JP2004214173A - Method for manufacturing membrane-electrode structure - Google Patents

Method for manufacturing membrane-electrode structure Download PDF

Info

Publication number
JP2004214173A
JP2004214173A JP2003371836A JP2003371836A JP2004214173A JP 2004214173 A JP2004214173 A JP 2004214173A JP 2003371836 A JP2003371836 A JP 2003371836A JP 2003371836 A JP2003371836 A JP 2003371836A JP 2004214173 A JP2004214173 A JP 2004214173A
Authority
JP
Japan
Prior art keywords
electrode
underlayer
conductive material
catalyst layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003371836A
Other languages
Japanese (ja)
Other versions
JP4421264B2 (en
Inventor
Hiroshi Shinkai
洋 新海
Katsuhiko Takayama
克彦 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003371836A priority Critical patent/JP4421264B2/en
Priority to US10/721,505 priority patent/US7306876B2/en
Publication of JP2004214173A publication Critical patent/JP2004214173A/en
Application granted granted Critical
Publication of JP4421264B2 publication Critical patent/JP4421264B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing membrane-electrode structure excellent in adhesion between an electrode catalyst layer and a diffusion layer, a solid polymer electrolyte membrane fuel cell equipped with the structure, electric devices and apparatuses for transportation using the fuel cell. <P>SOLUTION: Catalyst paste is spread on a support sheet 2 and dried to form an electrode catalyst layer 3. This layer 3 and 3 are transferred on to both sides of a polymer electrolyte membrane 1 by means of thermal transfer. The first coat of slurry is applied on a basic layer of carbon 6 and dried to form a first underlayer 7 and the second coat of slurry is applied on the underlayer 7 and dried to form a second underlayer 8 of which surface roughness is 40μm or less at maximum height Rmax, which provides a diffusion electrode 5. The underlayer 8 of the diffusion electrode 5 is pressed on the electrode catalyst layer 3 and heated to integrate them into a pile of layers. The underlayer 8 has surface roughness in which ratio of the superficial area of the underlayer 8 to unit area is 1.25 or less. The second slurry contains materials having fine cavities. The underlayer 8 is formed so that the pressure difference between two sides of diffusion electrode 4 is within the range of 100 to 300 mmAq. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、固体高分子型燃料電池に用いられる膜−電極構造体の製造方法に関するものである。   The present invention relates to a method for manufacturing a membrane-electrode structure used in a polymer electrolyte fuel cell.

石油資源が枯渇化する一方、化石燃料の消費による地球温暖化等の環境問題が深刻化している。そこで、二酸化炭素の発生を伴わないクリーンな電動機用電力源として燃料電池が注目されて広範に開発され、一部では実用化され始めている。前記燃料電池を自動車等に搭載する場合には、高電圧と大電流とが得やすいことから、高分子電解質膜を用いる固体高分子型燃料電池が好適に用いられる。   While petroleum resources are being depleted, environmental problems such as global warming due to consumption of fossil fuels are becoming more serious. In view of this, fuel cells have attracted attention as clean electric power sources for electric motors that do not generate carbon dioxide, and have been widely developed, and some have begun to be put into practical use. When the fuel cell is mounted on an automobile or the like, a solid polymer fuel cell using a polymer electrolyte membrane is preferably used because a high voltage and a large current are easily obtained.

前記固体高分子型燃料電池に用いる膜−電極構造体として、図4示のように、白金等の触媒がカーボンブラック等の炭素粒子に担持された触媒粒子がイオン伝導性高分子バインダーにより一体化されることにより形成されている一対の電極触媒層3,3を備え、両電極触媒層3,3の間にイオン導伝可能な高分子電解質膜1を挟持すると共に、各電極触媒層3,3の上に、拡散電極5,5を積層した膜−電極構造体10が知られている。前記膜−電極構造体10は、さらに各拡散電極5,5の上に、ガス通路を兼ねたセパレータを積層することにより、固体高分子型燃料電池を構成する。   As shown in FIG. 4, as a membrane-electrode structure used in the polymer electrolyte fuel cell, catalyst particles in which a catalyst such as platinum is supported on carbon particles such as carbon black are integrated by an ion-conductive polymer binder. And a pair of electrode catalyst layers 3 and 3 formed by the above-described process. The ion-conductive polymer electrolyte membrane 1 is sandwiched between the two electrode catalyst layers 3 and 3. There is known a membrane-electrode structure 10 in which diffusion electrodes 5 and 5 are stacked on the electrode 3. The membrane-electrode structure 10 further constitutes a polymer electrolyte fuel cell by laminating a separator also serving as a gas passage on each of the diffusion electrodes 5 and 5.

前記固体高分子型燃料電池では、一方の電極触媒層3を燃料極として該燃料極側の拡散電極5を介して水素、メタノール等の還元性ガスを導入し、他方の電極触媒層3を酸素極として該酸素極側の拡散電極5を介して空気、酸素等の酸化性ガスを導入する。このようにすると、燃料極側では、前記電極触媒層3に含まれる触媒の作用により、前記還元性ガスからプロトンが生成し、前記プロトンは高分子電解質膜1を介して、前記酸素極側の電極触媒層3に移動する。そして、前記プロトンは、前記酸素極側の電極触媒層3で、該電極触媒層3に含まれる触媒の作用により、該酸素極に導入される前記酸化性ガスと反応して水を生成する。従って、前記燃料極と酸素極とを導線により接続することにより電流を取り出すことができる。   In the polymer electrolyte fuel cell, one electrode catalyst layer 3 is used as a fuel electrode, and a reducing gas such as hydrogen or methanol is introduced through the diffusion electrode 5 on the fuel electrode side, and the other electrode catalyst layer 3 is supplied with oxygen. An oxidizing gas such as air or oxygen is introduced as a pole through the diffusion electrode 5 on the oxygen electrode side. In this manner, on the fuel electrode side, protons are generated from the reducing gas by the action of the catalyst contained in the electrode catalyst layer 3, and the protons are passed through the polymer electrolyte membrane 1 to the oxygen electrode side. It moves to the electrode catalyst layer 3. Then, the protons react with the oxidizing gas introduced into the oxygen electrode in the electrode catalyst layer 3 on the oxygen electrode side by the action of a catalyst contained in the electrode catalyst layer 3 to generate water. Therefore, a current can be taken out by connecting the fuel electrode and the oxygen electrode with a conducting wire.

ところで、膜−電極構造体10では、拡散電極4を形成するカーボンペーパー5は炭素繊維をシート状に形成したものであり、表面に凹凸が形成されているために、該カーボンペーパー5を電極触媒層3に直接積層したのでは、カーボンペーパー5と電極触媒層3との間で十分な密着性が得られない。そこで、カーボンペーパー5上に、カーボンブラック等の電子伝導性材料とポリテトラフルオロエチレン(PTFE)粒子等の撥水性材料とを含む下地層6を形成して拡散電極4の表面の凹凸を低減し、下地層6を介して電極触媒層3に積層し、加熱下に押圧することにより、膜−電極構造体10が製造されている(例えば特許文献1参照)。   By the way, in the membrane-electrode structure 10, the carbon paper 5 forming the diffusion electrode 4 is formed by forming carbon fibers into a sheet, and the surface thereof has irregularities. If the carbon paper 5 and the electrode catalyst layer 3 are directly laminated on the layer 3, sufficient adhesion cannot be obtained. Therefore, an underlayer 6 containing an electron conductive material such as carbon black and a water-repellent material such as polytetrafluoroethylene (PTFE) particles is formed on the carbon paper 5 to reduce unevenness on the surface of the diffusion electrode 4. Then, the membrane-electrode structure 10 is manufactured by laminating the electrode catalyst layer 3 via the underlayer 6 and pressing it under heating (for example, see Patent Document 1).

しかしながら、前記従来の製造方法では、下地層6により拡散電極4の表面の凹凸を低減する効果が不十分であり、電極触媒層3と拡散電極5との間で十分な密着性を得ることができないことがあるとの不都合がある。前記電極触媒層3と前記拡散電極5との間で十分な密着性を得ることができないと、前記膜−電極構造体10を用いて固体高分子型燃料電池を構成したときに、抵抗過電圧が大きくなり、発電性能が低減する。
特開平3−84866号公報
However, in the conventional manufacturing method, the effect of reducing the unevenness of the surface of the diffusion electrode 4 by the base layer 6 is insufficient, and sufficient adhesion between the electrode catalyst layer 3 and the diffusion electrode 5 can be obtained. There is an inconvenience that there are things that cannot be done. If sufficient adhesion between the electrode catalyst layer 3 and the diffusion electrode 5 cannot be obtained, when a polymer electrolyte fuel cell is constructed using the membrane-electrode structure 10, a resistance overvoltage is reduced. And the power generation performance decreases.
JP-A-3-84866

本発明は、かかる不都合を解消して、電極触媒層と拡散電極との間で優れた密着性を得ることができる膜−電極構造体の製造方法を提供することを目的とする。   An object of the present invention is to provide a method for producing a membrane-electrode structure capable of solving such disadvantages and obtaining excellent adhesion between an electrode catalyst layer and a diffusion electrode.

かかる目的を達成するために、本発明の膜−電極構造体の製造方法は、触媒を担持した電子伝導性材料とイオン伝導性材料とを含む触媒ペーストをシート状支持体上に塗布し、乾燥させて、電極触媒層を形成する工程と、高分子電解質膜の両面に該電極触媒層を熱転写し、該高分子電解質膜の両面に該電極触媒層が接合された積層体を形成する工程と、撥水性材料と電子伝導性材料とを含む第1のスラリーを炭素基材層上に塗布し、乾燥させて、第1の下地層を形成し、次いで電子伝導性材料とイオン伝導性材料とを含む第2のスラリーを該第1の下地層上に塗布し、乾燥させて、表面粗さの最大高さRmaxが40μm以下である第2の下地層を形成して、該炭素基材と両下地層とからなる拡散電極を形成する工程と、該積層体の該電極触媒層上に、予め形成された該拡散電極を、該第2の下地層を介して積層し加熱下に押圧して、該積層体と該拡散電極とを一体化する工程とを備えることを特徴とする。   In order to achieve such an object, the method for producing a membrane-electrode structure of the present invention comprises applying a catalyst paste containing a catalyst-supporting electron conductive material and an ion conductive material onto a sheet-like support, and drying the paste. Forming an electrode catalyst layer, and thermally transferring the electrode catalyst layer to both sides of the polymer electrolyte membrane to form a laminate in which the electrode catalyst layer is bonded to both sides of the polymer electrolyte membrane. A first slurry containing a water-repellent material and an electron conductive material is coated on a carbon base material layer and dried to form a first underlayer, and then the electron conductive material and the ion conductive material are Is coated on the first underlayer, and dried to form a second underlayer having a maximum surface roughness height Rmax of 40 μm or less. Forming a diffusion electrode composed of both base layers; and forming the electrode catalyst layer of the laminate. A step of laminating the diffusion electrode formed in advance via the second underlayer, pressing the layer under heating, and integrating the laminated body with the diffusion electrode. .

本発明の製造方法では、拡散電極を形成する際に、まず、炭素基材層上に第1の下地層を形成し、さらに該第1の下地層上に第2のスラリーを塗布し、乾燥させて、第2の下地層を形成する。前記第2の下地層は、前記第1の下地層上に塗布して、乾燥させることにより、該第1の下地層との間で優れた密着性を得ることができる。また、前記第2の下地層は、電子伝導性材料とイオン伝導性材料とを含むので、表面粗さの最大高さRmaxが40μm以下になるようにすることができ、前記拡散電極表面の凹凸を十分に低減することができる。   In the production method of the present invention, when forming a diffusion electrode, first, a first underlayer is formed on a carbon base material layer, and a second slurry is further applied on the first underlayer, followed by drying. Thus, a second underlayer is formed. The second underlayer can be coated on the first underlayer and dried to obtain excellent adhesion with the first underlayer. Further, since the second underlayer contains an electron conductive material and an ion conductive material, the maximum height Rmax of the surface roughness can be set to 40 μm or less, and the unevenness of the surface of the diffusion electrode can be reduced. Can be sufficiently reduced.

次に、本発明の製造方法では、前述のように予め前記第1の下地層の上に前記第2の下地層を形成した拡散電極を、該第2の下地層を介して前記電極触媒層に積層し、加熱下に押圧する。前記拡散電極の表面は、前記第2の下地層により凹凸が低減されているので、前述のように前記第2の下地層を介して前記電極触媒層に積層し、加熱下に押圧することにより、該電極触媒層と確実に接合することができ、該拡散電極と該電極触媒層との間で優れた密着性を得ることができる。   Next, in the manufacturing method of the present invention, the diffusion electrode, in which the second underlayer is formed in advance on the first underlayer as described above, is connected to the electrode catalyst layer through the second underlayer. And pressed under heating. Since the surface of the diffusion electrode is reduced in unevenness by the second underlayer, it is stacked on the electrode catalyst layer via the second underlayer as described above, and is pressed under heating. And the electrode catalyst layer can be securely joined, and excellent adhesion can be obtained between the diffusion electrode and the electrode catalyst layer.

前記第2の下地層は、表面粗さの最大高さRmaxが40μmを超えるときには、前記拡散電極表面の凹凸を低減する効果を十分に得ることができない。   When the maximum height Rmax of the surface roughness exceeds 40 μm, the second underlayer cannot sufficiently obtain the effect of reducing irregularities on the surface of the diffusion electrode.

また、本発明の製造方法は、前記第2の下地層が、単位面積に対する表面積の比が1.25以下である表面粗さを備えることを特徴とする。前記第2の下地層は、前記表面粗さを備えることにより、さらに確実に前記拡散電極表面の凹凸を低減することができる。前記第2の下地層が、単位面積に対する表面積の比が1.25を超える表面粗さを備えるときには、前記拡散電極表面の凹凸を低減する効果を十分に得ることができないことがある。   Further, the manufacturing method of the present invention is characterized in that the second underlayer has a surface roughness having a ratio of a surface area to a unit area of 1.25 or less. Since the second underlayer has the surface roughness, the unevenness on the surface of the diffusion electrode can be more reliably reduced. When the second underlayer has a surface roughness in which the ratio of the surface area to the unit area exceeds 1.25, the effect of reducing unevenness on the surface of the diffusion electrode may not be sufficiently obtained.

また、本発明の製造方法は、前記第2のスラリーが細孔形成材料を含むことを特徴とする。前記細孔形成材料としては、炭素繊維等を挙げることができる。前記細孔形成材料を含む前記第2のスラリーを前記第1の下地層上に塗布して、乾燥させることにより、前記炭素繊維同士の間に細孔が形成された前記第2の下地層を得ることができ、該細孔を介して前記還元性ガスまたは酸化性ガスを拡散させることができる。   Further, the production method of the present invention is characterized in that the second slurry contains a pore forming material. Examples of the pore forming material include carbon fibers. The second slurry containing the pore-forming material is applied on the first underlayer, and dried to form the second underlayer having pores formed between the carbon fibers. And the reducing gas or the oxidizing gas can be diffused through the pores.

また、本発明の製造方法は、前記両下地層は、前記拡散電極の厚さ方向に0.5リットル/cm/分の流量で空気を流通したときに、該拡散電極の一方の面と他方の面との差圧が100〜300mmAqの範囲になるように形成されることを特徴とする。本発明の製造方法によれば、前記差圧が前記範囲にあるときに、前記拡散電極表面の凹凸を低減して、該拡散電極と前記電極触媒層との間の密着性に優れた膜−電極構造体を得ることができる。 Also, in the manufacturing method of the present invention, when the air flows at a flow rate of 0.5 liter / cm 2 / min in the thickness direction of the diffusion electrode, the two underlayers may be in contact with one surface of the diffusion electrode. It is characterized in that it is formed so that the differential pressure with the other surface is in the range of 100 to 300 mmAq. According to the production method of the present invention, when the differential pressure is in the range, the unevenness of the surface of the diffusion electrode is reduced, and a film having excellent adhesion between the diffusion electrode and the electrode catalyst layer is provided. An electrode structure can be obtained.

前記差圧が100mmAq未満であるときには、前記第2のスラリーの塗布量が少なく、前記拡散電極表面の凹凸を低減する効果を十分に得ることができないことがある。また、前記差圧が300mmAqを超えるときには、前記第2のスラリーの塗布量は十分であり、前記拡散電極表面の凹凸を十分に低減することができるが、該拡散電極のガス拡散性が低くなり、形成された該膜−電極構造体により十分な発電性能が得られないことがある。   When the differential pressure is less than 100 mmAq, the application amount of the second slurry is small, and the effect of reducing the unevenness of the diffusion electrode surface may not be sufficiently obtained. When the pressure difference exceeds 300 mmAq, the application amount of the second slurry is sufficient and the irregularities on the surface of the diffusion electrode can be sufficiently reduced, but the gas diffusion property of the diffusion electrode becomes low. In some cases, sufficient power generation performance cannot be obtained due to the formed membrane-electrode structure.

また、本発明は、前記製造方法により得られた膜−電極構造体を用いる固体高分子型燃料電池にもある。本発明の固体高分子型燃料電池は、例えば、パーソナルコンピュータ、携帯電話等の電気機器の電源、バックアップ電源等として用いることができる。また、本発明の固体高分子型燃料電池は、例えば、自動車、潜水艦等の船舶等の輸送用機器の動力等としても用いることができる。   The present invention also relates to a polymer electrolyte fuel cell using the membrane-electrode structure obtained by the above manufacturing method. The polymer electrolyte fuel cell of the present invention can be used, for example, as a power supply, a backup power supply, and the like for electric devices such as personal computers and mobile phones. Further, the polymer electrolyte fuel cell of the present invention can be used, for example, as a power source for transportation equipment such as automobiles and submarines.

次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。図1は本実施形態の膜−電極構造体の製造方法を模式的に示す製造工程図であり、図2は本実施形態の膜−電極構造体の発電性能を示すグラフ、図3は本実施形態の膜−電極構造体の拡散電極の差圧と発電性能との関係を示すグラフである。   Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is a manufacturing process diagram schematically showing a method for manufacturing the membrane-electrode structure of the present embodiment, FIG. 2 is a graph showing the power generation performance of the membrane-electrode structure of the present embodiment, and FIG. 4 is a graph showing a relationship between a pressure difference of a diffusion electrode of the membrane-electrode structure of the embodiment and power generation performance.

本実施形態の製造方法では、まず、スルホン化ポリアリーレン系ポリマーを調製する。尚、本明細書では、「スルホン化ポリアリーレン系ポリマー」とは、次式の構成を備えるポリマーのスルホン化物を意味する。   In the production method of the present embodiment, first, a sulfonated polyarylene-based polymer is prepared. In addition, in this specification, a "sulfonated polyarylene-based polymer" means a sulfonated product of a polymer having the following formula.

Figure 2004214173

前記2価の有機基としては、−CO−、−CONH−、−(CF−(pは1〜10の整数)、−C(CF−、−COO−、−SO−、−SO−等の電子吸引性基、−O−、−S−、−CH=CH−、−C≡C−等の基、さらに次式で表される電子供与性基等を挙げることができる。
Figure 2004214173

Examples of the divalent organic group, -CO -, - CONH -, - (CF 2) p - (p is an integer of from 1 to 10), - C (CF 3) 2 -, - COO -, - SO- , -SO 2 - electron-withdrawing group such as, -O -, - S -, - CH = CH -, - C≡C- such groups further include an electron-donating groups represented by the following formula Can be.

Figure 2004214173

また、前記2価の電子吸引性基としては、−CO−、−CONH−、−(CF−(pは1〜10の整数)、−C(CF−、−COO−、−SO−、−SO−等の基を挙げることができる。
Figure 2004214173

Further, as the divalent electron attractive group, -CO -, - CONH -, - (CF 2) p - (p is an integer of from 1 to 10), - C (CF 3) 2 -, - COO- , -SO -, - SO 2 - group and the like.

前記スルホン化ポリアリーレン系ポリマーは、例えば、式(1)で表されるポリアリーレン系ポリマーに濃硫酸を加えてスルホン化することにより調製することができる。   The sulfonated polyarylene-based polymer can be prepared, for example, by adding concentrated sulfuric acid to the polyarylene-based polymer represented by the formula (1) to perform sulfonation.

Figure 2004214173

式(1)において、m:n=0.5〜100:99.5〜0であり、lは1以上の整数である。
Figure 2004214173

In the formula (1), m: n = 0.5 to 100: 99.5 to 0, and 1 is an integer of 1 or more.

式(1)で表されるポリアリーレン系ポリマーは、例えば、次のようにして調製することができる。まず、2,2−ビス(4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン(ビスフェノールAF)67.3重量部、4,4’−ジクロロベンゾフェノン53.5重量部、炭酸カリウム34.6重量部を、N,N−ジメチルアセトアミドとトルエンとの混合溶媒中、窒素雰囲気下で加熱し、撹拌しながら130℃で反応させる。反応により生成する水をトルエンと共沸させて系外に除去しながら、水の生成が殆ど認められなくなるまで反応させた後、反応温度を徐々に150℃まで上げてトルエンを除去する。150℃で10時間反応を続けた後、4,4’−ジクロロベンゾフェノン3.3重量部を加え、さらに5時間反応させる。   The polyarylene-based polymer represented by the formula (1) can be prepared, for example, as follows. First, 6,7.3 parts by weight of 2,2-bis (4-hydroxyphenyl) -1,1,1,3,3,3-hexafluoropropane (bisphenol AF) and 53.5 parts by weight of 4,4′-dichlorobenzophenone And 34.6 parts by weight of potassium carbonate are heated in a mixed solvent of N, N-dimethylacetamide and toluene under a nitrogen atmosphere and reacted at 130 ° C. while stirring. While removing water generated by the reaction by azeotropic distillation with toluene and removing the water outside the system, the reaction is allowed to proceed until almost no generation of water is recognized, and then the reaction temperature is gradually increased to 150 ° C. to remove the toluene. After continuing the reaction at 150 ° C. for 10 hours, 3.3 parts by weight of 4,4′-dichlorobenzophenone is added, and the reaction is further performed for 5 hours.

得られた反応液を冷却後、副生した無機化合物の沈殿物を濾過して除去し、濾液をメタノール中に投入する。沈殿した生成物を濾別、回収して乾燥後、テトラヒドロフランに溶解する。これをメタノールで再沈殿することにより、次式(2)で表されるオリゴマーが得られる。前述のようにして得られる式(2)のオリゴマーでは、lの平均値は、例えば、18.9である。   After cooling the obtained reaction solution, the precipitate of the by-product inorganic compound is removed by filtration, and the filtrate is poured into methanol. The precipitated product is separated by filtration, recovered, dried and then dissolved in tetrahydrofuran. By reprecipitating this with methanol, an oligomer represented by the following formula (2) is obtained. In the oligomer of the formula (2) obtained as described above, the average value of 1 is, for example, 18.9.

Figure 2004214173

次に、式(2)で表されるオリゴマー28.4重量部、2,5−ジクロロ−4’−(4−フェノキシ)フェノキシベンゾフェノン29.2重量部、ビス(トリフェニルホスフィン)ニッケルジクロリド1.37重量部、ヨウ化ナトリウム1.36重量部、トリフェニルホスフィン7.34重量部、亜鉛末11.0重量部をフラスコに取り、乾燥窒素置換する。次に、N−メチル−2−ピロリドンを加え、80℃に加熱して撹拌下に4時間重合を行う。重合溶液をテトラヒドロフランで希釈し、塩酸/メタノールで凝固させ回収する。回収物に対してメタノール洗浄を繰り返し、テトラヒドロフランに溶解する。これをメタノールで再沈殿して精製し、濾集したポリマーを真空乾燥することにより、式(1)で表されるポリアリーレン系ポリマーが得られる。
Figure 2004214173

Next, 28.4 parts by weight of the oligomer represented by the formula (2), 29.2 parts by weight of 2,5-dichloro-4 ′-(4-phenoxy) phenoxybenzophenone, and bis (triphenylphosphine) nickel dichloride. 37 parts by weight, 1.36 parts by weight of sodium iodide, 7.34 parts by weight of triphenylphosphine, and 11.0 parts by weight of zinc dust are placed in a flask and purged with dry nitrogen. Next, N-methyl-2-pyrrolidone is added, and the mixture is heated to 80 ° C. and polymerized for 4 hours with stirring. The polymerization solution is diluted with tetrahydrofuran and solidified and recovered with hydrochloric acid / methanol. The collected product is repeatedly washed with methanol and dissolved in tetrahydrofuran. This is purified by reprecipitation with methanol, and the polymer collected by filtration is vacuum-dried to obtain a polyarylene-based polymer represented by the formula (1).

式(1)で表されるポリアリーレン系ポリマーのスルホン化は、例えば、該ポリアリーレン系ポリマーに96%硫酸を加え、窒素気流下に24時間撹拌することにより行うことができる。   The sulfonation of the polyarylene-based polymer represented by the formula (1) can be performed, for example, by adding 96% sulfuric acid to the polyarylene-based polymer and stirring for 24 hours under a nitrogen stream.

前記スルホン化ポリアリーレン系ポリマーとして、式(1)で表されるポリアリーレン系ポリマーのスルホン化物に代えて、次式(3)で表されるスルホン化ポリアリーレン系ポリマーを用いてもよい。   As the sulfonated polyarylene-based polymer, a sulfonated polyarylene-based polymer represented by the following formula (3) may be used instead of the sulfonated polyarylene-based polymer represented by formula (1).

Figure 2004214173

式(3)で表される共重合体は、次式(4)で表されるモノマーと、前記式(2)で表されるオリゴマーとを共重合させた後、スルホン酸エステル基(−SO3CH(CH3)C25)を加水分解してスルホン酸基(−SO3H)とすることにより得ることができる。
Figure 2004214173

The copolymer represented by the formula (3) is obtained by copolymerizing a monomer represented by the following formula (4) and an oligomer represented by the above formula (2), and then a sulfonic acid ester group (-SO 3 CH (CH 3 ) C 2 H 5 ) by hydrolysis to form a sulfonic acid group (—SO 3 H).

Figure 2004214173

本実施形態の製造方法では、次に、前記スルホン化ポリアリーレン系ポリマーをN−メチルピロリドン等の溶媒に溶解して、高分子電解質溶液を調製する。そして、前記高分子電解質溶液からキャスト法により成膜し、オーブンにて乾燥することにより、図1(a)に示すように、例えば乾燥膜厚30〜50μmの高分子電解質膜1を形成する。
Figure 2004214173

Next, in the production method of the present embodiment, the sulfonated polyarylene-based polymer is dissolved in a solvent such as N-methylpyrrolidone to prepare a polymer electrolyte solution. Then, a film is formed from the polymer electrolyte solution by a casting method and dried in an oven to form a polymer electrolyte membrane 1 having a dry film thickness of 30 to 50 μm, for example, as shown in FIG.

次に、白金等の触媒をカーボンブラック(ファーネスブラック)等の電子伝導性材料に、例えば触媒:電子伝導性材料=1:1の重量比で担持させて触媒粒子を調製する。次に、前記触媒粒子を、イオン伝導性材料溶液としてのパーフルオロアルキレンスルホン酸高分子化合物(例えば、デュポン社製ナフィオン(商品名))溶液に、例えば触媒粒子:イオン伝導性材料=1:1の重量比で均一に分散させることにより、触媒ペーストを調製する。   Next, catalyst particles such as platinum are supported on an electron conductive material such as carbon black (furnace black) in a weight ratio of catalyst: electron conductive material = 1: 1, for example. Next, the catalyst particles are added to a solution of a perfluoroalkylenesulfonic acid polymer compound (for example, Nafion (trade name) manufactured by DuPont) as an ion-conductive material solution, for example, catalyst particles: ion-conductive material = 1: 1. To prepare a catalyst paste.

次に、図1(b)示のフッ素樹脂系離型フィルム2上に、前記触媒ペーストを触媒量が例えば0.5mg/cmとなるようにスクリーン印刷し、例えば100℃の温度で30分間乾燥させて、電極触媒層3を形成する。次に、図1(c)示のように、高分子電解質膜1を一対の電極触媒層3,3で挟持し、フッ素樹脂系離型フィルム2上からホットプレスする。 Next, the catalyst paste is screen-printed on the fluororesin-based release film 2 shown in FIG. 1 (b) so that the catalyst amount becomes, for example, 0.5 mg / cm 2 , for example, at 100 ° C. for 30 minutes. After drying, the electrode catalyst layer 3 is formed. Next, as shown in FIG. 1C, the polymer electrolyte membrane 1 is sandwiched between a pair of electrode catalyst layers 3 and 3, and hot pressed from above the fluororesin release film 2.

前記ホットプレスは、例えば、100〜150℃の範囲の温度で、1〜5MPaの範囲の面圧を掛け、5〜30分間行う。この結果、電極触媒層3が高分子電解質膜1側に転写され、高分子電解質膜1と接合される。次いで、フッ素樹脂系離型フィルム2を剥離すると、図1(d)示のように、高分子電解質膜1が一対の電極触媒層3,3で挟持された積層体4が得られる。   The hot press is performed, for example, at a temperature in the range of 100 to 150 ° C., applying a surface pressure in the range of 1 to 5 MPa, and for 5 to 30 minutes. As a result, the electrode catalyst layer 3 is transferred to the polymer electrolyte membrane 1 and joined to the polymer electrolyte membrane 1. Next, when the fluororesin release film 2 is peeled off, a laminate 4 in which the polymer electrolyte membrane 1 is sandwiched between the pair of electrode catalyst layers 3 and 3 is obtained as shown in FIG.

次に、図1(e)示の拡散電極5を形成する。拡散電極5の形成は、まず、撥水性材料としてのポリテトラフルオロエチレン(PTFE)粒子と、電子伝導性材料としてのカーボンブラックとを、例えば撥水性材料:電子伝導性材料=6:4の重量比で混合して得られた混合物をエチレングリコールに均一に分散させることにより、第1のスラリーを調製する。そして、前記第1のスラリーを、炭素基材層としてのカーボンペーパー6上に塗布して、乾燥させることにより、例えば乾燥膜厚10〜40μmの第1の下地層7を形成する。   Next, the diffusion electrode 5 shown in FIG. 1E is formed. The diffusion electrode 5 is formed by first mixing polytetrafluoroethylene (PTFE) particles as a water-repellent material and carbon black as an electron-conductive material, for example, by weight of water-repellent material: electron-conductive material = 6: 4. A first slurry is prepared by uniformly dispersing the mixture obtained by mixing at a ratio in ethylene glycol. Then, the first slurry is applied on carbon paper 6 as a carbon base material layer and dried to form a first underlayer 7 having a dry film thickness of 10 to 40 μm, for example.

次に、電子伝導性材料としてのカーボンブラックと、細孔形成材料としての炭素繊維(例えば、昭和電工株式会社製VGCF(商品名))とを、イオン伝導性材料溶液としてのパーフルオロアルキレンスルホン酸高分子化合物(例えば、デュポン社製ナフィオン(商品名))溶液に添加して、例えば電子伝導性材料:細孔形成材料:イオン伝導性材料=1:1:1の重量比で混合し、超音波を例えば10分間照射して均一に分散させることにより、第2のスラリーを調製する。そして、前記第2のスラリーを、第1の下地層7上に塗布して、例えば100℃の温度で30分間乾燥させることにより、例えば乾燥後の塗布量が0.1〜1.2mg/cmの第2の下地層8を形成する。 Next, carbon black as an electron conductive material and carbon fiber (for example, VGCF (trade name) manufactured by Showa Denko KK) as a pore forming material were mixed with perfluoroalkylenesulfonic acid as an ion conductive material solution. A polymer compound (for example, Nafion (trade name) manufactured by DuPont) is added to a solution and mixed, for example, in a weight ratio of electron conductive material: pore forming material: ion conductive material = 1: 1: 1, and then mixed. The second slurry is prepared by irradiating a sound wave, for example, for 10 minutes to uniformly disperse. Then, the second slurry is applied on the first underlayer 7 and dried at a temperature of 100 ° C. for 30 minutes, for example, so that the applied amount after drying is 0.1 to 1.2 mg / cm. A second underlayer 8 is formed.

この結果、カーボンペーパー6上に第1の下地層7を備え、下地層7上にさらに第2の下地層8を備える拡散電極5が形成される。前記下地層8は、前記炭素繊維を含む前記第2のスラリーにより形成されているので、該炭素繊維間の間隙に細孔が形成された多孔質体となっている。   As a result, the diffusion electrode 5 including the first underlayer 7 on the carbon paper 6 and further including the second underlayer 8 on the underlayer 7 is formed. Since the underlayer 8 is formed of the second slurry containing the carbon fibers, it is a porous body having pores formed in gaps between the carbon fibers.

拡散電極5が形成されたならば、次に図1(f)に示すように、拡散電極5を、第2の下地層8を介して電極触媒層3に積層し、カーボンペーパー6上からホットプレスする。前記ホットプレスは、例えば、100〜150℃の範囲の温度で、1〜5MPaの範囲の面圧を掛け、5〜30分間行う。この結果、拡散電極5が第2の下地層8を介して電極触媒層3に接合された膜−電極構造体9が得られる。   After the diffusion electrode 5 is formed, the diffusion electrode 5 is laminated on the electrode catalyst layer 3 via the second underlayer 8 as shown in FIG. Press. The hot press is performed, for example, at a temperature in the range of 100 to 150 ° C., applying a surface pressure in the range of 1 to 5 MPa, and for 5 to 30 minutes. As a result, a membrane-electrode structure 9 in which the diffusion electrode 5 is bonded to the electrode catalyst layer 3 via the second underlayer 8 is obtained.

次に、式(1)で表されるポリアリーレン系ポリマーのスルホン化物を用い、第2の下地層8の乾燥後の塗布量を0.35mg/cmとした膜−電極構造体9(実施例1)、該塗布量を0.70mgとした膜−電極構造体9(実施例2)、第2の下地層8を全く形成していない図4示の膜−電極構造体10(比較例1)について、表面粗さの最大高さRmax、単位面積に対する表面積の比、拡散電極4の厚さ方向に0.5リットル/cm/分の流量で空気を流通したときの該拡散電極4の一方の面と他方の面との差圧を測定した。結果を表1に示す。 Next, using a sulfonated polyarylene-based polymer represented by the formula (1), the membrane-electrode structure 9 (implementation) in which the applied amount of the second underlayer 8 after drying was 0.35 mg / cm 2. Example 1), the membrane-electrode structure 9 (Example 2) in which the coating amount was 0.70 mg, and the membrane-electrode structure 10 shown in FIG. 4 where no second underlayer 8 was formed (Comparative Example) Regarding 1), the maximum height Rmax of the surface roughness, the ratio of the surface area to the unit area, the diffusion electrode 4 when air flows at a flow rate of 0.5 L / cm 2 / min in the thickness direction of the diffusion electrode 4 The differential pressure between one side and the other side was measured. Table 1 shows the results.

また、前記実施例1,2の膜−電極構造体9と、比較例1の膜−電極構造体10とを用いて発電を行った。このときの電流密度に対する端子電圧の変化を図2に示す。   Further, power was generated using the membrane-electrode structure 9 of Examples 1 and 2 and the membrane-electrode structure 10 of Comparative Example 1. FIG. 2 shows a change in the terminal voltage with respect to the current density at this time.

Figure 2004214173

表1と図2とから、表面粗さの最大高さRmaxが40μm以下であり、単位面積に対する表面積の比が1,25以下であり、拡散電極4の一方の面と他方の面との差圧が100〜300mmAqの範囲にある実施例1,2の膜−電極構造体9によれば、前記Rmaxが40μmを超え、単位面積に対する表面積の比が1,25を超え、前記差圧が100mmAq未満である比較例1の膜−電極構造体10よりも、優れた発電性能を得ることができることが明らかである。
Figure 2004214173

From Table 1 and FIG. 2, the maximum height Rmax of the surface roughness is 40 μm or less, the ratio of the surface area to the unit area is 1,25 or less, and the difference between one surface and the other surface of the diffusion electrode 4 is shown. According to the membrane-electrode structure 9 of Examples 1 and 2 in which the pressure is in the range of 100 to 300 mmAq, the Rmax exceeds 40 μm, the ratio of the surface area to the unit area exceeds 1, 25, and the differential pressure is 100 mmAq. It is clear that a superior power generation performance can be obtained as compared with the membrane-electrode structure 10 of Comparative Example 1, which is less than.

図2のように、第2の下地層8を形成した膜−電極構造体9(実施例1,2)において優れた発電性能が得られることから、膜−電極構造体9では、電極触媒層3と拡散電極5との間で優れた密着性が得られていることが明らかである。   As shown in FIG. 2, since excellent power generation performance is obtained in the membrane-electrode structure 9 (Examples 1 and 2) on which the second underlayer 8 is formed, the membrane-electrode structure 9 has an electrode catalyst layer. It is clear that excellent adhesion was obtained between 3 and the diffusion electrode 5.

次に、第2の下地層8の乾燥後の塗布量を0〜12mg/cmの範囲で変量して、拡散電極4の厚さ方向に0.5リットル/cm/分の流量で空気を流通したときの該拡散電極4の一方の面と他方の面との差圧が50〜350mmAqの範囲で変量された膜−電極構造体9を製造して、発電を行った。前記各膜−電極構造体9について、前記差圧と、電流密度0.7A/cm、1.4A/cmのときの端子電圧との関係を図3に示す。 Next, the applied amount of the second underlayer 8 after drying is varied in the range of 0 to 12 mg / cm 2 , and air is applied at a flow rate of 0.5 liter / cm 2 / min in the thickness direction of the diffusion electrode 4. The membrane-electrode assembly 9 in which the differential pressure between one surface and the other surface of the diffusion electrode 4 when flowing was varied in the range of 50 to 350 mmAq was manufactured, and power generation was performed. Wherein each membrane - the electrode structure 9, shown with the differential pressure, current density 0.7 A / cm 2, the relationship between the terminal voltage when the 1.4A / cm 2 in FIG.

図3から、前記差圧が100〜300mmAqの範囲にある膜−電極構造体9によれば、前記差圧が100mmAq未満または300mmAqを超える膜−電極構造体9よりも優れた発電性能を得ることができることが明らかである。   From FIG. 3, according to the membrane-electrode structure 9 in which the differential pressure is in the range of 100 to 300 mmAq, it is possible to obtain power generation performance superior to the membrane-electrode structure 9 in which the differential pressure is less than 100 mmAq or exceeds 300 mmAq. It is clear that can be done.

尚、本実施形態では、スルホン化ポリアリーレン系ポリマーからなる高分子電解質膜1を用いる場合を例として説明しているが、高分子電解質膜1はイオン伝導性を備える高分子体であればよく、このような高分子体として例えばパーフルオロアルキレンスルホン酸高分子化合物(例えば、デュポン社製ナフィオン(商品名))等を挙げることができる。   In this embodiment, the case where the polymer electrolyte membrane 1 made of a sulfonated polyarylene-based polymer is used is described as an example. However, the polymer electrolyte membrane 1 may be a polymer having ion conductivity. Examples of such a polymer include a perfluoroalkylenesulfonic acid polymer compound (for example, Nafion (trade name) manufactured by DuPont).

本発明の膜−電極構造体の製造方法の一例を模式的に示す製造工程図。The manufacturing process figure which shows typically an example of the manufacturing method of the membrane-electrode structure of this invention. 本発明の膜−電極構造体の発電性能の一例を示すグラフ。5 is a graph showing an example of the power generation performance of the membrane-electrode structure of the present invention. 本発明の膜−電極構造体の発電性能の一例を示すグラフ。5 is a graph showing an example of the power generation performance of the membrane-electrode structure of the present invention. 従来の膜−電極構造体の一構成例を示す説明的断面図。Explanatory sectional view showing a configuration example of a conventional membrane-electrode structure.

符号の説明Explanation of reference numerals

1…高分子電解質膜、 2…シート状支持体、 3…電極触媒層、 4…積層体、 5…拡散電極、 6…炭素基材層、 7…第1の下地層、 8…第2の下地層、 9…膜−電極構造体。   DESCRIPTION OF SYMBOLS 1 ... Polymer electrolyte membrane, 2 ... Sheet-like support, 3 ... Electrode catalyst layer, 4 ... Laminated body, 5 ... Diffusion electrode, 6 ... Carbon base material layer, 7 ... First underlayer, 8 ... Second Underlayer, 9 ... film-electrode structure.

Claims (7)

触媒を担持した電子伝導性材料とイオン伝導性材料とを含む触媒ペーストをシート状支持体上に塗布し、乾燥させて、電極触媒層を形成する工程と、
高分子電解質膜の両面に該電極触媒層を熱転写し、該高分子電解質膜の両面に該電極触媒層が接合された積層体を形成する工程と、
撥水性材料と電子伝導性材料とを含む第1のスラリーを炭素基材層上に塗布し、乾燥させて、第1の下地層を形成し、次いで電子伝導性材料とイオン伝導性材料とを含む第2のスラリーを該第1の下地層上に塗布し、乾燥させて、表面粗さの最大高さRmaxが40μm以下である第2の下地層を形成して、該炭素基材と両下地層とからなる拡散電極を形成する工程と、
該積層体の該電極触媒層上に、予め形成された該拡散電極を、該第2の下地層を介して積層し加熱下に押圧して、該積層体と該拡散電極とを一体化する工程とを備えることを特徴とする膜−電極構造体の製造方法。
A step of applying a catalyst paste containing an electron-conductive material and an ion-conductive material carrying a catalyst on a sheet-like support, and drying to form an electrode catalyst layer,
Thermally transferring the electrode catalyst layer to both sides of the polymer electrolyte membrane, and forming a laminate in which the electrode catalyst layer is bonded to both sides of the polymer electrolyte membrane;
A first slurry containing a water-repellent material and an electron conductive material is applied on a carbon substrate layer and dried to form a first underlayer, and then the electron conductive material and the ion conductive material are mixed. A second slurry including the second base layer is applied on the first base layer and dried to form a second base layer having a maximum surface roughness Rmax of 40 μm or less. Forming a diffusion electrode comprising an underlayer,
The diffusion electrode formed in advance on the electrode catalyst layer of the laminate is laminated via the second underlayer, and pressed under heating to integrate the laminate with the diffusion electrode. And a method for producing a membrane-electrode structure.
前記第2の下地層は、単位面積に対する表面積の比が1.25以下である表面粗さを備えるように形成されることを特徴とする請求項1記載の膜−電極構造体の製造方法。   The method according to claim 1, wherein the second underlayer is formed so as to have a surface roughness having a surface area ratio to a unit area of 1.25 or less. 前記第2のスラリーは細孔形成材料を含むことを特徴とする請求項1または請求項2記載の膜−電極構造体の製造方法。   The method for manufacturing a membrane-electrode structure according to claim 1 or 2, wherein the second slurry contains a pore-forming material. 前記両下地層は、前記拡散電極の厚さ方向に0.5リットル/cm/分の流量で空気を流通したときに、該拡散電極の一方の面と他方の面との差圧が100〜300mmAqの範囲になるように形成されることを特徴とする請求項1乃至請求項3のいずれか1項記載の膜−電極構造体の製造方法。 When air flows at a flow rate of 0.5 liter / cm 2 / min in the thickness direction of the diffusion electrode, the pressure difference between one surface and the other surface of the diffusion electrode is 100 The method for manufacturing a membrane-electrode structure according to any one of claims 1 to 3, wherein the film-electrode structure is formed so as to fall within a range of -300 mmAq. 触媒を担持した電子伝導性材料とイオン伝導性材料とを含む触媒ペーストをシート状支持体上に塗布し、乾燥させて、電極触媒層を形成する工程と、
高分子電解質膜の両面に該電極触媒層を熱転写し、該高分子電解質膜の両面に該電極触媒層が接合された積層体を形成する工程と、
撥水性材料と電子伝導性材料とを含む第1のスラリーを炭素基材層上に塗布し、乾燥させて、第1の下地層を形成し、次いで電子伝導性材料とイオン伝導性材料とを含む第2のスラリーを該第1の下地層上に塗布し、乾燥させて、表面粗さの最大高さRmaxが40μm以下である第2の下地層を形成して、該炭素基材と両下地層とからなる拡散電極を形成する工程と、
該積層体の該電極触媒層上に、予め形成された該拡散電極を、該第2の下地層を介して積層し加熱下に押圧して、該積層体と該拡散電極とを一体化する工程とを備える製造方法により得られる膜−電極構造体を備えることを特徴とする固体高分子型燃料電池。
A step of applying a catalyst paste containing an electron-conductive material and an ion-conductive material carrying a catalyst on a sheet-like support, and drying to form an electrode catalyst layer,
Thermally transferring the electrode catalyst layer to both sides of the polymer electrolyte membrane, and forming a laminate in which the electrode catalyst layer is bonded to both sides of the polymer electrolyte membrane;
A first slurry containing a water-repellent material and an electron conductive material is applied on a carbon substrate layer and dried to form a first underlayer, and then the electron conductive material and the ion conductive material are mixed. A second slurry including the second base layer is applied on the first base layer and dried to form a second base layer having a maximum surface roughness Rmax of 40 μm or less. Forming a diffusion electrode comprising an underlayer,
The diffusion electrode formed in advance on the electrode catalyst layer of the laminate is laminated via the second underlayer, and pressed under heating to integrate the laminate with the diffusion electrode. Comprising a membrane-electrode structure obtained by a production method comprising the steps of:
触媒を担持した電子伝導性材料とイオン伝導性材料とを含む触媒ペーストをシート状支持体上に塗布し、乾燥させて、電極触媒層を形成する工程と、
高分子電解質膜の両面に該電極触媒層を熱転写し、該高分子電解質膜の両面に該電極触媒層が接合された積層体を形成する工程と、
撥水性材料と電子伝導性材料とを含む第1のスラリーを炭素基材層上に塗布し、乾燥させて、第1の下地層を形成し、次いで電子伝導性材料とイオン伝導性材料とを含む第2のスラリーを該第1の下地層上に塗布し、乾燥させて、表面粗さの最大高さRmaxが40μm以下である第2の下地層を形成して、該炭素基材と両下地層とからなる拡散電極を形成する工程と、
該積層体の該電極触媒層上に、予め形成された該拡散電極を、該第2の下地層を介して積層し加熱下に押圧して、該積層体と該拡散電極とを一体化する工程とを備える製造方法により得られる膜−電極構造体を備える固体高分子型燃料電池を用いることを特徴とする電気機器。
A step of applying a catalyst paste containing an electron-conductive material and an ion-conductive material carrying a catalyst on a sheet-like support, and drying to form an electrode catalyst layer,
Thermally transferring the electrode catalyst layer to both sides of the polymer electrolyte membrane, and forming a laminate in which the electrode catalyst layer is bonded to both sides of the polymer electrolyte membrane;
A first slurry containing a water-repellent material and an electron conductive material is applied on a carbon substrate layer and dried to form a first underlayer, and then the electron conductive material and the ion conductive material are mixed. A second slurry including the second base layer is applied on the first base layer and dried to form a second base layer having a maximum surface roughness Rmax of 40 μm or less. Forming a diffusion electrode comprising an underlayer,
The diffusion electrode formed in advance on the electrode catalyst layer of the laminate is laminated via the second underlayer, and pressed under heating to integrate the laminate with the diffusion electrode. Electrical equipment using a polymer electrolyte fuel cell provided with a membrane-electrode structure obtained by a manufacturing method comprising the steps of:
触媒を担持した電子伝導性材料とイオン伝導性材料とを含む触媒ペーストをシート状支持体上に塗布し、乾燥させて、電極触媒層を形成する工程と、
高分子電解質膜の両面に該電極触媒層を熱転写し、該高分子電解質膜の両面に該電極触媒層が接合された積層体を形成する工程と、
撥水性材料と電子伝導性材料とを含む第1のスラリーを炭素基材層上に塗布し、乾燥させて、第1の下地層を形成し、次いで電子伝導性材料とイオン伝導性材料とを含む第2のスラリーを該第1の下地層上に塗布し、乾燥させて、表面粗さの最大高さRmaxが40μm以下である第2の下地層を形成して、該炭素基材と両下地層とからなる拡散電極を形成する工程と、
該積層体の該電極触媒層上に、予め形成された該拡散電極を、該第2の下地層を介して積層し加熱下に押圧して、該積層体と該拡散電極とを一体化する工程とを備える製造方法により得られる膜−電極構造体を備える固体高分子型燃料電池を用いることを特徴とする輸送用機器。
A step of applying a catalyst paste containing an electron-conductive material and an ion-conductive material carrying a catalyst on a sheet-like support, and drying to form an electrode catalyst layer,
Thermally transferring the electrode catalyst layer to both sides of the polymer electrolyte membrane, and forming a laminate in which the electrode catalyst layer is bonded to both sides of the polymer electrolyte membrane;
A first slurry containing a water-repellent material and an electron conductive material is applied on a carbon substrate layer and dried to form a first underlayer, and then the electron conductive material and the ion conductive material are mixed. A second slurry including the second base layer is applied on the first base layer and dried to form a second base layer having a maximum surface roughness Rmax of 40 μm or less. Forming a diffusion electrode comprising an underlayer,
The diffusion electrode formed in advance on the electrode catalyst layer of the laminate is laminated via the second underlayer, and pressed under heating to integrate the laminate with the diffusion electrode. Transport equipment using a polymer electrolyte fuel cell provided with a membrane-electrode structure obtained by a manufacturing method comprising the steps of:
JP2003371836A 2002-11-29 2003-10-31 Method for manufacturing membrane-electrode structure Expired - Fee Related JP4421264B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003371836A JP4421264B2 (en) 2002-12-18 2003-10-31 Method for manufacturing membrane-electrode structure
US10/721,505 US7306876B2 (en) 2002-11-29 2003-11-26 Method for producing membrane-electrode structure and polymer electrolyte fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002366037 2002-12-18
JP2003371836A JP4421264B2 (en) 2002-12-18 2003-10-31 Method for manufacturing membrane-electrode structure

Publications (2)

Publication Number Publication Date
JP2004214173A true JP2004214173A (en) 2004-07-29
JP4421264B2 JP4421264B2 (en) 2010-02-24

Family

ID=32828742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003371836A Expired - Fee Related JP4421264B2 (en) 2002-11-29 2003-10-31 Method for manufacturing membrane-electrode structure

Country Status (1)

Country Link
JP (1) JP4421264B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006134648A (en) * 2004-11-04 2006-05-25 Honda Motor Co Ltd Electrode structure of solid polymer fuel cell
JP2007254486A (en) * 2007-05-14 2007-10-04 Jsr Corp New aromatic sulfonate, and polyarylene having sulfonic acid group and method for producing the same
JP2012018871A (en) * 2010-07-09 2012-01-26 Asahi Glass Co Ltd Method of manufacturing membrane electrode assembly for solid polymer fuel cell
JP2014239028A (en) * 2013-05-08 2014-12-18 三菱レイヨン株式会社 Porous carbon electrode
WO2017033536A1 (en) * 2015-08-27 2017-03-02 東レ株式会社 Gas diffusion electrode

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006134648A (en) * 2004-11-04 2006-05-25 Honda Motor Co Ltd Electrode structure of solid polymer fuel cell
JP2007254486A (en) * 2007-05-14 2007-10-04 Jsr Corp New aromatic sulfonate, and polyarylene having sulfonic acid group and method for producing the same
JP2012018871A (en) * 2010-07-09 2012-01-26 Asahi Glass Co Ltd Method of manufacturing membrane electrode assembly for solid polymer fuel cell
JP2014239028A (en) * 2013-05-08 2014-12-18 三菱レイヨン株式会社 Porous carbon electrode
WO2017033536A1 (en) * 2015-08-27 2017-03-02 東レ株式会社 Gas diffusion electrode
KR20180048608A (en) * 2015-08-27 2018-05-10 도레이 카부시키가이샤 Gas diffusion electrode
EP3343680A4 (en) * 2015-08-27 2019-03-20 Toray Industries, Inc. Gas diffusion electrode
KR102597863B1 (en) 2015-08-27 2023-11-03 도레이 카부시키가이샤 Gas diffusion electrode

Also Published As

Publication number Publication date
JP4421264B2 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
JP4327732B2 (en) Solid polymer fuel cell and manufacturing method thereof
US8323848B2 (en) Membrane-electrode assembly for fuel cell, preparation method, and fuel cell comprising the same
JP5830386B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR DIRECT OXIDATION FUEL CELL, ITS MANUFACTURING METHOD, AND DIRECT OXIDATION FUEL CELL SYSTEM INCLUDING THE SAME
JP4130792B2 (en) Membrane-electrode structure and polymer electrolyte fuel cell using the same
JP5195286B2 (en) Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell
WO2009151013A1 (en) Membrane electrode assembly for polymer fuel cell
KR20110043908A (en) Membrane electrode assembly(mea) fabrication procedure on polymer electrolyte membrane fuel cell
JP4221164B2 (en) Polymer electrolyte fuel cell
JP4804812B2 (en) Method for producing polymer membrane for fuel cell
US7306876B2 (en) Method for producing membrane-electrode structure and polymer electrolyte fuel cell
JP4392222B2 (en) Method for manufacturing membrane-electrode structure
JP2007103070A (en) Ion conductive binder
JP4647902B2 (en) Method for manufacturing membrane-electrode structure
JP3607221B2 (en) Electrode structure for polymer electrolyte fuel cell
JP4421264B2 (en) Method for manufacturing membrane-electrode structure
KR101127343B1 (en) Method of preparing a membrane electrode assembly for fuel cell, Membrane electrode assembly prepared by the same and Fuel cell to which the method is applied
KR100612233B1 (en) A membrane electrode assembly for fuel cell, a method for preparing the same and a fuel cell comprising the same
JP3563374B2 (en) Electrode structure for polymer electrolyte fuel cell
JP2004214172A (en) Manufacturing method for film-electrode structure
JP5369580B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
JP2004186143A (en) Manufacture method of electrode structure for solid polymer fuel cell
JP4271390B2 (en) Method for producing electrode structure for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP2004234947A (en) Direct methanol type fuel cell and manufacturing method therefor
KR20080044495A (en) Method of preparing membrane electrode assembly for fuel cell and membrane electrode assembly for fuel cell prepared therefrom
KR20090039423A (en) Membrane electrode assembly for fuel cell and fuel cell system including same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4421264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees