JP2004207006A - Fuel battery cell and fuel battery - Google Patents

Fuel battery cell and fuel battery Download PDF

Info

Publication number
JP2004207006A
JP2004207006A JP2002373990A JP2002373990A JP2004207006A JP 2004207006 A JP2004207006 A JP 2004207006A JP 2002373990 A JP2002373990 A JP 2002373990A JP 2002373990 A JP2002373990 A JP 2002373990A JP 2004207006 A JP2004207006 A JP 2004207006A
Authority
JP
Japan
Prior art keywords
gas
fuel cell
fuel
cell
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002373990A
Other languages
Japanese (ja)
Other versions
JP4025639B2 (en
Inventor
Takashi Ono
孝 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002373990A priority Critical patent/JP4025639B2/en
Publication of JP2004207006A publication Critical patent/JP2004207006A/en
Application granted granted Critical
Publication of JP4025639B2 publication Critical patent/JP4025639B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel battery cell and a fuel battery in which gas can be uniformly supplied to a plurality of the fuel battery cells with a simple structure. <P>SOLUTION: The fuel battery cell is provided with a columnar cell main body A having a generation part in which gas path 1 with one side as a supply port and the other side as an exhaust port is formed in an axial length direction and a solid electrolyte 7 is pinched by a fuel electrode 5 and an air electrode 9, and a lid-like member 13 which is fitted at the end on the exhaust port side of the cell main body A and is formed with a gas exhaust restraining hole 11 for restraining gas circulation volume of the gas path 1. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池セル及び燃料電池に関するもので、特に複数のセル本体にに均一にガスを分配、供給できる燃料電池セル及び燃料電池に関するものである。
【0002】
【従来技術】
近年、次世代エネルギーとして、燃料電池セルのスタックを収納容器内に収容した燃料電池が種々提案されている。
【0003】
燃料電池セルは固体電解質を空気極、燃料極で挟持して構成されており、空気極に酸素含有ガスを供給し、燃料極に水素を含むガス、もしくは水素に変化しうるガスを供給することにより、固体電解質を挟んで対峙する両電極間に電位差が発生し、発電するものである。
【0004】
これらの燃料電池セルは、用いる電解質や形態により様々な組み合わせが考えられるが、ほとんどの場合、燃料電池セルに酸素含有ガスと水素を含むガス、もしくは水素に変化しうるガスを供給して発電する点は共通している。
【0005】
また、燃料電池は燃料電池セル当たりの発電量が小さいため、複数の燃料電池セルを電気的に接続して構成されている。
【0006】
そのため、発電に際し、複数の燃料電池セルに酸素含有ガスと水素を含むガス、もしくは水素に変化しうるガスをそれぞれ供給する必要がある。また、同時に、発電量並びに発電効率を向上させるため、それぞれの燃料電池セルに供給するガスの量は同じにする必要がある。
【0007】
図7は、従来の燃料電池セルの縦断面を示したもので、内部にガス流路1を有する円筒柱状の多孔質支持体3の表面に、多孔質の燃料極5、緻密質の固体電解質7、多孔質の空気極9が順次積層されている。この燃料電池セルのガス流路1に燃料を流し、燃料電池セルの外部に酸素含有ガスを流すことで、固体電解質7を介して燃料極5、空気極9間に電位差が生じ、発電が行われる。燃料電池はこのような燃料電池セルを収納容器内に複数収納して構成されている(例えば、特許文献1参照)。
【0008】
【特許文献1】
特開平10−125346号公報
【0009】
【発明が解決しようとする課題】
このような燃料電池では、複数の燃料電池セルに同時にガスを供給する必要があり、また、発電量並びに発電効率を安定させる為、各燃料電池セルに供給するガス量を同じにし、各燃料電池セルの燃料利用率を均一にする必要がある。各燃料電池セルに供給されるガス量が均一でない場合には、各燃料電池セルの発電量がばらつくため、総発電量が小さくなるという問題がある。また、適正なガス供給がされない燃料電池セルでは破壊が起こるなどの問題もある。
【0010】
例えば、燃料極支持型燃料電池の場合、燃料電池セルに供給される水素を含むガスが設計ガス量より少量であれば、燃料利用率が大きくなる。燃料利用率があまりにも大きくなると、燃料電池反応の燃料である水素が燃料電池セルのガス供給口側で消費され、燃料電池セルのガス排出口側には水素が供給されず、いわゆる燃料枯れの現象が生じる。
【0011】
この現象が起こると、還元されていた燃料極が酸化され、水素が供給されない部分の燃料極が絶縁体となる。燃料極が絶縁体となった場合、その燃料電池セルの電気抵抗は大きく増大し、燃料電池セルを直列で構成していたスタックの電気抵抗が増大し、出力が大きく低下し、燃料電池全体の特性が低下する。
【0012】
逆に、水素を含むガスが設計量よりも多くなる場合には、燃料利用率が低下し、発電に寄与しない水素の量が増加し、発電効率が低下するという問題がある。
【0013】
また、空気極支持型燃料電池の場合、燃料電池セルに供給される酸素含有ガスが設計ガス量より少量であれば、空気利用率が大きくなる。空気利用率があまりにも大きくなると、燃料電池反応のもう一つの燃料である酸素が燃料電池セルのガス供給口側で消費され、燃料電池セルのガス排出口側には酸素が供給されず、いわゆる空気枯れの現象が生じる。
【0014】
この現象が起こると、空気極が還元されて体積変化が起き、大気中で共焼結されていた電解質と空気極の界面に、空気極の体積変化に伴う応力が発生し、燃料電池セルの破壊に至る。
【0015】
以上の理由から、各燃料電池セルに同じ量のガスを供給する必要がある。しかしながら、燃料電池セルの内部に形成されたガス流路の断面積にばらつきがある場合には、仮に、同じ圧力で燃料電池セルにガスを供給したとしても、燃料電池内部に形成されたガス流路を流れるガス量は、燃料電池セルごとにばらつくことになる。
【0016】
特に、生産性の高い押し出し成形などで支持体を作製する場合には、燃料電池セルのガス流路の断面積は、ばらつきが多くなりやすいという問題がある。
【0017】
そのため、燃料電池セルのガス流路のばらつきを管理し、管理範囲内の燃料電池セルのみが用いられている。しかしながら、燃料電池セルのガス流路のばらつきを検査するには時間とコストがかかり、生産性の点で問題がある。また、良品率の低下によるコストの上昇の問題もある。
【0018】
この問題を解決するため、例えば、各々の燃料電池セルに供給されるガス量を測定し、弁などを用いてガス量を制御するなどの手法が考えられるが、構造が複雑になり、また、制御用のシステムが必要となるため、装置が大型化したり、高コストになるなどの問題がある。
【0019】
本発明は、簡単な構造で複数のセル本体に均一にガスを供給することができる燃料電池セル及び燃料電池を提供することを目的とする。
【0020】
【課題を解決するための手段】
本発明の燃料電池セルは、一方側が供給口とされ、他方側が排出口とされたガス流路が軸長方向に形成されるとともに、固体電解質が燃料極及び空気極で挟持された発電部を有する柱状のセル本体と、該セル本体の排出口側端部に設けられるとともに、前記ガス流路のガス流通量を抑制するガス排出抑制孔が形成された蓋状部材とを具備することを特徴とする。
【0021】
このような燃料電池セルでは、仮に、セル本体内に形成されたガス流路の断面積にばらつきがあったとしても、セル本体のガス排出口側端部に、セル本体の内部に設けられたガス流路のガス流通量を抑制し、流体抵抗を増大させるガス排出抑制孔を有する蓋状部材を設けたことで、燃料電池セルに供給されるガス量は、セル本体のガス流路の断面積に影響されず、ガス排出抑制孔を有する蓋状部材によって制御される。
【0022】
そのため、複数の燃料電池セルにそれぞれ供給されるガス量を容易に均一にすることができ、各燃料電池セルの発電量のばらつきを容易に抑制することができるため、発電量の低下や、発電効率の低下、燃料電池セルの破壊を防止できる。
【0023】
また、ガス排出抑制孔を有する蓋状部材により燃料電池セルから排出されるガス量が抑制されるため、ガス流路内の圧力が高くなり、ガス流路側に形成された多孔質の燃料極又は空気極に供給されるガス量が多くなり、発電量が増加することが期待される。
【0024】
また、本発明の燃料電池セルは蓋状部材に設けられたガス排出抑制孔がスリット状であることを特徴とする。
【0025】
ガス排出抑制孔の形状は、例えば、円状の穴であってもよく、または、星形のような穴であってもよいが、スリット状の穴が最も生産性が高く、かつ、再現よく同じ形状の穴を作製することができ、各燃料電池セルに供給されるガス量の均一性をさらに向上させることができる。
【0026】
また、本発明の燃料電池セルは、セル本体は複数のガス流路を有し、セル本体の排出口側端面に、ガス排出抑制孔が形成された蓋状部材の遮蔽板が、前記セル本体の排出口側端面と所定間隔をおいて設けられており、前記遮蔽板と、前記セル本体の排出口側端面との間に共通ガス室が設けられていることを特徴とする。
【0027】
一つのセル本体の内部に複数のガス流路が形成されている場合、蓋状部材に、各ガス流路にそれぞれ連通するガス排出抑制孔を設ければよい。
【0028】
しかしながら、形状が複雑になり、部材の強度も低くなる傾向にある。そこで、複数のガス流路を有するセル本体のガス排出口側端面と、蓋状部材のガス排出抑制孔が形成された遮蔽板との間に、所定の間隔をおいて前記複数のガス流路と前記ガス排出抑制孔と連通した共通ガス室を設けることで、セル本体内部に設けられた複数のガス流路を連通させることができ、蓋状部材に各ガス流路に対応するガス排出抑制孔を複数設ける必要が無くなり、蓋状部材の構造を簡略化することができ、取り付けも容易になる。
【0029】
また、本発明の燃料電池は、上記の燃料電池セルを収納容器内に複数収納してなることを特徴とする。
【0030】
このような燃料電池では、各燃料電池セルに供給されるガス量が均一となり、発電能力が向上する。また、ガスの供給不足や供給過多による燃料電池セルの破壊や性能劣化を抑制することができる。特に、燃料電池セルを電気的に直列に接続する場合には、一つの燃料電池セルの性能劣化が燃料電池全体の発電能力に大きく影響するため、燃料電池セルの電気的抵抗の増大を防止することができる本発明の燃料電池は、特に、燃料電池セルが直列接続された燃料電池では、大幅な性能劣化を防止できる。また、特別な制御装置を必要とせず、簡単な構造とすることができ、発電効率の向上、燃料電池の小型化や、低コスト化を達成できる。
【0031】
【発明の実施の形態】
図1、2に本発明の燃料電池セルの一形態の斜視図と縦断面図を示す。尚、従来の技術と同一部材には、同一符号を付した。
【0032】
本発明の燃料電池セルでは、内部に複数のガス流路1が軸長方向に形成された扁平柱状の支持体3表面に、多孔質の燃料極5、緻密質の固体電解質7、多孔質の空気極9が順次形成されてセル本体Aが構成されている。このセル本体Aの排出口側端部には、ガス排出抑制孔11が形成された蓋状部材13が設けられている。蓋状部材13はキャップ形状をしており、ガス排出抑制孔11が形成された遮蔽板13a、セル本体Aに外嵌する環状体13bとから構成されており、この蓋状部材13は、セル本体A内部に形成されたガス流路1を流通するガス流量を抑制する機能を有している。
【0033】
また、セル本体Aの排出口側端面14と遮蔽板13a間には共通ガス室15が形成されている。このようにセル本体Aの排出口側端面14と遮蔽板13a間に共通ガス室15を設けることで、複数のガス流路1を通過するガスは一旦、共通ガス室15で合流するため、ガス排出抑制孔11は例えば一つだけでもよい。ガス排出抑制孔11の数は少ないほど蓋状部材13の生産性が向上し、また、部材としての強度も向上する。また、共通ガス室15を設けることで、セル本体Aと蓋状部材13との接点が減少するため、セル本体Aと蓋状部材13との取り付けが容易になる。
【0034】
このような燃料電池セルでは、セル本体A内部に供給されるガスは、セル本体Aの排出口側端部とは逆側の端部からガス流路1に導入され、共通ガス室15を経て、蓋状部材13に設けられたガス排出抑制孔11を通過し、燃料電池セル外に排出される。また、燃料電池セルの外部には、他のガスが供給され、多孔質の燃料極5、緻密質の固体電解質7、多孔質の空気極9が積層された発電部で、燃料極5と空気極9間の酸素濃度差に基づく発電が行われる。
【0035】
この燃料電池セルでは、燃料電池セルの内外でのガスの混入を防ぐため、セル本体Aの端部にまで緻密質の固体電解質7が形成されている。
【0036】
このような燃料電池セルでは、支持体3は一般的に生産性の高い押し出し成形法を用いて作製されるが、この成形法は寸法精度が低く、燃料電池セル内部のガス流路1の形状は燃料電池セルによって大きくばらつく傾向にある。
【0037】
このように、ガス流路1の形状がばらついた複数の燃料電池セルを用いてスタックを作製し、このスタックをマニホールドに固定して燃料電池セル内部にガスを流す場合、ガスが、各燃料電池セル間で均等に流れないという問題が生じていた。例えば、スタックを形成する燃料電池セルの本数分の設計ガス量をスタックに供給しても、ガス流路1の大きな燃料電池セルにはガスが多く流れるが、ガス流路1の小さな燃料電池セルには少量のガスしか流れないという現象が生じる。
【0038】
この現象は、狭いガス流路1を流れるガスの圧力損失が、広いガス流路1を流れるガスの圧力損失より大きくなることに起因し、圧力損失が大きくなることで、燃料電池セル内部のガス流路1を流れるガスの流速は遅くなる。
【0039】
ガス流路1を通過するガス量は、ガスの流速とガス流路1の断面積の積となるので、狭いガス流路1を流れるガス量は、広いガス流路1を流れるガス量に比べて少なくなる。この傾向は、ガス流路1の流れ方向長さが長いほど顕著に表れる。
【0040】
このようなガス流路1の形状のばらつきによるガス流量のばらつきは、例えば、一つのガスタンクに複数の燃料電池セルを接続し、一つのガスタンクから複数の燃料電池セルのガス流路1にガスを供給する場合、特に顕著になり、ガスが流れにくい燃料電池セルが一本でも存在すると、この燃料電池セルには、ガスはほとんど流れず、他の燃料電池セルのみに過剰に供給されることになり、燃料電池全体の発電量、発電効率が低下するという問題があった。
【0041】
本発明の燃料電池セルは、仮にガス流路1の断面積が異なる場合でも、セル本体Aの排出口側端部にガス排出抑制孔11を有する蓋状部材13を設けることで、供給されるガス量を制御することができるため、複数の燃料電池セル間の供給されるガス量のばらつきを抑制することができ、ガス流量が多すぎることによる燃料利用率の低下に伴う発電効率の低下や、ガス流量が少なすぎることにより発生する燃料枯れに伴う燃料電池セルの破壊や、電気的抵抗の増大に伴う燃料電池セルの性能劣化、空気枯れに伴う燃料電池の破壊を防止することができる。また、それぞれの燃料電池セルに均一にガスを分配、供給することができるため、燃料電池の発電能力の向上と、燃料電池セルの破壊防止とを同時に達成できる。特に、その効果は一本の燃料電池セルの特性劣化が燃料電池全体の特性に大きく影響する直列接続型の燃料電池では絶大である。
【0042】
また、さらにセル本体Aの排出口側端部にガス排出抑制孔11を有する蓋状部材13を設けることで、ガス流路1内の水素ガス又は酸素含有ガスの圧力を高くすることができるため、ガス流路1側の多孔質の燃料極5又は空気極9へのガス供給量を増加させることができ、燃料電池セルの発電量を増加させることができると期待される。
【0043】
図3に本発明における燃料電池セルの他の形態の縦断面図を示す。この燃料電池セルは、セル本体A内部に複数のガス流路1が形成され、セル本体Aの排出口側端部に、ガス流路1にそれぞれ対応する複数のガス排出抑制孔11が形成された蓋状部材13が設けられている。ガス排出抑制孔11が設けられた遮蔽板13aとセル本体の排出口側端面14との間には共通ガス室15が設けられている。
【0044】
このような燃料電池セルでも、蓋状部材13に複数のガス流路1にそれぞれ対応するガス排出抑制孔11を設けることで、複数の燃料電池セル間に供給されるガス量を均一にすることができるとともに、セル本体A内部に形成された複数のガス流路1に供給されるガス量が、それぞれ均一になり、燃料電池セルとしての発電量が向上する。
【0045】
図4に本発明における燃料電池セルの他の形態の縦断面図を示す。この燃料電池セルは、セル本体A内部に複数のガス流路1が形成され、セル本体Aの排出口側端部に、それぞれセル本体Aのガス流路1に対して、それぞれ対応するようにガス排出抑制孔11が形成された蓋状部材13が設けられている。このような燃料電池セルでも、ガス排出抑制孔11はそれぞれセル本体Aのガス流路1に独立して設けられているため、各ガス流路1に供給されるガス量を均一にすることができる。
【0046】
図5に、蓋状部材13の種々の形態を示す。蓋状部材13に設けられた貫通孔であるガス排出抑制孔11は、図5(a)、(b)のように円状の穴であってもよく、図5(c)、(d)、(e)のようにスリット状であってもよい。
【0047】
また、ガス排出抑制孔11の数は、図5(b)、(c)、(d)のように一つであっても、図5(a)、(e)のように複数であってもよい。例えば、蓋状部材13に設けられたガス排出抑制孔11の数を一つにすることで、蓋状部材13の構造が簡単になり、ガス排出抑制孔11の数が減ることで、蓋状部材13の作製が容易になり、また、蓋状部材13の強度も向上する。
【0048】
なお、この蓋状部材13は、熱伝導率が高いという点から、熱膨張係数をセル本体Aと近似させた耐熱金属等が好適に用いられる。また、耐熱性、耐熱衝撃性、強度に優れ、酸化雰囲気、還元雰囲気での安定性に優れるアルミナやジルコニア、安定化ジルコニア、部分安定化ジルコニアなどのセラミック部材も好適に用いられる。
【0049】
特に、燃料電池セルのガス排出口側端部近傍で、余剰のガスを燃焼させる場合には蓋状部材13を金属よりも熱伝導率が低いセラミックにすることでセル本体Aを急激な加熱による破壊から保護することができる。
【0050】
また、ガス流通量の抑制効果の観点から、蓋状部材13に設けられたガス排出抑制孔11の形状は、孔の深さ、即ち遮蔽板13aの厚さが2mm以上であることが望ましく、さらに、4mm以上であることが望ましい。また、ガス排出抑制孔11の短径方向の幅は1mm以下であることが望ましく、さらに0.7mm以下であることが望ましい。
【0051】
図6に本発明における燃料電池セルの他の形態の縦断面図(a)と、蓋状部材13の一形態の斜視図(b)を示す。この燃料電池セルは円筒柱状のセル本体A内部にガス流路1が形成され、セル本体Aの排出口側端部に、ガス排出抑制孔11が形成された蓋状部材13が設けられている。例えば、このような円筒柱状のセル本体Aの場合でも、セル本体Aの排出口側端部に、ガス排出抑制孔11が形成された蓋状部材13を設けることで、複数の燃料電池セルに供給されるガス量を均一にすることができる。
【0052】
本発明の燃料電池は、本発明の燃料電池セルを収納容器内に複数収納して構成される。このような燃料電池では、燃料電池セル内あるいは燃料電池セル間に、ガスを均一に、分配、供給することができ、各燃料電池セル間の発電量のばらつきを抑制することができ、燃料電池セルの破損を防ぐことができるとともに、発電能力を高めることができる。
【0053】
さらに、燃料電池セルごとにガス流路1の検査をする必要がなくなり、生産性が向上する。
【0054】
なお、本発明は上記形態に限定されるものではなく、発明の要旨を変更しない範囲で種々の変更が可能である。例えば、セル本体端部からガスを排出する形態であれば、片端封止型や折り返し型のセル本体であっても、同様の効果が得られる。また、蓋状部材13はガス排出抑制の機能を有するものであればよく、例えば、遮蔽板13aやガス排出抑制孔11に代わり、多孔体や、網状の部材を用いてもよい。
【0055】
【発明の効果】
本発明では、各燃料電池セルに供給されるガス量が均一となり、発電能力に優れ、ガスの供給不足や供給過多による燃料電池セルの破壊を抑制することができる。また、特別な制御装置を必要とせず、簡単な構造で、発電効率の向上、燃料電池の小型化や、低コスト化を達成できる。
【図面の簡単な説明】
【図1】本発明の燃料電池セルを示す斜視図である。
【図2】図1の燃料電池セルの縦断面図である。
【図3】複数のガス流路に対応するように、ガス排出抑制孔が形成された本発明の燃料電池セルの他の形態を示す縦断面図である。
【図4】本発明の燃料電池セルのさらに他の形態を示す縦断面図である。
【図5】(a)〜(e)は本発明の扁平柱状の燃料電池セルに用いられる蓋状部材の種々の形態を示す平面図である。
【図6】(a)は本発明の円筒柱状の燃料電池セルの形態を示す縦断面図であり、(b)は蓋状部材を示す斜視図である。
【図7】従来の燃料電池セルを示す縦断面図である。
【符号の説明】
A・・・セル本体
1・・・ガス流路
3・・・支持体
5・・・燃料極
7・・・固体電解質
9・・・空気極
11・・・ガス排出抑制孔
13・・・蓋状部材
13a・・・遮蔽板
13b・・・環状体
14・・・排出口側端面
15・・・共通ガス室
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel cell and a fuel cell, and more particularly to a fuel cell and a fuel cell capable of uniformly distributing and supplying gas to a plurality of cell bodies.
[0002]
[Prior art]
2. Description of the Related Art In recent years, as a next-generation energy, various fuel cells in which a stack of fuel cells is housed in a housing container have been proposed.
[0003]
A fuel cell is constructed by sandwiching a solid electrolyte between an air electrode and a fuel electrode, supplying an oxygen-containing gas to the air electrode, and supplying a gas containing hydrogen or a gas that can be converted to hydrogen to the fuel electrode. As a result, a potential difference is generated between the two electrodes facing each other with the solid electrolyte interposed therebetween, and power is generated.
[0004]
Various combinations of these fuel cells can be considered depending on the electrolyte and form used, but in most cases, the fuel cells generate power by supplying a gas containing oxygen-containing gas and hydrogen, or a gas that can be converted to hydrogen. The points are common.
[0005]
Further, since the fuel cell has a small amount of power generation per fuel cell, the fuel cell is configured by electrically connecting a plurality of fuel cells.
[0006]
Therefore, upon power generation, it is necessary to supply a gas containing oxygen-containing gas and hydrogen, or a gas that can be changed to hydrogen, to each of the plurality of fuel cells. At the same time, the amount of gas supplied to each fuel cell must be the same in order to improve the amount of power generation and power generation efficiency.
[0007]
FIG. 7 shows a longitudinal section of a conventional fuel cell. A porous fuel electrode 5 and a dense solid electrolyte are provided on the surface of a cylindrical columnar porous support 3 having a gas flow path 1 therein. 7. Porous air electrodes 9 are sequentially stacked. When a fuel flows through the gas flow path 1 of the fuel cell and an oxygen-containing gas flows outside the fuel cell, a potential difference is generated between the fuel electrode 5 and the air electrode 9 via the solid electrolyte 7 to generate power. Is A fuel cell is configured by storing a plurality of such fuel cells in a storage container (for example, see Patent Document 1).
[0008]
[Patent Document 1]
JP 10-125346 A
[Problems to be solved by the invention]
In such a fuel cell, it is necessary to supply gas to a plurality of fuel cells at the same time, and in order to stabilize the amount of power generation and power generation efficiency, the amount of gas supplied to each fuel cell is made the same, It is necessary to make the cell fuel utilization uniform. If the amount of gas supplied to each fuel cell is not uniform, the amount of power generated by each fuel cell varies, so that there is a problem that the total amount of generated power is reduced. In addition, there is a problem that a fuel cell in which proper gas supply is not performed is broken.
[0010]
For example, in the case of an anode-supported fuel cell, if the amount of hydrogen-containing gas supplied to the fuel cell is smaller than the design gas amount, the fuel utilization rate increases. If the fuel utilization rate becomes too large, hydrogen, which is the fuel of the fuel cell reaction, is consumed at the gas supply port side of the fuel cell, and no hydrogen is supplied to the gas discharge port side of the fuel cell. A phenomenon occurs.
[0011]
When this phenomenon occurs, the reduced fuel electrode is oxidized, and the portion of the fuel electrode to which hydrogen is not supplied becomes an insulator. When the fuel electrode becomes an insulator, the electric resistance of the fuel cell greatly increases, the electric resistance of the stack in which the fuel cells are configured in series increases, the output greatly decreases, and the fuel cell as a whole increases. The characteristics deteriorate.
[0012]
Conversely, when the amount of hydrogen-containing gas exceeds the design amount, the fuel utilization rate decreases, the amount of hydrogen that does not contribute to power generation increases, and power generation efficiency decreases.
[0013]
Further, in the case of an air electrode support type fuel cell, if the oxygen-containing gas supplied to the fuel cell is smaller than the design gas amount, the air utilization rate increases. If the air utilization rate becomes too large, oxygen, another fuel of the fuel cell reaction, is consumed at the gas supply port side of the fuel cell, and oxygen is not supplied to the gas outlet side of the fuel cell, so-called The phenomenon of air withering occurs.
[0014]
When this phenomenon occurs, the air electrode is reduced, causing a volume change, and at the interface between the electrolyte and the air electrode co-sintered in the atmosphere, stress is generated due to the volume change of the air electrode, and the fuel cell Leads to destruction.
[0015]
For the above reasons, it is necessary to supply the same amount of gas to each fuel cell. However, when there is a variation in the cross-sectional area of the gas flow path formed inside the fuel cell, even if the gas is supplied to the fuel cell at the same pressure, the gas flow The amount of gas flowing in the road varies from fuel cell to fuel cell.
[0016]
In particular, when a support is manufactured by extrusion molding or the like with high productivity, there is a problem that the cross-sectional area of the gas flow path of the fuel cell tends to vary widely.
[0017]
Therefore, variations in the gas flow paths of the fuel cells are managed, and only the fuel cells within the management range are used. However, it takes time and cost to inspect the variation of the gas flow path of the fuel cell, and there is a problem in productivity. In addition, there is a problem that the cost increases due to a decrease in the non-defective rate.
[0018]
In order to solve this problem, for example, a method of measuring the amount of gas supplied to each fuel cell unit and controlling the amount of gas using a valve or the like can be considered, but the structure becomes complicated, Since a control system is required, there are problems such as an increase in the size of the device and an increase in cost.
[0019]
An object of the present invention is to provide a fuel cell and a fuel cell that can supply gas to a plurality of cell bodies uniformly with a simple structure.
[0020]
[Means for Solving the Problems]
The fuel cell of the present invention has a gas flow path with one side serving as a supply port and the other side serving as a discharge port, which is formed in the axial direction, and a power generation unit in which a solid electrolyte is sandwiched between a fuel electrode and an air electrode. And a lid-like member provided at a discharge port side end of the cell body and having a gas discharge suppression hole for suppressing a gas flow rate of the gas flow path. And
[0021]
In such a fuel cell, even if the cross-sectional area of the gas flow path formed in the cell body varies, the fuel cell is provided inside the cell body at the gas outlet side end of the cell body. By providing a lid-like member having a gas discharge suppressing hole for suppressing the gas flow rate in the gas flow path and increasing the fluid resistance, the amount of gas supplied to the fuel cell can be reduced by cutting the gas flow path in the cell body. It is controlled by a lid-like member having a gas emission suppression hole regardless of the area.
[0022]
As a result, the amount of gas supplied to each of the plurality of fuel cells can be easily made uniform, and variations in the amount of power generated by each fuel cell can be easily suppressed. It is possible to prevent the efficiency from being lowered and the fuel cells from being destroyed.
[0023]
In addition, since the amount of gas discharged from the fuel cell is suppressed by the lid member having the gas discharge suppressing hole, the pressure in the gas passage increases, and the porous fuel electrode or It is expected that the amount of gas supplied to the air electrode will increase and the amount of power generation will increase.
[0024]
Further, the fuel cell unit of the present invention is characterized in that the gas discharge suppressing holes provided in the lid-like member have a slit shape.
[0025]
The shape of the gas emission suppression hole may be, for example, a circular hole or a star-like hole, but a slit-shaped hole is the most productive and has good reproducibility. Holes having the same shape can be formed, and the uniformity of the gas amount supplied to each fuel cell can be further improved.
[0026]
Further, in the fuel cell according to the present invention, the cell main body has a plurality of gas flow paths, and a shielding plate of a lid-like member having a gas discharge suppressing hole formed on an end face on the outlet side of the cell main body includes the cell main body. A common gas chamber is provided between the shielding plate and the end face on the outlet side of the cell body.
[0027]
When a plurality of gas flow paths are formed inside one cell main body, the lid-shaped member may be provided with a gas discharge suppression hole communicating with each gas flow path.
[0028]
However, the shape tends to be complicated, and the strength of the member tends to be low. Therefore, the plurality of gas flow paths are spaced apart from each other by a predetermined distance between the gas discharge port side end surface of the cell body having the plurality of gas flow paths and the shielding plate in which the gas discharge suppression holes of the lid member are formed. By providing a common gas chamber communicating with the gas discharge suppressing hole and the gas discharge suppressing hole, a plurality of gas flow paths provided inside the cell body can be communicated, and the gas discharge suppression corresponding to each gas flow path is provided on the lid member. There is no need to provide a plurality of holes, so that the structure of the lid-like member can be simplified, and mounting is easy.
[0029]
Further, a fuel cell of the present invention is characterized in that a plurality of the above-described fuel cells are housed in a housing container.
[0030]
In such a fuel cell, the amount of gas supplied to each fuel cell becomes uniform, and the power generation capacity is improved. Further, it is possible to suppress destruction of fuel cells and deterioration of performance due to insufficient or excessive gas supply. In particular, when the fuel cells are electrically connected in series, the performance degradation of one fuel cell greatly affects the power generation capacity of the entire fuel cell, so that an increase in the electric resistance of the fuel cell is prevented. The fuel cell of the present invention that can be used can prevent significant performance deterioration, particularly in a fuel cell in which fuel cells are connected in series. Further, a simple structure can be achieved without requiring a special control device, and an improvement in power generation efficiency, downsizing of the fuel cell, and cost reduction can be achieved.
[0031]
BEST MODE FOR CARRYING OUT THE INVENTION
1 and 2 show a perspective view and a longitudinal sectional view of one embodiment of the fuel cell unit of the present invention. Note that the same members as those in the conventional technique are denoted by the same reference numerals.
[0032]
In the fuel cell of the present invention, a porous fuel electrode 5, a dense solid electrolyte 7, and a porous solid electrolyte 7 are formed on the surface of a flat columnar support 3 in which a plurality of gas flow paths 1 are formed in the axial direction. The air electrode 9 is sequentially formed to form the cell body A. At the end of the outlet side of the cell body A, a lid-like member 13 having a gas emission suppressing hole 11 is provided. The lid member 13 has a cap shape, and is composed of a shielding plate 13a in which the gas discharge suppression holes 11 are formed, and an annular body 13b fitted to the cell main body A. It has a function of suppressing the gas flow rate flowing through the gas flow path 1 formed inside the main body A.
[0033]
Further, a common gas chamber 15 is formed between the discharge port side end face 14 of the cell body A and the shielding plate 13a. By providing the common gas chamber 15 between the discharge port side end face 14 of the cell body A and the shielding plate 13a in this manner, the gases passing through the plurality of gas flow paths 1 once merge in the common gas chamber 15, For example, only one discharge suppression hole 11 may be provided. The smaller the number of gas emission suppression holes 11, the higher the productivity of the lid-like member 13 and the higher the strength as a member. Further, by providing the common gas chamber 15, the number of contact points between the cell body A and the lid member 13 is reduced, so that the attachment between the cell body A and the lid member 13 is facilitated.
[0034]
In such a fuel cell, the gas supplied to the inside of the cell body A is introduced into the gas flow path 1 from the end opposite to the end on the outlet side of the cell body A, and passes through the common gas chamber 15. The gas passes through the gas discharge suppressing holes 11 provided in the lid 13 and is discharged outside the fuel cell. Further, other gas is supplied to the outside of the fuel cell, and the fuel electrode 5 and the air are mixed in a power generation unit in which a porous fuel electrode 5, a dense solid electrolyte 7, and a porous air electrode 9 are laminated. Power generation based on the oxygen concentration difference between the poles 9 is performed.
[0035]
In this fuel cell, a dense solid electrolyte 7 is formed up to the end of the cell body A in order to prevent gas from entering inside and outside the fuel cell.
[0036]
In such a fuel cell, the support 3 is generally manufactured by using an extrusion molding method with high productivity. However, this molding method has low dimensional accuracy and the shape of the gas flow path 1 inside the fuel cell is low. Tends to vary greatly depending on the fuel cell.
[0037]
As described above, when a stack is manufactured using a plurality of fuel cells in which the shape of the gas flow path 1 varies, and when the stack is fixed to the manifold and the gas flows through the inside of the fuel cell, the gas flows through each fuel cell. There has been a problem that it does not flow evenly between cells. For example, even if a design gas amount corresponding to the number of fuel cells forming the stack is supplied to the stack, a large amount of gas flows through the fuel cell having the large gas flow path 1 but a small amount of the fuel cell has a small gas flow path 1. A phenomenon occurs in which only a small amount of gas flows.
[0038]
This phenomenon is caused by the fact that the pressure loss of the gas flowing through the narrow gas flow path 1 becomes larger than the pressure loss of the gas flowing through the wide gas flow path 1. The flow velocity of the gas flowing through the flow path 1 becomes slow.
[0039]
Since the amount of gas passing through the gas passage 1 is the product of the gas flow velocity and the cross-sectional area of the gas passage 1, the amount of gas flowing through the narrow gas passage 1 is smaller than the amount of gas flowing through the wide gas passage 1. Less. This tendency becomes more conspicuous as the length of the gas flow path 1 in the flow direction is longer.
[0040]
Such a variation in the gas flow rate due to the variation in the shape of the gas flow path 1 may be caused, for example, by connecting a plurality of fuel cells to one gas tank and supplying the gas from one gas tank to the gas flow path 1 of the plurality of fuel cells. In the case of supply, it becomes particularly noticeable, and if there is even one fuel cell in which gas does not easily flow, gas hardly flows in this fuel cell, and excess gas is supplied only to the other fuel cells. As a result, there is a problem that the power generation amount and the power generation efficiency of the entire fuel cell decrease.
[0041]
The fuel cell of the present invention is supplied by providing the lid-like member 13 having the gas discharge suppressing hole 11 at the outlet side end of the cell body A even if the gas flow path 1 has a different sectional area. Since the gas amount can be controlled, the variation in the gas amount supplied between the plurality of fuel cells can be suppressed, and the power generation efficiency decreases due to the decrease in the fuel utilization rate due to the excessive gas flow rate. Further, it is possible to prevent the fuel cell from being destroyed due to the fuel dying caused by the gas flow rate being too small, the performance deterioration of the fuel cell due to the increase in the electric resistance, and the fuel cell from being damaged due to the air dying. In addition, since gas can be uniformly distributed and supplied to each fuel cell, improvement in power generation capacity of the fuel cell and prevention of destruction of the fuel cell can be achieved at the same time. In particular, the effect is remarkable in a series connection type fuel cell in which the characteristic deterioration of one fuel cell greatly affects the characteristics of the whole fuel cell.
[0042]
Further, the pressure of the hydrogen gas or the oxygen-containing gas in the gas flow path 1 can be increased by providing the lid-like member 13 having the gas discharge suppression hole 11 at the end of the cell body A on the outlet side. It is expected that the amount of gas supplied to the porous fuel electrode 5 or the air electrode 9 on the gas flow path 1 side can be increased, and the power generation amount of the fuel cell can be increased.
[0043]
FIG. 3 shows a longitudinal sectional view of another embodiment of the fuel cell unit according to the present invention. In this fuel cell, a plurality of gas flow paths 1 are formed inside the cell body A, and a plurality of gas discharge suppression holes 11 corresponding to the gas flow paths 1 are formed at the outlet end of the cell body A. A lid member 13 is provided. A common gas chamber 15 is provided between the shielding plate 13a provided with the gas discharge suppressing holes 11 and the discharge port side end surface 14 of the cell body.
[0044]
Even in such a fuel cell, the amount of gas supplied between the plurality of fuel cells can be made uniform by providing the gas discharge suppressing holes 11 corresponding to the plurality of gas channels 1 in the lid-like member 13. And the amount of gas supplied to the plurality of gas passages 1 formed inside the cell body A becomes uniform, and the amount of power generation as a fuel cell is improved.
[0045]
FIG. 4 shows a longitudinal sectional view of another embodiment of the fuel cell unit according to the present invention. In this fuel cell, a plurality of gas passages 1 are formed inside the cell body A, and the gas passages 1 of the cell body A correspond to the outlet side end of the cell body A, respectively. A lid-like member 13 provided with a gas emission suppression hole 11 is provided. Even in such a fuel cell, since the gas discharge suppression holes 11 are provided independently in the gas flow paths 1 of the cell body A, the gas amount supplied to each gas flow path 1 can be made uniform. it can.
[0046]
FIG. 5 shows various forms of the lid 13. The gas emission suppressing holes 11 which are through holes provided in the lid member 13 may be circular holes as shown in FIGS. 5 (a) and 5 (b), and FIGS. 5 (c) and 5 (d). , (E).
[0047]
Further, the number of the gas emission suppressing holes 11 is one as shown in FIGS. 5B, 5C and 5D, but is plural as shown in FIGS. 5A and 5E. Is also good. For example, by reducing the number of the gas discharge suppression holes 11 provided in the cover member 13 to one, the structure of the cover member 13 is simplified, and the number of the gas discharge suppression holes 11 is reduced. The production of the member 13 is facilitated, and the strength of the lid 13 is also improved.
[0048]
The lid 13 is preferably made of a heat-resistant metal or the like whose coefficient of thermal expansion is close to that of the cell body A because of its high thermal conductivity. Further, ceramic members such as alumina, zirconia, stabilized zirconia, and partially stabilized zirconia, which are excellent in heat resistance, thermal shock resistance, and strength, and excellent in stability in an oxidizing atmosphere and a reducing atmosphere, are also preferably used.
[0049]
In particular, in the case where excess gas is burned in the vicinity of the gas discharge port side end of the fuel cell, the cell body A is rapidly heated by making the lid member 13 a ceramic having a lower thermal conductivity than metal. Can be protected from destruction.
[0050]
Further, from the viewpoint of the effect of suppressing the amount of gas flow, the shape of the gas discharge suppressing hole 11 provided in the lid 13 is preferably such that the depth of the hole, that is, the thickness of the shielding plate 13a is 2 mm or more, Furthermore, it is desirable that it is 4 mm or more. Further, the width of the gas emission suppression hole 11 in the minor axis direction is preferably 1 mm or less, and more preferably 0.7 mm or less.
[0051]
FIG. 6 shows a longitudinal sectional view (a) of another embodiment of the fuel cell unit according to the present invention, and a perspective view (b) of one embodiment of the lid 13. In this fuel cell, a gas flow path 1 is formed inside a cylindrical column-shaped cell main body A, and a lid-like member 13 having a gas discharge suppressing hole 11 formed at an end of the cell main body A on the outlet side is provided. . For example, even in the case of such a cylindrical column-shaped cell main body A, by providing a lid-like member 13 in which a gas discharge suppression hole 11 is formed at the end of the cell main body A on the outlet side, a plurality of fuel cells can be formed. The amount of gas supplied can be made uniform.
[0052]
The fuel cell of the present invention is configured by storing a plurality of the fuel cells of the present invention in a storage container. In such a fuel cell, the gas can be uniformly distributed and supplied within the fuel cell or between the fuel cells, and the variation in the amount of power generation between the fuel cells can be suppressed. The breakage of the cell can be prevented, and the power generation capacity can be increased.
[0053]
Further, it is not necessary to inspect the gas flow path 1 for each fuel cell, and the productivity is improved.
[0054]
Note that the present invention is not limited to the above-described embodiment, and various changes can be made without changing the gist of the present invention. For example, as long as gas is discharged from the end of the cell main body, the same effect can be obtained even with a one-end sealed type or folded type cell main body. Further, the lid-like member 13 only has to have a function of suppressing gas emission. For example, a porous body or a net-like member may be used instead of the shielding plate 13a and the gas emission suppression hole 11.
[0055]
【The invention's effect】
According to the present invention, the amount of gas supplied to each fuel cell becomes uniform, the power generation capability is excellent, and the destruction of the fuel cell due to insufficient gas supply or excessive gas supply can be suppressed. In addition, it is possible to achieve an improvement in power generation efficiency, a reduction in size of the fuel cell, and a reduction in cost with a simple structure without requiring a special control device.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a fuel cell unit of the present invention.
FIG. 2 is a longitudinal sectional view of the fuel cell unit of FIG.
FIG. 3 is a longitudinal sectional view showing another embodiment of the fuel cell unit of the present invention in which gas emission suppression holes are formed so as to correspond to a plurality of gas flow paths.
FIG. 4 is a longitudinal sectional view showing still another embodiment of the fuel cell unit of the present invention.
5 (a) to 5 (e) are plan views showing various forms of a lid member used for the flat columnar fuel cell of the present invention.
FIG. 6A is a longitudinal sectional view showing a form of a cylindrical fuel cell of the present invention, and FIG. 6B is a perspective view showing a lid member.
FIG. 7 is a longitudinal sectional view showing a conventional fuel cell unit.
[Explanation of symbols]
A: Cell body 1: Gas flow path 3: Support member 5: Fuel electrode 7: Solid electrolyte 9: Air electrode 11: Gas emission suppression hole 13: Lid -Shaped member 13a-shielding plate 13b-annular body 14-end face 15 on the outlet side-common gas chamber

Claims (4)

一方側が供給口とされ、他方側が排出口とされたガス流路が軸長方向に形成されるとともに、固体電解質が燃料極及び空気極で挟持された発電部を有する柱状のセル本体と、該セル本体の排出口側端部に設けられるとともに、前記ガス流路のガス流通量を抑制するガス排出抑制孔が形成された蓋状部材とを具備することを特徴とする燃料電池セル。A gas flow path having one side serving as a supply port and the other side serving as a discharge port is formed in the axial direction, and a column-shaped cell body having a power generation unit in which a solid electrolyte is sandwiched between a fuel electrode and an air electrode; A fuel cell comprising: a lid-like member provided at an end of an exhaust port side of a cell body and formed with a gas discharge suppression hole for suppressing a gas flow rate in the gas flow path. 蓋状部材に設けられたガス排出抑制孔がスリット状であることを特徴とする請求項1記載の燃料電池セル。2. The fuel cell according to claim 1, wherein the gas discharge suppressing hole provided in the lid member has a slit shape. セル本体は複数のガス流路を有し、セル本体の排出口側端面に、ガス排出抑制孔が形成された蓋状部材の遮蔽板が、前記セル本体の排出口側端面と所定間隔をおいて設けられており、前記遮蔽板と、前記セル本体の排出口側端面との間に共通ガス室が設けられていることを特徴とする請求項1又は2記載の燃料電池セル。The cell body has a plurality of gas flow paths, and a shielding plate of a lid-like member having a gas discharge suppression hole formed on an end face on the outlet side of the cell body at a predetermined distance from the end face on the outlet side of the cell body. The fuel cell according to claim 1, wherein a common gas chamber is provided between the shielding plate and an end face on the outlet side of the cell body. 収納容器内に請求項1乃至3のうちいずれかに記載の燃料電池セルを複数収納してなることを特徴とする燃料電池。A fuel cell comprising a plurality of fuel cells according to any one of claims 1 to 3 stored in a storage container.
JP2002373990A 2002-12-25 2002-12-25 Fuel cell stack and fuel cell Expired - Fee Related JP4025639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002373990A JP4025639B2 (en) 2002-12-25 2002-12-25 Fuel cell stack and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002373990A JP4025639B2 (en) 2002-12-25 2002-12-25 Fuel cell stack and fuel cell

Publications (2)

Publication Number Publication Date
JP2004207006A true JP2004207006A (en) 2004-07-22
JP4025639B2 JP4025639B2 (en) 2007-12-26

Family

ID=32812136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002373990A Expired - Fee Related JP4025639B2 (en) 2002-12-25 2002-12-25 Fuel cell stack and fuel cell

Country Status (1)

Country Link
JP (1) JP4025639B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011134542A (en) * 2009-12-24 2011-07-07 Kyocera Corp Cell stack device, fuel cell module, and fuel cell device
JP2012014850A (en) * 2010-06-29 2012-01-19 Kyocera Corp Lateral stripe type solid oxide fuel battery cell stack, lateral stripe type solid oxide fuel battery bundle, and fuel battery
JP2013030486A (en) * 2012-08-30 2013-02-07 Toto Ltd Fuel cell module and fuel cell including the same
JP2013033740A (en) * 2012-09-12 2013-02-14 Toto Ltd Fuel battery module and fuel battery having the same
WO2013038700A1 (en) 2011-09-16 2013-03-21 日本特殊陶業株式会社 Fuel cell
JP2015185493A (en) * 2014-03-26 2015-10-22 Toto株式会社 solid oxide fuel cell device
JP2015187952A (en) * 2014-03-27 2015-10-29 Toto株式会社 solid oxide fuel cell device
JP2018055915A (en) * 2016-09-28 2018-04-05 Toto株式会社 Solid oxide fuel battery cell stack
JP6450046B1 (en) * 2018-06-22 2019-01-09 日本碍子株式会社 Fuel cell and cell stack device
JP6457686B1 (en) * 2018-06-19 2019-01-23 日本碍子株式会社 Fuel cell and cell stack device
JP2019016525A (en) * 2017-07-07 2019-01-31 日本碍子株式会社 Fuel battery cell and cell stack device
JP2019016523A (en) * 2017-07-07 2019-01-31 日本碍子株式会社 Fuel battery cell and cell stack device
JP2019016524A (en) * 2017-07-07 2019-01-31 日本碍子株式会社 Fuel battery cell and cell stack device
JP6467090B1 (en) * 2018-06-19 2019-02-06 日本碍子株式会社 Fuel cell and cell stack device
JP6484383B1 (en) * 2018-06-20 2019-03-13 日本碍子株式会社 Fuel cell and cell stack device
JP6483894B1 (en) * 2018-06-19 2019-03-13 日本碍子株式会社 Fuel cell and cell stack device
JP2020004695A (en) * 2018-06-20 2020-01-09 日本碍子株式会社 Fuel cell and cell stack device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011134542A (en) * 2009-12-24 2011-07-07 Kyocera Corp Cell stack device, fuel cell module, and fuel cell device
JP2012014850A (en) * 2010-06-29 2012-01-19 Kyocera Corp Lateral stripe type solid oxide fuel battery cell stack, lateral stripe type solid oxide fuel battery bundle, and fuel battery
WO2013038700A1 (en) 2011-09-16 2013-03-21 日本特殊陶業株式会社 Fuel cell
KR20140063695A (en) 2011-09-16 2014-05-27 니뽄 도쿠슈 도교 가부시키가이샤 Fuel cell
CN103828113A (en) * 2011-09-16 2014-05-28 日本特殊陶业株式会社 Fuel cell
US9385381B2 (en) 2011-09-16 2016-07-05 Ngk Spark Plug Co., Ltd. Fuel cell stack
JP2013030486A (en) * 2012-08-30 2013-02-07 Toto Ltd Fuel cell module and fuel cell including the same
JP2013033740A (en) * 2012-09-12 2013-02-14 Toto Ltd Fuel battery module and fuel battery having the same
JP2015185493A (en) * 2014-03-26 2015-10-22 Toto株式会社 solid oxide fuel cell device
JP2015187952A (en) * 2014-03-27 2015-10-29 Toto株式会社 solid oxide fuel cell device
JP2018055915A (en) * 2016-09-28 2018-04-05 Toto株式会社 Solid oxide fuel battery cell stack
JP2019016525A (en) * 2017-07-07 2019-01-31 日本碍子株式会社 Fuel battery cell and cell stack device
JP2019016523A (en) * 2017-07-07 2019-01-31 日本碍子株式会社 Fuel battery cell and cell stack device
JP2019016524A (en) * 2017-07-07 2019-01-31 日本碍子株式会社 Fuel battery cell and cell stack device
JP6457686B1 (en) * 2018-06-19 2019-01-23 日本碍子株式会社 Fuel cell and cell stack device
JP6467090B1 (en) * 2018-06-19 2019-02-06 日本碍子株式会社 Fuel cell and cell stack device
JP6483894B1 (en) * 2018-06-19 2019-03-13 日本碍子株式会社 Fuel cell and cell stack device
JP6484383B1 (en) * 2018-06-20 2019-03-13 日本碍子株式会社 Fuel cell and cell stack device
JP2020004694A (en) * 2018-06-20 2020-01-09 日本碍子株式会社 Fuel cell and cell stack device
JP2020004695A (en) * 2018-06-20 2020-01-09 日本碍子株式会社 Fuel cell and cell stack device
JP6450046B1 (en) * 2018-06-22 2019-01-09 日本碍子株式会社 Fuel cell and cell stack device
JP2019220427A (en) * 2018-06-22 2019-12-26 日本碍子株式会社 Fuel cell and cell stack device

Also Published As

Publication number Publication date
JP4025639B2 (en) 2007-12-26

Similar Documents

Publication Publication Date Title
JP4025639B2 (en) Fuel cell stack and fuel cell
KR100549683B1 (en) Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of supplying reaction gas in fuel cell
US20070298311A1 (en) Fuel cell separator
JP5111036B2 (en) Fuel cell stack and fuel cell
JP5133551B2 (en) Fuel cell power generation system
JP6866485B2 (en) Bipolar plates and fuel cells for fuel cells
JP2006032328A (en) Fuel cell
JP5241049B2 (en) Fuel cell
JP6634955B2 (en) Fuel cell
CA2548296C (en) Fuel cell stack which suppresses reductions in current density in high temperature region
JP2006054175A (en) Fuel cell
JP4025687B2 (en) Fuel cell and fuel cell
JP2005183375A (en) Fuel cell
JP4300947B2 (en) Solid oxide fuel cell
JP4529393B2 (en) Solid oxide fuel cell
US6455184B1 (en) Gas distributor for a fuel cell
JP4025640B2 (en) Fuel cell
US8338047B2 (en) Solid oxide fuel cell
JP4859413B2 (en) Cell stack and fuel cell
KR20130073874A (en) Fuel cell stacks
JP5723124B2 (en) Fuel cell and fuel cell device
JP2008218279A (en) Solid oxide fuel cell, and supplying method of fuel gas
JP4546757B2 (en) Fuel cell
JP2005183132A (en) Fuel cell
JP5305131B2 (en) Fuel cell and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees