JP2004207305A - 電流リード - Google Patents

電流リード Download PDF

Info

Publication number
JP2004207305A
JP2004207305A JP2002371529A JP2002371529A JP2004207305A JP 2004207305 A JP2004207305 A JP 2004207305A JP 2002371529 A JP2002371529 A JP 2002371529A JP 2002371529 A JP2002371529 A JP 2002371529A JP 2004207305 A JP2004207305 A JP 2004207305A
Authority
JP
Japan
Prior art keywords
current lead
conductor
conductors
cylindrical member
cooling gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002371529A
Other languages
English (en)
Other versions
JP4270858B2 (ja
Inventor
Koichi Osemochi
光一 大勢持
Takashi Yazawa
孝 矢澤
Shigeki Kadoma
茂樹 門間
Takahiro Dobashi
隆博 土橋
Choichi Sumiya
暢一 角谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002371529A priority Critical patent/JP4270858B2/ja
Publication of JP2004207305A publication Critical patent/JP2004207305A/ja
Application granted granted Critical
Publication of JP4270858B2 publication Critical patent/JP4270858B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

【課題】複数の超電導コイルに接続される3本以上の導体を、通電の有無に係らず同時に均等に冷却することができ、さらに、電流リードの設置空間を減少させることができる電流リードを提供することを目的とする。
【解決手段】冷却ガス6は、筒状部材3の内に複数段形成された絶縁板4の冷媒槽側の切り欠き部5から筒状部材3の内に流入する。筒状部材3の内に流入した冷却ガス6は、導体2を冷却しながら各絶縁板4の切り欠き部5を通過し、筒状部材3内を冷媒槽側から電源側に向かってジグザクに流れる。この電流リード1では、1つの筒状部材3内に、複数の超電導コイルに接続される複数の導体2を収容し、かつ、冷却ガス6によって、複数の導体2を同時に均等に冷却することができる。また、電流リード1の設置空間を減少させることができる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、臨界温度以下に保持されるコイルや素子などの超電導部材と室温にある電源とを電気的に接続する電流リードに関する。
【0002】
【従来の技術】
超電導の最大の特徴は、電気抵抗がゼロであるためにジュール熱などの発生がなく、無損失で大電流を流すことができることである。その特徴を利用した代表的な応用例が、超電導マグネット装置である。
【0003】
超電導マグネット装置では、室温に設置された電源から臨界温度以下に設置された超電導コイルまで電流を供給する電流リードが設けられている。通常、この電流リードを構成する導体は、電気抵抗の小さい銅などの材料で構成されている。
【0004】
従来の超電導マグネット装置では、電流リードに通電中に発生するジュール熱やヒータなどによる強制的な熱を利用して、液体ヘリウム槽の液体ヘリウムを蒸発させ、その蒸発されたヘリウムガスを冷媒として用いるガス冷却式の電流リードが採用されている(例えば、特許文献1参照。)。
【0005】
図17は、従来のガス冷却式の電流リード100の代表的な構成を示す。また、図18は、図17に示されたガス冷却式の電流リード100におけるヘリウムガスの流入方向からの平面図を示す。
【0006】
電流リード100は、電気的に絶縁された筒状部材101内に長手方向に沿って、一対、すなわち、2本の導体102が設置されている。これらの2本の導体102は、導体102間で放電しない程度の距離をおいて、筒状部材101内の中心部に設置されている。
【0007】
また、筒状部材101内には、液体ヘリウム槽から蒸発したヘリウムガス103が流される。このヘリウムガス103は、臨界温度以下に保持される超電導コイルと接続された電流リード100の低温側から室温に設置された電源と接続された電流リード100の高温側に向かって流れる。ヘリウムガス103の流量は、電流リード100の高温側に設けられた流量調整バルブで調整される。
【0008】
【特許文献1】
特開平8−153547号公報
【0009】
【発明が解決しようとする課題】
近年開発が行われている超電導マグネット装置の中には、複数の超電導コイルで構成されるものがある。特に、加速器に使用される超電導マグネット装置は、粒子軌道補正のため2極や4極の超電導コイルで構成されている。これらの2極や4極の超電導コイルは、中性子遮蔽の観点から放射線管理区域に設置されるため構成機器の大きさが制限される。
【0010】
しかしながら、2極の超電導コイルの電流リードとして、従来のガス冷却式の電流リードを用いた場合、個々の超電導コイルに対し2本の電流リードが必要となり、電流リードの設置スペースがさらに必要になるという問題があった。
【0011】
