JP2004209616A - Tool and method for polishing - Google Patents
Tool and method for polishing Download PDFInfo
- Publication number
- JP2004209616A JP2004209616A JP2003002275A JP2003002275A JP2004209616A JP 2004209616 A JP2004209616 A JP 2004209616A JP 2003002275 A JP2003002275 A JP 2003002275A JP 2003002275 A JP2003002275 A JP 2003002275A JP 2004209616 A JP2004209616 A JP 2004209616A
- Authority
- JP
- Japan
- Prior art keywords
- polishing
- polishing tool
- tool
- charcoal
- polished
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Grinding-Machine Dressing And Accessory Apparatuses (AREA)
- Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Abstract
Description
【0001】
【産業上の利用分野】
この発明は超精密研磨を行うための研磨工具及び研磨方法に関するものであり、光学素子などの精密部品の超精密研磨に利用することができるものであり、研磨(又は研削。以下同じ)時のスクラッチがなく、高精度な加工面に研磨加工することがことができるものである。
【0002】
【従来の技術】
光学素子等の精密部品の高精度加工においては、数nmから数十nmのレベルの除去深さ精度を望まれている。また、鏡面性も要求されその面にはスクラッチ等の欠陥がないことが望まれる。
従来、例えば特開2001−138196号公報に記載されているように、木粉と樹脂を混練してから成形したものを研磨工具として使用しているものがある。その研磨工具は、被ツルーイング性に優れ、工具表面を精密なものとすることができ、また、吸油性を有し、加工中の浮きあがり(研磨工具の研磨用潤滑油による被研磨面からの浮き上がり)を防止して、適度な硬度と塑性を有して砥粒の研磨面への食いつきを良好にすることができるものである。これらの効果によって高い除去深さ精度と鏡面性を達成している。
【0003】
その他、特開平6−297337号公報、特第02550326号公報、特表平11−508193号公報、特表平11−513621号公報に木粉が軟質材料として混入されている研磨用品が示されているが、しかし、これらは木粉を主構成材料としているものではないので、その研磨用品においては木粉の特性が研磨素材に活用されているわけではない。
【0004】
さらに、従来の研磨工具において、工具の切れ刃以外の部分、例えば研磨工具や砥石の結合剤と工作物表面とが加工中に接触するいわゆるボンドこすれによって、スクラッチが発生したり、除去深さが安定しないという不具合が発生する。
この状態がひどくなると正常な加工が行われずに加工面の温度が上昇して青黒く変色する、いわゆる「焼け」が生じてしまう。
【0005】
【特許文献1】特開2001−138196号公報
【特許文献2】特開平6−297337号公報
【特許文献3】特許第02550326号公報
【特許文献4】特表平11−508193号公報
【特許文献5】特表平11−513621号公報
【0006】
【解決しようとする課題】
ところで、高い除去深さ精度と鏡面性を達成するために開発を続けた結果、ボンドこすれが発生した時にそのときの摩擦によって発生する摩擦抵抗が小さいときにはスクラッチの発生を低減でき、また、除去深さの安定性が高められることが確認された。
そこで、この発明は、研磨や研削時にスクラッチのない加工面が得られ、除去深さが安定することにより高精度な加工面が得られるように、摩擦抵抗の小さい工具を工夫することをその課題とするものである。
【0007】
【課題解決のために講じた手段】
【解決手段1】(請求項1に対応)
上記課題を解決するために講じた手段1は、研磨工具を多孔質炭素材料からなる粒子を樹脂バインダーで固めた材料で構成したことである。
【0008】
【作用】
研磨工具の研磨面に多孔質炭素材料からなる粒子が露出していて、潤滑油(研磨油)が上記粒子の多孔面に吸収されるから、研磨面が潤滑油(研磨油)の介在によって被研磨面から浮き上がることはなく、したがって、研磨工具の研磨作用が被研磨面に有効に作用する。
また、多孔質炭素材料は自己潤滑性を有するので、この自己潤滑性により被研磨面に対する研磨面の摩擦抵抗が低減され、したがって、研磨や研削時にスクラッチのない加工面が得られ、また、除去深さが安定するので高精度な加工面が得られる。
また、炭素材粒子が多孔質であるから、遊離砥粒が研磨工具の表面全体にしっかりと保持される。したがって、均一で能率的な研磨作用が研磨面全面に亘って発揮される。
さらに、多孔質炭素材料からなる粒子を固めたものであるから、研磨工具の研磨面全体に亘ってその研磨特性、潤滑性のばらつきがなく、均一化される。
【0009】
【実施態様1】(請求項2に対応)
実施態様1は、上記解決手段の多孔質炭素材料が木炭であることである。
【作用】
上記多孔質炭素材料が木炭であるから多孔質材料の自己潤滑性が高く、したがって、研磨工具と被研磨面間の摩擦抵抗が一層低減される。
さらに、木炭を粒子化してこれを固めたものであるから、木炭そのものの物性(硬さ、多孔密度など)の不均質性が解消されて、研磨工具全体の木炭による物性が均質化され、研磨工具の研磨面全体に亘ってその研磨特性、潤滑性が均一化される。
【0010】
【実施態様2】(請求項3に対応)
実施態様2は、上記解決手段1の多孔質炭素材料が木炭と木粉を混合したものであることである。
【作用】
多孔質炭素材料が木炭と木粉を混合したものであるから、被研磨面に研磨工具の木粉が当接したときでも木炭の自己潤滑性が高いので、被研磨面と研磨工具間の摩擦抵抗は低減される。
また、木炭と木粉とを粒子化して混合したものであるから、研磨工具全体に亘ってこれらの分散密度が均一化され、したがって、研磨工具の研磨面全体に亘ってその研磨特性、潤滑性が均一化される。
【0011】
【実施態様3】(請求項4に対応)
実施態様3は、上記解決手段1又は実施態様1の木炭が竹を原料とするものであることである。
【作用】
上記木炭が竹を原料とするもの(竹炭)であるから、その多孔質性が緻密であって自己潤滑性が高いので、研磨工具の研磨面が均質でその潤滑性が高い。したがって、被研磨面と研磨工具間の摩擦抵抗が一層低減される。
【0012】
【解決手段2】(請求項8に対応)
上記課題を解決するための手段2は、研磨工具を多孔質炭素材料からなる粒子と砥粒を樹脂バインダーで固めた材料によって構成したことである。
【0013】
【作用】
研磨工具の研磨面に多孔質炭素材料からなる粒子が露出していて、潤滑油(研磨油)が上記粒子の多孔面に吸収されるから、研磨面が潤滑油(研磨油)の介在によって被研磨面から浮き上がることはなく、したがって、研磨工具の研磨作用が被研磨面に有効に作用する。
また、多孔質炭素材料は自己潤滑性を有するので、この自己潤滑性により被研磨面に対する研磨面の摩擦抵抗が低減され、したがって、研磨や研削時にスクラッチのない加工面が得られ、また、除去深さが安定するので高精度な加工面が得られる。
さらに、多孔質炭素材料からなる粒子を固めたものであるから、研磨工具の研磨面全体に亘ってその研磨特性、潤滑性のばらつきがなく、均一化される。
さらに、この研磨工具は砥粒も含有されているため、加工中に砥粒を供給する必要がないという固定砥粒工具としての効果も得られる。
【0014】
【実施態様1】(請求項9に対応)
実施態様2は、上記解決手段2の多孔質炭素材料が木炭であることである。
【作用】
上記多孔質炭素材料が木炭であるから多孔質材料の自己潤滑性が高く、したがって、摩擦工具と被研磨面間の摩擦抵抗が一層低減される。
さらに、木炭を粒子化してこれを固めたものであるから、木炭そのものの物性(硬さ、多孔密度など)の不均質性が解消されて、研磨工具全体の木炭による物性が均質化され、研磨工具の研磨面全体に亘ってその研磨特性、潤滑性が均一化される。
【0015】
【実施態様2】(請求項10に対応)
実施態様2は、上記実施態様1の木炭が竹を原料とするものであることである。
【作用】
多孔質炭素材料が木炭と木粉を混合したものであるから、被研磨面に研磨工具の木粉が当接したときでも木炭の自己潤滑性が高いので、被研磨面と研磨工具間の摩擦抵抗は低減される。
また、木炭と木粉とを粒子化して混合したものであるから、研磨工具全体に亘ってこれらの分散密度が均一化され、したがって、研磨工具の研磨面全体に亘ってその研磨特性、潤滑性が均一化される。
【0016】
【実施の形態】
次いで、図面を参照して実施の形態を説明する。
研磨加工装置の例としては図1に示すようにタイヤ形状あるいは球形状等の回転工具、または円盤状あるいは円筒状などの回転工具が直動スライドするスピンドルに固定されている。荷重発生機構部により直動スライドに所定の荷重を与え、その荷重が工具に伝達されて工具と被加工物の被加工面との間に荷重(圧接力)が発生する。そして上記荷重を荷重センサで検知し、その荷重が所定値になるように図示していない制御部、たとえば、パソコンから荷重発生機構部へ指令を出して上記荷重などの加工条件を制御する。
被加工物はX軸,Y軸,Z軸およびX軸、Y軸と平行な回転軸のA軸、B軸の動きによって被加工面の法線を工具荷重負荷方向と一致させるいわゆる法線制御が可能になっている。
【0017】
図2に示すように所望の設計形状と被加工面の研磨前の形状測定結果との誤差に基づいて、各加工点における除去量または除去深さが決定される。
ワークを研磨加工する前に、この被加工面と同じ材料を予め加工することによって除去量または除去深さと研磨加工条件との関係を事前に把握しておく。その関係について従来より次式で示すようなプレストンの経験則が知られている。
δ=k×P×V×t(δ;除去量、k;比例定数、P;圧力、V;工具と加工点の相対速度(工具周速)、t滞留時間)
これにより各加工点における除去量または除去深さに対して加工条件を決めることができる。本発明においては、δは除去深さ、Pは荷重と考えて問題はない。一般的に比例定数kは被加工物の材質や工具により決まる定数である。
【0018】
【実施例1】
実施例は、図1に示した加工装置でマルテンサイト系ステンレス鋼の研磨を行うものである。使用する研磨工具は多孔質炭素材料である木炭を平均粒径50μm程度に粉砕して作成した粒子を樹脂バインダー(具体的にはフェノール樹脂)と混練して成形したものである。木炭としては竹炭を原料としたものが特に有効であるので、この例では竹炭を使用している。また、工具形状は球体の一部を切り出して回転軸を接合したような形状である。この研磨工具を使用してその加工点に遊離砥粒を供給しながら研磨を行う。
【0019】
実際のワークの研磨加工に先立って、プレ加工として所定の加工を同研磨工具でダミーワークについて行う。この場合、研磨工具をツルーイングした後に、砥粒を含む加工液を供給しながら、図3のクリーニング機構をはずした状態でマルテンサイト系ステンレス鋼を研磨して上記プレ加工を行った。図4に示すように研磨距離(スタート点からのツールパスの長さ)が増加すると除去深さが増加し、その後、除去深さが安定する状態になり、この状態が研磨工具表面に充分な砥粒が供給された状態である。研磨工具表面に充分な砥粒が供給された状態で、研磨対象とする被研磨材と同じ材料を研磨してプレ加工を行ったので、最も高精度の除去深さの安定性を得ることができる。
【0020】
次に、図3のクリーニング機構をセッティングして本番の研磨加工を行う。
図3のクリーニング機構では、研磨工具を直接クリーニングするための弾性体からなるクリーニング用ブラシを研磨工具に接触させている。そのブラシの幅は研磨工具の研磨面の幅以上であり、研磨工具が一回転すると、研磨工具の研磨面の全領域が一度にクリーニングされることになる。また、図3のクリーニング機構には加工液を供給する機構とクリーニング用ブラシの毛に吸い込まれた加工液をノズルによって吸引する機構を備えている。供給と吸引はポンプにつながったチューブにより行われ、供給用ポンプの流量の設定を5cc/minとして、吸引用ポンプの流量の設定を8cc/minとして、供給された加工液の量を充分吸引する以上に吸引能力を設定した。
【0021】
以上のようにしてクリーニングをかけながら被研磨面に対する研磨加工を行うことにより、除去深さ精度としては3σで36nmの精度を得ることができ、またスクラッチの発生のない加工面を得ることができた。
図5に実施例1の研磨工具の一部分を拡大して概念的に示してある。このものは、多数の気孔が内在する多孔質の木炭粉(平均粒径50μm程度)を樹脂バインダーで固めたものである。木炭粉の多数の気孔が遊離砥粒をしっかり把持するので、これによって安定した除去作用(研磨作用)を被研磨面におよぼすことができる。また、この気孔の存在によって研磨工具の研磨面が潤滑油(研磨油)を吸収するので、これにより、研磨の際に研磨工具が被研磨面から浮き上がる(潤滑油の介在によって浮き上がること)ことが防止される。この研磨工具は平均粒径50μm程度の細かい木炭(具体的には竹炭)の粒子で構成されているので、研磨面が均質な研磨工具であり、ツルーイング性がよいので、研磨工具によるたたき現象が発生する可能性は低い。
【0022】
この実施例1では竹炭を使用しているため、優れた摩擦/磨耗特性を有し、これにより、研磨工具と加工面間の摩擦が非常に低く抑えられる。ここで、研磨工具と加工面が接触したときに発生する摩擦の接線抵抗を測定した結果を図6に示し、比較例として木炭の代わりに柘植の木粉を使用した研磨工具の場合の摩擦の接線抵抗を図7に示している。また、上記測定結果は砥粒を供給しない状態での値である。この実施例2接線抵抗が図7の比較例の約1/2になっている。なお、図7の比較例では除去深さ精度が3σでほぼ53nmであった。
【0023】
【実施例2】
実施例2は、図1に示す加工装置で無電解ニッケルの研磨を行う例である。使用する研磨工具は多孔質炭素材料である木炭を粉砕して作成した平均粒径100μm程度の粒子を樹脂バインダー(具体的にはフェノール樹脂)とダイヤモンド砥粒を混練して成形したものである。木炭としては竹を原料としたもの(竹炭)が特に有効であるのでこれを使用している。
図3のクリーニング機構をセッティングして研磨加工を行う。図3のクリーニング機構では、研磨工具を直接クリーニングするための弾性体からなるクリーニング用ブラシが研磨工具に接触している。そのブラシの幅は研磨工具の研磨面の幅以上であり、研磨工具が一回転すると、研磨工具の研磨面の全領域がクリーニングされることになる。
【0024】
また、図3のクリーニング機構には加工液を供給する機構とクリーニング用ブラシの毛に吸い込まれた加工液をノズルによって吸引する機構を備えている。供給と吸引はポンプにつながったチューブにより行われ、供給用ポンプの流量の設定を10cc/minとして、吸引用ポンプの流量の設定を15cc/minとして、供給された加工液の量を充分吸引する以上の吸引能力に設定した。
研磨工具の回転数は500rpm、荷重は100gf、滞留時間制御による研磨を行った結果、得られた除去精度は3σで30nm以下になった。
【0025】
図8に実施例2の研磨工具の研磨面の一部を拡大して概念的に示している。このものは、多数の気孔が内在する竹炭粉と、平均粒径1.0μmのダイヤモンド砥粒を樹脂バインダーで固めたものである。竹炭粉の気孔の存在によって潤滑油が研磨面に吸収され易く、したがって、研磨の際に研磨工具が潤滑油の介在によって被研磨面から浮き上がることが防止される。この例の研磨工具は、微細な木炭(具体的には竹炭)粒子から構成されているので、その研磨面は均質であり、また、ツルーイング性がよいので研磨工具によるたたき現象が発生する可能性は低い。また、実施例2の研磨工具はその木炭は竹炭であるから、優れた摩擦/磨耗特性により、研磨工具と加工面間の摩擦を非常に低く抑えることができる。
【0026】
【実施例3】
実施例3は、図1に示す加工装置でマルテンサイト系ステンレス鋼の研磨を行う例である。使用する研磨工具は多孔質炭素材料である檜を粉砕して得られた平均粒径30μm程度の木粉および平均粒径30μm程度の木炭を粉砕して作成した粒子を樹脂バインダー(具体的にはウレタン樹脂)と混練して成形したものである。木炭としては竹を原料としたもの(竹炭)が特に有効であるので、この実施例3はこれを使用した。また、工具形状は球体の一部を切り出して回転軸を接合したような形状である。この研磨工具を使用して加工点に遊離砥粒を供給しながら研磨を行う。
【0027】
実際の研磨に先立ってダミーワークによるプレ加工を行う。このプレ加工は研磨工具をツルーイングした後に、砥粒を含む加工液を供給しながら、図3のクリーニング機構をはずした状態でマルテンサイト系ステンレス鋼を研磨するものである。
図4に示すように研磨距離(スタート点からのツールパスの長さ)が増加すると除去深さが増加し、その後、除去深さが安定する状態になる。この状態は研磨工具表面に充分な砥粒が供給された状態である。研磨工具表面に充分な砥粒が供給された状態で被研磨材と同じ材料を研磨したが、この方法によることで、高精度の除去深さの安定性を得ることができる。
【0028】
次に、図3のクリーニング機構をセッティングして本番の研磨加工を行う。
図3のクリーニング機構では、研磨工具を直接クリーニングするための弾性体からなるクリーニング用ブラシが研磨工具に接触している。そのブラシの幅は研磨工具の研磨面の幅以上であり、研磨工具が一回転すると、研磨工具の研磨面の領域が全てクリーニングされることになる。また、図3のクリーニング機構には加工液を供給する機構とクリーニング用ブラシの毛に吸い込まれた加工液をノズルによって吸引する機構を備えている。上記の供給と吸引はポンプにつながったチューブにより行われ、供給用ポンプの流量の設定を4cc/minとして、吸引用ポンプの流量の設定を8cc/minとして、供給された加工液の量を充分吸引する以上の吸引能力に設定している。
実施例3の除去深さ精度は3σで35nmであり、さらに加工面にはスクラッチの発生は見られなかった。
【0029】
実施例3の研磨工具の一部分を拡大して図9に概念的に示している。実施例3は、平均粒径30μm程度の檜の木粉を主成分とし、これに平均粒径30μm程度の木炭粉を混入させたものである。この研磨工具は多数の気孔で遊離砥粒をしっかり把持するので、安定な除去作用を被研磨面におよぼすことができる。また、上記気孔の存在によって研磨工具は潤滑油を吸収しやすくなっているので、研磨の際の潤滑油による研磨工具の浮き上がるのが防止される。この実施例3では木炭として竹炭を使用しているので優れた摩擦/磨耗特性を有し、これにより研磨工具と被加工面との摩擦を非常に低く抑えることができる。
【0030】
以上の実施例は、いずれも多孔質炭素材として天然の木炭(具体的には竹炭)を用いたものであるが、煤、カーボンブラック、ウッドセラミックス等の人工の炭素材料の粉体を微粒子状にし、あわせてこれを多孔質にしたものを使用することもできる。この場合は、木炭に比して、素材がもともと均質であるから、均質化に対する配慮は必要ないので、多孔質炭素材の粒子の大きさについては、砥粒に対する保持機能、潤滑油の吸収性、自己潤滑性の観点から適宜選択すればよい。
なお、活性炭も多孔質炭素材料として選択可能である。
【0031】
【発明の作用効果】
この発明の作用効果を各請求項に係る発明毎に整理すれば次のとおりである。
1.請求項1に係る発明
請求項1の研磨工具は、多孔質炭素材料からなる粒子を樹脂バインダーで固めた材料からなるもので、多孔質であるから、その多数の気孔に砥粒が入り込み、あるいは炭素粒子の表面に食い込むなどして砥粒がしっかりと把持され、さらに多数の気孔が潤滑油を吸収するので工具が被研磨面から浮き上がることはなく、有効に除去作用を被研磨面におよぼすことができる。また、粒子を樹脂バインダーで固めたものであるので、均質な研磨工具であり、精度よくツルーイングが行われるので、ツルーイングを行うことによって、常に研磨工具の研磨面全体に亘って、安定な加工作用を被加工面におよぼすことができる。
【0032】
2.請求項2に係る発明
請求項2の研磨工具は上記炭素材料が木炭であるから、その自己潤滑性によって研磨工具と加工面との摩擦抵抗が低く抑えられる。
なお、上記木炭を粒子状にしたことによって、木炭が本来有する不均質性(硬さ、多孔密度などの物性の不均一性)が解消されて、研磨工具全体の木炭による物性が均質化され、研磨工具の研磨面全体に亘ってその研磨特性、潤滑性が均一化される。
【0033】
3.請求項3に係る発明
請求項3の研磨工具は上記炭素材料が木炭と木粉を混合したものであるから、木炭の自己潤滑性によって研磨工具と加工面との摩擦抵抗が低く抑えられる。
【0034】
4.請求項4に係る発明
請求項4の研磨工具は、請求項2、請求項3の研磨工具における木炭が竹を原料とするものであるから、その木炭が緻密な多孔質のものであり、高い均質性を有し、さらに自己潤滑性に優れ、研磨工具と加工面との摩擦抵抗が低く抑えられる。
【0035】
5.請求項5に係る発明
請求項5の研磨方法は、請求項1乃至請求項4の研磨工具を使用して遊離砥粒を供給しながら研磨を行うものであるから、研磨工具の研磨面に砥粒をしっかりと把持できるとともに、研磨面が被研磨面から浮き上がることのない状態で、除去作用を有効に被研磨面におよぼすことができる。
また、ワークを研磨する際の研磨工具の研磨面全体にわたって、安定な加工作用を被加工面におよぼすことができる。さらに特に自己潤滑性に優れ、研磨工具と加工面間の摩擦抵抗が低減される。
したがって、研磨や研削時にスクラッチのない加工面を得るとともに、除去深さが安定するので高精度な加工面を得ることができる。
【0036】
6.請求項6に係る発明
請求項6の研磨方法は、請求項5の研磨方法において弾性体を接触させて研磨工具をクリーニングしながら研磨を行うものであるから、研磨工具表面に存在する余分な砥粒や加工液、また切粉やその他の異物が常に除去されるので、被研磨面がスクラッチのない面に研磨加工される。
【0037】
7.請求項7に係る発明
請求項7の研磨方法は、請求項5又は請求項6の研磨方法において研磨加工前にプレ加工として所定の加工をダミーワークで行ってから、本加工を行うものであるから、研磨による除去深さを安定させることができる。
【0038】
8.請求項8に係る発明
請求項8の研磨工具は、多孔質炭素材料からなる粒子と砥粒を樹脂バインダーで固めた材料からなるものであるから、多孔質炭素材料の多孔に潤滑油が吸収されるので、潤滑油によって研磨工具が被研磨面から浮き上がることはなく、そのため、被研磨面に対して有効な研磨作用をおよぼすことができる。また、多孔質炭素材料からなる粒子を砥粒とともに樹脂バインダーで固めたものであるから、研磨工具は均質であり、またツルーイングするときに精度よくツルーイングされるので、研磨工具の研磨面全体に亘って安定な加工作用を被研磨面におよぼすことができる。
【0039】
9.請求項9に係る発明
請求項9の研磨工具は、請求項8の炭素材料が木炭であるものであるから、その自己潤滑性が高くて研磨工具と被研磨面間の摩擦抵抗が低い。
【0040】
10.請求項10に係る発明
請求項10の研磨工具は、請求項9の木炭が竹を原料とするものであるから、特に緻密な多孔質であり、高い均質性を有し、さらに、特に自己潤滑性に優れているので、研磨工具と被研磨面間の摩擦抵抗が低い。
【0041】
11.請求項11に係る発明
請求項11の研磨方法は、請求項8乃至請求項10の研磨工具を使用して研磨を行うものであるから、有効に除去作用を被研磨面におよぼし、また、研磨面前体にわたって安定な加工作用を奏することができる。さらに、この研磨工具は特に自己潤滑性に優れているので、研磨工具と被研磨面間の摩擦抵抗が低い。
したがって、研磨作業時にスクラッチのない加工面が得られるとともに、除去深さが安定することで高精度な加工面を得ることができる。
【0042】
12.請求項12に係る発明
請求項12の研磨方法は、請求項11の研磨方法において弾性体を接触させて研磨工具をクリーニングしながら研磨を行うものであるから、研磨工具表面に存在する余分な脱落砥粒や加工液、また切粉やその他の異物を上記クリーニングによって除去することができ、これにより、スクラッチのない加工面を得ることができる。
【図面の簡単な説明】
【図1】は、一般的な研磨加工装置の正面図である。
【図2】は、所望の設計形状と被加工面の研磨前の形状測定結果との誤差を模式的に示す図である。
【図3】は、研磨工具のクリーニング機構を模式的に示す側面図である。
【図4】は、研磨加工における研磨距離(スタート点からのツールパスの長さ)と除去深さとの関係を示すグラフである。
【図5】は、実施例1の研磨工具の一部分を拡大して概念的に示す図である。
【図6】は、研磨工具と加工面が接触したときに発生する摩擦の接線抵抗を測定した結果を示す図である。
【図7】は、比較例として木炭の代わりに柘植の木粉を使用した研磨工具の場合の摩擦の接線抵抗を示す図である。
【図8】は、実施例2の研磨工具の研磨面の一部を拡大して概念的に示す図である。
【図9】は、実施例3の研磨工具の一部分を拡大して概念的に示す図である。
【符号の説明】
1:工具
2:工具軸
3:直動スライド
4:荷重センサ
5:荷重発生機構部
6:コラム
7:被加工部
8:3軸直動テーブル[0001]
[Industrial applications]
The present invention relates to a polishing tool and a polishing method for performing ultra-precision polishing, which can be used for ultra-precision polishing of precision parts such as optical elements, and is used for polishing (or grinding; the same applies hereinafter). There is no scratch, and it is possible to polish a highly accurate processed surface.
[0002]
[Prior art]
In high-precision processing of precision components such as optical elements, a removal depth accuracy of a level of several nm to several tens nm is desired. In addition, a mirror surface is also required, and it is desired that the surface has no defects such as scratches.
BACKGROUND ART Conventionally, as described in, for example, Japanese Patent Application Laid-Open No. 2001-138196, there is a type in which wood powder and a resin are kneaded and then molded and used as a polishing tool. The polishing tool is excellent in truing property, can make the tool surface precise, and has oil absorbency, and floats during processing (from the surface to be polished by the polishing lubricating oil of the polishing tool). (Floating) can be prevented, and moderate hardness and plasticity can be obtained, so that the bite of the abrasive grains on the polished surface can be improved. These effects achieve high removal depth accuracy and high specularity.
[0003]
In addition, JP-A-6-297337, JP-A-02550326, JP-T-11-508193, and JP-T-11-513621 disclose abrasive articles in which wood powder is mixed as a soft material. However, since these do not use wood flour as a main constituent material, the characteristics of wood flour are not necessarily used as a polishing material in the polishing article.
[0004]
Furthermore, in a conventional polishing tool, a portion other than the cutting edge of the tool, for example, a so-called bond rub in which a binder of a polishing tool or a grinding wheel comes into contact with a workpiece surface during processing, scratches are generated, and the removal depth is reduced. The problem of instability occurs.
When this state becomes severe, normal processing is not performed, and the temperature of the processed surface rises, resulting in discoloration of blue and black, or so-called "burning".
[0005]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2001-138196 [Patent Document 2] Japanese Patent Application Laid-Open No. 6-297337 [Patent Document 3] Japanese Patent No. 02550326 [Patent Document 4] Japanese Patent Application Laid-Open No. 11-508193 [Patent Document] 5 Japanese Patent Publication No. Hei 11-513621
[Problem to be solved]
By the way, as a result of continuing development to achieve high removal depth accuracy and specularity, it is possible to reduce the occurrence of scratches when the frictional resistance generated by the friction at the time of bond rubbing is small, and also to reduce the removal depth. It has been confirmed that the stability of the surface is enhanced.
In view of the above, an object of the present invention is to devise a tool having a small frictional resistance so that a machined surface free of scratches can be obtained during polishing or grinding, and a highly accurate machined surface can be obtained by stabilizing the removal depth. It is assumed that.
[0007]
[Measures taken to solve the problem]
[Solution 1] (corresponding to claim 1)
Means 1 taken to solve the above problem is that the polishing tool is made of a material obtained by solidifying particles made of a porous carbon material with a resin binder.
[0008]
[Action]
Since the particles made of the porous carbon material are exposed on the polishing surface of the polishing tool, and the lubricating oil (polishing oil) is absorbed by the porous surface of the particles, the polishing surface is covered by the lubricating oil (polishing oil). It does not rise from the polished surface, so that the polishing action of the polishing tool effectively acts on the polished surface.
In addition, since the porous carbon material has a self-lubricating property, the frictional resistance of the polished surface with respect to the polished surface is reduced by the self-lubricating property, so that a processed surface free of scratches during polishing or grinding can be obtained and removed. Since the depth is stable, a highly accurate machined surface can be obtained.
Further, since the carbon material particles are porous, loose abrasive grains are firmly held on the entire surface of the polishing tool. Therefore, a uniform and efficient polishing action is exerted over the entire polished surface.
Further, since the particles made of the porous carbon material are hardened, the polishing characteristics and lubricity of the polishing tool are uniform over the entire polished surface of the polishing tool.
[0009]
Embodiment 1 (corresponding to claim 2)
Embodiment 1 is that the porous carbon material of the above solution is charcoal.
[Action]
Since the porous carbon material is charcoal, the self-lubricating property of the porous material is high, and therefore, the frictional resistance between the polishing tool and the surface to be polished is further reduced.
In addition, since charcoal is made into particles and hardened, the inhomogeneity of the physical properties (hardness, porous density, etc.) of the charcoal itself is eliminated, and the physical properties of the charcoal as a whole by charcoal are homogenized. The polishing characteristics and lubricity are made uniform over the entire polishing surface of the tool.
[0010]
Embodiment 2 (corresponding to claim 3)
Embodiment 2 is that the porous carbon material of Solution 1 is a mixture of charcoal and wood flour.
[Action]
Since the porous carbon material is a mixture of charcoal and wood flour, the charcoal has high self-lubricating properties even when the polishing tool wood powder comes into contact with the surface to be polished, so the friction between the surface to be polished and the polishing tool is high. Resistance is reduced.
In addition, since charcoal and wood flour are made into particles and mixed, their dispersion densities are made uniform over the entire polishing tool. Therefore, their polishing characteristics and lubricity are improved over the entire polishing surface of the polishing tool. Is made uniform.
[0011]
Embodiment 3 (corresponding to claim 4)
[Action]
Since the charcoal is made of bamboo (bamboo charcoal), the porosity is dense and the self-lubricating property is high, so that the polishing surface of the polishing tool is uniform and the lubricating property is high. Therefore, the frictional resistance between the polished surface and the polishing tool is further reduced.
[0012]
[Solution 2] (corresponding to claim 8)
Means 2 for solving the above problem is that the polishing tool is made of a material obtained by solidifying particles and abrasive grains of a porous carbon material with a resin binder.
[0013]
[Action]
Since the particles made of the porous carbon material are exposed on the polishing surface of the polishing tool, and the lubricating oil (polishing oil) is absorbed by the porous surface of the particles, the polishing surface is covered by the lubricating oil (polishing oil). It does not rise from the polished surface, so that the polishing action of the polishing tool effectively acts on the polished surface.
In addition, since the porous carbon material has a self-lubricating property, the frictional resistance of the polished surface with respect to the polished surface is reduced by the self-lubricating property, so that a processed surface free of scratches during polishing or grinding can be obtained and removed. Since the depth is stable, a highly accurate machined surface can be obtained.
Further, since the particles made of the porous carbon material are hardened, the polishing characteristics and lubricity of the polishing tool are uniform over the entire polished surface of the polishing tool.
Further, since the polishing tool also contains abrasive grains, it is possible to obtain an effect as a fixed abrasive tool in which it is not necessary to supply abrasive grains during processing.
[0014]
Embodiment 1 (corresponding to claim 9)
Embodiment 2 is that the porous carbon material of Solution 2 is charcoal.
[Action]
Since the porous carbon material is charcoal, the self-lubricating property of the porous material is high, so that the friction resistance between the friction tool and the surface to be polished is further reduced.
In addition, since charcoal is made into particles and hardened, the inhomogeneity of the physical properties (hardness, porous density, etc.) of the charcoal itself is eliminated, and the physical properties of the charcoal as a whole by charcoal are homogenized. The polishing characteristics and lubricity are made uniform over the entire polishing surface of the tool.
[0015]
Embodiment 2 (corresponding to claim 10)
A second embodiment is that the charcoal of the first embodiment uses bamboo as a raw material.
[Action]
Since the porous carbon material is a mixture of charcoal and wood flour, the charcoal has high self-lubricating properties even when the polishing tool wood powder comes into contact with the surface to be polished, so the friction between the surface to be polished and the polishing tool is high. Resistance is reduced.
In addition, since charcoal and wood flour are made into particles and mixed, their dispersion densities are made uniform over the entire polishing tool. Therefore, their polishing characteristics and lubricity are improved over the entire polishing surface of the polishing tool. Is made uniform.
[0016]
Embodiment
Next, embodiments will be described with reference to the drawings.
As an example of the polishing apparatus, a rotary tool having a tire shape or a spherical shape, or a rotary tool having a disk shape or a cylindrical shape, as shown in FIG. A predetermined load is applied to the linear slide by the load generating mechanism, and the load is transmitted to the tool to generate a load (pressure contact force) between the tool and the surface of the workpiece. Then, the load is detected by a load sensor, and a command is sent from a controller (not shown), for example, a personal computer, to a load generating mechanism so that the load becomes a predetermined value to control processing conditions such as the load.
The workpiece is a so-called normal line control in which the normal of the surface to be processed is made coincident with the direction of the tool load by the movement of the X-axis, Y-axis, Z-axis and the rotation axes A-axis and B-axis parallel to the X-axis and Y-axis. Has become possible.
[0017]
As shown in FIG. 2, a removal amount or a removal depth at each processing point is determined based on an error between a desired design shape and a shape measurement result of the surface to be processed before polishing.
Before polishing the workpiece, the relationship between the removal amount or the removal depth and the polishing processing conditions is grasped in advance by processing the same material as the surface to be processed in advance. Preston's empirical rule as shown in the following equation has been known for this relationship.
δ = k × P × V × t (δ: removal amount, k: proportional constant, P: pressure, V: relative speed between tool and machining point (tool peripheral speed), t residence time)
This makes it possible to determine processing conditions for the removal amount or the removal depth at each processing point. In the present invention, δ is the removal depth and P is the load, and there is no problem. Generally, the proportional constant k is a constant determined by the material of the workpiece and the tool.
[0018]
Embodiment 1
In the embodiment, the processing apparatus shown in FIG. 1 is used to polish martensitic stainless steel. The polishing tool to be used is formed by kneading particles formed by pulverizing charcoal, which is a porous carbon material, to an average particle size of about 50 μm with a resin binder (specifically, a phenol resin). Since charcoal made from bamboo charcoal is particularly effective, bamboo charcoal is used in this example. Further, the tool shape is a shape in which a part of a sphere is cut out and the rotation shaft is joined. Polishing is performed using this polishing tool while supplying loose abrasive grains to the processing point.
[0019]
Prior to actual polishing of the work, predetermined processing is performed on the dummy work with the same polishing tool as pre-processing. In this case, after the polishing tool was trued, the pre-processing was performed by polishing the martensitic stainless steel with the cleaning mechanism shown in FIG. 3 removed while supplying a processing liquid containing abrasive grains. As shown in FIG. 4, as the polishing distance (the length of the tool path from the start point) increases, the removal depth increases, and thereafter, the removal depth becomes stable, and this state is sufficient for the polishing tool surface. This is a state in which the abrasive grains have been supplied. Since the same material as the material to be polished was polished and pre-processed in a state where sufficient abrasive grains were supplied to the polishing tool surface, it was possible to obtain the most accurate removal depth stability. it can.
[0020]
Next, actual cleaning is performed by setting the cleaning mechanism of FIG.
In the cleaning mechanism of FIG. 3, a cleaning brush made of an elastic body for directly cleaning the polishing tool is brought into contact with the polishing tool. The width of the brush is equal to or greater than the width of the polishing surface of the polishing tool. When the polishing tool makes one rotation, the entire area of the polishing surface of the polishing tool is cleaned at one time. Further, the cleaning mechanism shown in FIG. 3 includes a mechanism for supplying a processing liquid and a mechanism for suctioning the processing liquid sucked into the bristles of the cleaning brush by a nozzle. Supply and suction are performed by a tube connected to the pump. The flow rate of the supply pump is set to 5 cc / min, and the flow rate of the suction pump is set to 8 cc / min. The suction capacity was set as described above.
[0021]
By performing polishing on the surface to be polished while performing cleaning as described above, it is possible to obtain an accuracy of 36 nm in 3σ as the removal depth accuracy, and it is possible to obtain a processed surface free of scratches. Was.
FIG. 5 is an enlarged conceptual view of a part of the polishing tool according to the first embodiment. This is obtained by hardening a porous charcoal powder (average particle size of about 50 μm) having a large number of pores therein with a resin binder. Since many pores of the charcoal powder firmly hold the free abrasive grains, a stable removing action (polishing action) can be exerted on the surface to be polished. In addition, since the polishing surface of the polishing tool absorbs the lubricating oil (polishing oil) due to the presence of the pores, the polishing tool can be lifted from the surface to be polished during polishing (by the lubricating oil). Is prevented. Since this polishing tool is composed of fine charcoal (specifically, bamboo charcoal) particles having an average particle size of about 50 μm, the polishing surface is a uniform polishing tool and has a good truing property. It is unlikely to occur.
[0022]
Since the bamboo charcoal is used in the first embodiment, it has excellent friction / wear characteristics, so that the friction between the polishing tool and the processing surface can be kept very low. Here, the result of measuring the tangential resistance of the friction generated when the polishing tool comes into contact with the processing surface is shown in FIG. 6, and as a comparative example, the friction of the polishing tool using Tsuge wood powder instead of charcoal is shown. The tangential resistance is shown in FIG. Further, the above measurement results are values in a state where abrasive grains are not supplied. The tangent resistance of the second embodiment is about half that of the comparative example of FIG. In the comparative example of FIG. 7, the accuracy of the removal depth was approximately 53 nm at 3σ.
[0023]
Embodiment 2
Example 2 is an example in which electroless nickel is polished by the processing apparatus shown in FIG. The polishing tool to be used is formed by kneading a resin binder (specifically, a phenol resin) and diamond abrasive grains with particles having an average particle diameter of about 100 μm, which are formed by pulverizing charcoal, which is a porous carbon material. As charcoal, bamboo-based charcoal (bamboo charcoal) is used because it is particularly effective.
Polishing is performed by setting the cleaning mechanism of FIG. In the cleaning mechanism of FIG. 3, a cleaning brush made of an elastic body for directly cleaning the polishing tool is in contact with the polishing tool. The width of the brush is equal to or greater than the width of the polishing surface of the polishing tool. When the polishing tool makes one rotation, the entire area of the polishing surface of the polishing tool is cleaned.
[0024]
Further, the cleaning mechanism shown in FIG. 3 includes a mechanism for supplying a processing liquid and a mechanism for suctioning the processing liquid sucked into the bristles of the cleaning brush by a nozzle. The supply and suction are performed by a tube connected to the pump. The flow rate of the supply pump is set to 10 cc / min, and the flow rate of the suction pump is set to 15 cc / min. The above suction capacity was set.
The number of rotations of the polishing tool was 500 rpm, the load was 100 gf, and polishing was performed by controlling the residence time. As a result, the obtained removal accuracy was 3σ and was 30 nm or less.
[0025]
FIG. 8 conceptually shows a part of the polishing surface of the polishing tool according to the second embodiment in an enlarged manner. This is obtained by solidifying a bamboo charcoal powder having a large number of pores therein and diamond abrasive grains having an average particle diameter of 1.0 μm with a resin binder. The lubricating oil is easily absorbed by the polished surface due to the presence of the pores of the bamboo charcoal powder, and therefore, the polishing tool is prevented from floating from the polished surface due to the lubricating oil during polishing. Since the polishing tool of this example is composed of fine charcoal (specifically, bamboo charcoal) particles, the polished surface is uniform, and the truing property is good, so that the polishing tool may cause a knocking phenomenon. Is low. In addition, since the charcoal of the polishing tool of Example 2 is bamboo charcoal, the friction between the polishing tool and the machined surface can be extremely low due to the excellent friction / wear characteristics.
[0026]
Example 3 is an example in which martensitic stainless steel is polished by the processing apparatus shown in FIG. The polishing tool to be used is a resin binder (specifically, wood powder having an average particle size of about 30 μm obtained by pulverizing cypress, which is a porous carbon material, and particles formed by pulverizing charcoal having an average particle size of about 30 μm. (Urethane resin). As charcoal, bamboo-based charcoal (bamboo charcoal) is particularly effective. Further, the tool shape is a shape in which a part of a sphere is cut out and the rotation shaft is joined. Polishing is performed using this polishing tool while supplying loose abrasive grains to the processing point.
[0027]
Prior to actual polishing, pre-processing using a dummy work is performed. In this pre-processing, after the polishing tool is trued, the martensitic stainless steel is polished with the cleaning mechanism shown in FIG. 3 removed while supplying a processing liquid containing abrasive grains.
As shown in FIG. 4, as the polishing distance (the length of the tool path from the start point) increases, the removal depth increases, and thereafter, the removal depth becomes stable. This state is a state where sufficient abrasive grains are supplied to the polishing tool surface. The same material as the material to be polished was polished in a state where sufficient abrasive grains were supplied to the surface of the polishing tool. By this method, a highly accurate removal depth stability can be obtained.
[0028]
Next, actual cleaning is performed by setting the cleaning mechanism of FIG.
In the cleaning mechanism of FIG. 3, a cleaning brush made of an elastic body for directly cleaning the polishing tool is in contact with the polishing tool. The width of the brush is equal to or larger than the width of the polishing surface of the polishing tool. When the polishing tool makes one rotation, the entire area of the polishing surface of the polishing tool is cleaned. Further, the cleaning mechanism shown in FIG. 3 includes a mechanism for supplying a processing liquid and a mechanism for suctioning the processing liquid sucked into the bristles of the cleaning brush by a nozzle. The above supply and suction are performed by a tube connected to a pump. The flow rate of the supply pump is set to 4 cc / min, the flow rate of the suction pump is set to 8 cc / min, and the amount of the supplied machining fluid is sufficiently increased. The suction capacity is set higher than the suction capacity.
The removal depth accuracy of Example 3 was 35 nm at 3σ, and no scratch was observed on the processed surface.
[0029]
FIG. 9 is an enlarged view of a part of the polishing tool according to the third embodiment. In the third embodiment, hinoki wood powder having an average particle size of about 30 μm is mainly used, and charcoal powder having an average particle size of about 30 μm is mixed therein. Since this polishing tool grips loose abrasive grains firmly with a large number of pores, a stable removing action can be exerted on the surface to be polished. In addition, since the polishing tool easily absorbs the lubricating oil due to the presence of the pores, it is possible to prevent the polishing tool from being lifted by the lubricating oil during polishing. In Example 3, since bamboo charcoal is used as charcoal, the charcoal has excellent friction / abrasion characteristics, whereby the friction between the polishing tool and the surface to be processed can be suppressed to a very low level.
[0030]
In each of the above embodiments, natural charcoal (specifically, bamboo charcoal) was used as the porous carbon material, but powder of artificial carbon material such as soot, carbon black, and wood ceramics was finely divided. In addition, a material obtained by making this porous may be used. In this case, since the material is originally homogeneous compared to charcoal, there is no need to consider the homogenization. , From the viewpoint of self-lubrication.
Activated carbon can also be selected as a porous carbon material.
[0031]
Effects of the Invention
The operational effects of the present invention are summarized as follows for each of the claimed inventions.
1. The polishing tool according to the first aspect of the present invention is made of a material obtained by solidifying particles made of a porous carbon material with a resin binder. Since the polishing tool is porous, abrasive grains enter many pores thereof, or Abrasive grains are firmly grasped by cutting into the surface of carbon particles, etc.Moreover, many pores absorb lubricating oil, so that the tool does not rise from the surface to be polished and effectively removes the effect on the surface to be polished Can be. In addition, since the particles are solidified with a resin binder, the polishing tool is a uniform polishing tool, and truing is performed with high accuracy. Therefore, by performing truing, a stable processing action is always performed over the entire polished surface of the polishing tool. Can be applied to the work surface.
[0032]
2. In the polishing tool according to the second aspect of the present invention, since the carbon material is charcoal, the frictional resistance between the polishing tool and the machined surface can be suppressed low by its self-lubricating property.
By making the charcoal into a particle, the inhomogeneity inherent in charcoal (unevenness of physical properties such as hardness and porous density) is eliminated, and the physical properties of charcoal as a whole by the charcoal are homogenized. The polishing characteristics and lubricity are made uniform over the entire polishing surface of the polishing tool.
[0033]
3. Since the carbon material is a mixture of charcoal and wood powder, the self-lubricating property of the charcoal reduces the frictional resistance between the polishing tool and the machined surface.
[0034]
4. In the polishing tool according to the fourth aspect of the present invention, since the charcoal in the polishing tool according to the second or third aspect uses bamboo as a raw material, the charcoal is a dense porous material and has a high quality. It has homogeneity and excellent self-lubricating properties, and the frictional resistance between the polishing tool and the machined surface can be kept low.
[0035]
5. According to a fifth aspect of the present invention, the polishing method of the first aspect performs polishing while supplying loose abrasive grains using the polishing tool of the first to fourth aspects. The particles can be firmly grasped, and the removing action can be effectively exerted on the polished surface in a state where the polished surface does not rise from the polished surface.
In addition, a stable processing action can be exerted on the surface to be processed over the entire polishing surface of the polishing tool when polishing the work. Further, the self-lubricating property is particularly excellent, and the frictional resistance between the polishing tool and the processing surface is reduced.
Therefore, a processed surface free of scratches during polishing or grinding can be obtained, and a highly accurate processed surface can be obtained because the removal depth is stable.
[0036]
6. According to the polishing method of the present invention, since the polishing is performed while cleaning the polishing tool by bringing the elastic body into contact with the polishing method of the fifth invention, the extra polishing existing on the surface of the polishing tool is performed. Since the grains, working fluid, chips and other foreign substances are always removed, the surface to be polished is polished to a surface without scratches.
[0037]
7. According to a seventh aspect of the present invention, in the polishing method of the fifth or sixth aspect, a predetermined process is performed as a pre-process on a dummy work before the polishing process, and then the main process is performed. Therefore, the removal depth by polishing can be stabilized.
[0038]
8. Since the polishing tool according to
[0039]
9. According to the ninth aspect of the present invention, since the carbon material of the eighth aspect is charcoal, the self-lubricating property is high and the frictional resistance between the polishing tool and the surface to be polished is low.
[0040]
10. According to the tenth aspect of the present invention, since the charcoal of the ninth aspect uses bamboo as a raw material, it is particularly dense and porous, has high homogeneity, and is particularly self-lubricating. The frictional resistance between the polishing tool and the surface to be polished is low because of its excellent properties.
[0041]
11. In the polishing method according to the eleventh aspect, since the polishing is performed by using the polishing tool according to any one of the eighth to tenth aspects, the removal effect is effectively exerted on the surface to be polished, and the polishing is performed. A stable working action can be achieved over the front body. Further, since the polishing tool has particularly excellent self-lubricating properties, the frictional resistance between the polishing tool and the surface to be polished is low.
Accordingly, a processed surface without scratches can be obtained during the polishing operation, and a highly accurate processed surface can be obtained by stabilizing the removal depth.
[0042]
12. According to a twelfth aspect of the present invention, in the polishing method of the eleventh aspect, polishing is performed while the polishing tool is being cleaned by bringing the elastic body into contact with the polishing method of the eleventh aspect. Abrasive grains, working fluid, cutting chips and other foreign matter can be removed by the above-described cleaning, whereby a worked surface without scratches can be obtained.
[Brief description of the drawings]
FIG. 1 is a front view of a general polishing apparatus.
FIG. 2 is a diagram schematically showing an error between a desired design shape and a shape measurement result before polishing of a surface to be processed.
FIG. 3 is a side view schematically showing a cleaning mechanism of the polishing tool.
FIG. 4 is a graph showing a relationship between a polishing distance (a length of a tool path from a start point) and a removal depth in a polishing process.
FIG. 5 is an enlarged conceptual view of a part of the polishing tool according to the first embodiment.
FIG. 6 is a view showing a result of measuring a tangential resistance of friction generated when a polishing tool comes into contact with a processing surface.
FIG. 7 is a diagram showing a tangential resistance of friction in the case of a polishing tool using Tsuge wood powder instead of charcoal as a comparative example.
FIG. 8 is a view conceptually showing a part of a polishing surface of a polishing tool according to a second embodiment in an enlarged manner.
FIG. 9 is an enlarged conceptual view showing a part of a polishing tool according to a third embodiment.
[Explanation of symbols]
1: Tool 2: Tool axis 3: Linear slide 4: Load sensor 5: Load generating mechanism 6: Column 7: Workpiece 8: 3-axis linear table
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003002275A JP4026822B2 (en) | 2003-01-08 | 2003-01-08 | Polishing tool and polishing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003002275A JP4026822B2 (en) | 2003-01-08 | 2003-01-08 | Polishing tool and polishing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004209616A true JP2004209616A (en) | 2004-07-29 |
JP4026822B2 JP4026822B2 (en) | 2007-12-26 |
Family
ID=32820066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003002275A Expired - Fee Related JP4026822B2 (en) | 2003-01-08 | 2003-01-08 | Polishing tool and polishing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4026822B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103231318A (en) * | 2013-04-24 | 2013-08-07 | 常熟市巨力砂轮有限责任公司 | Method for manufacturing bamboo charcoal bonded grinding wheel for precision grinding |
CN103600311A (en) * | 2013-11-26 | 2014-02-26 | 常熟市巨力砂轮有限责任公司 | Production method for bamboo-charcoal binding agent grinding wheel |
JP2017071004A (en) * | 2015-10-05 | 2017-04-13 | 日新製鋼株式会社 | Stainless steel pipe excellent in corrosion resistance, and manufacturing method therefor |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0335101U (en) * | 1989-08-17 | 1991-04-05 | ||
JPH06213467A (en) * | 1993-01-13 | 1994-08-02 | Natl House Ind Co Ltd | Air conditioner |
JPH0842165A (en) * | 1994-08-03 | 1996-02-13 | Mitsui Constr Co Ltd | Structure of multiple dwelling house |
JPH11247324A (en) * | 1998-03-02 | 1999-09-14 | Yoshino Gypsum Co Ltd | Refractory structural wall |
JP2002088942A (en) * | 2000-09-12 | 2002-03-27 | Sekisui Chem Co Ltd | Fire-resisting wall structure made of steel |
-
2003
- 2003-01-08 JP JP2003002275A patent/JP4026822B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0335101U (en) * | 1989-08-17 | 1991-04-05 | ||
JPH06213467A (en) * | 1993-01-13 | 1994-08-02 | Natl House Ind Co Ltd | Air conditioner |
JPH0842165A (en) * | 1994-08-03 | 1996-02-13 | Mitsui Constr Co Ltd | Structure of multiple dwelling house |
JPH11247324A (en) * | 1998-03-02 | 1999-09-14 | Yoshino Gypsum Co Ltd | Refractory structural wall |
JP2002088942A (en) * | 2000-09-12 | 2002-03-27 | Sekisui Chem Co Ltd | Fire-resisting wall structure made of steel |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103231318A (en) * | 2013-04-24 | 2013-08-07 | 常熟市巨力砂轮有限责任公司 | Method for manufacturing bamboo charcoal bonded grinding wheel for precision grinding |
CN103600311A (en) * | 2013-11-26 | 2014-02-26 | 常熟市巨力砂轮有限责任公司 | Production method for bamboo-charcoal binding agent grinding wheel |
JP2017071004A (en) * | 2015-10-05 | 2017-04-13 | 日新製鋼株式会社 | Stainless steel pipe excellent in corrosion resistance, and manufacturing method therefor |
WO2017061215A1 (en) * | 2015-10-05 | 2017-04-13 | 日新製鋼株式会社 | Stainless steel pipe with excellent corrosion resistance and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4026822B2 (en) | 2007-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhong | Ductile or partial ductile mode machining of brittle materials | |
JP2009214291A (en) | Operating method for gear grinding machine | |
KR102614442B1 (en) | synthetic grindstone | |
JP2004209616A (en) | Tool and method for polishing | |
Fiocchi et al. | Ultra-precision face grinding with constant pressure, lapping kinematics, and SiC grinding wheels dressed with overlap factor | |
WO2015015706A1 (en) | Dressing method and dressing device | |
JP2002273661A (en) | Porous metal grinding wheel | |
JP2000210862A (en) | Spherical body posishing method and spherical body polishing device | |
Li et al. | Generating mechanism of surface morphology finished by abrasive jet with grinding wheel as restraint | |
JP4469266B2 (en) | Workpiece polishing method | |
JP2023061016A (en) | Polishing pad and manufacturing method for the same | |
CN116323061A (en) | Method for cutting a gear, gear cutting tool and gear cutting machine | |
JP5903689B2 (en) | High frequency vibration internal grinding machine | |
JPH11114800A (en) | Method for specular-polishing cylindrical body | |
Moon et al. | Removal mechanisms of glass and sapphire materials by slurry free lapping | |
US12145209B2 (en) | Method for cutting a gear, gear-cutting tool and gear-cutting machine | |
JPH05285812A (en) | Grinding method | |
JP2005050893A (en) | Retainer ring and method for polishing substrate using the same | |
JP5323447B2 (en) | Grinding wheel | |
JP2005103668A (en) | Free-form surface machining method and device | |
JP2004106094A (en) | Polishing device | |
JPS6039510B2 (en) | Surface polishing method | |
CN208051561U (en) | A kind of face lapping mill | |
JP2002127019A (en) | Polishing tool | |
JP2007181892A (en) | Polishing tool and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070126 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070322 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070419 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070613 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070713 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070904 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071005 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071005 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101019 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111019 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121019 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131019 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |