JP2004215417A - Dc-dc converter - Google Patents

Dc-dc converter Download PDF

Info

Publication number
JP2004215417A
JP2004215417A JP2003000417A JP2003000417A JP2004215417A JP 2004215417 A JP2004215417 A JP 2004215417A JP 2003000417 A JP2003000417 A JP 2003000417A JP 2003000417 A JP2003000417 A JP 2003000417A JP 2004215417 A JP2004215417 A JP 2004215417A
Authority
JP
Japan
Prior art keywords
transformer
voltage
power supply
winding
switch element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003000417A
Other languages
Japanese (ja)
Inventor
Akihiro Odaka
章弘 小高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2003000417A priority Critical patent/JP2004215417A/en
Publication of JP2004215417A publication Critical patent/JP2004215417A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To make a small-sized cooling fin usable even if a DC power voltage is raised, by suppressing switching loss and conduction loss . <P>SOLUTION: In a DC-DC converter that drives a switch element 2 connected to the positive pole side of a DC power supply by using an auxiliary winding of a transformer 4, the switching loss and the conduction loss can be reduced by driving the switch element 2 by a saturable transformer 20 and allowing control of the on-time width of the switch element 2, though the on-time width of the switch element cannot be intentionally controlled conventionally because it is determined by a resonance frequency determined by constants of a capacitor 3 and the transformer 4. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、ハーフブリッジ構成のDC/DCコンバータに関する。
【0002】
【従来の技術】
図8に、ハーフブリッジ形のDC/DCコンバータの従来例を示す(特許文献1参照)。
特許文献1の場合、直流電源10と並列に2つのスイッチ素子(MOSFET1,2)を接続し、コンデンサ3と変圧器4の1次巻線5との直列回路をどちらか一方の素子と並列に接続し、直流電源10の正極側に接続されたスイッチ素子2には変圧器4の4次巻線7からオン,オフ信号を与える。変圧器4の3次巻線6は制御回路23の電源用として使用し、かつ、制御回路23により変圧器4の3次巻線6の正負の切替りのタイミングを検出し、そのタイミングで直流電源10の負極側に接続されたスイッチ素子1にオン,オフ信号を与えている。
【0003】
図9に、図8における各部の電圧,電流波形例を示す。
まず、期間▲1▼において、MOSFET1は、変圧器4の1次巻線5の電圧VP1に比例し同極性の電圧を発生する変圧器4の3次巻線6の電圧VP3が、負より正へ切替るタイミングから短絡防止期間Tdを経た後オンする。これにより、コンデンサ3と変圧器4との共振電流が直流電源10→コンデンサ3→変圧器4の1次巻線5→MOSFET1の経路で流れ、コンデンサ3が充電される。このとき、変圧器4の1次巻線5には直流電源電圧Edとコンデンサ3の電圧VCとの差電圧VP1が印加され、変圧器4の2次巻線8に発生する電圧をダイオード13、コンデンサ15により整流,平滑して負荷に電力を供給する。
【0004】
MOSFET1のオフは、変圧器4の3次巻線6の電圧VP3が負より正へ切替るタイミングから、制御回路23において時間に比例して増加する参照信号値と出力電圧検出回路からの2次側出力電圧検出値(図9では、出力電圧指令値として示す)とを比較し、参照信号値が出力電圧検出値を上回ったときに行なわれる。また、制御回路23は参照信号値が出力電圧検出値を上回る前に、負荷の状態などにより変圧器4の3次巻線6の電圧VP3が下降した場合、電圧VP3の正から負に切替るタイミングを検出してMOSFET1をオフさせる。MOSFET1がオフすると、変圧器4の1次巻線5の電圧VP1および3次巻線6の電圧VP3は、正から負に切替る。
【0005】
期間▲2▼において、MOSFET1をオフすることにより、変圧器4の1次巻線5に流れていた電流はMOSFET1,2の出力容量に転流し、MOSFET1,2の電圧は徐々に上昇または下降する。
期間▲3▼において、MOSFET1の電圧が直流電圧Edに達すると、変圧器4に流れていた電流は、MOSFET2の寄生ダイオードに転流する。このとき、変圧器4の4次巻線7の電圧VP4がMOSFET2のゲートしきい値を越えると、MOSFET2がオンしコンデンサ3→MOSFET2→変圧器4の1次巻線5の経路でコンデンサ3と変圧器4との共振電流が流れ、コンデンサ3を放電する。また、変圧器4の1次巻線5には、コンデンサ電圧VCが印加され、変圧器2次巻線9に発生する電圧を、ダイオード14,コンデンサ15により整流,平滑し、負荷に電力を供給する。共振電流が減少してくると変圧器4の4次巻線7の電圧VP4が減少し、MOSFET2のゲートしきい値以下になると、MOSFET2はオフする。
【0006】
期間▲4▼において、MOSFET2がオフすると、変圧器4の1次巻線5の電圧VP1は負から正になる。変圧器4の1次巻線5に流れていた電流はMOSFET1,2の寄生容量に転流し、MOSFET1,2の電圧は徐々に上昇または下降する。期間▲1▼において、MOSFET2の電圧が直流電圧Edに達すると、変圧器4の一次巻線5に流れていた電流は、MOSFET1の寄生ダイオードに転流する。以後、この一連の動作を繰り返すことにより、直流電源10から負荷に電力が供給される。
【0007】
【特許文献1】
特開2002−209381号(第4−5頁、図1)
【0008】
【発明が解決しようとする課題】
しかしながら、従来例で入力電圧変動等により直流電圧Edが上昇すると、スイッチ素子の遮断電流が増加するだけでなく、2つのスイッチ素子に流れる電流実効値が増加するため、スイッチング損失,導通損失が増加し、スイッチ素子の冷却フィンを大きくする必要が生じると言う問題がある。
図8において、電圧変動等により直流電源電圧Edが上昇した場合の各部の波形例を図10に示す。従来例の場合に直流電源電圧や負荷が変動した場合には、直流電源10の負極側に接続されたMOSFET1のオン時間を調整することで、出力電圧を調整する。一方、直流電源10の正極側に接続されたMOSFET2がオンする時間幅は、変圧器4の4次巻線7の電圧VP4に委ねられるが、その時間はコンデンサ3と変圧器4の定数で決定される共振周波数によって決まり、意図的にオン時間幅を調整することはできない。
【0009】
つまり、軽負荷時や入力直流電圧上昇時には、MOSFET1のオン時間幅がMOSFET2のオン時間幅に比べて狭まる結果となり、特に入力電圧が上昇した場合にはMOSFETの遮断電流や電流実効値が増加し、スイッチング損失や導通損失が増加するというわけである。
したがって、この発明の課題は、軽負荷時や入力直流電圧上昇時にも、スイッチング損失や導通損失を増大させないようにすることにある。
【0010】
【課題を解決するための手段】
このような課題を解決するため、請求項1の発明では、直流電源の正極と負極との間に2つのスイッチ素子の直列回路を接続したDC/DCコンバータにおいて、
前記直流電源の正極側に接続されたスイッチ素子にオン,オフ信号を与える可飽和変圧器と、この可飽和変圧器の励磁電流を調節する調節装置とを設けたことを特徴とする。
【0011】
請求項2の発明では、直流電源の正極と負極との間に2つのスイッチ素子の直列回路を接続するとともに、少なくとも1つのコンデンサと変圧器の1次巻線との直列回路を前記スイッチ素子の一方に並列に接続し、前記2つのスイッチ素子を交互にオン,オフさせることにより、変圧器の2次巻線に発生する正負の電圧を半波または全波整流して直流出力を得るDC/DCコンバータにおいて、
前記変圧器の3次巻線と並列に可飽和変圧器の1次巻線を接続し、可飽和変圧器の2次巻線により前記直流電源の正極側に接続されたスイッチ素子にオン,オフ信号を与え、かつ、前記変圧器の3次巻線は制御回路の電源として使用し、この制御回路により3次巻線電圧の正負の切替りタイミングを検出し、そのタイミングで前記直流電源の負極側に接続されたスイッチ素子にオン,オフ信号を与え、さらに、前記可飽和変圧器の励磁電流を直流出力電圧に応じて調節する調節装置を設けたことを特徴とする。
【0012】
上記請求項1の発明においては、前記変圧器の3次巻線を制御回路の電源として使用し、この制御回路により3次巻線電圧の正負の切替りタイミングを検出し、そのタイミングで前記直流電源の負極側に接続されたスイッチ素子にオン,オフ信号を与え、前記変圧器の4次巻線と並列に前記可飽和変圧器の1次巻線を接続することができる(請求項3の発明)。
また、上記請求項1ないし3のいずれかの発明では、前記2つのスイッチ素子のいずれか一方のオン時間幅が或る時間幅以下とならないように制限する制限手段を設けることができる(請求項4の発明)。
【0013】
【発明の実施の形態】
図1はこの発明の第1の実施の形態を示す構成図である。
従来と異なる点は、可飽和トランス20の1次巻線と抵抗17,18の直列回路を変圧器4の3次巻線6と並列に接続し、可飽和トランス20の二次巻線と抵抗19の直列回路をスイッチ素子2(MOSFET2)のゲート・ソース間に並列に接続した点、また、電圧検出器21の出力に応じて可飽和トランス20の励磁電流を調節する調節器22を設けた点である。以下、従来と異なる点を主に説明する。
【0014】
図1で出力電圧を下げる場合、電圧検出器21より出力電圧を低下させる指令が調節器22に入力される。すると、調節器22は入力された指令に応じてコンデンサ16→調節器22→抵抗18→コンデンサ16の経路で流れる電流を増加させ、抵抗18に発生する電圧V18を増加させる。ここで、MOSFET1がオンし、MOSFET2がオフしている状態の場合、変圧器4の3次巻線6に発生する電圧VP3の電圧極性は正であるため変圧器4の3次巻線6→可飽和トランス20→抵抗17→抵抗18→変圧器4の3次巻線6の経路で可飽和トランス20に電流が流れる。このとき、抵抗18に発生する電圧VR18が大きいので、可飽和トランス20のリセット電流が減少する。従って、MOSFET1がオフし、MOSFET2がオンしたとき、リセット電流が減少しているため、可飽和トランス20が飽和するまでの時間が短くなり、MOSFET2のオン信号のパルス幅が短くなる。
【0015】
一方、出力電圧を上げる場合は、電圧検出器21より出力電圧を上昇させる指令が調節器22に入力される。すると、調節器22は入力された指令に応じてコンデンサ16→調節器22→抵抗18→コンデンサ16の経路で流れる電流を減少させ、抵抗18に発生する電圧VR18を減少させる。ここで、MOSFET1がオンし、MOSFET2がオフしている状態の場合、変圧器4の3次巻線6に発生する電圧VP3の電圧極性は正であるため変圧器4の3次巻線6→可飽和トランス20→抵抗17→抵抗18→変圧器4の3次巻線6の経路で可飽和トランス20に電流が流れる。このとき、抵抗18に発生する電圧VR18が小さいので、可飽和トランス20のリセット電流が増加する。従って、MOSFET1がオフし、MOSFET2がオンしたとき、リセット電流が増加しているため、可飽和トランス20が飽和するまでの時間が長くなり、MOSFET2のオン信号のパルス幅が長くなる。
【0016】
以上のことから、従来はMOSFET2のオン時間幅を意図的に調整することが不可能であったのに対し、この発明によれば、出力電圧指令に応じてMOSFET2のオン時間幅の調整が可能となる。
図5に、図1で入力直流電圧上昇時の動作波形例を示す。図示のように、この発明によればMOSFET2のオン時間幅の調整が可能になったことから、入力直流電圧の上昇や軽負荷時において、従来よりもMOSFETの電流実効値,遮断電流の増加を抑制できることが分かる(IQ1,IQ2やID13,ID14参照)。
【0017】
図2にこの発明の第2の実施の形態を示す。
図1との相違点は、変圧器4の4次巻線7を設け、この4次巻線7と並列に可飽和トランス20の一次巻線と抵抗17,18の直列回路を接続し、可飽和トランス20の2次巻線と抵抗19の直列回路をスイッチ素子2(MOSFET2)のゲート・ソース間に並列に接続した点にある。このようにしても、図1の場合と同様の効果を得ることができる。
【0018】
図3にこの発明の第3の実施の形態を示す。
図1との相違は、電圧検出器21の出力部と制御回路23の入力部23との間に、リミッタ24を設けた点である。
図6は図1,図2のようにした場合と図3のようにした場合の、装置出力Poutに対するスイッチング周波数Fsと、スイッチ素子1のオンDuty(オン時比率)との関係を示す説明図である。
すなわち、図1,図2のように構成した場合、スイッチ素子2のオン時間幅を調整することが可能となり、結果としてスイッチ素子1とスイッチ素子2のオンDutyは固定された状態で、オン時間幅だけが変化する特性となる。つまり、負荷や入力電圧に応じてスイッチング周波数Fsだけが変化する特性となる(図6に示す実施例1,2の特性は、スイッチ素子1のオンDutyを50%とした場合の例である)。
【0019】
しかし、上記のような特性の場合、軽負荷時にスイッチング周波数Fsが急激に上昇し、軽負荷時の効率を低下させるというような問題が生じることがある。このような場合に対応すべく図3のようにリミッタ24を設けることで、スイッチ素子1のオン時間幅を、リミッタ24で設定される時間幅以下には減少しないように制限することができる。これにより、軽負荷時には、出力電圧の制御をスイッチ素子2のオン時間幅を調整するだけで制御することになり、軽負荷時のスイッチング周波数Fsの急激な上昇を抑制することが可能となる。なお、この場合、軽負荷時には、スイッチ素子1のオン時間幅が固定され、負荷の減少とともにスイッチ素子2のオン時間幅を狭めることで出力電圧の制御が行なわれるので、スイッチ素子1のオンDutyは負荷の減少に伴い増加する特性となる。
【0020】
図4にこの発明の第4の実施の形態を示す。
これは、図1に対し電圧検出器21の出力部と調節器22の調節部との間に、リミッタ24を設けた点が特徴である。
図7は図1,図2のようにした場合と図4のようにした場合の、装置出力Poutに対するスイッチング周波数Fsと、スイッチ素子1のオンDutyとの関係を示す説明図である。
図4のようにすることで、スイッチ素子2のオン時間幅を、リミッタ24で設定される時間幅以下には減少しないように制限される。したがって、軽負荷時には、スイッチ素子1のオン時間幅を狭めることで出力電圧の制御が行なわれるため、スイッチ素子1のオンDutyは軽負荷時には減少する特性となり、図3の場合と同様な効果が得られることになる。
【0021】
【発明の効果】
この発明によれば、特に入力電圧変動に伴い直流電源電圧が上昇した場合において、従来に比べスイッチ素子の遮断電流,電流実効値を低減できることから、スイッチング損失や導通損失の抑制が可能で、スイッチ素子の冷却フィン等の小型化が可能になるという利点がもたらされる。なお、軽負荷時も上記と同様であるのは勿論である。
【図面の簡単な説明】
【図1】この発明の第1の実施の形態を示す回路図
【図2】この発明の第2の実施の形態を示す回路図
【図3】この発明の第3の実施の形態を示す回路図
【図4】この発明の第4の実施の形態を示す回路図
【図5】この発明の動作説明図
【図6】図3の装置出力に対するスイッチング周波数とスイッチ素子1のオンDuty特性説明図
【図7】図4の装置出力に対するスイッチング周波数とスイッチ素子1のオンDuty特性説明図
【図8】従来例を示す構成図
【図9】図8の動作説明図
【図10】図8で入力直流電圧上昇時の動作説明図
【符号の説明】
1,2…スイッチ素子(MOSFET:電界効果トランジスタ)、3,15,16…コンデンサ、4…変圧器、5…変圧器一次巻線、6…変圧器三次巻線、7…変圧器四次巻線、8,9…変圧器二次巻線、10…直流電圧源、11〜14…ダイオード、17〜19…抵抗、20…可飽和トランス、21…電圧検出器、22…調節器、23…制御回路、24…リミッタ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a half-bridge DC / DC converter.
[0002]
[Prior art]
FIG. 8 shows a conventional example of a half-bridge type DC / DC converter (see Patent Document 1).
In the case of Patent Document 1, two switch elements (MOSFETs 1 and 2) are connected in parallel with a DC power supply 10, and a series circuit of a capacitor 3 and a primary winding 5 of a transformer 4 is connected in parallel with one of the elements. The switch element 2 connected to the positive terminal of the DC power supply 10 is supplied with an ON / OFF signal from the quaternary winding 7 of the transformer 4. The tertiary winding 6 of the transformer 4 is used as a power supply for the control circuit 23, and the control circuit 23 detects the timing of switching the positive / negative of the tertiary winding 6 of the transformer 4, and detects the DC An on / off signal is given to the switch element 1 connected to the negative side of the power supply 10.
[0003]
FIG. 9 shows an example of voltage and current waveforms of each part in FIG.
First, in the period (1), the MOSFET 1 sets the voltage VP3 of the tertiary winding 6 of the transformer 4 which generates a voltage of the same polarity in proportion to the voltage VP1 of the primary winding 5 of the transformer 4 to be more positive than negative. Turns on after a short-circuit prevention period Td from the timing of switching to. As a result, the resonance current between the capacitor 3 and the transformer 4 flows through the path of the DC power supply 10 → the capacitor 3 → the primary winding 5 of the transformer 4 → the MOSFET 1, and the capacitor 3 is charged. At this time, the difference voltage VP1 between the DC power supply voltage Ed and the voltage VC of the capacitor 3 is applied to the primary winding 5 of the transformer 4, and the voltage generated in the secondary winding 8 of the transformer 4 is applied to the diode 13, The power is supplied to the load after being rectified and smoothed by the capacitor 15.
[0004]
When the voltage of the VP3 of the tertiary winding 6 of the transformer 4 is switched from negative to positive, the control circuit 23 increases the reference signal value that increases in proportion to time and the secondary signal from the output voltage detection circuit. This is performed when a reference signal value exceeds an output voltage detection value (shown as an output voltage command value in FIG. 9). Further, when the voltage VP3 of the tertiary winding 6 of the transformer 4 drops due to a load condition or the like before the reference signal value exceeds the output voltage detection value, the control circuit 23 switches the voltage VP3 from positive to negative. The timing is detected and the MOSFET 1 is turned off. When the MOSFET 1 is turned off, the voltage VP1 of the primary winding 5 of the transformer 4 and the voltage VP3 of the tertiary winding 6 are switched from positive to negative.
[0005]
In the period (2), when the MOSFET 1 is turned off, the current flowing through the primary winding 5 of the transformer 4 is commutated to the output capacitance of the MOSFETs 1 and 2, and the voltages of the MOSFETs 1 and 2 gradually increase or decrease. .
In the period (3), when the voltage of the MOSFET 1 reaches the DC voltage Ed, the current flowing through the transformer 4 is commutated to the parasitic diode of the MOSFET 2. At this time, when the voltage VP4 of the quaternary winding 7 of the transformer 4 exceeds the gate threshold value of the MOSFET 2, the MOSFET 2 is turned on and the capacitor 3 is connected to the capacitor 3 through the path of the MOSFET 3 → the primary winding 5 of the transformer 4. A resonance current with the transformer 4 flows, and the capacitor 3 is discharged. Further, a capacitor voltage VC is applied to the primary winding 5 of the transformer 4, and the voltage generated in the secondary winding 9 of the transformer is rectified and smoothed by the diode 14 and the capacitor 15, and power is supplied to the load. I do. When the resonance current decreases, the voltage VP4 of the quaternary winding 7 of the transformer 4 decreases, and when the voltage drops below the gate threshold value of the MOSFET 2, the MOSFET 2 is turned off.
[0006]
During the period (4), when the MOSFET 2 is turned off, the voltage VP1 of the primary winding 5 of the transformer 4 changes from negative to positive. The current flowing through the primary winding 5 of the transformer 4 is commutated to the parasitic capacitance of the MOSFETs 1 and 2, and the voltages of the MOSFETs 1 and 2 gradually increase or decrease. In the period (1), when the voltage of the MOSFET 2 reaches the DC voltage Ed, the current flowing through the primary winding 5 of the transformer 4 is commutated to the parasitic diode of the MOSFET 1. Thereafter, by repeating this series of operations, power is supplied from the DC power supply 10 to the load.
[0007]
[Patent Document 1]
JP-A-2002-209381 (page 4-5, FIG. 1)
[0008]
[Problems to be solved by the invention]
However, in the conventional example, when the DC voltage Ed increases due to input voltage fluctuation or the like, not only does the cutoff current of the switch element increase, but also the effective value of the current flowing through the two switch elements increases, so that switching loss and conduction loss increase. However, there is a problem that it is necessary to increase the size of the cooling fin of the switch element.
In FIG. 8, FIG. 10 shows a waveform example of each part when the DC power supply voltage Ed rises due to a voltage fluctuation or the like. If the DC power supply voltage or load fluctuates in the conventional example, the output voltage is adjusted by adjusting the on-time of the MOSFET 1 connected to the negative electrode side of the DC power supply 10. On the other hand, the time width during which the MOSFET 2 connected to the positive electrode side of the DC power supply 10 is turned on depends on the voltage VP4 of the quaternary winding 7 of the transformer 4, and the time is determined by the constants of the capacitor 3 and the transformer 4. The on-time width cannot be adjusted intentionally because it depends on the resonance frequency.
[0009]
That is, when the load is light or when the input DC voltage rises, the on-time width of the MOSFET 1 becomes narrower than the on-time width of the MOSFET 2. In particular, when the input voltage increases, the cutoff current and the effective current value of the MOSFET increase. Therefore, switching loss and conduction loss increase.
Therefore, an object of the present invention is to prevent switching loss and conduction loss from increasing even when the load is light or when the input DC voltage increases.
[0010]
[Means for Solving the Problems]
In order to solve such a problem, according to the invention of claim 1, in a DC / DC converter in which a series circuit of two switch elements is connected between a positive electrode and a negative electrode of a DC power supply,
A saturable transformer for providing an on / off signal to a switch element connected to the positive side of the DC power supply, and an adjusting device for adjusting an exciting current of the saturable transformer are provided.
[0011]
According to the invention of claim 2, a series circuit of two switch elements is connected between a positive electrode and a negative electrode of a DC power supply, and a series circuit of at least one capacitor and a primary winding of a transformer is connected to the switch element. One side is connected in parallel, and the two switch elements are turned on and off alternately, thereby rectifying half- or full-wave positive and negative voltages generated in the secondary winding of the transformer to obtain a DC / DC output. In DC converter,
A primary winding of a saturable transformer is connected in parallel with a tertiary winding of the transformer, and a switching element connected to the positive side of the DC power supply is turned on and off by a secondary winding of the saturable transformer. And a tertiary winding of the transformer is used as a power supply for a control circuit. The control circuit detects a positive / negative switching timing of the tertiary winding voltage, and detects the negative timing of the DC power supply at that timing. An on / off signal is supplied to the switch element connected to the side, and an adjusting device for adjusting the exciting current of the saturable transformer according to the DC output voltage is provided.
[0012]
According to the first aspect of the present invention, the tertiary winding of the transformer is used as a power supply for a control circuit, and the control circuit detects a positive / negative switching timing of the tertiary winding voltage, and uses the DC / DC switching timing at that timing. An on / off signal is given to a switch element connected to the negative side of the power supply, and a primary winding of the saturable transformer can be connected in parallel with a fourth winding of the transformer. invention).
Further, in any one of the first to third aspects of the present invention, it is possible to provide limiting means for limiting the ON time width of one of the two switch elements so as not to be less than a certain time width. Invention 4).
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a configuration diagram showing a first embodiment of the present invention.
The difference from the conventional one is that a series circuit of the primary winding of the saturable transformer 20 and the resistors 17 and 18 is connected in parallel with the tertiary winding 6 of the transformer 4, and the secondary winding of the saturable transformer 20 is connected to the resistor. There is provided a point in which 19 series circuits are connected in parallel between the gate and source of the switch element 2 (MOSFET 2), and an adjuster 22 for adjusting the exciting current of the saturable transformer 20 according to the output of the voltage detector 21. Is a point. Hereinafter, points different from the related art will be mainly described.
[0014]
When lowering the output voltage in FIG. 1, a command to lower the output voltage is input from the voltage detector 21 to the controller 22. Then, the controller 22 increases the current flowing through the path of the capacitor 16 → the controller 22 → the resistor 18 → the capacitor 16 in accordance with the input command, and increases the voltage V18 generated in the resistor 18. Here, when the MOSFET 1 is on and the MOSFET 2 is off, the voltage polarity of the voltage VP3 generated in the tertiary winding 6 of the transformer 4 is positive, so that the tertiary winding 6 of the transformer 4 → A current flows through the saturable transformer 20 through the path of the saturable transformer 20 → the resistor 17 → the resistor 18 → the tertiary winding 6 of the transformer 4. At this time, since the voltage VR18 generated in the resistor 18 is large, the reset current of the saturable transformer 20 decreases. Therefore, when the MOSFET 1 is turned off and the MOSFET 2 is turned on, the reset current is reduced, so that the time until the saturable transformer 20 is saturated is short, and the pulse width of the on signal of the MOSFET 2 is short.
[0015]
On the other hand, when increasing the output voltage, a command to increase the output voltage is input from the voltage detector 21 to the controller 22. Then, the adjuster 22 reduces the current flowing through the path of the capacitor 16 → the adjuster 22 → the resistor 18 → the capacitor 16 according to the input command, and reduces the voltage VR18 generated at the resistor 18. Here, when the MOSFET 1 is on and the MOSFET 2 is off, the voltage polarity of the voltage VP3 generated in the tertiary winding 6 of the transformer 4 is positive, so that the tertiary winding 6 of the transformer 4 → A current flows through the saturable transformer 20 through the path of the saturable transformer 20 → the resistor 17 → the resistor 18 → the tertiary winding 6 of the transformer 4. At this time, since the voltage VR18 generated in the resistor 18 is small, the reset current of the saturable transformer 20 increases. Therefore, when the MOSFET 1 is turned off and the MOSFET 2 is turned on, the reset current is increased, so that the time until the saturable transformer 20 is saturated becomes longer, and the pulse width of the ON signal of the MOSFET 2 becomes longer.
[0016]
From the above, while it was impossible to intentionally adjust the on-time width of the MOSFET 2 conventionally, according to the present invention, the on-time width of the MOSFET 2 can be adjusted according to the output voltage command. It becomes.
FIG. 5 shows an example of an operation waveform when the input DC voltage rises in FIG. As shown in the figure, according to the present invention, the on-time width of the MOSFET 2 can be adjusted. Therefore, when the input DC voltage rises or the load is light, the current effective value and the cutoff current of the MOSFET 2 can be increased as compared with the related art. It can be seen that it can be suppressed (see IQ1, IQ2, ID13 and ID14).
[0017]
FIG. 2 shows a second embodiment of the present invention.
The difference from FIG. 1 is that a quaternary winding 7 of the transformer 4 is provided, and a primary circuit of a saturable transformer 20 and a series circuit of resistors 17 and 18 are connected in parallel with the quaternary winding 7. The point is that a series circuit of the secondary winding of the saturation transformer 20 and the resistor 19 is connected in parallel between the gate and the source of the switch element 2 (MOSFET 2). Even in this case, the same effect as in the case of FIG. 1 can be obtained.
[0018]
FIG. 3 shows a third embodiment of the present invention.
The difference from FIG. 1 is that a limiter 24 is provided between the output unit of the voltage detector 21 and the input unit 23 of the control circuit 23.
FIG. 6 is an explanatory diagram showing the relationship between the switching frequency Fs with respect to the device output Pout and the on-duty (on-duty ratio) of the switch element 1 in the cases shown in FIGS. 1 and 2 and in FIG. It is.
That is, in the configuration shown in FIGS. 1 and 2, it is possible to adjust the ON time width of the switch element 2, and as a result, the ON time of the switch element 1 and the switch element 2 is fixed and the ON time is fixed. Only the width changes. That is, only the switching frequency Fs changes according to the load and the input voltage (the characteristics of the first and second embodiments shown in FIG. 6 are examples in which the on-duty of the switch element 1 is 50%). .
[0019]
However, in the case of the characteristics described above, there may be a problem that the switching frequency Fs sharply increases at a light load, and the efficiency at a light load decreases. By providing the limiter 24 as shown in FIG. 3 to cope with such a case, it is possible to limit the ON time width of the switch element 1 so as not to be reduced below the time width set by the limiter 24. Thus, when the load is light, the control of the output voltage is controlled only by adjusting the ON time width of the switch element 2, and it is possible to suppress a sharp increase in the switching frequency Fs at the time of light load. In this case, when the load is light, the on-time width of the switch element 1 is fixed, and the output voltage is controlled by reducing the on-time width of the switch element 2 as the load decreases, so that the on-duty of the switch element 1 is controlled. Has a characteristic that increases as the load decreases.
[0020]
FIG. 4 shows a fourth embodiment of the present invention.
This is characterized in that a limiter 24 is provided between the output unit of the voltage detector 21 and the adjusting unit of the adjusting unit 22 in FIG.
FIG. 7 is an explanatory diagram showing the relationship between the switching frequency Fs with respect to the device output Pout and the on-duty of the switch element 1 in the case of FIGS. 1 and 2 and the case of FIG.
4, the ON time width of the switch element 2 is limited so as not to be reduced below the time width set by the limiter 24. Therefore, when the load is light, the output voltage is controlled by narrowing the on-time width of the switch element 1, so that the on-duty of the switch element 1 has a characteristic of decreasing at a light load, and the same effect as in the case of FIG. Will be obtained.
[0021]
【The invention's effect】
According to the present invention, especially when the DC power supply voltage rises due to the input voltage fluctuation, the switching current and the effective current value of the switch element can be reduced as compared with the related art, so that the switching loss and the conduction loss can be suppressed. This has the advantage that the cooling fins and the like of the element can be miniaturized. It is needless to say that the same applies to a light load.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a first embodiment of the present invention. FIG. 2 is a circuit diagram showing a second embodiment of the present invention. FIG. 3 is a circuit diagram showing a third embodiment of the present invention. FIG. 4 is a circuit diagram showing a fourth embodiment of the present invention. FIG. 5 is an explanatory diagram of the operation of the present invention. FIG. 6 is an explanatory diagram of a switching frequency and an on-duty characteristic of the switch element 1 with respect to the device output of FIG. 7 is an explanatory diagram of the switching frequency and the on-duty characteristic of the switch element 1 with respect to the output of the device of FIG. 4; FIG. 8 is a configuration diagram showing a conventional example; FIG. 9 is an operational explanatory diagram of FIG. Operation explanation diagram when DC voltage rises [Explanation of symbols]
1, 2, switch element (MOSFET: field effect transistor), 3, 15, 16, capacitor, 4 transformer, 5 transformer primary winding, 6 transformer tertiary winding, 7 transformer quaternary winding Wire, 8, 9 transformer secondary winding, 10 DC voltage source, 11 to 14 diode, 17 to 19 resistor, 20 saturable transformer, 21 voltage detector, 22 regulator, 23 Control circuit, 24 ... limiter.

Claims (4)

直流電源の正極と負極との間に2つのスイッチ素子の直列回路を接続したDC/DCコンバータにおいて、
前記直流電源の正極側に接続されたスイッチ素子にオン,オフ信号を与える可飽和変圧器と、この可飽和変圧器の励磁電流を調節する調節装置とを設けたことを特徴とするDC/DCコンバータ。
In a DC / DC converter in which a series circuit of two switch elements is connected between a positive electrode and a negative electrode of a DC power supply,
A DC / DC device comprising: a saturable transformer for providing an on / off signal to a switch element connected to a positive electrode side of the DC power supply; and an adjusting device for adjusting an exciting current of the saturable transformer. converter.
直流電源の正極と負極との間に2つのスイッチ素子の直列回路を接続するとともに、少なくとも1つのコンデンサと変圧器の1次巻線との直列回路を前記スイッチ素子の一方に並列に接続し、前記2つのスイッチ素子を交互にオン,オフさせることにより、変圧器の2次巻線に発生する正負の電圧を半波または全波整流して直流出力を得るDC/DCコンバータにおいて、
前記変圧器の3次巻線と並列に可飽和変圧器の1次巻線を接続し、可飽和変圧器の2次巻線により前記直流電源の正極側に接続されたスイッチ素子にオン,オフ信号を与え、かつ、前記変圧器の3次巻線は制御回路の電源として使用し、この制御回路により3次巻線電圧の正負の切替りタイミングを検出し、そのタイミングで前記直流電源の負極側に接続されたスイッチ素子にオン,オフ信号を与え、さらに、前記可飽和変圧器の励磁電流を直流出力電圧に応じて調節する調節装置を設けたことを特徴とするDC/DCコンバータ。
A series circuit of two switch elements is connected between a positive electrode and a negative electrode of the DC power supply, and a series circuit of at least one capacitor and a primary winding of a transformer is connected in parallel to one of the switch elements. In a DC / DC converter which obtains a DC output by half-wave or full-wave rectifying a positive or negative voltage generated in a secondary winding of a transformer by alternately turning on and off the two switch elements,
A primary winding of a saturable transformer is connected in parallel with a tertiary winding of the transformer, and a switching element connected to the positive side of the DC power supply is turned on and off by a secondary winding of the saturable transformer. And a tertiary winding of the transformer is used as a power supply for a control circuit. The control circuit detects a positive / negative switching timing of the tertiary winding voltage, and detects the negative timing of the DC power supply at that timing. A DC / DC converter characterized by providing an on / off signal to a switch element connected to the side, and an adjusting device for adjusting an exciting current of the saturable transformer according to a DC output voltage.
前記変圧器の3次巻線を制御回路の電源として使用し、この制御回路により3次巻線電圧の正負の切替りタイミングを検出し、そのタイミングで前記直流電源の負極側に接続されたスイッチ素子にオン,オフ信号を与え、前記変圧器の4次巻線と並列に前記可飽和変圧器の1次巻線を接続したことを特徴とする請求項1に記載のDC/DCコンバータ。A tertiary winding of the transformer is used as a power supply of a control circuit, and the control circuit detects a positive / negative switching timing of the tertiary winding voltage, and at that timing, a switch connected to the negative side of the DC power supply. 2. The DC / DC converter according to claim 1, wherein an on / off signal is supplied to an element, and a primary winding of the saturable transformer is connected in parallel with a fourth winding of the transformer. 前記2つのスイッチ素子のいずれか一方のオン時間幅が或る時間幅以下とならないように制限する制限手段を設けたことを特徴とする請求項1ないし3のいずれかに記載のDC/DCコンバータ。4. The DC / DC converter according to claim 1, further comprising a limiter configured to limit an on-time width of one of the two switch elements to be equal to or less than a certain time width. .
JP2003000417A 2003-01-06 2003-01-06 Dc-dc converter Pending JP2004215417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003000417A JP2004215417A (en) 2003-01-06 2003-01-06 Dc-dc converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003000417A JP2004215417A (en) 2003-01-06 2003-01-06 Dc-dc converter

Publications (1)

Publication Number Publication Date
JP2004215417A true JP2004215417A (en) 2004-07-29

Family

ID=32818734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003000417A Pending JP2004215417A (en) 2003-01-06 2003-01-06 Dc-dc converter

Country Status (1)

Country Link
JP (1) JP2004215417A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046195A1 (en) * 2005-10-19 2007-04-26 Murata Manufacturing Co., Ltd. Synchronous rectification forward converter
KR100733665B1 (en) * 2005-02-25 2007-06-28 산켄덴키 가부시키가이샤 Dc converter
EP4030607A1 (en) * 2021-01-14 2022-07-20 Eaton Intelligent Power Limited Control method and control device of isolated converter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100733665B1 (en) * 2005-02-25 2007-06-28 산켄덴키 가부시키가이샤 Dc converter
WO2007046195A1 (en) * 2005-10-19 2007-04-26 Murata Manufacturing Co., Ltd. Synchronous rectification forward converter
US7480158B2 (en) 2005-10-19 2009-01-20 Murata Manufacturing Co., Ltd. Synchronous rectifying forward converter
JPWO2007046195A1 (en) * 2005-10-19 2009-04-23 株式会社村田製作所 Synchronous rectification forward converter
JP4623096B2 (en) * 2005-10-19 2011-02-02 株式会社村田製作所 Synchronous rectification forward converter
EP4030607A1 (en) * 2021-01-14 2022-07-20 Eaton Intelligent Power Limited Control method and control device of isolated converter
US11863076B2 (en) 2021-01-14 2024-01-02 Eaton Intelligent Power Limited Control method and control device of isolated converter

Similar Documents

Publication Publication Date Title
US7778048B2 (en) Switching power supply apparatus
US7872879B2 (en) Switched mode power converter and method of operation thereof
US6483722B2 (en) DC/DC converter and control method thereof
JPWO2007018227A1 (en) Isolated switching power supply
TW201005461A (en) Voltage regulator and control method thereof
JP2004201385A (en) Dc-dc converter circuit
JP5326605B2 (en) Power converter
JP2004032937A (en) Control circuit of metal oxide semiconductor field effect transistor for synchronous rectification
JP6951631B2 (en) Synchronous rectifier circuit and switching power supply
JP4605532B2 (en) Multi-output type switching power supply
JP3591635B2 (en) DC-DC converter
JP2004215417A (en) Dc-dc converter
JP2009055691A (en) Switching power supply unit
JP4784153B2 (en) Power supply
JP5769886B2 (en) Power converter
JP4338334B2 (en) Driving method of switching power supply
JP2004208407A (en) Control circuit of mosfet for synchronous rectification
JP2000116134A (en) Power supply
JP4201161B2 (en) Switching power supply
JPH0767335A (en) Switching power supply device
JP2004096967A (en) Switching power unit
JP2919182B2 (en) Switching regulator control circuit
JPH114578A (en) Voltage converter device
JP3129037B2 (en) Switching power supply
JPH11146645A (en) Power supply equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050714

A131 Notification of reasons for refusal

Effective date: 20080724

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081113