複数の超電導コイルが設置された場合には、それぞれの超電導コイルのコイル電流定格値が異なるために、各電流リードに発生するジュール熱量が異なることがあった。このように、電流リードに発生するジュール熱量が異なることにより、例えば、発生するジュール熱量の大きい電流リードでは、内部を流れるヘリウムガスなどの冷却ガスの温度が、その熱量によって上昇し、これに伴って体積も増加する。そのため、ヘリウムガスなどの冷却ガスは、発生するジュール熱量の大きい電流リードには流入し難くなり、一方、温度が低い、すなわち通電電流値が小さい電流リードに多く流入するようになる。これによって、個々の電流リードには、温度差が生じ、個々の電流リードを均等に冷却することが難しいという問題があった。
【0012】
また、実際の超電導コイルの運転モードにより、通電しない超電導コイルがある場合にも、上述した理由から無通電の超電導コイルに接続された電流リードに、冷却ガスが多く流入し、個々の電流リードを均等に冷却することが難しいという問題があった。
【0013】
そこで本発明は、このような課題を解決するためになされたもので、複数の超電導コイルに接続される3本以上の導体を、通電の有無に係らず同時に均等に冷却することができ、さらに、電流リードの設置空間を減少させることができる電流リードを提供することを目的とする。
【0014】
【課題を解決するための手段】
上記目的を達成するために、本発明の電流リードは、内部に冷媒が流れる筒状部材と、前記筒状部材内に配設された電気導体と、前記筒状部材内の前記冷媒の流れを、前記筒状部材の軸と異なる方向への冷媒の流れを形成する流れ制御手段とを具備することを特徴とする。
【0015】
また、流れ制御手段は、冷媒が通過する第1の通過口が形成された第1の板と、第1の板の第1の通過口と対向しない位置に第2の通過口が形成された第2の板とを具備している。ここで、通過口は、板の表から裏へ冷媒の通過が可能ならば、その形状は限定されず、例えば、切り欠き、開口などで形成される。
【0016】
この電流リードによれば、1つの筒状部材内に、複数の電気導体を収容し、かつ、冷却ガスによって、複数の電気導体を同時に均等に冷却することができる。また、複数の電気導体を収容することができ、この電流リードが設置される、例えば、超電導マグネット装置において電流リードの占める設置空間の割合を減少させることができるので、電流リードが設置される装置などのコンパクト化を図ることができる。
【0017】
また、本発明の電流リードは、内部に冷媒が流れる筒状部材と、前記筒状部材内に、前記筒状部材の軸方向に対して傾斜して配設された電気導体とを具備することを特徴とする。ここで、電気導体が、外形が柱状の第2の筒状部材の側面に巻きつけられて、前記筒状部材の内部に配置されてもよい。
【0018】
この電流リードによれば、1つの筒状部材内に、複数の電気導体を収容し、かつ、冷却ガスによって、複数の電気導体を同時に斑なく均等に冷却することができる。また、電気導体を軸方向に沿って直線的に設置するより、電気導体の冷却距離を長くすることができるので、電気導体の冷却を促進することができる。
【0019】
さらに、本発明の電流リードは、少なくとも内壁面が電気絶縁材料で構成された外管と、冷媒が通過する開口部を有し、前記外管の内壁面に対応するように、前記外管内に外周が配設された金属板と、前記外管の軸に沿って、前記外管内の前記開口部と異なる箇所に、前記金属板を貫通して設置された電気導体とを具備することを特徴とする。
【0020】
この電流リードによれば、1つの外管内に、複数の電気導体を収容し、かつ、冷却ガスによって、電気導体と冷却ガスが接触することなく、間接的に複数の電気導体を同時に均等に冷却することができる。また、複数の電気導体を収容することができ、この電流リードが設置される、例えば、超電導マグネット装置において電流リードの占める設置空間の割合を減少させることができるので、電流リードが設置される装置などのコンパクト化を図ることができる。
【0021】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態について説明する。
【0022】
(第1の実施の形態)
本発明の第1の実施の形態の電流リード1の概要を図1および図2を参照して説明する。図1は、第1の実施の形態の電流リード1の軸方向の断面図を示す。また、図2は、電流リード1の冷却ガス6の流入方向からの平面図を示す。
第1の実施の形態の電流リード1は、導体2、筒状部材3、絶縁板4で主に構成されている。
【0023】
導体2は、良電導性の材料で構成され、その材料には、例えば、銅、黄銅などの銅合金などが用いられる。また、導体2は、断面が円、楕円または多角形などの柱体または筒体である。電流リード1が、例えば、超電導マグネット装置などに用いられる場合には、電流リード1の一端は、例えば、超電導コイルに、他端は、電源に接続される。
【0024】
筒状部材3は、電気絶縁材である繊維強化プラスチック(FRP)などで構成され、両端面が開口された筒形状を有している。図2に示された第1の実施の形態の電流リード1における筒状部材3は、断面形状が円筒形状をなしているが、この形状に限るものではなく、楕円または多角形などの断面形状で構成されてもよい。
【0025】
また、筒状部材3は、筒状の導電性の材料の内壁面を、樹脂などの電気絶縁材で被覆されたものでもよい。さらに、導体2と放電をおこさない程度に、筒状部材3と導体2との距離が保持されれば、筒状の導電性の材料の内壁面を、電気絶縁材で被覆わずに構成することもできる。
【0026】
絶縁板4は、電気絶縁材である繊維強化プラスチック(FRP)などで構成され、絶縁板4の縁部の一部に切り欠き部5が形成されている。この絶縁板4に形成された切り欠き部5によって、冷却ガス6を絶縁板4の一方の面側から他方の面側に通過せることができる。
【0027】
切り欠き部5の形状は、図2に示されるような3辺を直線で構成した形状に限るのではなく、3辺を曲線で構成したもの、複数のスリットで構成したもの、複数の小さい孔で構成したものなど、冷却ガス6を絶縁板4の一方の面側から他方の面側に通過せることができる構成ならばよい。また、絶縁板4の形状は、絶縁板4が接続される筒状部材3の内側断面の形状に対応させて構成することができる。
【0028】
図1および2に示されるように、第1の実施の形態の電流リード1では、筒状部材3内に、筒状部材3の軸方向(図1では、筒状部材3の長手方向である上下方向)に、複数の絶縁板4が所定の間隔をおいて設けられている。
【0029】
