JP2004207015A - Electroluminescent lamp and its manufacturing method - Google Patents

Electroluminescent lamp and its manufacturing method Download PDF

Info

Publication number
JP2004207015A
JP2004207015A JP2002374238A JP2002374238A JP2004207015A JP 2004207015 A JP2004207015 A JP 2004207015A JP 2002374238 A JP2002374238 A JP 2002374238A JP 2002374238 A JP2002374238 A JP 2002374238A JP 2004207015 A JP2004207015 A JP 2004207015A
Authority
JP
Japan
Prior art keywords
electroluminescent lamp
transparent
insulating layer
layer
base film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002374238A
Other languages
Japanese (ja)
Inventor
Naoyuki Mori
尚之 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Original Assignee
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Manufacturing Co Ltd, Kansai Nippon Electric Co Ltd filed Critical Renesas Semiconductor Manufacturing Co Ltd
Priority to JP2002374238A priority Critical patent/JP2004207015A/en
Publication of JP2004207015A publication Critical patent/JP2004207015A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultra-thin electroluminescent lamp and its manufacturing method with excellent productivity wherein an insulating characteristic and mechanical strength sufficient for practical use are secured. <P>SOLUTION: A transparent insulating layer 2 made of thermosetting resin, a transparent electrode 3, a light emission layer 6, a reflective insulation layer 7, a rear electrode 8 and a protective layer 9 are formed on a bright film 1. Then, the bright film 1 is peeled off from the transparent insulating layer 2 to obtain a substrate-less electroluminescent lamp 10. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は電界発光灯及びその製造方法に関し、特に基材フィルムを不要とした超薄型の電界発光灯及びその製造方法に関するものである。
【0002】
【従来の技術】
近年、情報化社会の進展に伴ない携帯電話、PHS等の携帯型電子機器が急速に普及している。これらの電子機器は液晶ディスプレイを搭載しており、バックライトとして小型・薄型の電界発光灯を使用している。
【0003】
このような電界発光灯30は、例えば図3の要部拡大断面図に示す構造を有し、次のようにして製造される。先ず、基材フィルムとして、厚さ100〜200μmのPET等からなる絶縁性の透明フィルム21の片面に、蒸着、スパッタ等でITO(酸化インジウム錫)などの導電性金属酸化物からなる透明電極22を30〜50nmの厚さに形成する。次に、硫化亜鉛を銅で付活した蛍光体23a(中心粒径(メジアン径)20〜30μm)と、フッ素ゴム(比重約1.8)等からなる樹脂23bとを有機溶剤(例えば、イソホロン)中に分散させた発光層用インキを用いて、透明電極22上にスクリーン印刷により発光層23を30〜50μmの厚さに形成する。次に、発光層23上に、チタン酸バリウムからなる白色高誘電体粉末と、フッ素ゴムとを有機溶剤(例えば、イソホロン)中に分散させた反射絶縁層用インキを用いて、スクリーン印刷により反射絶縁層24を10〜20μmの厚さに形成する。次に、反射絶縁層24上に、銀やカーボンを含む導電ペーストからなる裏面電極25をスクリーン印刷で10〜20μmの厚さに形成する。最後に、裏面電極25上に、メラミン樹脂、フェノール樹脂、エポキシ樹脂等の絶縁性樹脂からなる保護層26をスクリーン印刷で10〜20μmの厚さに形成し、電界発光灯30を得る。
【0004】
上記電界発光灯30を点灯するには、透明電極22と裏面電極25に交流電圧を印加すると、発光層23に高電界がかかる。発光層23中の蛍光体23aが発光し、透明電極22側より光が取り出される。
【0005】
このように形成された従来の電界発光灯30は、総厚160〜310μm程度になるが、その大部分は透明フィルム21であり、総厚の60〜70%を占める。
【0006】
この透明フィルム21の役割は、透明電極22〜保護層26の各層を印刷する際の支持体となることと、透明電極22の保護を兼ねることである。この透明フィルム21がなくなると、印刷時の支持が不安定になって容易にシワ等が発生して、印刷ムラなどの印刷不良を引き起こす。また、透明電極22に容易に傷や亀裂が入り、面方向の導電性を失い不発光となる等、電界発光灯30に致命的な問題を生じる。
【0007】
このような従来の電界発光灯30は一般的な光源に比べると極めて薄いものであるが、近年の電子機器の軽薄短小化や用途の自由度向上等によりさらに薄型の電界発光灯が要求されている。
【0008】
電界発光灯を薄型化する一つの方策として、特開平7−6876号公報に開示されているように支持体となる基材フィルム上に発光層、反射絶縁層、裏面電極を形成後、基材フィルムを剥離除去し、発光層上に透明電極を印刷する方法がある。
【0009】
これは、図4の製造工程を示す電界発光灯40の要部断面図に示すようにして製造される。先ず、PET、ポリエチレン等のシート状の支持体となる基材フィルム31上に蛍光体32aとPVA(ポリビニルアルコール)等の樹脂32bを混合して膜厚20〜50μmの発光層32を印刷形成し(図4(a))、乾燥炉で約30分乾燥させた後、発光層32上に膜厚5〜10μmの反射絶縁層33を印刷形成する(図4(b))。次に、反射絶縁層33上に膜厚5〜10μmの裏面電極34を印刷形成し、基材フィルム31上に積層体35を形成する(図4(c))。次に、積層体35から基材フィルム31を剥離除去し(図4(d))、発光層32の基材フィルム31の剥離側に膜厚2〜8μmの透明電極36を印刷形成して電界発光灯40を得るものである(図4(e))。これにより、100μm程度の膜厚を低減させることができる。
【0010】
【特許文献1】
特開平9−145627号公報(第2,3頁、0007段落〜0012段落、図3)
【0011】
【発明が解決しようとする課題】
しかし、上述した電界発光灯40では、基材フィルム31から積層体35を剥離除去する際、PET、ポリエチレン等からなる基材フィルム31とPVA等の樹脂からなる発光層32との剥離性が悪いため、積層体35が基材フィルム31からうまく剥がれないという問題があった。その結果、発光層32中の蛍光体32aが分離して電界発光灯40の発光特性を著しく低下させたり、生産性を低下させる原因になっていた。
【0012】
また、基材フィルム31を剥離除去した後の積層体35が約30〜70μmと薄いため保持が困難となり、その後、積層体35上に透明電極36を印刷する際、非常に取り扱い難いという問題があった。このような状態で印刷を行なうと、容易にシワ等が発生して、印刷ムラ等の印刷不良を引き起こす原因にもなっていた。
【0013】
また、電界発光灯40は裏面電極34と透明電極36が露出している状態であり、絶縁のために両側を保護フィルムで覆う必要があり、薄さのメリットが損なわれる、厚みが薄い故に強度的に弱い等の問題もあった。
【0014】
本発明は、上記の問題点を解決するために考えられたもので、生産性に優れると共に、実使用上十分な絶縁性及び機械的強度を確保した超薄型の電界発光灯及びその製造方法を提供することを目的とする。
【0015】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1記載の電界発光灯は、透明電極と裏面電極の間に発光層と反射絶縁層が形成されてなる電界発光灯であって、前記透明電極の前記発光層の反対側に透明絶縁層を形成することにより基材フィルムを不要としたことを特徴とする。本構成によれば、透明絶縁層が厚い基材フィルムの代替となるので、機械的強度や絶縁性を保持した超薄型の電界発光灯を容易に提供することができる。
【0016】
また、請求項2記載の電界発光灯は、請求項1記載の電界発光灯であって、前記透明絶縁層が熱硬化性の樹脂からなり、膜厚が5〜50μmであることを特徴とする。本構成によれば、さらに機械的強度や絶縁性を向上させた超薄型の電界発光灯を容易に提供することができる。
【0017】
また、請求項3記載の電界発光灯は、請求項1記載の電界発光灯であって、前記透明絶縁層の上に離型層の形成された保護フィルムが配設されたことを特徴とする。本構成によれば、保護フィルムが製造工程や搬送中の傷等から電界発光灯全体を保護し、使用時は離型層から容易に剥離除去できるので、より電界発光灯の機械的強度が増し、安定した使い方が可能となる。
【0018】
また、請求項4記載の電界発光灯の製造方法は、基材フィルム上に熱硬化性樹脂からなる透明絶縁層と、透明電極、発光層、反射絶縁層、裏面電極、保護層を順次形成し、乾燥固化後、前記基材フィルムと前記透明絶縁層間で、前記基材フィルムを剥離除去することを特徴とする。本製造方法によれば、基材フィルムと透明絶縁層との剥離性が向上し、生産性を向上させることができる。また、基材フィルムを剥離除去する際に、発光層に影響を与えることもない。
【0019】
また、請求項5記載の電界発光灯の製造方法は、請求項4記載の電界発光灯の製造方法であって、前記基材フィルムに離型層が形成され、前記離型層と前記透明絶縁層間で、前記基材フィルムを剥ぎ取ることを特徴とする。本製造方法によれば、基材フィルムと透明絶縁層との剥離性が更に向上し、生産性を大幅に向上させることができる。これにより、容易かつ安定して超薄型の電界発光灯を製造することができる。
【0020】
【発明の実施の形態】
本発明の電界発光灯の第1の実施の形態について図1を参照しながら説明する。第1の実施の形態の電界発光灯10は図1の要部拡大断面図に示すような構造をしている。電界発光灯10は、先ず、図1(a)のようにPETのような透明フィルム1の上に透明フィルム1と剥離性の良いアクリル樹脂等の熱硬化型の透明絶縁ペーストを印刷し透明絶縁層2を5〜50μmの厚さに形成する。次に、透明絶縁層2の上にITO等の透明導電粉末からなる透明導電ペーストを印刷し、透明電極3を10〜20μmの厚さに形成する。さらに、硫化亜鉛を銅で付活し防湿コーティングを施した蛍光体4aを例えばフッ素ゴム等の樹脂4b中に分散したインクを印刷し、発光層4を30〜50μmの厚さに形成する。次に、チタン酸バリウム等の白色高誘電粉末を樹脂中に分散させたインクを印刷し、反射絶縁層5を10〜20μmの厚さに形成する。次に、カーボンインク等からなる導電ペーストを印刷し、裏面電極6を10〜20μmの厚さに形成する。次に、絶縁性のインクを印刷し、保護層7を10〜20μmの厚さに形成する。その後、図1(b)のように透明フィルム1を透明絶縁層2から剥ぎ取り、基材レスの電界発光灯10を得る。
【0021】
ここで、透明絶縁層2は熱硬化性の樹脂からなり、厚みが5〜50μmで形成される。透明絶縁層2が5μm以下の場合、透明フィルム1を取り除いた基材レスタイプの電界発光灯10における引張強度や折り曲げ強度、絶縁性が劣る。また、印刷工程での各層の伸縮により透明フィルム1と透明絶縁層2が部分的に剥離し、印刷不具合を引き起こす可能性がある。さらに、透明絶縁層2の厚みが50μm以上あると全体的な厚みが増し、薄型化のメリットがなくなる。また、本実施例では透明絶縁層1にアクリル系の樹脂を用いたが、熱硬化タイプで基材フィルムと剥離性がよいものならばどのような樹脂を用いても構わない。例えば、エポキシ系、ポリアリルエーテル系、ポリアミド系、ポリエステル系、ポリイミド系の樹脂が使用できる。
【0022】
また、透明フィルム1が薄すぎるとスクリーン印刷した際に、印刷機の吸着穴の跡が残り発光に影響を与え、厚すぎるとコスト的に高くなるため、透明フィルム1の厚みとしては50μm〜200μmが望ましい。
【0023】
本構成によると、全体の膜厚が75〜180μm程度となり、従来の電界発光灯と比較して、約1/2の薄膜化を図ることができる。また、熱硬化型の透明絶縁層2が最外層に形成されているため、強度的にも強く、透明絶縁層2のないものの引張強度が200〜300gf/50mmに対して、引張強度が1〜2kgf/50mmと大幅に改善される。
【0024】
また、透明フィルム1と透明絶縁層2間で、透明フィルム1を剥離除去するようにしたので、透明電極3や発光層6に剥離時の悪影響を与えることがなく、従って電界発光灯10の発光特性を損なうことがない。
【0025】
次に、第2の実施の形態について図2の要部拡大断面図を用いて説明する。その特徴は、第1の実施の形態の電界発光灯10における透明フィルム1と透明絶縁層2の剥離性を更に向上させるようにした点にある。
【0026】
本実施例の電界発光灯20は、まず、図2(a)のようにPETのような透明フィルム11aの上にシリコン樹脂等からなる離型層11bを形成した離型フィルム11の上に熱硬化型の透明絶縁ペーストを印刷し透明絶縁層12を形成し、その透明絶縁層12の上にITO等の透明導電粉末からなる透明導電ペーストを印刷し、透明電極13を形成する。さらに、硫化亜鉛を銅で付活し防湿コーティングを施した蛍光体14aを例えばフッ素ゴム等の樹脂14b中に分散したインクを印刷し、発光層14を形成する。次に、チタン酸バリウム等の白色高誘電粉末を樹脂中に分散させたインクを印刷し、反射絶縁層15を形成する。次に、カーボンインク等からなる導電ペーストを印刷し、裏面電極16を形成する。次に、絶縁性のインクを印刷し、保護層18を形成する。その後、図2(b)のように離型フィルム11を透明絶縁層12から剥離させ(剥ぎ取り)、基材レスの電界発光灯20を得る。
【0027】
本構成によれば、基材フィルムに離型フィルム11を用いているため、離型フィルム11を透明絶縁層12から容易に剥離することができ、生産性が向上する。
【0028】
また、離型フィルム11を保護フィルムとして利用することもでき、電界発光灯20の製造工程や輸送中の傷防止を果たすことも可能である。また、裏面に両面テープを貼り付けるようにすれば、シール感覚で使用することができ、更に使い勝手がよくなる。
【0029】
【発明の効果】
本発明の電界発光灯によれば、最外層に熱硬化性の透明絶縁層を設けたので、従来使用している基材フィルムを不要にでき、従来品と比較して厚さが約1/2と超薄型の電界発光灯を得ることができる。また、実使用上十分な絶縁性及び機械的強度を確保することができ、信頼性の高い超薄型の電界発光灯を提供することができる。
【0030】
また、本発明の電界発光灯の製造方法によれば、基材フィルムと透明絶縁層の間で、基材フィルムを剥離除去するようにしたので、剥離性が向上し、剥離による種々の不具合が解消される。また、基材フィルムに離型層を設けたので、更に剥離性が向上し、生産性が向上する。さらに、基材フィルムを保護フィルムとすれば、製造工程や輸送中の傷防止にも効果がある。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の電界発光灯の要部拡大断面図
【図2】本発明の第2の実施の形態の電界発光灯の要部拡大断面図
【図3】従来の電界発光灯の要部拡大断面図
【図4】他の従来の電界発光灯の製造工程を説明する要部拡大断面図
【符号の説明】
1 透明フィルム
2 透明絶縁層
3 透明電極
4 発光層
4a 蛍光体
4b 樹脂
5 反射絶縁層
6 裏面電極
7 保護層
10 本発明の電界発光灯
11 離型フィルム
11a 透明フィルム
11b 離型層
12 透明絶縁層
13 透明電極
14 発光層
14a 蛍光体
14b 樹脂
15 反射絶縁層
16 裏面電極
17 保護層
20 本発明の電界発光灯
21 透明フィルム
22 透明電極
23 発光層
23a 蛍光体
23b 樹脂
24 反射絶縁層
25 裏面電極
26 保護層
30 従来の電界発光灯
31 基材フィルム
32 発光層
32a 蛍光体
32b 樹脂
33 反射絶縁層
34 裏面電極
35 積層体
36 透明電極
40 従来の電界発光灯
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electroluminescent lamp and a method of manufacturing the same, and more particularly to an ultra-thin electroluminescent lamp that does not require a base film and a method of manufacturing the same.
[0002]
[Prior art]
2. Description of the Related Art In recent years, portable electronic devices such as a mobile phone and a PHS have rapidly spread with the progress of the information society. These electronic devices are equipped with a liquid crystal display, and use a small and thin electroluminescent lamp as a backlight.
[0003]
Such an electroluminescent lamp 30 has, for example, a structure shown in an enlarged sectional view of a main part in FIG. 3, and is manufactured as follows. First, a transparent electrode 22 made of a conductive metal oxide such as ITO (indium tin oxide) is formed on one surface of an insulating transparent film 21 made of PET or the like having a thickness of 100 to 200 μm as a base film by vapor deposition or sputtering. Is formed to a thickness of 30 to 50 nm. Next, a fluorescent substance 23a (center particle diameter (median diameter) 20 to 30 μm) in which zinc sulfide is activated with copper and a resin 23b made of a fluoro rubber (specific gravity of about 1.8) are mixed with an organic solvent (for example, isophorone). The light emitting layer 23 is formed in a thickness of 30 to 50 μm on the transparent electrode 22 by screen printing using the light emitting layer ink dispersed in the above. Next, on the light emitting layer 23, reflection is performed by screen printing using a reflective insulating layer ink in which a white high dielectric powder made of barium titanate and fluororubber are dispersed in an organic solvent (for example, isophorone). The insulating layer 24 is formed to a thickness of 10 to 20 μm. Next, a back electrode 25 made of a conductive paste containing silver or carbon is formed on the reflective insulating layer 24 by screen printing to a thickness of 10 to 20 μm. Finally, a protective layer 26 made of an insulating resin such as a melamine resin, a phenol resin, or an epoxy resin is formed on the back electrode 25 to a thickness of 10 to 20 μm by screen printing to obtain the electroluminescent lamp 30.
[0004]
In order to turn on the electroluminescent lamp 30, when an AC voltage is applied to the transparent electrode 22 and the back electrode 25, a high electric field is applied to the light emitting layer 23. The phosphor 23a in the light emitting layer 23 emits light, and light is extracted from the transparent electrode 22 side.
[0005]
The conventional electroluminescent lamp 30 formed in this way has a total thickness of about 160 to 310 μm, but most of it is the transparent film 21 occupying 60 to 70% of the total thickness.
[0006]
The role of the transparent film 21 is to serve as a support when printing each layer of the transparent electrode 22 to the protective layer 26 and also to protect the transparent electrode 22. When the transparent film 21 disappears, the support at the time of printing becomes unstable, and wrinkles and the like easily occur, thereby causing printing defects such as uneven printing. In addition, the transparent electrode 22 is easily scratched or cracked, and loses conductivity in the plane direction and emits no light.
[0007]
Such a conventional electroluminescent lamp 30 is extremely thin as compared with a general light source. However, in recent years, a thinner electroluminescent lamp has been demanded due to a reduction in the weight and thickness of electronic devices and an improvement in the degree of freedom of use. I have.
[0008]
As one measure for reducing the thickness of an electroluminescent lamp, as disclosed in JP-A-7-6876, after forming a light-emitting layer, a reflective insulating layer, and a back electrode on a base film serving as a support, There is a method in which the film is peeled off and a transparent electrode is printed on the light emitting layer.
[0009]
This is manufactured as shown in the sectional view of the main part of the electroluminescent lamp 40 showing the manufacturing process of FIG. First, a phosphor 32a and a resin 32b such as PVA (polyvinyl alcohol) are mixed on a base film 31 serving as a sheet-like support such as PET or polyethylene to form a luminescent layer 32 having a thickness of 20 to 50 μm by printing. (FIG. 4A) After drying in a drying furnace for about 30 minutes, a reflective insulating layer 33 having a thickness of 5 to 10 μm is printed on the light emitting layer 32 (FIG. 4B). Next, a back electrode 34 having a thickness of 5 to 10 μm is printed on the reflective insulating layer 33 to form a laminate 35 on the base film 31 (FIG. 4C). Next, the base film 31 is peeled off from the laminate 35 (FIG. 4D), and a transparent electrode 36 having a thickness of 2 to 8 μm is formed by printing on the peeling side of the base film 31 of the light-emitting layer 32. The light emitting lamp 40 is obtained (FIG. 4E). Thereby, the film thickness of about 100 μm can be reduced.
[0010]
[Patent Document 1]
JP-A-9-145627 (pages 2, 3; paragraphs 0007 to 0012; FIG. 3)
[0011]
[Problems to be solved by the invention]
However, in the above-described electroluminescent lamp 40, when the laminate 35 is peeled off from the base film 31, the peelability between the base film 31 made of PET, polyethylene or the like and the light emitting layer 32 made of resin such as PVA is poor. Therefore, there is a problem that the laminate 35 cannot be peeled off from the base film 31 properly. As a result, the phosphor 32a in the light emitting layer 32 separates, causing a significant decrease in the light emission characteristics of the electroluminescent lamp 40 and a decrease in productivity.
[0012]
Further, since the laminate 35 after peeling and removing the base film 31 is as thin as about 30 to 70 μm, it is difficult to hold the laminate 35. After that, when the transparent electrode 36 is printed on the laminate 35, it is very difficult to handle. there were. When printing is performed in such a state, wrinkles and the like easily occur, which also causes printing defects such as uneven printing.
[0013]
The electroluminescent lamp 40 is in a state in which the back electrode 34 and the transparent electrode 36 are exposed, and it is necessary to cover both sides with a protective film for insulation, so that the advantage of thinness is impaired. There were also problems such as weakness.
[0014]
The present invention has been conceived in order to solve the above-described problems, and has excellent productivity, as well as an ultra-thin electroluminescent lamp ensuring sufficient insulation and mechanical strength for practical use, and a method of manufacturing the same. The purpose is to provide.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, an electroluminescent lamp according to claim 1 of the present invention is an electroluminescent lamp in which a light emitting layer and a reflective insulating layer are formed between a transparent electrode and a back electrode, wherein the transparent electrode By forming a transparent insulating layer on the opposite side of the light emitting layer, a base film is not required. According to this configuration, since the transparent insulating layer serves as a substitute for the base film having a large thickness, it is possible to easily provide an ultra-thin electroluminescent lamp maintaining mechanical strength and insulating properties.
[0016]
The electroluminescent lamp according to claim 2 is the electroluminescent lamp according to claim 1, wherein the transparent insulating layer is made of a thermosetting resin, and has a thickness of 5 to 50 μm. . According to this configuration, an ultra-thin electroluminescent lamp with further improved mechanical strength and insulation can be easily provided.
[0017]
An electroluminescent lamp according to a third aspect is the electroluminescent lamp according to the first aspect, wherein a protective film having a release layer formed on the transparent insulating layer is provided. . According to this configuration, the protective film protects the entire electroluminescent lamp from scratches and the like during the manufacturing process and transportation, and can be easily peeled off from the release layer when used, so that the mechanical strength of the electroluminescent lamp is further increased. , Stable usage is possible.
[0018]
According to a fourth aspect of the invention, there is provided a method for manufacturing an electroluminescent lamp, comprising sequentially forming a transparent insulating layer made of a thermosetting resin, a transparent electrode, a light emitting layer, a reflective insulating layer, a back electrode, and a protective layer on a base film. After drying and solidification, the base film is peeled off between the base film and the transparent insulating layer. According to this production method, the releasability between the base film and the transparent insulating layer is improved, and the productivity can be improved. Further, when the base film is peeled off, the light emitting layer is not affected.
[0019]
The method for manufacturing an electroluminescent lamp according to claim 5 is the method for manufacturing an electroluminescent lamp according to claim 4, wherein a release layer is formed on the base film, and the release layer and the transparent insulation layer are formed. The method is characterized in that the base film is peeled off between the layers. According to this production method, the releasability between the base film and the transparent insulating layer is further improved, and the productivity can be greatly improved. This makes it possible to easily and stably manufacture an ultra-thin electroluminescent lamp.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
A first embodiment of the electroluminescent lamp of the present invention will be described with reference to FIG. The electroluminescent lamp 10 according to the first embodiment has a structure as shown in an enlarged sectional view of a main part in FIG. First, as shown in FIG. 1 (a), an electroluminescent lamp 10 is formed by printing a transparent insulating film of a thermosetting type such as acrylic resin or the like having good releasability on a transparent film 1 such as PET as shown in FIG. Layer 2 is formed to a thickness of 5 to 50 μm. Next, a transparent conductive paste made of a transparent conductive powder such as ITO is printed on the transparent insulating layer 2 to form a transparent electrode 3 having a thickness of 10 to 20 μm. Further, an ink in which the phosphor 4a coated with moisture proof by activating zinc sulfide with copper is dispersed in a resin 4b such as a fluororubber is printed to form the light emitting layer 4 to a thickness of 30 to 50 μm. Next, an ink in which a white high dielectric powder such as barium titanate is dispersed in a resin is printed, and the reflective insulating layer 5 is formed to a thickness of 10 to 20 μm. Next, a conductive paste made of carbon ink or the like is printed to form the back electrode 6 to a thickness of 10 to 20 μm. Next, an insulating ink is printed to form the protective layer 7 to a thickness of 10 to 20 μm. Thereafter, as shown in FIG. 1B, the transparent film 1 is peeled off from the transparent insulating layer 2 to obtain a substrate-less electroluminescent lamp 10.
[0021]
Here, the transparent insulating layer 2 is made of a thermosetting resin and has a thickness of 5 to 50 μm. When the thickness of the transparent insulating layer 2 is 5 μm or less, the tensile strength, the bending strength, and the insulating property of the substrate-less type electroluminescent lamp 10 from which the transparent film 1 is removed are inferior. Further, the transparent film 1 and the transparent insulating layer 2 may be partially peeled off due to expansion and contraction of each layer in the printing process, which may cause a printing failure. Further, when the thickness of the transparent insulating layer 2 is 50 μm or more, the overall thickness increases, and the merit of thinning is lost. Further, in this embodiment, an acrylic resin is used for the transparent insulating layer 1, but any resin may be used as long as it is a thermosetting type and has good releasability from the base film. For example, epoxy-based, polyallylether-based, polyamide-based, polyester-based, and polyimide-based resins can be used.
[0022]
Also, if the transparent film 1 is too thin, when screen printing is performed, traces of suction holes of the printing machine remain and affect light emission. If the thickness is too large, the cost increases, so the thickness of the transparent film 1 is 50 μm to 200 μm. Is desirable.
[0023]
According to this configuration, the overall film thickness is about 75 to 180 μm, and the thickness can be reduced to about 1 / as compared with the conventional electroluminescent lamp. In addition, since the thermosetting transparent insulating layer 2 is formed as the outermost layer, the strength is high, and the tensile strength of the case without the transparent insulating layer 2 is 200 to 300 gf / 50 mm, whereas the tensile strength is 1 to 100 gf / 50 mm. It is greatly improved to 2 kgf / 50 mm.
[0024]
Further, since the transparent film 1 is peeled and removed between the transparent film 1 and the transparent insulating layer 2, the transparent electrode 3 and the light emitting layer 6 are not adversely affected at the time of peeling. There is no loss of characteristics.
[0025]
Next, a second embodiment will be described with reference to FIG. The feature is that the releasability of the transparent film 1 and the transparent insulating layer 2 in the electroluminescent lamp 10 of the first embodiment is further improved.
[0026]
First, the electroluminescent lamp 20 of this embodiment is heated on a release film 11 in which a release layer 11b made of silicon resin or the like is formed on a transparent film 11a such as PET as shown in FIG. A transparent insulating layer 12 is formed by printing a curable transparent insulating paste, and a transparent conductive paste made of a transparent conductive powder such as ITO is printed on the transparent insulating layer 12 to form a transparent electrode 13. Further, an ink in which a phosphor 14a having zinc sulfide activated by copper and having a moisture-proof coating dispersed in a resin 14b such as, for example, fluoro rubber, is printed to form the light emitting layer 14. Next, an ink in which a white high dielectric powder such as barium titanate is dispersed in a resin is printed to form the reflective insulating layer 15. Next, a conductive paste made of carbon ink or the like is printed to form the back electrode 16. Next, an insulating ink is printed to form the protective layer 18. Thereafter, as shown in FIG. 2B, the release film 11 is peeled off (peeled off) from the transparent insulating layer 12 to obtain a substrate-less electroluminescent lamp 20.
[0027]
According to this configuration, since the release film 11 is used as the base film, the release film 11 can be easily peeled from the transparent insulating layer 12, and the productivity is improved.
[0028]
In addition, the release film 11 can be used as a protective film, and it is possible to prevent scratches during the manufacturing process and transportation of the electroluminescent lamp 20. Also, if a double-sided tape is attached to the back surface, it can be used as if it were a seal, and the usability is further improved.
[0029]
【The invention's effect】
According to the electroluminescent lamp of the present invention, since the thermosetting transparent insulating layer is provided as the outermost layer, the conventionally used base film can be eliminated, and the thickness is reduced by about 1 / compared to the conventional product. 2 and an ultra-thin electroluminescent lamp can be obtained. In addition, sufficient insulation and mechanical strength can be ensured for practical use, and a highly reliable ultra-thin electroluminescent lamp can be provided.
[0030]
Further, according to the method for manufacturing an electroluminescent lamp of the present invention, since the base film is peeled and removed between the base film and the transparent insulating layer, peelability is improved, and various problems due to peeling are improved. Will be resolved. In addition, since the release layer is provided on the base film, the releasability is further improved, and the productivity is improved. Furthermore, if the base film is a protective film, it is also effective in preventing scratches during the manufacturing process and transportation.
[Brief description of the drawings]
FIG. 1 is an enlarged sectional view of a main part of an electroluminescent lamp according to a first embodiment of the present invention; FIG. 2 is an enlarged sectional view of a main part of an electroluminescent lamp according to a second embodiment of the present invention; FIG. 4 is an enlarged cross-sectional view of a main part of a conventional electroluminescent lamp. FIG. 4 is an enlarged cross-sectional view of a main part explaining a manufacturing process of another conventional electroluminescent lamp.
DESCRIPTION OF SYMBOLS 1 Transparent film 2 Transparent insulating layer 3 Transparent electrode 4 Light emitting layer 4a Phosphor 4b Resin 5 Reflective insulating layer 6 Back electrode 7 Protective layer 10 Electroluminescent lamp 11 of the present invention Release film 11a Transparent film 11b Release layer 12 Transparent insulation layer 13 Transparent electrode 14 Light emitting layer 14a Phosphor 14b Resin 15 Reflective insulating layer 16 Back electrode 17 Protective layer 20 Electroluminescent lamp 21 of the present invention Transparent film 22 Transparent electrode 23 Light emitting layer 23a Phosphor 23b Resin 24 Reflective insulating layer 25 Back electrode 26 Protective layer 30 Conventional electroluminescent lamp 31 Base film 32 Light emitting layer 32a Phosphor 32b Resin 33 Reflective insulating layer 34 Back electrode 35 Stack 36 Transparent electrode 40 Conventional electroluminescent lamp

Claims (5)

透明電極と裏面電極の間に発光層と反射絶縁層が形成されてなる電界発光灯において、前記透明電極の前記発光層の反対側に透明絶縁層を形成することにより基材フィルムを不要としたことを特徴とする電界発光灯。In an electroluminescent lamp in which a light emitting layer and a reflective insulating layer are formed between a transparent electrode and a back electrode, the base film is not required by forming a transparent insulating layer on the side of the transparent electrode opposite to the light emitting layer. An electroluminescent lamp, characterized in that: 前記透明絶縁層が熱硬化性の樹脂からなり、膜厚が5〜50μmであることを特徴とする請求項1記載の電界発光灯。The electroluminescent lamp according to claim 1, wherein the transparent insulating layer is made of a thermosetting resin and has a thickness of 5 to 50 m. 前記透明絶縁層の上に離型層の形成された保護フィルムが配設されたことを特徴とする請求項1記載の電界発光灯。The electroluminescent lamp according to claim 1, wherein a protective film having a release layer formed on the transparent insulating layer is provided. 基材フィルム上に熱硬化性樹脂からなる透明絶縁層と、透明電極、発光層、反射絶縁層、裏面電極、保護層を順次形成し、乾燥固化後、前記基材フィルムと前記透明絶縁層間で前記基材フィルムを剥離除去することを特徴とする電界発光灯の製造方法。A transparent insulating layer made of a thermosetting resin, a transparent electrode, a light-emitting layer, a reflective insulating layer, a back electrode, and a protective layer are sequentially formed on a base film, and after drying and solidifying, between the base film and the transparent insulating layer. A method for manufacturing an electroluminescent lamp, wherein the base film is peeled off. 前記基材フィルムに離型層が形成され、前記離型層と前記透明絶縁層間で、前記基材フィルムを剥離除去することを特徴とする請求項4記載の電界発光灯の製造方法。5. The method according to claim 4, wherein a release layer is formed on the base film, and the base film is peeled off between the release layer and the transparent insulating layer.
JP2002374238A 2002-12-25 2002-12-25 Electroluminescent lamp and its manufacturing method Pending JP2004207015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002374238A JP2004207015A (en) 2002-12-25 2002-12-25 Electroluminescent lamp and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002374238A JP2004207015A (en) 2002-12-25 2002-12-25 Electroluminescent lamp and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004207015A true JP2004207015A (en) 2004-07-22

Family

ID=32812316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002374238A Pending JP2004207015A (en) 2002-12-25 2002-12-25 Electroluminescent lamp and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004207015A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004502A (en) * 2006-06-26 2008-01-10 Sumitomo Metal Mining Co Ltd Dispersed electroluminescence element and its manufacturing method
WO2014171798A1 (en) * 2013-04-19 2014-10-23 주식회사 잉크테크 Method of manufacturing transparent electrode film for display and transparent electrode film for display

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004502A (en) * 2006-06-26 2008-01-10 Sumitomo Metal Mining Co Ltd Dispersed electroluminescence element and its manufacturing method
WO2014171798A1 (en) * 2013-04-19 2014-10-23 주식회사 잉크테크 Method of manufacturing transparent electrode film for display and transparent electrode film for display
US9832881B2 (en) 2013-04-19 2017-11-28 Inktec Co., Ltd. Method of manufacturing transparent electrode film for display and transparent electrode film for display

Similar Documents

Publication Publication Date Title
JP5339089B2 (en) Flexible transparent conductive film, flexible functional element, and production method thereof
JP2021009849A (en) Display device
JP6431107B2 (en) Light emitting device
JPWO2007039969A1 (en) Film with transparent conductive layer, flexible functional element, flexible dispersive electroluminescent element, method for producing the same, and electronic device using the same
WO2010018734A1 (en) Transparent electrode, organic electroluminescent element, and method for producing transparent electrode
JP5332252B2 (en) Transparent conductive film, organic electroluminescence element, and method for producing transparent conductive film
WO2010018733A1 (en) Transparent electrode, organic electroluminescent element, and method for producing transparent electrode
TW201108855A (en) Organic electroluminescence device, display unit including the same, and method of manufacturing an organic electroluminescence device
EP1720380A1 (en) Switch lighting el sheet and lighting switch and electronic apparatus using it
WO2010082428A1 (en) Transparent electrode, method for producing same, and organic electroluminescent element
WO2010032721A1 (en) Organic electroluminescent element
TW201242414A (en) Planate light emitting device
WO2015009121A1 (en) Electrode laminate and organic light emitting element
WO2012127916A1 (en) Transparent conductive film, substrate having transparent conductive film, and organic electroluminescent element using same
WO2020103349A1 (en) Oled display device and manufacturing method therefor
JP2005322623A (en) Electroluminescent element
JP2004158451A (en) El device with noise reduction electrode layer, and manufacturing method of the same
CN106023825B (en) Display screen, manufacturing method of display screen and electronic equipment
WO2005099315A1 (en) Electro-luminescence element
JP2004207015A (en) Electroluminescent lamp and its manufacturing method
JP2003016821A (en) Lamp reflector, and reflector
JP2010218738A (en) Organic el element, display using it, and lighting system
JP2006303030A (en) Electroluminescent element
JP2001052875A (en) Electroluminescence
JP2003068447A (en) El lamp and its manufacturing method