JP2004221228A - Porous ceramic heat sink - Google Patents

Porous ceramic heat sink Download PDF

Info

Publication number
JP2004221228A
JP2004221228A JP2003005487A JP2003005487A JP2004221228A JP 2004221228 A JP2004221228 A JP 2004221228A JP 2003005487 A JP2003005487 A JP 2003005487A JP 2003005487 A JP2003005487 A JP 2003005487A JP 2004221228 A JP2004221228 A JP 2004221228A
Authority
JP
Japan
Prior art keywords
heat
heat sink
layer
ceramic
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003005487A
Other languages
Japanese (ja)
Inventor
Chii Kyo
智偉 許
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABC Taiwan Electronics Corp
Original Assignee
ABC Taiwan Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABC Taiwan Electronics Corp filed Critical ABC Taiwan Electronics Corp
Priority to JP2003005487A priority Critical patent/JP2004221228A/en
Publication of JP2004221228A publication Critical patent/JP2004221228A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that the cooling effect is insufficient in a known heat sink, and to provide a heat sink that can be manufactured in a simple production process at a low cost. <P>SOLUTION: The porous ceramic heat sink mainly comprises a heat radiation layer 1 and a heat conduction layer 2. The heat radiation layer utilizes the principle of microcosmic chemical liquid phase change, forms the microcell structure of a ceramic powder by nonuniformly dispersing milky-liquid-like slurry, performs sintering for forming the heat radiation layer with a porous structure of a hollow crystal before bonding the submicron powder together, and has the heat conduction layer on a surface coming into contact with a heat source. The heat conduction layer absorbs heat in the heat source and further adds forced convection current conditions with air as a medium by the high surface area of the hollow crystal porous structure of the heat radiation layer for improving cooling capability in the heat sink. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はヒートシンクの空気に接触する表面積を増大することにより、ヒートシンクの熱拡散能力を向上する、多孔構造セラミックヒートシンクに関する。
【0002】
【従来の技術】
情報半導体技術の発展に伴い半導体チップはますます高周波化し、近年中央処理装置(CPU)などの電子デバイスの処理速度は日々増進しているが、高速度化は同時に高熱発生の問題も生じている。電子デバイスの熱源が発生する高温をいかに効果的に放出して電子デバイスを適温で運行させるかは各業者が競って開発をする重点となっている。
コンピュータを例に挙げると、公知の冷却器はCPUの上に設置してCPUチップが産出する熱の放出を助けるが、その多くはヒートシンクを有し、ヒートシンクをCPUの上面にCPUに密着して設置し、その上に適当な形状の放熱フィンを有し、また、ヒートシンク上にはファンを設けて空気の対流を作ることにより、CPUの熱を吸収したヒートシンクから熱を対流で除去して(排気か送風かはコンピュータ内部空間と設計要求による)、温度を下げている。
【0003】
【発明が解決しようとする課題】
公知のヒートシンクは熱伝導の効果が良好な銅、アルミ合金で製造しているにもかかわらず、熱伝導と放熱の効果は理想的とは言えず、改善の余地がある。これが公知技術の現時点で最大の欠点であり、各業者が克服しようとしている難題である。
【0004】
【課題を解決するための手段】
上記課題を解決するため、本発明は多孔構造のセラミックス材料を直接プレス成形し、また空気を媒介(空洞単結晶構造)として熱対流の接触表面積を増大することにより、最も簡便な製造工程で高付加価値製品を製造する主旨で、多孔構造セラミックヒートシンクを提供する。
【0005】
本発明の多孔構造セラミックヒートシンクは、主に放熱層と熱伝導層から成り、放熱層はマイクロコズミック化学液相変化の原理を利用して、乳液状スラリーの不均一分散でセラミック粉体のマイクロセル構造を形成し、サブミクロン粉体と結合した後、焼結して空洞化結晶の多孔構造放熱層を作り、熱源と接触する面に熱伝導層を有し、熱伝導層が熱源の熱を吸収して放熱層の空洞結晶体多孔構造の大表面積によって、空気を媒介として、更に(ファンのような)強制対流条件を加えてヒートシンクの冷却能力を向上する。
【0006】
本発明が応用している理論を以下に説明する。
1.マイクロコズミック化学:
液―液相変化(liquid−liquid phase transformation)
有機系スラリー内に含まれる有機溶剤二種―トルエン、エタノールを親水性高分子バインダと混合すると、エタノールは水と完全に混ざるが、トルエンと親水基は疎外し合う。エタノールが親水基と溶け合わない特性を利用し、更に攪拌することにより、乳液状スラリーを調製し(図1に示す乳液区を参照のこと)、セラミック粉末を乳液中にクロスリンクする。図2に示すように、乳液中の大粒径の粉末はファンデルワールス力が大きいために即時に集まり、小粒径は大粒径粉のかたまりの周りを埋め、同時に高分子バインダと無機材料が安定した共有結合を形成する(図2に粒径分散モデルを示す。図2−1に均一分散、図2−2に乳液調製後に生じる不均一分散を示す)。こうしてセラミック焼結後自然且つ均一な空間の、多孔構造を作ることができる。
【0007】
2.物理部分:
ナノ材料は、光学、磁気、熱伝導、拡散及び機械などの性質は一般の同一材料がバルク状に存在する時とは異なる。粉体間に上述の結果をもたらすために、異なる粒径のセラミック粉末を混合する必要がある。小粒径粉末はサブミクロン級(0.13μmなど)を採用すればよく、ナノ級を使用すると焼結してできる空洞度が小さ過ぎてヒートシンクの放熱特性に影響するが、熱伝導能力は向上し、機械強度も大きく向上する。ほかに、焼結時の温度上昇条件の制御も注意して、空洞度と機械強度の最良のバランスを得るようにする。一般に、粉末粒径が大きいほど焼結後の空洞度が小さく、材料の機械強度も相対して大幅に低下する。
【0008】
3.物体熱伝導部分
全ての物体の熱伝導は三種に分けられる。伝導、対流、放射である。一般には放射で除去できる熱量は小さすぎるので、考慮する必要はない。そのためヒートシンクを作製する際に最も重要なのは熱伝導メカニズム即ち伝導と対流である。コンピュータの冷却装置において、熱伝導の重要性は熱を放熱物体の表面に伝達することである(図3参照)。温度低下で最も重要なのが対流伝熱による影響である。熱量は流体(air)が対流現象に頼ってコンピュータCPUチップの発生した熱を持ち去るからである。対流伝熱に影響を与える最大の要素が、放熱面積である。Q(対流伝熱)=h×A(表面積)×ΔTとなっている。
【0009】
放熱層は冷却の必要度合によって、プレート型にもフィン型にも作製できる。また銀Agを熱伝導層に採用し、その熱伝導率はK=421W/mKである。熱伝導率が更に高い伝導材料を使用すれば、冷却能力のより一層の向上に役立つ。
【発明の実施の形態】
【0010】
本発明の前述の技術手段を、実施例をあげて説明する。
本発明の多孔構造材料の製造方法は以下の手順である。
スラリー調製:適当な比率のセラミック材料(主要成分:二酸化チタンTiO、酸化バリウムBaO、酸化ストロンチウムSrO、アルミナAl、酸化ジルコニウムZrO)を二種の有機溶剤エタノール(EtOH)とトルエン(Toluene)及び分散剤と調合し(粘度はできるだけ5〜10cpに制御する)、確実に分散させてから砥粉(酸化ジルコニウム球、酸化アルミ球など)で研磨攪拌しサブミクロン粉粒にする。
【0011】
バインダ調製:適当な比率のポリビニルアルコール(PVA)と水を均一に攪拌する。
バインダ添加:前述のサブミクロンスラリーとバインダを混合し、強烈に攪拌し続け、乳液状になるまで攪拌する。
乾燥:この乳液状物を加熱乾燥して固体にすると、多孔構造材料となる。
本発明は砥粉で研磨攪拌時に、いくつかの異なる球径の砥粉を用い、低速研磨を行なうことにより、スラリー研磨時間を効果的に短縮できる。
【0012】
前記の多孔構造材料を用いて多孔構造ヒートシンクを製造する手順を以下に説明する。
造粒:多孔構造材料を乳鉢で細かくし、特殊治具に入れてプレスして放熱層に成形する。
焼結:前記の放熱層の形状にしたものを焼結して、自然で均一な空間を備えるようにし、空洞化結晶構造を有する放熱層を作る。
表面熱伝導層印刷:前記の空洞化結晶構造を有する多孔構造放熱層に、スクリーン印刷で表面熱伝導層を印刷する。
【0013】
本発明の製法で作製した多孔構造ヒートシンクは、図6に示すように、主に放熱層(1)と熱伝導層(2)から成り、放熱層(1)はマイクロコズミック化学液層変化原理を利用し、乳液状スラリーの不均一分散でセラミック粉のマイクロセル構造を形成し、サブミクロン粉体と結合した後焼結して空洞化結晶を有する多孔構造放熱層(1)であり、その熱源と接触する面に熱伝導層(2)を有して熱伝導層(2)が熱源から熱を吸収し、放熱層(1)の空洞化結晶多孔構造により、空気を媒介として、強制対流条件(ファンのような)を加えてヒートシンクの冷却能力を向上する。放熱層(1)は冷却の必要に応じてプレート型にもフィン型にも作製できる。なお、本実施例では熱伝導層に銀Agを使用しており、熱伝導率はK=421W/mKである。熱伝導率がさらに高い熱伝導材料を使用すれば、冷却能力のより一層の向上に役立つ。
【0014】
本発明の好適な実施例を以下に説明する。
スラリー調製:セラミック材料(Ceramics)137.87g、エタノール(EtOH)25.06g、トルエン(Toluene)37.06g及び分散材(BYK−111など)2.76g(セラミック材料の2.0%量)を粘度を5〜10cpに制御して均一な分散を確実にする。φ3mm:φ10mm:φ30mm=5:3:2)の酸化ジルコニウム球で12時間低速研磨攪拌する。(粉体粒径=0.09〜0.30μm)上記3種の球径の異なる酸化ジルコニウム球で低速研磨する方法は、公知の方法に比べ1/2以上の研磨時間を節約できる。研磨時間と球径の関係は図5参照。
【0015】
バインダ調製:ポリビニルアルコール(PVA)0.4gを9.6gの水に加え、均一に攪拌する(PVA=4%)。
スラリー調製手順の粉体(粒径0.13μm)5gスラリーを、5gの4%PVAに加え、強烈に攪拌して乳液状物を生成するまで攪拌し、熱乾燥して固体にする。
造粒:前記手順のかたまり状の固体を乳鉢で細かくし、0.5gの細かい粉を特殊治具に入れてプレスし、板状の放熱層を成形する。
焼結:前記に成形した放熱層を三段階温度持続方式で焼結し、自然で均一な空間を有するようにし、空洞化結晶を有する多孔構造放熱層を作る。温度上昇設定を表1及び図4に示す。
【表1】

Figure 2004221228
表面熱伝導層印刷:前記の空洞化結晶構造を有する多孔構造放熱層に、高分子銀ペースト印刷し、150℃で2分間熱乾燥する。
【0016】
以上の製造工程で作製した本発明のヒートシンクを以下の方法で測定した。
図7に示すように装置を設計し、材料の熱伝導特性を利用して熱の吸収を調べた後、ファンを起動して材料の冷却能力を観察する。
4種の材料:銅プレート、アルミプレート、吸水性セラミック、多孔構造セラミックを以下について比較する。
1.熱源温度上昇とヒートシンクの吸熱性(図8参照)
2.熱源温度上昇とヒートシンクの冷却性にファンを加えた場合(5Volt/0.4W)(図9参照)
3.冷却能力(同一時点の吸熱温度から放熱温度を差し引く)(図10参照)
【0017】
以上の簡単な試験から分析し、多孔セラミックの冷却能力は最高であり、且つ上図から、時間の経過に従って冷却能力がよくなっていくことが分かる。原因は、多孔構造が非常に大きい空気接触表面積をもち、緻密構造のはるか千万倍に達するためである。これに関する計算は以下のとおりである。
計算は銅ヒートシンクと多孔構造セラミックのみの比較である。
熱源は、1573joule/sec=1573W を提供
多孔構造セラミック平均粒径0.13μm、空洞度18%
銅プレートA=2.56×10−4 ΔX=2.0×10−3
多孔構造セラミックA=6.76×10−4 ΔX=1.7×10−3
熱伝達公式:Q=KA ΔT/ΔX
球体体積公式:4/3×πr
球体表面積公式:4πr
表2に以上の資料による計算を示す。
【表2】
Figure 2004221228
表2で、多孔構造セラミックの熱伝導率は低いが、単位放熱面積は銅プレートの50886倍であるため、単位時間に放出することができる熱がこのように高くなっている。機械強度も兼ね備えており、対衝撃強度17〜28Kg/cmである。
【0018】
本発明のヒートシンクと台湾工研院材料所の「発泡金属放熱ヒートシンク」との比較では、発泡アルミ金属の冷却能力5W/cm、等価対流伝熱係数0.5
W/cm℃であるのに対し、本発明のセラミックヒートシンクの冷却能力229
.1W/cm、等価対流伝熱係数12.06W/cm℃で、明らかに優っている

【発明の効果】
【0019】
多孔構造で作成したヒートシンクは、現在の大体積のアルミ金属放熱フィンの放熱効果不十分という欠点を完全に解決するとともに、簡便な生産工程と低材料・製造コストをも実現し、様々な形態の発熱する電子装置の冷却に広く応用できるものである。
【図面の簡単な説明】
【図1】本発明の液―液相変化の図である。
【図2】本発明の粒径分散モデル図である。
【図3】物体の熱伝導説明図である。
【図4】本発明の温度上昇設定図である。
【図5】本発明の研磨時間と粒径の関係図である。
【図6】本発明の多孔構造ヒートシンクの斜視図である。
【図7】本発明のヒートシンク測定装置の図である。
【図8】熱源の温度上昇とヒートシンクの吸熱性の比較図である。
【図9】熱源の温度上昇とヒートシンクの冷却性の比較図である。
【図10】放熱能力の比較図である。
【符号の説明】
(1)放熱層
(2)熱伝導層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a porous ceramic heat sink that increases the heat spreading capability of the heat sink by increasing the surface area of the heat sink that contacts the air.
[0002]
[Prior art]
With the development of information semiconductor technology, the frequency of semiconductor chips has become higher and higher, and the processing speed of electronic devices such as central processing units (CPUs) has been increasing daily in recent years. However, the increase in speed has also caused a problem of high heat generation. . How to effectively release the high temperature generated by the heat source of the electronic device and operate the electronic device at an appropriate temperature is an important point for each company to compete and develop.
Taking a computer as an example, a known cooler is installed on a CPU to help release heat generated by a CPU chip, but most of them have a heat sink, and the heat sink is closely attached to the CPU on the upper surface of the CPU. It is installed, has a radiation fin of an appropriate shape on it, and a fan is provided on the heat sink to create convection of air, so that heat is removed by convection from the heat sink that has absorbed the heat of the CPU ( Exhaust or air flow depends on the computer's internal space and design requirements), and the temperature is reduced.
[0003]
[Problems to be solved by the invention]
Although known heat sinks are made of copper and aluminum alloys having good heat conduction effects, the heat conduction and heat radiation effects are not ideal, and there is room for improvement. This is the greatest drawback of the known art at the present time, and is a challenge that each company is trying to overcome.
[0004]
[Means for Solving the Problems]
In order to solve the above problems, the present invention directly press-molds a ceramic material having a porous structure and increases the contact surface area of thermal convection by using air as a medium (hollow single crystal structure). A porous ceramic heat sink is provided to manufacture value-added products.
[0005]
The ceramic heat sink with porous structure of the present invention mainly comprises a heat dissipation layer and a heat conduction layer, and the heat dissipation layer utilizes the principle of microcosmic chemical liquid phase change to provide a non-uniform dispersion of an emulsion slurry to a ceramic powder microcell. After forming the structure and bonding with the submicron powder, sintering creates a porous structure heat dissipation layer of hollow crystals, and has a heat conduction layer on the surface in contact with the heat source, and the heat conduction layer transfers the heat of the heat source The large surface area of the hollow crystalline porous structure of the absorbing and heat dissipating layer enhances the cooling capability of the heat sink through the air and further through forced convection conditions (such as a fan).
[0006]
The theory applied by the present invention will be described below.
1. Microcosmic chemistry:
Liquid-liquid phase transformation
When two kinds of organic solvents-toluene and ethanol contained in the organic slurry are mixed with the hydrophilic polymer binder, ethanol is completely mixed with water, but the toluene and the hydrophilic group are alienated. By utilizing the property that ethanol does not dissolve in the hydrophilic group, and further stirring, an emulsion slurry is prepared (see the emulsion section shown in FIG. 1), and the ceramic powder is cross-linked into the emulsion. As shown in FIG. 2, the large particle size powder in the emulsion gathers immediately due to the large van der Waals force, and the small particle size fills the mass of the large particle size powder, and at the same time, the polymer binder and the inorganic material Forms a stable covalent bond (FIG. 2 shows a particle size distribution model. FIG. 2-1 shows uniform dispersion, and FIG. 2-2 shows non-uniform dispersion generated after preparation of an emulsion). Thus, a porous structure having a natural and uniform space after ceramic sintering can be formed.
[0007]
2. Physical part:
Nanomaterials differ in properties such as optics, magnetism, heat conduction, diffusion and mechanical properties from the general case where the same material exists in bulk. In order to achieve the above results between powders, it is necessary to mix ceramic powders of different particle sizes. The submicron class (0.13μm etc.) should be used for the small particle size powder. If the nano class is used, the cavities formed by sintering are too small to affect the heat dissipation characteristics of the heat sink, but the heat conduction ability is improved. In addition, the mechanical strength is greatly improved. In addition, care must be taken to control the temperature rise conditions during sintering so that the best balance between cavities and mechanical strength is obtained. In general, the larger the powder particle size is, the smaller the porosity after sintering is, and the mechanical strength of the material is relatively significantly reduced.
[0008]
3. Heat Conduction Portion Heat conduction of all objects can be divided into three types. Conduction, convection and radiation. Generally, the amount of heat that can be removed by radiation is too small and need not be considered. Therefore, the most important factors in producing a heat sink are a heat conduction mechanism, that is, conduction and convection. In a computer cooling device, the importance of heat conduction is to transfer heat to the surface of a heat radiating object (see FIG. 3). The most important factor in temperature reduction is the effect of convective heat transfer. The amount of heat is because the air relies on the convection phenomenon to carry away the heat generated by the computer CPU chip. The largest factor affecting convective heat transfer is the heat dissipation area. Q (convective heat transfer) = h × A (surface area) × ΔT.
[0009]
The heat radiation layer can be made into a plate type or a fin type depending on the degree of cooling required. Silver Ag is used for the heat conductive layer, and the heat conductivity is K = 421 W / mK. The use of a conductive material having a higher thermal conductivity helps to further improve the cooling capacity.
BEST MODE FOR CARRYING OUT THE INVENTION
[0010]
The above technical means of the present invention will be described with reference to examples.
The method for producing the porous structure material of the present invention is as follows.
Slurry preparation: ceramic materials (main components: titanium dioxide TiO 2 , barium oxide BaO, strontium oxide SrO, alumina Al 2 O 3 , zirconium oxide ZrO) in an appropriate ratio were mixed with two organic solvents ethanol (EtOH) and toluene (Toluene). ) And a dispersant (viscosity is controlled as much as possible from 5 to 10 cp), and after it is dispersed reliably, it is polished and stirred with abrasive powder (zirconium oxide spheres, aluminum oxide spheres, etc.) to obtain submicron particles.
[0011]
Binder preparation: An appropriate ratio of polyvinyl alcohol (PVA) and water are uniformly stirred.
Binder addition: The above-mentioned submicron slurry and the binder are mixed, and the mixture is vigorously stirred and stirred until it becomes an emulsion.
Drying: When this emulsion is dried by heating to a solid, it becomes a porous structure material.
According to the present invention, slurry polishing time can be effectively shortened by performing low-speed polishing by using abrasive powders having several different sphere diameters during polishing and stirring with the abrasive powder.
[0012]
A procedure for manufacturing a porous heat sink using the porous structure material will be described below.
Granulation: The porous structure material is made fine in a mortar, put into a special jig and pressed to form a heat dissipation layer.
Sintering: The shape of the heat dissipation layer is sintered to provide a natural and uniform space, thereby producing a heat dissipation layer having a hollow crystal structure.
Surface heat conduction layer printing: The surface heat conduction layer is printed on the porous heat dissipation layer having the hollow crystal structure by screen printing.
[0013]
As shown in FIG. 6, the porous heat sink manufactured by the method of the present invention mainly includes a heat dissipation layer (1) and a heat conduction layer (2), and the heat dissipation layer (1) is based on the principle of changing the microcosmic chemical liquid layer. A porous heat radiation layer (1) having a microcell structure of ceramic powder formed by heterogeneous dispersion of an emulsion slurry, which is combined with a submicron powder and then sintered to have hollow crystals. The heat conduction layer (2) has a heat conduction layer (2) on a surface in contact with the heat conduction layer, the heat conduction layer (2) absorbs heat from a heat source, and the convection convection condition is mediated by air due to a hollow crystal porous structure of the heat radiation layer (1). The addition of a fan (such as a fan) improves the cooling capacity of the heat sink. The heat radiation layer (1) can be made into a plate type or a fin type as required for cooling. In this embodiment, silver Ag is used for the heat conductive layer, and the heat conductivity is K = 421 W / mK. The use of a heat conductive material having a higher heat conductivity helps to further improve the cooling capacity.
[0014]
A preferred embodiment of the present invention will be described below.
Slurry preparation: 137.87 g of ceramic material (Ceramics), 25.06 g of ethanol (EtOH), 37.06 g of toluene (Toluene) and 2.76 g of dispersing material (BYK-111 etc.) (2.0% amount of ceramic material) Control the viscosity at 5-10 cp to ensure uniform dispersion. Low-speed polishing and stirring with zirconium oxide spheres of φ3 mm: φ10 mm: φ30 mm = 5: 3: 2) is performed for 12 hours. (Powder particle size = 0.09 to 0.30 µm) The method of low-speed polishing with the above three kinds of zirconium oxide spheres having different sphere diameters can save a polishing time of 1/2 or more as compared with a known method. See FIG. 5 for the relationship between the polishing time and the ball diameter.
[0015]
Binder preparation: 0.4 g of polyvinyl alcohol (PVA) is added to 9.6 g of water and uniformly stirred (PVA = 4%).
Add 5 g of the powder from the slurry preparation procedure (0.13 μm particle size) to 5 g of 4% PVA, stir vigorously until an emulsion is formed, and heat dry to a solid.
Granulation: The solid mass obtained in the above procedure is finely ground in a mortar, and 0.5 g of fine powder is put in a special jig and pressed to form a plate-shaped heat radiation layer.
Sintering: The formed heat dissipation layer is sintered in a three-stage temperature sustaining mode so as to have a natural and uniform space, thereby producing a porous structure heat dissipation layer having hollow crystals. The temperature rise settings are shown in Table 1 and FIG.
[Table 1]
Figure 2004221228
Surface heat conduction layer printing: A polymer silver paste is printed on the porous heat dissipation layer having the hollowed crystal structure, and dried by heat at 150 ° C. for 2 minutes.
[0016]
The heat sink of the present invention manufactured in the above manufacturing process was measured by the following method.
After designing the apparatus as shown in FIG. 7 and examining the heat absorption using the heat conduction characteristics of the material, the fan is started to observe the cooling capacity of the material.
Four materials are compared: a copper plate, an aluminum plate, a water-absorbing ceramic, and a porous ceramic.
1. Heat source temperature rise and heat sink heat absorption (see Fig. 8)
2. When a fan is added to the heat source temperature rise and the heat sink cooling performance (5 Volt / 0.4 W) (see FIG. 9)
3. Cooling capacity (subtract the heat radiation temperature from the heat absorption temperature at the same time) (see FIG. 10)
[0017]
Analysis from the above simple test shows that the cooling capacity of the porous ceramic is the highest, and from the above figure, the cooling capacity improves with time. The reason is that the porous structure has a very large air contact surface area, which is far more than ten million times that of the dense structure. The calculation for this is as follows.
The calculations are for a copper heat sink and a porous ceramic only.
The heat source provides 1573joule / sec = 1573W. The porous structure ceramic has an average particle size of 0.13 μm and a porosity of 18%.
Copper plate A = 2.56 × 10 −4 m 2 ΔX = 2.0 × 10 −3 m
Porous structure ceramic A = 6.76 × 10 −4 m 2 ΔX = 1.7 × 10 −3 m
Heat transfer formula: Q = KA ΔT / ΔX
Spherical volume formula: 4/3 × πr 3
Spherical surface area formula: 4πr 2
Table 2 shows the calculations based on the above data.
[Table 2]
Figure 2004221228
In Table 2, although the thermal conductivity of the porous ceramic is low, the unit heat dissipation area is 50886 times that of the copper plate, and thus the heat that can be released per unit time is high. It also has mechanical strength, and has an impact strength of 17 to 28 Kg / cm 2 .
[0018]
In comparison between the heat sink of the present invention and the “Foam Metal Heat Sink” of Taiwan Institute of Technology, the cooling capacity of foamed aluminum metal is 5 W / cm 2 , and the equivalent convection heat transfer coefficient is 0.5.
W / cm 2 ° C, whereas the ceramic heat sink of the present invention has a cooling capacity of 229.
. It is clearly superior at 1 W / cm 2 and the equivalent convective heat transfer coefficient of 12.06 W / cm 2 ° C.
【The invention's effect】
[0019]
The heat sink made with a porous structure completely solves the disadvantage of the insufficient heat dissipation effect of the current large volume aluminum metal radiating fins, and also realizes a simple production process and low material and production costs, It can be widely applied to cooling of electronic devices that generate heat.
[Brief description of the drawings]
FIG. 1 is a diagram of a liquid-liquid phase change of the present invention.
FIG. 2 is a particle size distribution model diagram of the present invention.
FIG. 3 is an explanatory diagram of heat conduction of an object.
FIG. 4 is a temperature rise setting diagram of the present invention.
FIG. 5 is a diagram showing the relationship between the polishing time and the particle size according to the present invention.
FIG. 6 is a perspective view of a porous heat sink of the present invention.
FIG. 7 is a diagram of a heat sink measuring device of the present invention.
FIG. 8 is a comparison diagram of a temperature rise of a heat source and heat absorption of a heat sink.
FIG. 9 is a comparison diagram of a temperature rise of a heat source and a cooling property of a heat sink.
FIG. 10 is a comparison diagram of a heat radiation capability.
[Explanation of symbols]
(1) Heat dissipation layer (2) Heat conduction layer

Claims (4)

放熱層と熱伝導層からなり、
放熱層はマイクロコズミック化学液相変化の原理を利用し、乳液状スラリーの不均一分散によりセラミック粉体のマイクロセル構造を形成したのちサブミクロン粉体と結合し、焼結して空洞化結晶を有する多孔構造放熱層とし、放熱層の空洞率は5%―40%の間で、粉体の粒径は0.09―0.30μmの間で、熱源との接触面に熱伝導層を有し、この熱伝導層が熱源の熱を吸収して、放熱層の空洞結晶体多孔構造が高表面積であることにより、空気を拡散媒体として、ヒートシンクの熱拡散能力を向上することを特徴とする多孔構造セラミックヒートシンク。
It consists of a heat dissipation layer and a heat conduction layer,
The heat-dissipation layer uses the principle of micro-cosmic chemical liquid phase change, forms a micro-cell structure of ceramic powder by heterogeneous dispersion of emulsion slurry, then combines with the sub-micron powder and sinters to form hollow crystals. The heat dissipation layer has a porosity of 5% to 40%, a powder particle size of 0.09 to 0.30 μm, and a heat conduction layer on the contact surface with the heat source. The heat conduction layer absorbs the heat of the heat source, and the heat dissipation layer has a high surface area of the hollow crystal porous structure, thereby using the air as a diffusion medium to improve the heat diffusion capability of the heat sink. Porous ceramic heat sink.
セラミック粉体の主要成分が二酸化チタン、酸化バリウム、酸化ストロンチウム、アルミナ及び酸化ジルコニウムであることを特徴とする、請求項1記載の多孔構造セラミックヒートシンク。The porous ceramic heat sink according to claim 1, wherein the main components of the ceramic powder are titanium dioxide, barium oxide, strontium oxide, alumina and zirconium oxide. 熱伝導層が銀であることを特徴とする、請求項1記載の多孔構造セラミックヒートシンク。2. The porous ceramic heat sink according to claim 1, wherein the heat conductive layer is silver. ヒートシンクの一側面にファンを有し、強制対流方式で熱源から発生する高熱を抜き取ることを特徴とする、請求項1記載の多孔構造セラミックヒートシンク。2. The porous ceramic heat sink according to claim 1, wherein a fan is provided on one side of the heat sink to extract high heat generated from the heat source by a forced convection method.
JP2003005487A 2003-01-14 2003-01-14 Porous ceramic heat sink Pending JP2004221228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003005487A JP2004221228A (en) 2003-01-14 2003-01-14 Porous ceramic heat sink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003005487A JP2004221228A (en) 2003-01-14 2003-01-14 Porous ceramic heat sink

Publications (1)

Publication Number Publication Date
JP2004221228A true JP2004221228A (en) 2004-08-05

Family

ID=32896133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003005487A Pending JP2004221228A (en) 2003-01-14 2003-01-14 Porous ceramic heat sink

Country Status (1)

Country Link
JP (1) JP2004221228A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027752A (en) * 2005-07-20 2007-02-01 Samsung Electro Mech Co Ltd Led package and method of manufacturing same
JP2007115810A (en) * 2005-10-19 2007-05-10 Computer Craft Inc Heat sink and method of manufacturing same
EP2075523A1 (en) * 2007-12-26 2009-07-01 Chin-Kuang Luo Method for making a heat dissipating device and product made thereby
JP2013503434A (en) * 2009-08-27 2013-01-31 インシュク ユン LED fluorescent lamp
WO2014073494A1 (en) * 2012-11-12 2014-05-15 北川工業株式会社 Heat dissipating member
KR20140137036A (en) * 2013-05-21 2014-12-02 포항공과대학교 산학협력단 Method of preparing porous heat sink and porous heat sink prepared by the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027752A (en) * 2005-07-20 2007-02-01 Samsung Electro Mech Co Ltd Led package and method of manufacturing same
US8012778B2 (en) 2005-07-20 2011-09-06 Samsung Led Co., Ltd. LED package and fabricating method thereof
JP2007115810A (en) * 2005-10-19 2007-05-10 Computer Craft Inc Heat sink and method of manufacturing same
EP2075523A1 (en) * 2007-12-26 2009-07-01 Chin-Kuang Luo Method for making a heat dissipating device and product made thereby
JP2013503434A (en) * 2009-08-27 2013-01-31 インシュク ユン LED fluorescent lamp
WO2014073494A1 (en) * 2012-11-12 2014-05-15 北川工業株式会社 Heat dissipating member
JP2014095137A (en) * 2012-11-12 2014-05-22 Kitagawa Ind Co Ltd Heat radiation member
KR20140137036A (en) * 2013-05-21 2014-12-02 포항공과대학교 산학협력단 Method of preparing porous heat sink and porous heat sink prepared by the same
KR101692774B1 (en) 2013-05-21 2017-01-05 포항공과대학교 산학협력단 Method of preparing porous heat sink and porous heat sink prepared by the same

Similar Documents

Publication Publication Date Title
CN108192576B (en) Liquid metal thermal interface material and preparation method and application thereof
US6705393B1 (en) Ceramic heat sink with micro-pores structure
CN107936777B (en) Three-dimensional network porous heat conduction and dissipation device and preparation method thereof
CN105400977A (en) Preparing method for aluminum base silicon carbide
TW200411038A (en) Thermal interface material
JP6815152B2 (en) Hexagonal Boron Nitride Primary Particle Aggregates
CN110330943B (en) Preparation method of liquid metal high-thermal-conductivity composite material
TW201335350A (en) Heat conduction paste
TW201242501A (en) Ceramic heat sink module and manufacturing method thereof
CN104668551A (en) Bimodal distribution nano-silver paste serving as thermal interface material and preparation method of bimodal distribution nano-silver paste
JP2004221228A (en) Porous ceramic heat sink
KR101881436B1 (en) manufacturing method for High-capacity heat sink coated with carbon nanotube and graphene mixture
CN100390976C (en) Porous structive coramic cooling fin and its making method
Junjiao et al. Development of heat pipe cooling technology in high heat flux electronic components
TWI299975B (en)
US6967844B2 (en) Ceramic heat sink with micro-pores structure
JP3100267U (en) Porous ceramic radiator
TW555723B (en) Porous structure ceramic heat dissipation plate
JP2004063898A (en) Heat radiating material and its manufacturing method
KR100651151B1 (en) Ceramic heat sink with micro-pores structure
JP2002314013A (en) Heat dissipating material and method for manufacturing the same
KR200334328Y1 (en) Ceramic heat sink with micro-pores structure
TW202204567A (en) Thermal interface material and method for making the same
EP1463113A1 (en) Ceramic heat sink with micro-pores structure
TWI482245B (en) Heat sink and method of fabricating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041207

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A02 Decision of refusal

Effective date: 20060829

Free format text: JAPANESE INTERMEDIATE CODE: A02