また、絶縁板4は、絶縁板4に形成された切り欠き部5が、隣りの絶縁板4に形成された切り欠き部5と筒状部材3の中心軸に対して対称な位置、つまり、中心軸に対して180°回転した位置になるように設置されることが好ましいが、中心軸に対して135°以上 225°以下の回転した位置に設置されていればよい。この範囲内に隣りの絶縁板4に切り欠き部5を形成することで、冷却ガス6が絶縁板4上を横切る領域を広くとることができ、導体2を均等に冷却することができる。
【0030】
また、4本の導体2が、筒状部材3の内径に沿って、絶縁距離以上の間隔をおいて配列され、筒状部材3に軸方向に絶縁板4を貫通して設置されている。ここで、絶縁距離とは、各導体間で放電を生じない距離をいい、印加される電圧範囲で放電を生じない距離に設定されている。また、図2に示されるように、導体2は、切り欠き部5を含む筒状部材3の内径に沿って配列されることが好ましいが、これに限るものではない。
【0031】
なお、ここでは、2対、つまり4本の導体2が設置された一例が示されているが、さらに多くの導体2を設置することもできる。この場合には、導体2は、筒状部材3の内径に沿ってのみ配列されることはなく、筒状部材3の断面に渡って、各導体2との間を絶縁距離以上の間隔をおいて配列される。
【0032】
液体ヘリウムなどの冷媒を有する冷媒槽から蒸発した冷却ガス6は、筒状部材3の内に複数段形成された絶縁板4の冷媒槽側の切り欠き部5から筒状部材3の内に流入する。筒状部材3の内に流入した冷却ガス6は、図1の矢印で示されるように、導体2を横切りながら冷却し、各絶縁板4の切り欠き部5を通過して、筒状部材3内を冷媒槽側から電源側(図1では下から上)に向かってジグザクに流れる。
【0033】
なお、冷却ガス6の電流リード1からの出口は、1箇所であるため、冷却ガス6の流量は、電流リード1の一端が接続される電源側に設けられた流量調整バルブ(図示しない)で、一括して調整される。
【0034】
本発明の第1の実施の形態の電流リード1では、1つの筒状部材3内に、複数の超電導コイルに接続される複数の導体2を収容し、かつ、冷却ガス6によって、複数の導体2を同時に均等に冷却することができる。
【0035】
また、電流リード1では、複数の超電導コイルに接続される複数の導体2を収容することができ、この電流リード1が設置される、例えば、超電導マグネット装置において電流リード1の占める設置空間の割合を減少させることができるので、電流リード1が設置される装置などのコンパクト化を図ることができる。
【0036】
また、図3に、電流リード1の導体2の他の構成例を示す。
図3に示された導体2の表面には、電気絶縁材による絶縁膜7が形成されている。この絶縁膜を形成する材料は、熱伝導率の大きい材料であることが好ましい。
【0037】
超電導コイルは高電流化、高電圧化の傾向にあるため、複数の超電導コイルに接続される電流リード1の導体2は、その電圧に応じて絶縁距離をとる必要があり、電圧値が高くなれば距離も十分に長くとらなければならない。この場合、電流リード本体が大きくなり、設置空間の減少を図ることは難しいが、本実施の形態のように、導体2の表面に絶縁膜7を形成することによって、各導体2間の距離を小さくすることができる。これによって、電流リード本体を小さくすることができ、設置空間の減少を図ることができる。また、電流リード本体を大きくすることなく、電流リード1内の導体2の本数を増やすことができる。
【0038】
(第2の実施の形態)
本発明の第2の実施の形態の電流リード10の概要を図4乃至9を参照して説明する。図4は、第2の実施の形態の電流リード10の軸方向の断面図を示す。また、図5は、電流リード10の冷却ガス6の流入方向からの平面図を示す。さらに、図6乃至9は、それぞれ図4に示した電流リード10のA−A断面図、B−B断面図、C−C断面図、D−D断面図を示す。なお、第1の実施の形態の電流リード1の構成と同一部分には同一符号を付して、重複する説明を省略する。
【0039】
第2の実施の形態の電流リード10は、導体2、筒状部材3、絶縁板11、筒状仕切り部13、板状仕切り部14で主に構成されている。
【0040】
絶縁板11a、11b、11c、11dは、電気絶縁材である繊維強化プラスチック(FRP)などで構成され、絶縁板11a、11b、11c、11dの縁部の一部に切り欠き部12a、12b、12c、12dが形成されている。この絶縁板11a、11b、11c、11dに形成された切り欠き部12a、12b、12c、12dによって、冷却ガス6を絶縁板11a、11b、11c、11dの一方の面側から他方の面側に通過せることができる。
【0041】
また、切り欠き部12a、12b、12c、12dは、導体2が挿入されたときにその導体2の周囲から冷却ガス6が流れ出すことができる程度の開口面積を有している。
【0042】
切り欠き部12a、12b、12c、12dの形状は、図5乃至9に示されるような楕円形状に限るものではなく、円形、多角形などの形状で構成されたもの、導体2を挿入できるスペースを切り欠き、その周囲に多数の孔が構成されたものなどでもよい。また、絶縁板11a、11b、11c、11dの形状は、絶縁板11a、11b、11c、11dが接続される筒状部材3の内側断面の形状に対応させて構成することができる。
【0043】
筒状仕切り部13は、図6乃至9に示すように、電気絶縁材からなる円筒体で構成され、筒状仕切り部13は、その中心を、絶縁板11a、11b、11c、11dの中心とほぼ一致させて、絶縁板11a、11b、11c、11d上に設置されている。また、筒状仕切り部13は、絶縁板11a、11b、11c、11dに形成された切り欠き部12a、12b、12c、12dにかからない程度の径で構成されている。
【0044】
さらに、筒状仕切り部13の高さは、絶縁板間の距離、つまり、例えば、絶縁板11aの場合には、絶縁板11aとその隣りの絶縁板11bとの間の距離に等しく構成され、筒状仕切り部13の一端は、絶縁板11bと接続される。また、筒状仕切り部13は、導体2との絶縁距離が十分にとれる場合には、金属で構成されてもよい。さらに、筒状仕切り部13の形状は、断面が円の筒体が好ましいが、それ以外にも断面が楕円、多角形などの筒体でもよい。
【0045】
板状仕切り部14a、14b、14c、14dは、電気絶縁材からなる板で構成されている。板状仕切り部14a、14b、14c、14dの一端は、筒状仕切り部13の軸方向に沿って、筒状仕切り部13の外壁に接続され、他端は、筒状部材3の内壁に接続されている。
【0046】
また、筒状仕切り部13の高さは、絶縁板間の距離、つまり、例えば、絶縁板11aの場合には、絶縁板11aとその隣りの絶縁板11bとの間の距離に等しく構成され、筒状仕切り部13の一端は、絶縁板11bと接続される。また、板状仕切り部14a、14b、14c、14dは、導体2との絶縁距離が十分にとれる場合には、金属で構成されてもよい。
【0047】
ここで、図6乃至9を参照して、第2の実施の形態の電流リード10の構成を説明する。
第2の実施の形態の電流リード10では、図4に示すように、筒状部材3内に、筒状部材3の軸方向に、複数の絶縁板11a、11b、11c、11dが所定の間隔をおいて設けられている。導体2は、筒状部材3の軸方向に複数の絶縁板11a、11b、11c、11dを貫通して配設されている。
【0048】
図6に示される筒状仕切り部13は、その中心を、絶縁板11aの中心とほぼ一致させて、絶縁板11a上に設置されている。4本の導体2は、筒状部材3と筒状仕切り部13との間に、筒状部材3に同心円的に等分に配設される。ここでは、4本の導体2の内1本の導体2が、絶縁板11aに形成された切り欠き部12aを通るように構成されているが、切り欠き部12aを導体2が通らないように構成してもよい。
【0049】
板状仕切り部14aは、切り欠き部12aを通る導体2と、その導体2の同心円上において隣に配設された2つの導体2のうち、その一方の導体2との間に配設され、筒状仕切り部13と筒状部材3に接続される。
【0050】
絶縁板11aの隣に配設される絶縁板11bは、絶縁板11aを筒状部材3の中心を基準に時計回りに90°回転したものである(図7)。
【0051】
また、絶縁板11bの隣に配設される絶縁板11cは、絶縁板11bを筒状部材3の中心を基準に時計回りに90°回転したものである(図8)。
【0052】
さらに、絶縁板11cの隣に配設される絶縁板11dは、絶縁板11cを筒状部材3の中心を基準に時計回りに90°回転したものである(図9)。
【0053】
このように構成された電流リード10において、絶縁板11aに形成された切り欠き部12aと導体2との間から流入した冷却ガス6は、筒状部材3、筒状仕切り部13、板状仕切り部14a、絶縁板11aおよび絶縁板11bによって形成される流路に沿って流れる。ここで、冷却ガス6は、流路の一部が板状仕切り部14aによって仕切られているので、切り欠き部12aから直接的に切り欠き部12bに流れることはなく、絶縁板11a上を回転し、4本の導体2を冷却して切り欠き部12bに流入する。
【0054】
続いて、冷却ガス6は、絶縁板11bに形成された切り欠き部12bと導体2との間から、筒状部材3、筒状仕切り部13、板状仕切り部14b、絶縁板11bおよび絶縁板11cによって形成される流路に流入する。
【0055】
さらに、絶縁板11bと絶縁板11cとの間の流路を通過した冷却ガス6は、絶縁板11cに形成された切り欠き部12cと導体2との間から、筒状部材3、筒状仕切り部13、板状仕切り部14c、絶縁板11cおよび絶縁板11dによって形成される流路に流入する。
【0056】
このように、絶縁板11aに形成された切り欠き部12aと導体2との間から流入した冷却ガス6は、2つの絶縁板、筒状部材3、筒状仕切り部13、板状仕切り部で構成される流路を、導体2を冷却しながら筒状部材3内を冷媒槽側から電源側(図4では下から上)に向かって絶縁板の円周に沿って螺旋状に流れる。なお、冷却ガス6の電流リード10からの出口は、1箇所であるため、冷却ガス6の流量は、電流リード10の一端が接続される電源側に設けられた流量調整バルブ(図示しない)で、一括して調整される。
【0057】
なお、ここでは、2対、つまり4本の導体2が設置された例が示されているが、導体2間の絶縁距離が保持されれば、さらに多くの導体2を設置することもできる。また、導体2の表面に、電気絶縁材による絶縁膜を形成してもよい。導体2の表面に絶縁膜を形成することによって、各導体2間の距離を小さく構成することができ、電流リード本体を大きくすることなく、電流リード10内の導体2の本数を増やすことができる。
【0058】
さらに、図6乃至9に示すように、連続する絶縁板11a、11b、11c、11dに形成される切り欠き部は、筒状部材3の中心を基準に90°ずつずれた位置に形成されているが、この構成に限るものではない。例えば、絶縁板11aと絶縁板11bに形成される切り欠き部を対向する位置に形成し、絶縁板11aの切り欠き部12aから流出する冷却ガス6と絶縁板11bの切り欠き部12bに流入する冷却ガス6とを仕切るように、絶縁板11aと絶縁板11bとの間に筒状部材3の中心に対して傾けて板状仕切り部14aを設置してもよい。これによって、冷却ガス6が絶縁板上をほぼ360°回転しながら導体2を冷却することができる。
【0059】
本発明の第2の実施の形態の電流リード10では、1つの筒状部材3内に、複数の超電導コイルに接続される複数の導体2を収容し、かつ、冷却ガス6によって、複数の導体2を同時に均等に冷却することができる。また、電流リード10では、複数の超電導コイルに接続される複数の導体2を収容することができ、この電流リード10が設置される、例えば、超電導マグネット装置において電流リード10の占める設置空間の割合を減少させることができるので、電流リード10が設置される装置などのコンパクト化を図ることができる。
【0060】
さらに、冷却ガス6は、電流リード10内を絶縁板11a、11b、11c、11dの円周に沿って螺旋状に流れるので、斑なく複数の導体2を同時に均等に冷却することができる。
【0061】
また、電流リード10の冷却ガス6の流れる流路は、筒状部材3、筒状仕切り部13、板状仕切り部14a、絶縁板11aおよび絶縁板11bによって形成されているため、電流リード10の冷却ガス6の流れる流路断面積は、例えば、図17に示す従来の電流リード100の冷却ガス103の流れる流路断面積と比べて小さい。これによって、電流リード10の流路を流れる冷却ガス6の流速は、電流リード100の流路を流れる冷却ガス103の流速より大きくなるため、電流リード10では、冷却ガス6と導体2との熱伝達を促進することができる。
【0062】
また、図10に、電流リード10の他の構成例を示す。
図10に示された電流リード10では、図5に示す導体2の代わりに、複数の細い柱状の導体15を束ねた導体群16で構成されている。導体群16を構成する各導体15の断面積の加算値は、図5に示す1つの導体2の断面積と同じになるように構成されている。また、導体15の形状は、柱体に限らず、パイプなどの筒体でもよい。筒体の場合も、筒体の断面積の加算値は、図5に示す1つの導体2の断面積と同じになるように構成される。
【0063】
導体群16では、導体2の場合よりも、側面において冷却ガス6との接触表面積が大きくなるので、冷却ガス6と導体群16との間の熱伝達が促進され、上記導体2を用いた場合の作用効果に加え、導体群16の冷却効率を向上させることができる。
【0064】
さらに、図11に、電流リード10の導体の他の構成例の断面を示す。
【0065】
図11に示された電流リード10では、図5に示す導体2の代わりに、導体2の側面にスリットが形成されたスリット付導体17で構成されている。スリット付導体17の断面積は、図5に示す1つの導体2の断面積と同じになるように構成されている。ここで、導体2の側面に形成されるのはスリットに限らず、導体2の側面積を増加させる構成ならよく、例えば、切り欠き、バッフルなどを設けることもできる。
【0066】
スリット付導体17では、導体2の場合よりも、側面において冷却ガス6との接触表面積が大きくなるので、冷却ガス6とスリット付導体17との間の熱伝達が促進され、上記導体2を用いた場合の作用効果に加え、スリット付導体17の冷却効率を向上させることができる。
【0067】
さらに、図12に、電流リード10の導体の他の構成例の斜視図を示す。また、図13に、電流リード10の導体の他の構成例の断面図を示す。
【0068】
図12および13に示された電流リード10では、図5に示す柱体の導体2の代わりに、筒体の導体18が用いられている。導体18の中央の貫通部の少なくとも一部に、温度、電圧などを測定するための計測線19が固着されている。また、導体18の中央の貫通部は、計測線19が固着されることによって閉鎖される。一端が固着された計測線19は、導体18内に沿わして電源側に設けられた計測ポート(図示しない)から各測定器に配線される。なお、導体18内に沿って配線される計測線19の側面は、電気絶縁材の絶縁膜19aで覆われている。
【0069】
導体18内の所定の位置に計測線19を固着することで、その固着された位置における導体18の温度や電圧を測定することができる。また、計測線19が固着された部分で、導体18の貫通部が閉鎖されるので、冷却ガス6が導体18を介して外部に流出することはない。
【0070】
なお、導体群16、スリット付導体17、計測線19を有する筒体の導体18は、第1の実施の形態の電流リード1の導体2の代わりに用いられることもできる。
【0071】
(第3の実施の形態)
本発明の第3の実施の形態の電流リード20の概要を図14を参照して説明する。図14は、第3の実施の形態の電流リード20の軸方向の断面図を示す。なお、第1および2の実施の形態の電流リードの構成と同一部分には同一符号を付して、重複する説明を省略する。
【0072】
第3の実施の形態の電流リード20は、筒状部材3、導体21、絶縁芯部材22で主に構成されている。
【0073】
導体21は、良電導性の材料で構成され、その材料には、例えば、銅、黄銅などの銅合金などが用いられる。また、導体21は、断面が円、楕円または多角形などの柱体または筒体である。
【0074】
絶縁芯部材22は、筒体または柱体の形状をなし、電気絶縁材である繊維強化プラスチック(FRP)などで構成されている。
【0075】
図14に示すように、電流リード20では、複数の導体21が、絶縁芯部材22の表面に螺旋状に巻きつけられて設置されている。また、複数の導体21が螺旋状に巻きつけられた絶縁芯部材22は、筒状部材3の中に設置されている。冷却ガス6は、筒状部材3と複数の導体21が螺旋状に巻きつけられた絶縁芯部材22との間を、冷媒槽側から電源側(図14では下から上)に向かって流れる。また、冷却ガス6の一部は、絶縁芯部材22に螺旋状に巻きつけられた導体21間を流れる。ここで、導体21の表面に、電気絶縁材による絶縁膜が形成されてもよい。
【0076】
ここでは、筒状部材3の内壁に絶縁芯部材22に螺旋状に巻きつけられた導体21が接するように設置されてもよい。この場合には、冷却ガス6は、絶縁芯部材22に螺旋状に巻きつけられた導体21、筒状部材3、絶縁芯部材22とで形成される流路を流れる。
【0077】
なお、冷却ガス6の電流リード20からの出口は、1箇所であるため、冷却ガス6の流量は、電流リード20の一端が接続される電源側に設けられた流量調整バルブ(図示しない)で、一括して調整される。
【0078】
本発明の第3の実施の形態の電流リード20では、1つの筒状部材3内に、複数の超電導コイルに接続される複数の導体21を収容し、かつ、冷却ガス6によって、複数の導体21を同時に均等に冷却することができる。
【0079】
また、電流リード20では、複数の超電導コイルに接続される複数の導体21を収容することができ、この電流リード20が設置される、例えば、超電導マグネット装置において電流リード20の占める設置空間の割合を減少させることができるので、電流リード20が設置される装置などのコンパクト化を図ることができる。
【0080】
さらに、導体21が、絶縁芯部材22の表面に螺旋状に巻きつけられて設置されるので、導体を直線的に設置するより、導体の冷却距離を長くすることができ、導体21の冷却を促進することができる。
【0081】
また、冷却ガス6は、筒状部材3と複数の導体21が螺旋状に巻きつけられた絶縁芯部材22との間を流れ、その一部は、絶縁芯部材22に螺旋状に巻きつけられた導体21間を流れるので、斑なく複数の導体21を同時に均等に冷却することができる。
【0082】
また、電流リード20の冷却ガス6の流れる流路断面積は、例えば、図17に示す従来の電流リード100の冷却ガス103の流れる流路断面積と比べて小さい。これによって、電流リード20の流路を流れる冷却ガス6の流速は、電流リード100の流路を流れる冷却ガス103の流速より大きくなるため、電流リード20では、冷却ガス6と導体21との熱伝達を促進することができる。
【0083】
(第4の実施の形態)
本発明の第4の実施の形態の電流リード30の概要を図15および16を参照して説明する。図15は、第4の実施の形態の電流リード30の軸方向の断面図を示す。また、図16は、電流リード30の冷却ガス6の流入方向からの平面図を示す。なお、第1乃至3の実施の形態の電流リードの構成と同一部分には同一符号を付して、重複する説明を省略する。
【0084】
第4の実施の形態の電流リード30は、導体2、筒状部材3、金属板31、流路筒体32で主に構成されている。
【0085】
金属板31は、熱伝導率の大きな材料で構成され、その材料には、例えば、銅、銅合金、アルミニウムなどが用いられる。金属板31の中央には、流路筒体32を貫通させるための孔が開けられている。また、金属板31の中央に開けられた孔と同心円的に導体2を貫通させるための孔が開けられている。導体2を貫通させるための孔の壁部には、導体2と電気的に絶縁するため絶縁膜33が形成されている。この絶縁膜33を形成する材料は、熱伝導率の大きい材料であることが好ましい。なお、金属板31の形状は、金属板31が接する筒状部材3の内側断面の形状に対応させて構成することができる。
【0086】
流路筒体32は、熱伝導率の大きな材料で構成された円筒体であり、その材料には、例えば、銅、銅合金、アルミニウムなどが用いられる。流路筒体32は、筒状部材3の軸方向に、金属板31の中央に開けられた孔を貫通している。なお、流路筒体32は円筒体以外にも、断面が楕円、多角形などの形状を有する筒体で構成されてもよい。また、流路筒体32を設けないで、電流リード30を構成することもできる。
【0087】
図15および16に示されるように、第1の実施の形態の電流リード30では、筒状部材3内に、筒状部材3の軸方向(図15では、筒状部材3の長手方向である上下方向)に、複数の金属板31が所定の間隔をおいて設けられている。
【0088】
4本の導体2が、金属板31に中央に開けられた孔と同心円的に開けられた孔を貫通し、その孔に接して筒状部材3の軸方向に設置されている。金属板31が貫通する孔の壁部は、絶縁膜33が形成されているため、導体2から金属板31に電流が流れることはないが、金属板31と導体2との絶縁をさらに強化するため、導体2の側面に絶縁膜を形成することもできる。
また、流路筒体32が、金属板31の中央に開けられた孔を貫通し、その孔にに接して設置されている。
【0089】
なお、ここでは、2対、つまり4本の導体2が設置された一例が示されているが、さらに多くの導体2を設置することもできる。
【0090】
液体ヘリウムなどの冷媒を有する冷媒槽から蒸発した冷却ガス6は、筒状部材3の内の流路筒体32に流入する。流路筒体32に流入した冷却ガス6は、流路筒体32内を筒状部材3の軸方向に流れる間に、熱伝達によって流路筒体32を冷却する。流路筒体32が冷却されると、熱伝導によって、導体2の熱が金属板31を介して流路筒体32に伝えられる。流路筒体32に伝えられた熱は、冷却ガス6に熱伝達によって熱が伝えられる。このような熱移動によって、導体2が冷却される。
【0091】
また、流路筒体32の内壁には、流路筒体32と冷却ガス6との間の熱交換を促進するために、フィンなどを設け表面積を増加せることもできる。なお、冷却ガス6の電流リード30からの出口は、1箇所であるため、冷却ガス6の流量は、電流リード1の一端が接続される電源側に設けられた流量調整バルブ(図示しない)で、一括して調整される。また、電流リード30の導体2の代わりに、前述した導体群16、スリット付導体17、計測線19を有する筒体の導体18を用いることもできる。
【0092】
本発明の第4の実施の形態の電流リード30では、1つの筒状部材3内に、複数の超電導コイルに接続される複数の導体2を収容し、かつ、冷却ガス6によって、導体2と冷却ガス6が接触することなく、間接的に複数の導体2を同時に均等に冷却することができる。
【0093】
また、電流リード30では、複数の超電導コイルに接続される複数の導体2を収容することができ、この電流リード30が設置される、例えば、超電導マグネット装置において電流リード30の占める設置空間の割合を減少させることができるので、電流リード30が設置される装置などのコンパクト化を図ることができる。
【0094】
【発明の効果】
本発明の電流リードによれば、複数の超電導コイルに接続される3本以上の導体を、通電の有無に係らず同時に均等に冷却することができ、さらに、電流リードの設置空間を減少させることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の電流リードの断面図。
【図2】第1の実施の形態の電流リードの冷却ガスの流入方向からの平面図。
【図3】第1の実施の形態の電流リードにおける導体の他の構成例を示す断面図。
【図4】本発明の第2の実施の形態の電流リードの断面図。
【図5】第2の実施の形態の電流リードの冷却ガスの流入方向からの平面図。
【図6】第2の実施の形態の電流リードのA−A断面図。
【図7】第2の実施の形態の電流リードのB−B断面図。
【図8】第2の実施の形態の電流リードのC−C断面図。
【図9】第2の実施の形態の電流リードのD−D断面図。
【図10】第2の実施の形態の電流リードの他の構成例を示す断面図。
【図11】第2の実施の形態の電流リードの導体の他の構成例を示す断面図。
【図12】第2の実施の形態の電流リードの導体の他の構成例の斜視図。
【図13】第2の実施の形態の電流リードの導体の他の構成例の断面図。
【図14】本発明の第3の実施の形態の電流リードの断面図。
【図15】本発明の第4の実施の形態の電流リードの断面図。
【図16】第4の実施の形態の電流リードの冷却ガスの流入方向からの平面図。
【図17】従来の代表的なガス冷却式の電流リードの断面図。
【図18】従来の代表的なガス冷却式の電流リードにおけるヘリウムガスの流入方向からの平面図。
【符号の説明】
1…電流リード
2…導体
3…筒状部材
4…絶縁板
5…切り欠き部
6…冷却ガス

Claims (11)

  1. 内部に冷媒が流れる筒状部材と、
    前記筒状部材内に配設された電気導体と、
    前記筒状部材内の前記冷媒の流れを、前記筒状部材の軸方向と異なる方向へ変える流れ制御手段と
    を具備することを特徴とする電流リード。
  2. 前記流れ制御手段が、
    冷媒が通過する第1の通過口が形成された第1の板と、前記第1の板の第1の通過口と対向しない位置に第2の通過口が形成された第2の板とを具備することを特徴とする請求項1記載の電流リード。
  3. 前記流れ制御手段が、
    冷媒が通過する第3の通過口が形成された第3の板と、第4の通過口が形成された第4の板と、前記第3の通過口から流出した前記冷媒が直接的に前記第4の通過口に流入するのを制限する流れ制限部とを具備することを特徴とする請求項1記載の電流リード。
  4. 内部に冷媒が流れる筒状部材と、
    前記筒状部材内に、前記筒状部材の軸方向に対して傾斜して配設された電気導体と
    を具備することを特徴とする電流リード。
  5. 前記電気導体が、
    外形が柱状の第2の筒状部材の側面に巻きつけられて、前記筒状部材の内部に配置されることを特徴とする請求項4記載の電流リード。
  6. 少なくとも内壁面が電気絶縁材料で構成された外管と、
    冷媒が通過する開口部を有し、前記外管の内壁面に対応するように、前記外管内に外周が配設された金属板と、
    前記外管の軸に沿って、前記外管内の前記開口部と異なる箇所に、前記金属板を貫通して設置された電気導体と
    を具備することを特徴とする電流リード。
  7. 前記開口部の内部に側面が接するように挿入された金属筒状部材をさらに具備することを特徴とする請求項6記載の電流リード。
  8. 前記電気導体が、
    複数の柱状または筒状の電気導体で構成されたとこを特徴とする請求項1乃至7のいずれか1項記載の電流リード。
  9. 前記電気導体の側面が、
    凹凸形状をなしていることを特徴とする請求項1乃至7のいずれか1項記載の電流リード。
  10. 前記電気導体の側面に、
    電気絶縁膜が形成されていることを特徴とする請求項1乃至7のいずれか1項記載の電流リード。
  11. 前記電気導体が、
    前記電気導体の内部の所定の位置に一端が接続され、電気的に絶縁されて前記電気導体の内部を経由して、他端が前記電気導体の一端から外部に引き出される測定線を具備してなることを特徴とする請求項1乃至7のいずれか1項記載の電流リード。
JP2002371529A 2002-12-24 2002-12-24 電流リード Expired - Fee Related JP4270858B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002371529A JP4270858B2 (ja) 2002-12-24 2002-12-24 電流リード

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002371529A JP4270858B2 (ja) 2002-12-24 2002-12-24 電流リード

Publications (2)

Publication Number Publication Date
JP2004207305A true JP2004207305A (ja) 2004-07-22
JP4270858B2 JP4270858B2 (ja) 2009-06-03

Family

ID=32810389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002371529A Expired - Fee Related JP4270858B2 (ja) 2002-12-24 2002-12-24 電流リード

Country Status (1)

Country Link
JP (1) JP4270858B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109786063A (zh) * 2019-01-07 2019-05-21 中国科学院合肥物质科学研究院 一种超导限流器中超导线圈接头连接装置
JP2020061278A (ja) * 2018-10-10 2020-04-16 株式会社フジクラ 給電コネクタ、およびケーブル付き給電コネクタ、ならびに給電コネクタの製造方法
JP7477959B2 (ja) 2019-11-12 2024-05-02 住友重機械工業株式会社 超電導コイル装置、および超電導コイルの電流リード構造

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020061278A (ja) * 2018-10-10 2020-04-16 株式会社フジクラ 給電コネクタ、およびケーブル付き給電コネクタ、ならびに給電コネクタの製造方法
JP7178858B2 (ja) 2018-10-10 2022-11-28 株式会社フジクラ ケーブル付き給電コネクタ
CN109786063A (zh) * 2019-01-07 2019-05-21 中国科学院合肥物质科学研究院 一种超导限流器中超导线圈接头连接装置
CN109786063B (zh) * 2019-01-07 2021-01-12 中国科学院合肥物质科学研究院 一种超导限流器中超导线圈接头连接装置
JP7477959B2 (ja) 2019-11-12 2024-05-02 住友重機械工業株式会社 超電導コイル装置、および超電導コイルの電流リード構造

Also Published As

Publication number Publication date
JP4270858B2 (ja) 2009-06-03

Similar Documents

Publication Publication Date Title
US12051951B2 (en) Cooling arrangements in devices or components with windings
US7129808B2 (en) Core cooling for electrical components
US6741152B1 (en) Directly cooled magnetic coil, particularly a gradient coil, and method for manufacturing conductors therefor
US6236207B1 (en) Coil system for magnetic resonance systems with integrated cooling unit
KR20120127271A (ko) 초전도 케이블 유닛용 접촉요소
US6838968B2 (en) Transformer with forced liquid coolant
US20130300526A1 (en) Cooling system for dry transformers
KR100717350B1 (ko) 무유도 권선형 솔레노이드 보빈
US11041923B2 (en) Directly coolable multifilament conductor
JP4270858B2 (ja) 電流リード
JP3119995B2 (ja) 静止誘導機器巻線の冷却構造
JPH08504300A (ja) 超伝導に用いる冷却タンクのガス冷却ブッシュ
JPH0510809B2 (ja)
JPH0669048A (ja) 変圧器接続リード線装置
CN114255959B (zh) 一种多极电磁铁
KR20130021495A (ko) 공랭식 고정자코일 냉각장치
JP3174577B2 (ja) 超伝導巻線の各ストランド間の電流分配
KR100368458B1 (ko) 초전도 에너지 저장 장치용 초전도 마그네트 장치
JPS6022487B2 (ja) 磁場発生装置
JPH0656902B2 (ja) 超電導装置
JP2000013982A (ja) 電力ケーブル用油浸絶縁終端箱
JPH0439908A (ja) 電流リード
JPH04340206A (ja) ガス冷却式電流リード
Knoopers et al. The superconducting extraction magnet system EMC2 for the AGOR cyclotron
JPH0546711B2 (ja)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees