面に対し傾斜させた状態にし前記半導体チップの位置が高い方の辺と前記フィルム基板との隙間から前記封止樹脂を注入することを特徴とする半導体装置の製造方法。
A bump is formed on a plurality of electrodes arranged on a rectangular surface, and the surface of the semiconductor chip in which electrodes along at least one side of the rectangular surface among the plurality of electrodes are arranged in a staggered manner; Connecting the bumps and the wiring electrodes with the surface of the film substrate having the surface formed thereon facing thereto, injecting a sealing resin between the semiconductor chip and the film substrate, Curing the semiconductor device, comprising:
In the step of injecting the sealing resin, the semiconductor chip and the film substrate are inclined with respect to a horizontal plane, and the sealing resin is injected from a gap between the higher side of the semiconductor chip and the film substrate. A method for manufacturing a semiconductor device, comprising:
矩形状の表面に配列された複数の電極上にバンプが形成されかつ前記複数の電極のうち前記矩形状の表面の少なくとも一辺に沿った電極が千鳥配列された半導体チップの前記表面と、配線電極が形成されたフィルム基板の表面とを対向させて前記バンプと前記配線電極とを接続する工程と、前記フィルム基板を第1の温度に加熱しながら前記半導体チップと前記フィルム基板との間に封止樹脂を注入する工程と、前記封止樹脂を硬化させる工程とを含む半導体装置の製造方法であって、
前記バンプと前記配線電極とを接続した後、前記封止樹脂を注入する直前に、前記フィルム基板を前記第1の温度よりも低い第2の温度で加熱する工程を有することを特徴とする半導体装置の製造方法。
A bump is formed on a plurality of electrodes arranged on a rectangular surface, and the surface of the semiconductor chip in which electrodes along at least one side of the rectangular surface among the plurality of electrodes are arranged in a staggered manner; Connecting the bumps and the wiring electrodes by facing the surface of the film substrate on which is formed, and sealing the semiconductor chip and the film substrate while heating the film substrate to a first temperature. A method of manufacturing a semiconductor device including a step of injecting a sealing resin and a step of curing the sealing resin,
A step of heating the film substrate at a second temperature lower than the first temperature immediately after connecting the bump and the wiring electrode and immediately before injecting the sealing resin. Device manufacturing method.
第2の温度は、30〜60[℃]であることを特徴とする請求項3に記載の半導体装置の製造方法。The method according to claim 3, wherein the second temperature is 30 to 60 ° C. 5. 矩形状の表面に配列された複数の電極上にバンプが形成されかつ前記複数の電極のうち前記矩形状の表面の少なくとも一辺に沿った電極が千鳥配列された半導体チップの前記表面と、配線電極が形成されたフィルム基板の表面とを対向させて前記バンプと前記配線電極とを接続する工程と、前記半導体チップと前記フィルム基板との間に封止樹脂を注入する工程と、前記封止樹脂を硬化させる工程とを含む半導体装置の製造方法であって、
前記バンプと前記配線電極とを接続する工程の前に、前記半導体チップの表面に電極の間を通って前記封止樹脂の注入方向に向けて枝分かれした突起を形成する工程を有することを特徴とする半導体装置の製造方法。
A bump is formed on a plurality of electrodes arranged on a rectangular surface, and the surface of the semiconductor chip in which electrodes along at least one side of the rectangular surface among the plurality of electrodes are arranged in a staggered manner; Connecting the bumps and the wiring electrodes with the surface of the film substrate having the surface formed thereon facing thereto, injecting a sealing resin between the semiconductor chip and the film substrate, Curing the semiconductor device, comprising:
Before the step of connecting the bump and the wiring electrode, the method further comprises a step of forming a projection branched on the surface of the semiconductor chip in the injection direction of the sealing resin through the space between the electrodes. Semiconductor device manufacturing method.
矩形状の表面に配列された複数の電極上にバンプが形成されかつ前記複数の電極のうち前記矩形状の表面の少なくとも一辺に沿った電極が千鳥配列された半導体チップの前記表面と、配線電極が形成されたフィルム基板の表面とを対向させて前記バンプと前記配線電極とを接続する工程と、前記半導体チップと前記フィルム基板との間に封止樹脂を注入する工程と、前記封止樹脂を硬化させる工程とを含む半導体装置の製造方法であって、
前記バンプと前記配線電極とを接続する工程の前に、前記半導体チップの表面または前記フィルム基板の表面にプラズマを照射する工程を有することを特徴とする半導体装置の製造方法。
A bump is formed on a plurality of electrodes arranged on a rectangular surface, and the surface of the semiconductor chip in which electrodes along at least one side of the rectangular surface among the plurality of electrodes are arranged in a staggered manner; Connecting the bumps and the wiring electrodes with the surface of the film substrate having the surface formed thereon facing thereto, injecting a sealing resin between the semiconductor chip and the film substrate, Curing the semiconductor device, comprising:
A method of manufacturing a semiconductor device, comprising a step of irradiating a plasma to a surface of the semiconductor chip or a surface of the film substrate before the step of connecting the bump and the wiring electrode.
バンプと配線電極とを接続する工程の前に、半導体チップの表面に電極の間を通って封止樹脂の注入方向に向けて枝分かれした突起を形成する工程を有することを特徴とする請求項1〜4のうちいずれかに記載の半導体装置の製造方法。2. The method according to claim 1, further comprising, before the step of connecting the bump and the wiring electrode, a step of forming a projection on the surface of the semiconductor chip, the projection protruding toward the injection direction of the sealing resin through the space between the electrodes. 5. The method for manufacturing a semiconductor device according to any one of items 4 to 4. バンプと配線電極とを接続する工程の前に、半導体チップの表面またはフィルム基板の表面にプラズマを照射する工程を有することを特徴とする請求項1〜5および7のうちいずれかに記載の半導体装置の製造方法。8. The semiconductor according to claim 1, further comprising a step of irradiating a plasma to a surface of the semiconductor chip or a surface of the film substrate before the step of connecting the bump and the wiring electrode. Device manufacturing method. 封止樹脂を注入する工程は、前記半導体チップの千鳥配列された電極に沿った辺とフィルム基板との隙間から前記封止樹脂を注入することを特徴とする請求項1〜8のうちいずれかに記載の半導体装置の製造方法。9. The step of injecting the sealing resin, wherein the sealing resin is injected from a gap between a side of the semiconductor chip along the staggered electrodes and a film substrate. 13. The method for manufacturing a semiconductor device according to claim 1.
JP2003006898A 2003-01-15 2003-01-15 Method for manufacturing semiconductor device Pending JP2004221319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003006898A JP2004221319A (en) 2003-01-15 2003-01-15 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003006898A JP2004221319A (en) 2003-01-15 2003-01-15 Method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2004221319A true JP2004221319A (en) 2004-08-05

Family

ID=32897147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003006898A Pending JP2004221319A (en) 2003-01-15 2003-01-15 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2004221319A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7144758B2 (en) 2003-05-20 2006-12-05 Seiko Epson Corporation Manufacturing method of semiconductor device, including differently spaced bump electrode arrays
JP2007214291A (en) * 2006-02-08 2007-08-23 Fujitsu Ltd Flip-chip mounting method
JP2007227558A (en) * 2006-02-22 2007-09-06 Nec Electronics Corp Apparatus and method of manufacturing semiconductor device
JP2007305813A (en) * 2006-05-12 2007-11-22 Matsushita Electric Ind Co Ltd Semiconductor integrated circuit device and its packaging method
JP2008177617A (en) * 2008-04-09 2008-07-31 Sharp Corp Semiconductor device and manufacturing method therefor
JP2008244492A (en) * 2008-05-16 2008-10-09 Fujitsu Ltd Method of manufacturing semiconductor device
US7563651B2 (en) * 2005-04-11 2009-07-21 Nec Electronics Corporation Method of fabricating a substrate with a concave surface
US7768136B2 (en) 2005-02-02 2010-08-03 Sharp Kabushiki Kaisha Sealed-by-resin type semiconductor device
