JP2004210616A - Piezoelectric ceramics - Google Patents

Piezoelectric ceramics Download PDF

Info

Publication number
JP2004210616A
JP2004210616A JP2003001677A JP2003001677A JP2004210616A JP 2004210616 A JP2004210616 A JP 2004210616A JP 2003001677 A JP2003001677 A JP 2003001677A JP 2003001677 A JP2003001677 A JP 2003001677A JP 2004210616 A JP2004210616 A JP 2004210616A
Authority
JP
Japan
Prior art keywords
piezoelectric ceramic
cuo
weight
piezoelectric
coupling coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003001677A
Other languages
Japanese (ja)
Other versions
JP4509481B2 (en
Inventor
Yasuhide Matsuo
泰秀 松尾
Hideji Igarashi
秀二 五十嵐
Naoki Sugiyama
直己 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamura Corp
Original Assignee
Tamura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Corp filed Critical Tamura Corp
Priority to JP2003001677A priority Critical patent/JP4509481B2/en
Publication of JP2004210616A publication Critical patent/JP2004210616A/en
Application granted granted Critical
Publication of JP4509481B2 publication Critical patent/JP4509481B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piezoelectric ceramics in which Pb(Sb<SB>1/2</SB>Nb<SB>1/2</SB>)O<SB>3</SB>is added to PZT and which can lower a firing temperature and increase bending strength without impairing its various characteristics as the piezoelectric ceramics. <P>SOLUTION: The piezoelectric ceramics element in which the amount of CuO to be added is 0.01 to 2.0 wt.%, and also, whose firing temperature is 900 to 1,150°C has a coupling factor k almost equal to that of a piezoelectric ceramics element (that by the conventional technology) in which CuO is not added, and whose firing temperature is ≥1,200°C, and its bending strength is increased. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、超音波振動子、アクチュエータ、魚群探知機、BLT(ボルト締めランジュバン型振動子)、圧電トランス等に使用される圧電セラミックスに関する。
【0002】
【従来の技術】
このような用途向けとして、PbZrO及びPbTiOからなる「PZT」と呼ばれる圧電セラミックスが広く普及している。また、特性改善のため、複合ペロブスカイト型化合物を第三成分乃至第四成分としてPZTに固溶させた、多成分PZT系圧電セラミックスも知られている。PZTにPb(Sb1/2Nb1/2)Oを添加した圧電セラミックス(以下「PSN」という。)も、多成分PZT系圧電セラミックスの一種である。この種の圧電セラミックスの焼成温度は、二成分系で約1250℃であり、多成分系でも1200℃以上が必要とされる(例えば下記特許文献1)。
【0003】
【特許文献1】
特開平6−24841号公報(段落0022等)
【0004】
【発明が解決しようとする課題】
この種の圧電セラミックスを積層化して使用する場合、焼成温度が高いために、融点の高いパラジウムや白金を内部電極に用いなければならない。しかしながら、パラジウムや白金は高価であるため、製造コスト低減の障害になっていた。これに加え、この種の圧電セラミックスでは、より厳しい使用状態にも耐え得るように、坑折強度の更なる向上が期待されていた。
【0005】
【発明の目的】
そこで、本発明の目的は、圧電セラミックスとしての諸特性を損なうことなく、焼成温度の低下及び抗折強度の増大を可能にする、PSNを提供することにある。
【0006】
【課題を解決するための手段】
本発明者は、PSNにCuを添加することにより、圧電セラミックスとしての諸特性を落とすことなく、焼成温度を低くすることに成功した。本発明は、この知見に基づきなされたものである。
【0007】
すなわち、本発明は、PSNにおいてCuを含むことを特徴とする(請求項1)。Cuは、CuOに換算して0.01〜2.0重量%とすることが好ましい(請求項5)。CuOが0.01重量%よりも少ない場合又は2.0重量%よりも多い場合は、焼成温度を低くすると、電気機械結合係数(以下、「結合係数k」という。)などの圧電特性の低下も大きくなるからである。
【0008】
PSNにおいて、Cuの他にMnを含むものとしてもよい(請求項2)。これにより、機械的品質係数(以下、「品質係数Qm」という。)が大きくなる。品質係数Qmが大きいと、圧電セラミックスの応用製品でパワーを必要とする場合、入出力に対して発熱が少ないなどの利点がある。Mnは、MnCOに換算して1.0重量%以下とすることが好ましい(請求項6)。MnCOが0.01重量%よりも多い場合は、焼成温度を低くすると、圧電特性の低下も大きくなるからである。
【0009】
PSNにおいて、Cuの他にFeを含むものとしてもよい(請求項3)。これにより、品質係数Qmが大きくなる。Feは、Feに換算して1.0重量%以下とすることが好ましい(請求項7)。Feが1.0重量%よりも多い場合は、焼成温度を低くすると、圧電特性の低下も大きくなるからである。
【0010】
PSNにおいて、Cuの他に、Sr,Ca,Ba及びLaの群から選ばれた少なくとも一種の元素を含むものとしてもよい(請求項4)。これらの元素により、誘電率が大きくなったり、機械的強度が大きくなったりする。Sr,Ca,Ba及びLaは、周期率表の中で同族又は隣接するもの同士であるので、似通った性質を有する。また、Sr,Ca,Ba及びLaについては、この群から選ばれた少なくとも一種の元素からなる化合物によって、Pbを5mol%以下置換することが好ましい(請求項8)。この5mol%より多い場合は、焼成温度を低くすると、圧電特性の低下も大きくなるからである。
【0011】
Cuを含むPSNにおけるPbは、PbOに換算して1.0重量%以下多く含まれる、又は、PbOに換算して1.0重量%以下少なく含まれる、としてもよい(請求項9)。すなわち、Pbは蒸発しやすいためにその量の制御が難しいが、化学量論的組成値に対しPbOを1.0重量%増減してもよい。なぜなら、PbOがこの範囲内ならば、圧電セラミックスとしての特性の低下があまり大きくないからである。
【0012】
Pb(Sb1/2Nb1/2)Oのモル組成比をX、PbZrOのモル組成比をY、PbTiOのモル組成比をZとし、かつX+Y+Z=1としたとき、0.01≦X≦0.15、0.40≦Y≦0.60、0.40≦Z≦0.60が成り立つ、としてもよい(請求項10)。PZTは、反強誘電体であるジルコン酸鉛(PbZrO:斜方晶系)と、強誘電体であるチタン酸鉛(PbTiO3:正方晶系)との、固溶体からなる圧電セラミックスである。このPZTは、Zr:Ti=53:47の組成付近を境にして、チタン濃度の増加とともに結晶系が菱面体晶系から正方晶系に転移する。このとき、自発分極の向きは[111]から[001]へ変化する。この過程で結晶構造が不安定になるため、誘電的圧電的性質が著しく高められる。組成によって結晶系が変わる相境界は、モルホトロピック相境界(MPB)と呼ばれる。0.40≦Y≦0.60、0.40≦Z≦0.60は、この現象を考慮したものである。また、0.01≦X≦0.15であるときは、経時変化が少ない、耐侯性に優れるなどの特長を呈する。
【0013】
また、本発明は、言葉を換えて次のように表現することができる。
【0014】
第一の発明は、XPb(Sb1/2Nb1/2)O‐YPbZrO‐ZPbTiOを基本組成とし、一般記号ABOで表されるペロブスカイト型の酸化物圧電磁器組成物のXYZをそれぞれ0.01≦X≦0.15、0.40≦Y≦0.60、0.40≦Z≦0.60の範囲とするとともにX+Y+Z=1とし、かつ添加物としてCuをCuOに換算して0.01〜2.0重量%、PbをPbOに換算して−1.0〜1.0重量%、MnをMnCOに換算して0.0〜1.0重量%の割合で添加してなることを特徴とする圧電磁器組成物。
【0015】
第二の発明は、XPb(Sb1/2Nb1/2)O‐YPbZrO‐ZPbTiOを基本組成とし、一般記号ABOで表されるペロブスカイト型の酸化物圧電磁器組成物のXYZをそれぞれ0.01≦X≦0.15、0.40≦Y≦0.60、0.40≦Z≦0.60の範囲とするとともにX+Y+Z=1とし、かつ添加物としてCuをCuOに換算して0.01〜2.0重量%、PbをPbOに換算して0.0〜1.0重量%、FeをFeに換算して0.0〜0.8重量%の割合で添加してなることを特徴とする圧電磁器組成物。
【0016】
第三の発明は、第一又は第二の発明において、Sr,Ca,Ba及びLaの群から選ばれた少なくとも一種の元素からなる化合物によって、Pbを0〜5mol%置換した組成。
【0017】
【発明の実施の形態】
出発原料として、Pb、ZrO、TiO、Sb、Nb及びCuOを主として用い、以下の各実施例に応じてMnCO、Fe、SrCO(又はBaCO、CaCO、La)等を選択的に用いた。これらを秤量し一定時間湿式混合した後、これを脱水及び乾燥し、800〜1000℃で2時間仮焼することにより、仮焼物を得た。この仮焼物を粉砕した後、PVA(ポリビニル・アルコール)系バインダを添加して湿式混合及び湿式粉砕を12〜32時間行うことにより、混合物を得た。この混合物を造粒し、1000〜3000kg/cmで成形することにより、直径15mmの円板状の成型体を得た。この成型体を1300℃以下で焼成することにより、直径約12mmの円板状の焼結体を得た。焼成条件は、昇温100℃/時間、キープ温度で2時間である。このキープ温度が以下の各実施例における「焼成温度」である。この焼結体に銀電極ペーストを塗布し、700℃で焼き付けた後、80〜200℃のシリコーンオイル中で2〜4kV/mmの直流電界を10〜30分印加することにより、以下の実施例1〜8に示す圧電セラミックス素子を得た。
【0018】
これらの圧電セラミックス素子について、結合係数k[%]又は品質係数Qmを測定した。測定方法は日本電子材料工業会標準規格EMAS−6100に準じ、測定装置はインピーダンスアナライザを用いた。なお、結合係数kとは、圧電体の電極間に加えた電気エネルギを機械的エネルギに変換する効率を表す定数である。品質係数Qmとは、圧電体が固有振動を起こした時の共振周波数付近における機械的な振動の鋭さを表す定数である。また、これらの圧電セラミックス素子について、抗折強度(破壊強度)も測定した。つまり、幅4mm厚み3mmの焼結体を作成し、その圧電セラミック素子について、三点曲げ試験法(JIS−R1601に準拠)に基づき、三点曲げ強度(σ[N/mm])を測定した。
【0019】
また、以下の各実施例において、Pb(Sb1/2Nb1/2)Oのモル組成比をX、PbZrOのモル組成比をY、PbTiOのモル組成比をZとしたとき、「X+Y+Z=1」かつ「Y:Z=52:48」であるとする。
【0020】
【実施例1】
出発原料として、Pb、ZrO、TiO、Sb、Nb、CuO、及びMnCOを用いた。このとき、Pb(Sb1/2Nb1/2)Oのモル組成比Xを0.04又は0.07とし、MnをMnCOに換算して0.4重量%含ませた。更に、CuOを0重量%から2重量%まで変化させて添加し、かつ焼成温度を900℃から1300℃まで変化させて、実施形態で述べた圧電セラミックス素子を作製した。
【0021】
これらの圧電セラミックス素子について結合係数k及び品質係数Qmを測定した結果を、図1に示す。すなわち、図1は、CuO添加量ごとの焼成温度と結合係数kとの関係を示すグラフである。図2は、焼成温度ごとのCuO添加量と品質係数Qmとの関係を示すグラフである。また、これらの圧電セラミックス素子について坑折強度σを測定した結果を、図9に示す。すなわち、図9は、焼成温度ごとのCuO添加量と坑折強度σとの関係を示すグラフである。
【0022】
図1から明らかなように、CuO添加量が0.01〜2.0重量%かつ焼成温度が900℃〜1150℃の圧電セラミックス素子の結合係数kは、CuO無添加かつ焼成温度1200℃以上の圧電セラミックス素子(従来技術)とほぼ同等となった。また、図2から明らかなように、CuO添加量が0.01〜2.0重量%かつ焼成温度が900℃〜1100℃の圧電セラミックス素子の品質係数Qmは、CuO無添加かつ焼成温度1250℃の圧電セラミックス素子(従来技術)とほぼ同等となった。更に、図9から明らかなように、CuO添加量が0.01〜1.0重量%かつ焼成温度が1000℃の圧電セラミックス素子の坑折強度σは、CuO無添加かつ焼成温度1250℃の圧電セラミックス素子(従来技術)に比べて大きく増大(最高で約1.6倍)した。
【0023】
このように、CuO添加量が0.01〜2.0重量%かつ焼成温度が900℃〜1150℃の圧電セラミックス素子は、CuO無添加かつ焼成温度1200℃以上の圧電セラミックス素子(従来技術)に比べて、結合係数kがほぼ同等であり、坑折強度が向上する。すなわち、PSNにCuOを0.01〜2重量%添加することにより、圧電特性を損なうことなく、焼成温度の低下及び坑折強度の増大を実現することができた。
【0024】
【実施例2】
出発原料として、Pb、ZrO、TiO、Sb、Nb及びCuO等を用いた。このとき、Pb(Sb1/2Nb1/2)Oのモル組成比Xを0.07又は0.10とした。更に、CuOを0.2重量%から0.4重量%まで変化させて添加し、かつ焼成温度を900℃から1050℃まで変化させて、実施形態で述べた圧電セラミックス素子を作製した。
【0025】
これらの圧電セラミックス素子について結合係数kを測定した結果を、図3及び図4に示す。すなわち、図3は、X=0.07におけるCuO添加量ごとの焼成温度と結合係数kとの関係を示すグラフである。図4は、X=0.10におけるCuO添加量ごとの焼成温度と結合係数kとの関係を示すグラフである。
【0026】
図3及び図4から明らかなように、CuO添加量が0.20〜0.40重量%かつ焼成温度が900℃〜1150℃の圧電セラミックスの結合係数kは、X=0.07でもX=0.10でも十分な値になった。換言すると、PSNにCuOを添加することにより、圧電特性を損なうことなく、焼成温度を低下させることができた。
【0027】
【実施例3】
出発原料として、Pb、ZrO、TiO、Sb、Nb、CuO及びMnCOを用いた。このとき、Pb(Sb1/2Nb1/2)Oのモル組成比Xを0.04とし、MnをMnCOに換算して0.4重量%含ませた。更に、CuOを0.3重量%から2.0重量%まで変化させて添加し、かつPbOを−1.0重量%から1.0重量%まで増減させ、かつ焼成温度を1000℃として、実施形態で述べた圧電セラミックス素子を作製した。
【0028】
これらの圧電セラミックス素子について結合係数kを測定した結果を、図5に示す。すなわち、図5は、CuO添加量ごとのPbO増減量と結合係数kとの関係を示すグラフである。
【0029】
図5から明らかなように、PbO増減量が−1.0〜1.0重量%かつ焼成温度が1000℃の圧電セラミックス素子の結合係数kは、PbO増減なしの圧電セラミックス素子とほぼ同等となった。すなわち、PSNのPbOを±1.0重量%増減させても、CuOを添加することにより、圧電特性を損なうことなく、焼成温度を低下させることができた。
【0030】
【実施例4】
出発原料として、Pb、ZrO、TiO、Sb、Nb、CuO及びMnCOを用いた。このとき、Pb(Sb1/2Nb1/2)Oのモル組成比Xを0.04とした。更に、CuOを0.3重量%から1.0重量%まで変化させて添加し、かつ、MnをMnCOに換算して0重量%から1.5重量%まで変化させて添加し、かつ焼成温度を1000℃として、実施形態で述べた圧電セラミックス素子を作製した。
【0031】
これらの圧電セラミックス素子について結合係数kを測定した結果を、図6に示す。すなわち、図6は、CuO添加量ごとのMnCO添加量と結合係数kとの関係を示すグラフである。
【0032】
図6から明らかなように、MnCO添加量が1.0重量%以下かつ焼成温度が1000℃の圧電セラミックス素子の結合係数kは、MnCO添加なしの圧電セラミックス素子と比べて、遜色ないレベルとなった。すなわち、PSNにMnCOを1.0重量%以下添加しても、CuOを添加することにより、圧電特性を損なうことなく、焼成温度を低下させることができた。
【0033】
【実施例5】
出発原料として、Pb、ZrO、TiO、Sb、Nb、CuO及びFeを用いた。このとき、Pb(Sb1/2Nb1/2)Oのモル組成比Xを0.04とした。更に、CuOを0.1重量%から1.0重量%まで変化させて添加し、かつ、FeをFeに換算して0重量%から1.0重量%まで変化させて添加し、かつ焼成温度を1000℃として、実施形態で述べた圧電セラミックス素子を作製した。
【0034】
これらの圧電セラミックス素子について結合係数kを測定した結果を、図7に示す。すなわち、図7は、CuO添加量ごとのFe添加量と結合係数kとの関係を示すグラフである。
【0035】
図7から明らかなように、Fe添加量が1.0重量%以下かつ焼成温度が1000℃の圧電セラミックス素子の結合係数kは、Fe添加なしの圧電セラミックス素子と比べて、遜色ないレベルとなった。すなわち、PSNにFeを1.0重量%以下添加しても、CuOを添加することにより、圧電特性を損なうことなく、焼成温度を低下させることができた。
【0036】
【実施例6】
出発原料として、Pb、ZrO、TiO、Sb、Nb、CuO、MnCO及びSrCOを用いた。このとき、Pb(Sb1/2Nb1/2)Oのモル組成比Xを0.04とし、MnをMnCOに換算して0.4重量%含ませた。更に、CuOを0.1重量%から1.0重量%まで変化させて添加し、かつ、SrCOでPbを0mol%から5.0mol%まで変化させて置換し、かつ焼成温度を1000℃として、実施形態で述べた圧電セラミックス素子を作製した。
【0037】
これらの圧電セラミックス素子について結合係数kを測定した結果を、図8に示す。すなわち、図8は、CuO添加量ごとのSrCO置換量と結合係数kとの関係を示すグラフである。
【0038】
図8から明らかなように、SrCO置換量が5.0mol%以下かつ焼成温度が1000℃の圧電セラミックス素子の結合係数kは、SrCO置換なしの圧電セラミックス素子と比べて、遜色ないレベルとなった。すなわち、PSNのPbをSrCOで5.0mol%以下置換しても、CuOを添加することにより、圧電特性を損なうことなく、焼成温度を低下させることができた。
【0039】
【発明の効果】
本発明に係る圧電セラミックスによれば、PSNにCu化合物を添加することにより、圧電セラミックスとしての諸特性を落とすことなく、焼成温度を低下できるとともに、坑折強度を増大できる。このとき、CuOを0.01〜2.0重量%添加することにより、圧電特性への影響を少なくできる。
【0040】
Cu化合物に加えMn化合物又はFe化合物をPSNに添加することにより、品質係数Qmも向上できる。例えば、MnCOを1.0重量%以下添加することにより、又はFeを1.0重量%以下添加することにより、圧電特性への影響を少なくできる。
【0041】
Cu化合物に加えSr,Ca,Ba,La化合物等をPSNに添加することにより、誘電率及び機械的強度も向上できる。このとき、Sr,Ca,Ba化合物及びLa化合物については、この群から選ばれた少なくとも一種の元素からなる化合物でPbを5mol%以下置換することにより、圧電特性への影響を少なくできる。
【0042】
Cu化合物を含むPSNにおけるPbOの増減を1.0重量%以内とすることにより、圧電特性への影響を少なくできる。
【0043】
Cu化合物を含むPSNにおいて、Pb(Sb1/2Nb1/2)Oのモル組成比をX、PbZrOのモル組成比をY、PbTiOのモル組成比をZとし、かつX+Y+Z=1としたとき、0.01≦X≦0.15、0.40≦Y≦0.60、0.40≦Z≦0.60が成り立つ組成とすることにより、経時変化が少ない、耐侯性に優れるなどの特長を併せ持つことができる。
【図面の簡単な説明】
【図1】本発明に係る圧電セラミックスにおける、CuO添加量ごとの焼成温度と結合係数kとの関係(X=0.04)を示すグラフである。
【図2】本発明に係る圧電セラミックスにおける、CuO添加量ごとの焼成温度と品質係数Qmとの関係を示すグラフである。
【図3】本発明に係る圧電セラミックスにおける、CuO添加量ごとの焼成温度と結合係数kとの関係(X=0.07)を示すグラフである。
【図4】本発明に係る圧電セラミックスにおける、CuO添加量ごとの焼成温度と結合係数kとの関係(X=0.1)を示すグラフである。
【図5】本発明に係る圧電セラミックスにおける、CuO添加量ごとのPbO増減量と結合係数kとの関係を示すグラフである。
【図6】本発明に係る圧電セラミックスにおける、CuO添加量ごとのMnCO添加量と結合係数kとの関係を示すグラフである。
【図7】本発明に係る圧電セラミックスにおける、CuO添加量ごとのFe添加量と結合係数kとの関係を示すグラフである。
【図8】本発明に係る圧電セラミックスにおける、CuO添加量ごとのSrCO置換量と結合係数kとの関係を示すグラフである。
【図9】本発明に係る圧電セラミックスにおける、CuO添加量と抗折強度との関係を示すグラフである。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a piezoelectric ceramic used for an ultrasonic transducer, an actuator, a fish finder, a BLT (bolted Langevin type transducer), a piezoelectric transformer, and the like.
[0002]
[Prior art]
For such applications, a piezoelectric ceramic called “PZT” made of PbZrO 3 and PbTiO 3 is widely used. Also known is a multi-component PZT-based piezoelectric ceramic in which a composite perovskite compound is dissolved in PZT as a third component to a fourth component in order to improve properties. Piezoelectric ceramics obtained by adding Pb (Sb 1/2 Nb 1/2 ) O 3 to PZT (hereinafter referred to as “PSN”) is also a kind of multi-component PZT piezoelectric ceramics. The firing temperature of this type of piezoelectric ceramic is about 1250 ° C. for a two-component system, and 1200 ° C. or more is required for a multi-component system (for example, Patent Document 1 below).
[0003]
[Patent Document 1]
JP-A-6-24841 (paragraph 0022, etc.)
[0004]
[Problems to be solved by the invention]
When this kind of piezoelectric ceramics is laminated and used, since the firing temperature is high, palladium or platinum having a high melting point must be used for the internal electrodes. However, since palladium and platinum are expensive, they have been an obstacle to reducing the production cost. In addition, in this type of piezoelectric ceramics, further improvement in burrow strength has been expected so as to withstand more severe use conditions.
[0005]
[Object of the invention]
Therefore, an object of the present invention is to provide a PSN that enables a reduction in firing temperature and an increase in bending strength without impairing various characteristics as a piezoelectric ceramic.
[0006]
[Means for Solving the Problems]
The present inventor succeeded in lowering the firing temperature by adding Cu to PSN without deteriorating various properties as a piezoelectric ceramic. The present invention has been made based on this finding.
[0007]
That is, the present invention is characterized in that PSN contains Cu (claim 1). Cu is preferably 0.01 to 2.0% by weight in terms of CuO (claim 5). When CuO is less than 0.01% by weight or more than 2.0% by weight, lowering the sintering temperature lowers the piezoelectric properties such as the electromechanical coupling coefficient (hereinafter referred to as “coupling coefficient k”). Is also large.
[0008]
The PSN may contain Mn in addition to Cu (claim 2). Thereby, the mechanical quality factor (hereinafter, referred to as “quality factor Qm”) increases. When the quality factor Qm is large, there is an advantage in that when power is required for an applied product of piezoelectric ceramics, heat generation is small for input and output. Mn is preferably not more than 1.0% by weight in terms of MnCO 3 (claim 6). This is because when the MnCO 3 content is more than 0.01% by weight, lowering the sintering temperature causes a greater decrease in the piezoelectric characteristics.
[0009]
The PSN may include Fe in addition to Cu (claim 3). Thereby, the quality factor Qm increases. Fe is preferably not more than 1.0% by weight in terms of Fe 2 O 3 (claim 7). This is because when the content of Fe 2 O 3 is more than 1.0% by weight, lowering the sintering temperature causes a greater decrease in the piezoelectric characteristics.
[0010]
The PSN may contain at least one element selected from the group consisting of Sr, Ca, Ba and La, in addition to Cu. These elements increase the dielectric constant and increase the mechanical strength. Sr, Ca, Ba and La have similar properties because they are of the same family or adjacent to each other in the periodic table. As for Sr, Ca, Ba and La, it is preferable to substitute Pb by 5 mol% or less by a compound comprising at least one element selected from this group (claim 8). If the amount is more than 5 mol%, the lowering of the firing temperature causes a large decrease in the piezoelectric characteristics.
[0011]
The Pb in the PSN containing Cu may be contained by 1.0% by weight or less in terms of PbO, or may be contained by 1.0% by weight or less in terms of PbO (claim 9). That is, the amount of Pb is difficult to control because it is easily evaporated, but PbO may be increased or decreased by 1.0% by weight with respect to the stoichiometric composition value. This is because if PbO is within this range, the deterioration of the characteristics as a piezoelectric ceramic is not so large.
[0012]
When the molar composition ratio of Pb (Sb 1/2 Nb 1/2 ) O 3 is X, the molar composition ratio of PbZrO 3 is Y, the molar composition ratio of PbTiO 3 is Z, and X + Y + Z = 1, 0.01 <X <0.15, 0.40 <Y <0.60, 0.40 <Z <0.60 may be satisfied (claim 10). PZT is a piezoelectric ceramic made of a solid solution of lead zirconate (PbZrO 3 : orthorhombic) as an antiferroelectric and lead titanate (PbTiO 3: tetragonal) as a ferroelectric. In this PZT, the crystal system changes from a rhombohedral system to a tetragonal system with an increase in titanium concentration around the vicinity of the composition of Zr: Ti = 53: 47. At this time, the direction of spontaneous polarization changes from [111] to [001]. Since the crystal structure becomes unstable during this process, the dielectric and piezoelectric properties are significantly enhanced. The phase boundary where the crystal system changes depending on the composition is called a morphotropic phase boundary (MPB). 0.40 ≦ Y ≦ 0.60 and 0.40 ≦ Z ≦ 0.60 take this phenomenon into consideration. When 0.01 ≦ X ≦ 0.15, characteristics such as little change over time and excellent weather resistance are exhibited.
[0013]
In addition, the present invention can be expressed as follows in a different word.
[0014]
The first invention has a basic composition of XPb (Sb 1/2 Nb 1/2 ) O 3 -YPbZrO 3 -ZPbTiO 3 and XYZ of a perovskite-type oxide piezoelectric ceramic composition represented by a general symbol ABO 3. In the range of 0.01 ≦ X ≦ 0.15, 0.40 ≦ Y ≦ 0.60, 0.40 ≦ Z ≦ 0.60, respectively, X + Y + Z = 1, and Cu is converted to CuO as an additive. adding Te 0.01-2.0 wt%, -1.0 to 1.0 wt% in terms of Pb to PbO, in terms of Mn in MnCO 3 in a proportion of 0.0 to 1.0 wt% A piezoelectric ceramic composition characterized by comprising:
[0015]
The second invention has a basic composition of XPb (Sb 1/2 Nb 1/2 ) O 3 -YPbZrO 3 -ZPbTiO 3 and XYZ of a perovskite-type oxide piezoelectric ceramic composition represented by a general symbol ABO 3. In the range of 0.01 ≦ X ≦ 0.15, 0.40 ≦ Y ≦ 0.60, 0.40 ≦ Z ≦ 0.60, respectively, X + Y + Z = 1, and Cu is converted to CuO as an additive. Te 0.01-2.0 wt%, 0.0 to 1.0 wt% in terms of Pb to PbO, Fe in a proportion of 0.0 to 0.8% by weight in terms of Fe 2 O 3 A piezoelectric ceramic composition characterized by being added.
[0016]
A third invention is the composition according to the first or second invention, wherein Pb is substituted by 0 to 5 mol% with a compound comprising at least one element selected from the group consisting of Sr, Ca, Ba and La.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
As a starting material, Pb 3 O 4 , ZrO 2 , TiO 2 , Sb 2 O 3 , Nb 2 O 5 and CuO are mainly used, and MnCO 3 , Fe 2 O 3 , SrCO 3 (or BaCO 3 , CaCO 3 , La 2 O 3 ) and the like were selectively used. These were weighed, wet-mixed for a certain time, dehydrated and dried, and calcined at 800 to 1000 ° C. for 2 hours to obtain a calcined product. After pulverizing the calcined product, a PVA (polyvinyl alcohol) -based binder was added, and wet mixing and wet pulverization were performed for 12 to 32 hours to obtain a mixture. This mixture was granulated and molded at 1000 to 3000 kg / cm 3 to obtain a disk-shaped molded body having a diameter of 15 mm. The molded body was fired at 1300 ° C. or lower to obtain a disc-shaped sintered body having a diameter of about 12 mm. The firing conditions are a temperature rise of 100 ° C./hour and a keep temperature of 2 hours. This keep temperature is the “firing temperature” in each of the following examples. A silver electrode paste was applied to this sintered body, baked at 700 ° C., and then a DC electric field of 2 to 4 kV / mm was applied in a silicone oil at 80 to 200 ° C. for 10 to 30 minutes to obtain the following examples. Piezoelectric ceramic elements 1 to 8 were obtained.
[0018]
For these piezoelectric ceramic elements, the coupling coefficient k [%] or the quality coefficient Qm was measured. The measuring method conformed to the standard of the Electronic Materials Industries Association of Japan, EMAS-6100, and the measuring device used was an impedance analyzer. The coupling coefficient k is a constant representing the efficiency of converting electric energy applied between the electrodes of the piezoelectric body to mechanical energy. The quality factor Qm is a constant that indicates the sharpness of mechanical vibration near the resonance frequency when the piezoelectric body causes natural vibration. The bending strength (breaking strength) of these piezoelectric ceramic elements was also measured. That is, a sintered body having a width of 4 mm and a thickness of 3 mm is prepared, and the three-point bending strength (σ [N / mm 2 ]) of the piezoelectric ceramic element is measured based on a three-point bending test method (based on JIS-R1601). did.
[0019]
In each of the following examples, when the molar composition ratio of Pb (Sb 1/2 Nb 1/2 ) O 3 is X, the molar composition ratio of PbZrO 3 is Y, and the molar composition ratio of PbTiO 3 is Z, It is assumed that “X + Y + Z = 1” and “Y: Z = 52: 48”.
[0020]
Embodiment 1
Pb 3 O 4 , ZrO 2 , TiO 2 , Sb 2 O 3 , Nb 2 O 5 , CuO, and MnCO 3 were used as starting materials. At this time, the molar composition ratio X of Pb (Sb 1/2 Nb 1/2 ) O 3 was set to 0.04 or 0.07, and Mn was contained in an amount of 0.4% by weight in terms of MnCO 3 . Further, the piezoelectric ceramic element described in the embodiment was manufactured by adding CuO in a range of 0% by weight to 2% by weight and changing the firing temperature in a range of 900 ° C. to 1300 ° C.
[0021]
FIG. 1 shows the results of measuring the coupling coefficient k and the quality coefficient Qm for these piezoelectric ceramic elements. That is, FIG. 1 is a graph showing the relationship between the firing temperature and the coupling coefficient k for each CuO addition amount. FIG. 2 is a graph showing the relationship between the amount of CuO added and the quality factor Qm for each firing temperature. FIG. 9 shows the results of measuring the bending strength σ of these piezoelectric ceramic elements. That is, FIG. 9 is a graph showing the relationship between the amount of CuO added and the bending strength σ at each firing temperature.
[0022]
As is clear from FIG. 1, the coupling coefficient k of the piezoelectric ceramic element in which the CuO addition amount is 0.01 to 2.0% by weight and the sintering temperature is 900 ° C. to 1150 ° C. It became almost equivalent to a piezoelectric ceramic element (prior art). As is clear from FIG. 2, the quality factor Qm of the piezoelectric ceramic element having a CuO addition amount of 0.01 to 2.0% by weight and a sintering temperature of 900 ° C. to 1100 ° C. is as follows. Of the piezoelectric ceramic element (prior art). Further, as apparent from FIG. 9, the bending strength .sigma. Of the piezoelectric ceramic element in which the amount of CuO added is 0.01 to 1.0% by weight and the firing temperature is 1000.degree. It was greatly increased (up to about 1.6 times) as compared with the ceramic element (prior art).
[0023]
Thus, a piezoelectric ceramic element having a CuO addition amount of 0.01 to 2.0% by weight and a firing temperature of 900 ° C. to 1150 ° C. is a piezoelectric ceramic element having no CuO added and a firing temperature of 1200 ° C. or higher (prior art). In comparison, the coupling coefficient k is substantially equal, and the burrow strength is improved. That is, by adding 0.01 to 2% by weight of CuO to PSN, it was possible to reduce the firing temperature and increase the burrow strength without impairing the piezoelectric properties.
[0024]
Embodiment 2
As starting materials, Pb 3 O 4 , ZrO 2 , TiO 2 , Sb 2 O 3 , Nb 2 O 5, CuO and the like were used. At this time, the molar composition ratio X of Pb (Sb 1/2 Nb 1/2 ) O 3 was set to 0.07 or 0.10. Further, the piezoelectric ceramic element described in the embodiment was produced by adding CuO at a change from 0.2 wt% to 0.4 wt% and changing the firing temperature from 900 ° C. to 1050 ° C.
[0025]
The measurement results of the coupling coefficient k for these piezoelectric ceramic elements are shown in FIGS. That is, FIG. 3 is a graph showing the relationship between the sintering temperature and the coupling coefficient k for each CuO addition amount at X = 0.07. FIG. 4 is a graph showing the relationship between the sintering temperature and the coupling coefficient k for each CuO addition amount at X = 0.10.
[0026]
As is clear from FIGS. 3 and 4, the coupling coefficient k of the piezoelectric ceramic having the CuO addition amount of 0.20 to 0.40% by weight and the sintering temperature of 900 ° C. to 1150 ° C. is such that X = 0.07 Even 0.10 was a sufficient value. In other words, by adding CuO to PSN, the firing temperature could be reduced without impairing the piezoelectric characteristics.
[0027]
Embodiment 3
Pb 3 O 4 , ZrO 2 , TiO 2 , Sb 2 O 3 , Nb 2 O 5 , CuO and MnCO 3 were used as starting materials. At this time, the molar composition ratio X of Pb (Sb 1/2 Nb 1/2 ) O 3 was set to 0.04, and Mn was contained in an amount of 0.4% by weight in terms of MnCO 3 . Further, CuO was added varying from 0.3% by weight to 2.0% by weight, PbO was increased or decreased from -1.0% by weight to 1.0% by weight, and the firing temperature was set to 1000 ° C. The piezoelectric ceramic element described in the embodiment was manufactured.
[0028]
FIG. 5 shows the results of measuring the coupling coefficient k for these piezoelectric ceramic elements. That is, FIG. 5 is a graph showing the relationship between the PbO increase / decrease amount and the coupling coefficient k for each CuO addition amount.
[0029]
As is clear from FIG. 5, the coupling coefficient k of the piezoelectric ceramic element having a PbO increase / decrease of −1.0 to 1.0% by weight and a sintering temperature of 1000 ° C. is almost equal to that of the piezoelectric ceramic element having no PbO increase / decrease. Was. That is, even if the PbO of PSN was increased or decreased by ± 1.0% by weight, the firing temperature could be lowered without impairing the piezoelectric characteristics by adding CuO.
[0030]
Embodiment 4
Pb 3 O 4 , ZrO 2 , TiO 2 , Sb 2 O 3 , Nb 2 O 5 , CuO and MnCO 3 were used as starting materials. At this time, the molar composition ratio X of Pb (Sb 1/2 Nb 1/2 ) O 3 was set to 0.04. Further, CuO is added by changing from 0.3% by weight to 1.0% by weight, and Mn is added by changing from 0% by weight to 1.5% by weight in terms of MnCO 3 , and firing is performed. At a temperature of 1000 ° C., the piezoelectric ceramic element described in the embodiment was manufactured.
[0031]
FIG. 6 shows the results of measuring the coupling coefficient k for these piezoelectric ceramic elements. That is, FIG. 6 is a graph showing the relationship between the amount of MnCO 3 added and the coupling coefficient k for each amount of CuO added.
[0032]
As is clear from FIG. 6, the coupling coefficient k of the piezoelectric ceramic element with the addition amount of MnCO 3 of 1.0% by weight or less and the sintering temperature of 1000 ° C. is comparable to that of the piezoelectric ceramic element without MnCO 3 addition. It became. That is, even when MnCO 3 was added to PSN in an amount of 1.0% by weight or less, the firing temperature could be lowered without impairing the piezoelectric characteristics by adding CuO.
[0033]
Embodiment 5
Pb 3 O 4 , ZrO 2 , TiO 2 , Sb 2 O 3 , Nb 2 O 5 , CuO and Fe 2 O 3 were used as starting materials. At this time, the molar composition ratio X of Pb (Sb 1/2 Nb 1/2 ) O 3 was set to 0.04. Further, CuO is added while changing from 0.1% by weight to 1.0% by weight, and Fe is changed from 0% by weight to 1.0% by weight in terms of Fe 2 O 3 , and added. The sintering temperature was set to 1000 ° C. to produce the piezoelectric ceramic element described in the embodiment.
[0034]
FIG. 7 shows the results of measuring the coupling coefficient k for these piezoelectric ceramic elements. That is, FIG. 7 is a graph showing the relationship between the addition amount of Fe 2 O 3 and the coupling coefficient k for each addition amount of CuO.
[0035]
As is clear from FIG. 7, the coupling coefficient k of the piezoelectric ceramic element having the Fe 2 O 3 addition amount of 1.0% by weight or less and the sintering temperature of 1000 ° C. is smaller than that of the piezoelectric ceramic element without the addition of Fe 2 O 3. , The level was comparable. That is, even when Fe 2 O 3 was added to PSN in an amount of 1.0% by weight or less, the firing temperature could be lowered without impairing the piezoelectric characteristics by adding CuO.
[0036]
Embodiment 6
Pb 3 O 4 , ZrO 2 , TiO 2 , Sb 2 O 3 , Nb 2 O 5 , CuO, MnCO 3 and SrCO 3 were used as starting materials. At this time, the molar composition ratio X of Pb (Sb 1/2 Nb 1/2 ) O 3 was set to 0.04, and Mn was contained in an amount of 0.4% by weight in terms of MnCO 3 . Further, CuO was added by changing from 0.1% by weight to 1.0% by weight, and Pb was replaced with SrCO 3 by changing from 0% by mole to 5.0% by mole, and the firing temperature was set to 1000 ° C. The piezoelectric ceramic element described in the embodiment was manufactured.
[0037]
FIG. 8 shows the results of measuring the coupling coefficient k for these piezoelectric ceramic elements. That is, FIG. 8 is a graph showing the relationship between the SrCO 3 substitution amount and the coupling coefficient k for each CuO addition amount.
[0038]
As is clear from FIG. 8, the coupling coefficient k of the piezoelectric ceramic element having the SrCO 3 substitution amount of 5.0 mol% or less and the sintering temperature of 1000 ° C. is comparable to the piezoelectric ceramic element without the SrCO 3 substitution. became. That is, even if Pb of PSN was replaced with SrCO 3 at 5.0 mol% or less, the firing temperature could be lowered without impairing the piezoelectric characteristics by adding CuO.
[0039]
【The invention's effect】
According to the piezoelectric ceramics of the present invention, by adding a Cu compound to PSN, the firing temperature can be reduced and the burrow strength can be increased without deteriorating various properties as the piezoelectric ceramics. At this time, by adding 0.01 to 2.0% by weight of CuO, the influence on the piezoelectric characteristics can be reduced.
[0040]
By adding a Mn compound or an Fe compound to the PSN in addition to the Cu compound, the quality factor Qm can be improved. For example, by adding MnCO 3 at 1.0% by weight or less or by adding Fe 2 O 3 at 1.0% by weight or less, the influence on the piezoelectric characteristics can be reduced.
[0041]
By adding an Sr, Ca, Ba, La compound or the like to the PSN in addition to the Cu compound, the dielectric constant and the mechanical strength can be improved. At this time, with respect to the Sr, Ca, Ba compound and La compound, the effect on the piezoelectric characteristics can be reduced by substituting 5 mol% or less of Pb with a compound comprising at least one element selected from this group.
[0042]
By controlling the increase and decrease of PbO in the PSN containing the Cu compound within 1.0% by weight, the influence on the piezoelectric characteristics can be reduced.
[0043]
In PSN containing a Cu compound, the molar composition of Pb (Sb 1/2 Nb 1/2 ) O 3 is X, the molar composition of PbZrO 3 is Y, the molar composition of PbTiO 3 is Z, and X + Y + Z = 1. When the composition is such that 0.01 ≦ X ≦ 0.15, 0.40 ≦ Y ≦ 0.60, and 0.40 ≦ Z ≦ 0.60, the change with time is small and the weather resistance is excellent. And other features.
[Brief description of the drawings]
FIG. 1 is a graph showing a relationship (X = 0.04) between a sintering temperature and a coupling coefficient k for each amount of CuO added in a piezoelectric ceramic according to the present invention.
FIG. 2 is a graph showing a relationship between a sintering temperature and a quality factor Qm for each CuO addition amount in the piezoelectric ceramic according to the present invention.
FIG. 3 is a graph showing the relationship (X = 0.07) between the sintering temperature and the coupling coefficient k for each CuO addition amount in the piezoelectric ceramic according to the present invention.
FIG. 4 is a graph showing the relationship (X = 0.1) between the sintering temperature and the coupling coefficient k for each amount of CuO added in the piezoelectric ceramic according to the present invention.
FIG. 5 is a graph showing a relationship between a PbO increase / decrease amount and a coupling coefficient k for each CuO addition amount in the piezoelectric ceramic according to the present invention.
FIG. 6 is a graph showing the relationship between the added amount of MnCO 3 and the coupling coefficient k for each added amount of CuO in the piezoelectric ceramic according to the present invention.
FIG. 7 is a graph showing the relationship between the added amount of Fe 2 O 3 and the coupling coefficient k for each added amount of CuO in the piezoelectric ceramic according to the present invention.
FIG. 8 is a graph showing the relationship between the SrCO 3 substitution amount and the coupling coefficient k for each CuO addition amount in the piezoelectric ceramic according to the present invention.
FIG. 9 is a graph showing the relationship between the amount of CuO added and the bending strength in the piezoelectric ceramics according to the present invention.

Claims (10)

Pb(Sb1/2Nb1/2)O、PbZrO及びPbTiOを基本組成とする圧電セラミックスにおいて、
Cuを含むことを特徴とする圧電セラミックス。
In a piezoelectric ceramic having a basic composition of Pb (Sb 1/2 Nb 1/2 ) O 3 , PbZrO 3 and PbTiO 3 ,
A piezoelectric ceramic characterized by containing Cu.
Mnを更に含む、
請求項1記載の圧電セラミックス。
Mn.
The piezoelectric ceramic according to claim 1.
Feを更に含む、
請求項1又は2記載の圧電セラミックス。
Further containing Fe,
The piezoelectric ceramic according to claim 1.
Sr,Ca,Ba及びLaの群から選ばれた少なくとも一種の元素を更に含む、
請求項1乃至3のいずれかに記載の圧電セラミックス。
Further comprising at least one element selected from the group consisting of Sr, Ca, Ba and La;
The piezoelectric ceramic according to claim 1.
前記Cuは、CuOに換算して0.01〜2.0重量%である、
請求項1記載の圧電セラミックス。
The Cu is 0.01 to 2.0% by weight in terms of CuO,
The piezoelectric ceramic according to claim 1.
前記Mnは、MnCOに換算して1.0重量%以下である、
請求項2記載の圧電セラミックス。
Mn is 1.0% by weight or less in terms of MnCO 3 ,
The piezoelectric ceramic according to claim 2.
前記Feは、Feに換算して1.0重量%以下である、
請求項3記載の圧電セラミックス。
The Fe is 1.0% by weight or less in terms of Fe 2 O 3 .
The piezoelectric ceramic according to claim 3.
Sr,Ca,Ba及びLaの群から選ばれた少なくとも一種の元素からなる化合物によって、前記Pbを5mol%以下置換した、
請求項1乃至3のいずれかに記載の圧電セラミックス。
5 mol% or less of the Pb is substituted by a compound comprising at least one element selected from the group consisting of Sr, Ca, Ba and La;
The piezoelectric ceramic according to claim 1.
前記Pbは、PbOに換算して1.0重量%以下多く含まれる、又は、PbOに換算して1.0重量%以下少なく含まれる、
請求項5乃至8のいずれかに記載の圧電セラミックス。
The Pb is contained by not more than 1.0% by weight in terms of PbO, or contained by not more than 1.0% by weight in terms of PbO.
The piezoelectric ceramic according to any one of claims 5 to 8.
前記Pb(Sb1/2Nb1/2)Oのモル組成比をX、前記PbZrOのモル組成比をY、前記PbTiOのモル組成比をZとし、かつX+Y+Z=1としたとき、0.01≦X≦0.15、0.40≦Y≦0.60、0.40≦Z≦0.60が成り立つ、
請求項5乃至9のいずれかに記載の圧電セラミックス。
When the molar composition of the Pb (Sb 1/2 Nb 1/2 ) O 3 is X, the molar composition of the PbZrO 3 is Y, the molar composition of the PbTiO 3 is Z, and X + Y + Z = 1, 0.01 ≦ X ≦ 0.15, 0.40 ≦ Y ≦ 0.60, 0.40 ≦ Z ≦ 0.60 hold,
The piezoelectric ceramic according to claim 5.
JP2003001677A 2003-01-08 2003-01-08 Piezoelectric ceramics Expired - Lifetime JP4509481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003001677A JP4509481B2 (en) 2003-01-08 2003-01-08 Piezoelectric ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003001677A JP4509481B2 (en) 2003-01-08 2003-01-08 Piezoelectric ceramics

Publications (2)

Publication Number Publication Date
JP2004210616A true JP2004210616A (en) 2004-07-29
JP4509481B2 JP4509481B2 (en) 2010-07-21

Family

ID=32819636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003001677A Expired - Lifetime JP4509481B2 (en) 2003-01-08 2003-01-08 Piezoelectric ceramics

Country Status (1)

Country Link
JP (1) JP4509481B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008280204A (en) * 2007-05-10 2008-11-20 Nec Tokin Corp Piezoelectric ceramic composition
JP2010006632A (en) * 2008-06-26 2010-01-14 Nec Tokin Corp Piezoelectric ceramic composition
KR101176502B1 (en) 2011-05-19 2012-08-24 한국과학기술연구원 Piezoelectric ceramic composition
CN112430088A (en) * 2020-12-13 2021-03-02 贵州振华红云电子有限公司 Piezoelectric ceramic for piezoelectric alarm and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922631B1 (en) * 1970-06-18 1974-06-10
JPS5957485A (en) * 1982-09-28 1984-04-03 Toshiba Corp Manufacture of oxide piezoelectric material
JPH0196973A (en) * 1987-10-08 1989-04-14 Murata Mfg Co Ltd Manufacture of piezoelectric porcelain
JP2000169224A (en) * 1998-11-30 2000-06-20 Matsushita Electric Ind Co Ltd Piezoelectric ceramic composition, piezoelectric device and piezoelectric transducer
JP2001316180A (en) * 2000-05-04 2001-11-13 Samsung Electro Mech Co Ltd Piezoelectric ceramic composition, and high power piezoelectric transformer
JP2002338349A (en) * 2001-05-10 2002-11-27 Dainippon Toryo Co Ltd Piezoelectric ceramics
JP2003226574A (en) * 2002-02-05 2003-08-12 Dainippon Toryo Co Ltd Piezoelectric ceramic

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922631B1 (en) * 1970-06-18 1974-06-10
JPS5957485A (en) * 1982-09-28 1984-04-03 Toshiba Corp Manufacture of oxide piezoelectric material
JPH0196973A (en) * 1987-10-08 1989-04-14 Murata Mfg Co Ltd Manufacture of piezoelectric porcelain
JP2000169224A (en) * 1998-11-30 2000-06-20 Matsushita Electric Ind Co Ltd Piezoelectric ceramic composition, piezoelectric device and piezoelectric transducer
JP2001316180A (en) * 2000-05-04 2001-11-13 Samsung Electro Mech Co Ltd Piezoelectric ceramic composition, and high power piezoelectric transformer
JP2002338349A (en) * 2001-05-10 2002-11-27 Dainippon Toryo Co Ltd Piezoelectric ceramics
JP2003226574A (en) * 2002-02-05 2003-08-12 Dainippon Toryo Co Ltd Piezoelectric ceramic

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008280204A (en) * 2007-05-10 2008-11-20 Nec Tokin Corp Piezoelectric ceramic composition
JP2010006632A (en) * 2008-06-26 2010-01-14 Nec Tokin Corp Piezoelectric ceramic composition
KR101176502B1 (en) 2011-05-19 2012-08-24 한국과학기술연구원 Piezoelectric ceramic composition
CN112430088A (en) * 2020-12-13 2021-03-02 贵州振华红云电子有限公司 Piezoelectric ceramic for piezoelectric alarm and preparation method thereof

Also Published As

Publication number Publication date
JP4509481B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
JP4973931B2 (en) Piezoelectric ceramic composition
JP4929522B2 (en) Piezoelectric ceramic composition
US6426018B1 (en) Piezoelectric ceramic compositions
JP2002321976A (en) Piezoelectric ceramic
JP4432969B2 (en) Piezoelectric ceramic composition and piezoelectric element
JP3671791B2 (en) Piezoelectric ceramic composition and piezoelectric ceramic element using the same
KR20150042075A (en) Piezoelectric materials for low sintering
JP2008537927A (en) High power piezoelectric ceramic composition
KR930002641B1 (en) Ferroelectric ceramics
JP4509481B2 (en) Piezoelectric ceramics
JP3791299B2 (en) Piezoelectric ceramic composition and piezoelectric ceramic element using the same
Wang The piezoelectric and dielectric properties of PZT–PMN–PZN
JP2002265262A (en) Piezoelectric ceramic
JP4383120B2 (en) Piezoelectric ceramic
KOBUNE et al. Effects of MnO2 addition on piezoelectric and ferroelectric properties of PbNi1/3Nb2/3O3-PbTiO3-PbZrO3 ceramics
JP4432280B2 (en) Piezoelectric ceramic
JP3125624B2 (en) Piezoelectric ceramic
JP2002321975A (en) Piezoelectric ceramic
JP2003081675A (en) Piezoelectric porcelain
JPH10324569A (en) Piezoelectric ceramic composition
Yoon et al. Electromechanical Properties of Pb (Yb1/2Nb1/2) O3‐PbZrO3‐PbTiO3 Ceramics
JP2002326870A (en) Piezoelectric ceramic
JP3781317B2 (en) Piezoelectric ceramic material
JPH11100265A (en) Piezoelectric ceramic composition
JP2001130961A (en) Piezoelectric ceramic composition and piezoelectric ceramic element by using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4509481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

EXPY Cancellation because of completion of term