JP2011135108A (en) * 2011-04-04 2011-07-07 Fujitsu Semiconductor Ltd Process for manufacturing semiconductor device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7144758B2 (en) 2003-05-20 2006-12-05 Seiko Epson Corporation Manufacturing method of semiconductor device, including differently spaced bump electrode arrays
US7768136B2 (en) 2005-02-02 2010-08-03 Sharp Kabushiki Kaisha Sealed-by-resin type semiconductor device
US7563651B2 (en) * 2005-04-11 2009-07-21 Nec Electronics Corporation Method of fabricating a substrate with a concave surface
JP2007214291A (en) * 2006-02-08 2007-08-23 Fujitsu Ltd Flip-chip mounting method
US7670873B2 (en) * 2006-02-08 2010-03-02 Fujitsu Limited Method of flip-chip mounting
JP4659634B2 (en) * 2006-02-08 2011-03-30 富士通株式会社 Flip chip mounting method
JP2007227558A (en) * 2006-02-22 2007-09-06 Nec Electronics Corp Apparatus and method of manufacturing semiconductor device
JP2007305813A (en) * 2006-05-12 2007-11-22 Matsushita Electric Ind Co Ltd Semiconductor integrated circuit device and its packaging method
JP4731397B2 (en) * 2006-05-12 2011-07-20 パナソニック株式会社 Semiconductor integrated circuit device
JP2008177617A (en) * 2008-04-09 2008-07-31 Sharp Corp Semiconductor device and manufacturing method therefor
JP2008244492A (en) * 2008-05-16 2008-10-09 Fujitsu Ltd Method of manufacturing semiconductor device
JP2011135108A (en) * 2011-04-04 2011-07-07 Fujitsu Semiconductor Ltd Process for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
JP3780996B2 (en) Circuit board, mounting structure of semiconductor device with bump, mounting method of semiconductor device with bump, electro-optical device, and electronic device
JP3910527B2 (en) Liquid crystal display device and manufacturing method thereof
KR101975730B1 (en) Anisotropic conductive film, method for producing anisotropic conductive film, method for producing connection body, and connection method
US20040108135A1 (en) Circuit board, mounting structure of ball grid array, electro-optic device and electronic device
CN101504924B (en) Method of producing electro-optical device and electro-optical device
KR102313698B1 (en) Flexible Semiconductor Package and method for fabricating the same
KR100784743B1 (en) Semiconductor device and manufacturing method thereof
TW202013021A (en) Chip on film, display panel, display device and pin designing method
TWI540591B (en) A connection method, a method of manufacturing a connector, and a linker
JP2004221319A (en) Method for manufacturing semiconductor device
KR101677322B1 (en) Semiconductor package and method of manufacturing the same
US9583416B2 (en) Mounting structure of semiconductor device and method of manufacturing the same
JP2004221320A (en) Semiconductor device and method for manufacturing the same
US20140132895A1 (en) Liquid crystal display device and production method thereof
JP2000100862A (en) Bare chip mounting method
JP4270210B2 (en) Circuit board, bumped semiconductor element mounting structure, electro-optical device, and electronic device
JP2012199262A (en) Circuit board, connection structure and method for connecting circuit board
JPH11330318A (en) Manufacture of semiconductor device mounting body
JP4484750B2 (en) WIRING BOARD, ELECTRONIC CIRCUIT ELEMENT HAVING THE SAME, AND DISPLAY DEVICE
JPH07297541A (en) Method for mounting circuit on board
Lee et al. Fine pitch COG interconnections using anisotropically conductive adhesives
JPH1056041A (en) Structure and method for mounting semiconductor device
JP2005191386A (en) Electrode connecting method and method for manufacturing liquid crystal display element
JP2005122078A (en) Liquid crystal display and method for manufacturing the same
JP2002244146A (en) Method for internal connection of flat panel display provided with opaque substrate, and device formed by the method