JP2004206922A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2004206922A
JP2004206922A JP2002372012A JP2002372012A JP2004206922A JP 2004206922 A JP2004206922 A JP 2004206922A JP 2002372012 A JP2002372012 A JP 2002372012A JP 2002372012 A JP2002372012 A JP 2002372012A JP 2004206922 A JP2004206922 A JP 2004206922A
Authority
JP
Japan
Prior art keywords
fuel cell
gas
fuel
pressure
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002372012A
Other languages
English (en)
Inventor
Shigenori Yazawa
成紀 矢澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002372012A priority Critical patent/JP2004206922A/ja
Publication of JP2004206922A publication Critical patent/JP2004206922A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】燃料電池本体の加圧構造を強化することなく、燃料電池の運転圧力を高められるようにする。
【解決手段】燃料電池本体1を圧力容器10内に収納し、これら燃料電池本体1と圧力容器10との間の空間に、燃料電池本体1の酸化剤極に供給する酸化剤ガス(空気)の一部が供給されるようにする。これにより、圧力容器10の内部圧力が燃料電池本体1の内部を通流する酸化剤ガス(空気)や燃料ガスと略等しい圧力に保持され、燃料電池の加圧運転、ひいては外気圧以上の圧力での運転が可能となる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池本体に燃料ガスや酸化剤ガスを供給して発電電力を得る燃料電池システムに関するものであり、特に、燃料電池本体の耐圧構造を強化することなく加圧運転を可能とする燃料電池システムに関するものである。
【0002】
【従来の技術】
近年、高効率の電力供給源として開発が進められている様々な燃料電池システムのうち、プロトン伝導性を有する高分子電解質膜を用い、燃料ガス及び酸化剤ガスを燃料電池本体に供給する燃料電池システムは、簡略な構造で高い出力密度が得られることから、特に自動車等の移動体用電源として注目されている。
【0003】
この種の燃料電池システムに用いられる燃料電池本体の概略構成を説明すると、発電を行う燃料電池本体は、単セルを複数積層して構成されている。各単セルは、高分子電解質膜の両表面上に、アノード側電極となる燃料極と、カソード側電極となる酸化剤極とが一体に形成されている。燃料極の他方の面には、多孔質導電性物質で形成され燃料ガス(例えば水素)に富む改質ガスの通路が設けられた集電板が配置されている。また、酸化剤極の他方の面には、多孔質導電性物質で形成され酸化剤ガス(例えば空気)の通路が設けられた集電板が配置されている。これら集電板のガス通路が設けられた面とは反対側の面には、冷却水を通流させる通路が設けられている。これら高分子電解質膜、燃料極、酸化剤極及び集電板の積層体により単セルが構成され、このような単セルを電気絶縁板を介して複数直列に積層することにより燃料電池本体が構成されている。
【0004】
ここで、燃料極側の多孔質集電板の燃料ガス通路には、燃料ガス供給手段から水素に富む燃料ガスが大気圧で供給され、酸化剤極側の多孔質集電板の酸化剤ガス通路には、ブロアから酸化剤ガスとして空気が大気圧で供給される。また両極の多孔質集電板の冷却水通路には冷却水循環ポンプにより冷却水が供給され、燃料電池本体の運転温度を例えば80℃程度に維持すると共に、両極の多孔質集電板を介して、通流するガスと冷却水の間で水分が移動することにより、両極を通流するガスの湿度が燃料電池本体の運転に最適な状態に維持される。
【0005】
このような燃料電池システムにおいては、燃料電池本体のガス通路と冷却水通路が多孔質集電板を介して隣接しているため、燃料電池本体に供給される冷却水の圧力は、圧力レギュレータにより供給されるガスの圧力(大気圧)より低い圧力、例えば30kPa程度低い圧力に保持され、冷却水が必要以上にガス通路に移動しないように運転される。このように、供給ガスと冷却水の圧力を相互に制御することにより、高分子電解質膜を均一に適度な湿潤状態に保持することができるので、このような燃料電池システムは、特に、様々な負荷条件で運転されることが想定される自動車等の移動体用のシステムとして適している。
【0006】
一方で、前記燃料電池システムにおける燃料電池本体は、集電板に多孔質素材を用いているため、燃料電池本体の雰囲気に対する気密性を保つことが難しく、燃料ガス及び酸化剤ガスの燃料電池本体外部への洩れを抑止するために、燃料ガス及び酸化剤ガスの供給圧力をほぼ大気圧のレベルに保って運転することが一般的である。
【0007】
ところで、多孔質集電板を用いた燃料電池本体を大気圧運転する燃料電池システムにおいては、その運転圧力(燃料ガスおよび酸化剤ガスの供給圧力)が比較的低圧であるために、燃料電池本体から排出される未反応の酸化剤ガス圧力に占める飽和水蒸気の分圧比率が高く、結果的に排出される未反応酸化剤ガスに含まれる水蒸気量が多い。そのため、燃料電池システム全体の保有する水の総量が運転時間と共に減少してしまい、外部から水を補給しない限り運転を安定的に継続させることができなくなるという、移動体にとっては致命的な不具合がある。
【0008】
このような不具合を解決するための一つの方策として、燃料電池本体から排出される未反応の酸化剤ガス中に含まれる水分を回収し、この回収水を用いて燃料電池本体に供給する酸化剤ガスを加湿する方法があるが、ここで用いる水回収装置及び加湿装置は、燃料電池本体の運転圧力を低下させるに伴って増大する必要水回収量及び必要加湿量に比例して大型化してしまうという問題がある。例えば大気圧近傍の運転では、これら水回収装置、加湿装置を車載可能な大きさで製作することは現有技術では極めて困難である。
【0009】
そこで、他の方策として、燃料電池本体の運転圧力を上昇させる方法が検討されている(例えば、特許文献1や特許文献2等を参照)。
【0010】
特許文献1には、燃料電池本体構造自体を圧力容器とみなし、この圧力容器内を圧力制御しながら運転することが開示されている。詳しくは、この特許文献1には、圧力容器内の空間の圧力や、その空間を流通する気体の流量等の制御精度を改善して、燃料電池本体の運転効率を改善するといった思想の技術が開示されている。なお、この特許文献1に開示される技術は、燃料電池本体への各種供給ガス圧と、圧力容器の空間の圧力やその空間部分の気体流量等の相関を課題とするものではない。
【0011】
一方、特許文献2には、圧力容器内に燃料電池本体を収納するとともに、この圧力容器内に窒素ガスを充填し、負荷の大きさに応じて充填圧力を変更することが開示されている。詳しくは、この特許文献2にて開示される技術は、主に部分負荷運転時の燃料電池本体への供給ガスの流量分布の均一化を図るため、負荷の大きさによらず、燃料ガス及び酸化剤ガスの実流量が常に全負荷時と同じになるように制御する。その際に、圧力容器の空間の充填圧力と供給ガス圧との差圧を所定範囲内に制御するというものである。
【0012】
【特許文献1】
特開2001−319672号公報
【0013】
【特許文献2】
特開平7−302603号公報
【0014】
【発明が解決しようとする課題】
しかしながら、上述したように、多孔質素材の集電板を積層した構造の燃料電池本体は、大気圧運転を前提に設計されているため、そのままの構造では気密性を維持することが困難であり、前記特許文献1記載の技術のように、それ自体を圧力容器とみなして運転圧力を高圧化することは難しい。燃料電池本体の耐圧構造を強化してこれに対応することは可能であるが、耐圧構造の強化は、燃料電池本体構造の複雑化につながり、重量やサイズ、コストの増加は避けられない。
【0015】
また、前記特許文献2に記載の技術によれば、燃料電池本体の耐圧構造の強化は不要であるが、圧力容器内に窒素ガスを充填するためには、燃料ガスや酸化剤ガスの供給系とは別に窒素ガス供給系を設ける必要があり、装置構成が煩雑化する。また、窒素ガスの充填により圧力容器内の圧力を燃料電池本体内の圧力と一致させることは難しく、差圧が問題になる虞れもある。
【0016】
負荷条件が様々に変動する移動体用燃料電池システムにおいては、多孔質集電板の働きで高分子電解質膜を最適な湿潤状態に維持しながら加圧運転を行なうことにより、システム全体の水収支を制御することが最適であると考えられるが、前記従来技術では解決すべき課題も多い。
【0017】
本発明は、以上のような従来の実情に鑑みて提案されたものであり、燃料電池本体に多孔質集電板を用いることにより得られる利点、すなわち様々な負荷条件の下で高分子電解質膜の湿潤状態を均一かつ適度に維持できるといった利点を維持しながら、システム構成を大型化、複雑化させることなく、燃料電池本体の運転圧力を上昇させることを可能とし、外部からの水の補給を行うことなく継続的に運転させることができる燃料電池システムを提供することを目的とする。
【0018】
【課題を解決するための手段】
本発明の燃料電池システムは、燃料電池本体と、この燃料電池本体との間に空間を形成しながら燃料電池本体を収納する圧力容器とを備える。燃料電池本体は、燃料ガスが供給される燃料極と酸化剤ガスが供給される酸化剤極とにより挟持された高分子電解質膜と、一方の面に燃料ガス通路が設けられた多孔質電導物質で形成される燃料極集電板と、一方の面に酸化剤ガス通路が設けられた多孔質電導物質で形成される酸化剤極集電板とを有する単セルが、複数積層されてなるものであり、圧力容器に収納される。このとき、燃料電池本体と圧力容器との間に空間が形成されるようにしている。そして、本発明の燃料電池システムでは、燃料電池本体と圧力容器とで形成される空間内に、燃料ガス或いは酸化剤ガスの一部を充填して、この空間内の圧力を、燃料電池本体に供給される燃料ガス或いは酸化剤ガスと略等しい圧力に保持するようにしている。これにより、燃料電池本体の内部圧力と燃料電池本体を取り巻く雰囲気の圧力とを略等しくすることができ、燃料電池本体の耐圧構造を強化することなく、特に多孔質集電板の外周部に特別なシールを施すことなく、大気圧よりも高い圧力で運転することができる。
【0019】
また、本発明の燃料電池システムでは、前記燃料電池本体と圧力容器とで形成される空間が、電気絶縁性を有する流体で満たされるようにしてもよい。この場合にも、電気絶縁性を有する流体がシールとしての役割を果たし、燃料電池本体の耐圧構造を強化することなく、大気圧よりも高い圧力で運転することができる。
【0020】
【発明の効果】
本発明の燃料電池システムによれば、燃料電池本体の耐圧構造を強化することなく、したがって装置を大型化又は複雑化させることなく、燃料電池本体の運転圧力を上昇させることが可能であり、外部からの水の補給を行うことなく継続的な運転が可能である。したがって、特に自動車等の移動体用のシステムとして、有用性が極めて高い。また、圧力容器内の圧力制御を燃料電池本体に供給される燃料ガス或いは酸化剤ガスを利用して行うことで、圧力制御のための特別な構成は不要となり、システム構成を更に簡略化することが可能である。
【0021】
【発明の実施の形態】
以下、本発明を適用した燃料電池システムについて、図面を参照して説明する。
【0022】
(第1の実施形態)
図1は、例えば燃料電池自動車に搭載される燃料電池システムの構成を示すものである。この燃料電池システムは、燃料電池自動車の駆動電力を発電する燃料電池本体1と、この燃料電池本体1に燃料である水素ガス(或いは水素リッチな改質ガス)を供給する燃料ガス供給系2と、燃料電池本体1に酸化剤である空気を供給する空気供給系3と、燃料電池本体1を冷却するための冷却系4とを備えて構成される。
【0023】
燃料電池本体1は、燃料ガスが供給される燃料極と酸化剤(空気)が供給される酸化剤極とが電解質・電極触媒複合体を挟んで重ね合わされて発電セル(単セル)が構成されるとともに、複数の発電セルが多段積層された構造を有し、電気化学反応により化学エネルギーを電気エネルギーに変換する。燃料極では、水素ガス等の燃料ガスが供給されることで水素イオンと電子に解離し、水素イオンは電解質を通り、電子は外部回路を通って電力を発生させ、酸化剤極にそれぞれ移動する。酸化剤極では、供給された空気中の酸素と前記水素イオン及び電子が反応して水が生成し、外部に排出される。
【0024】
図2は、燃料電池本体1の各発電セルの構造を示すものであり、高分子電解質膜13の両表面上には、アノード側電極となる燃料極14と、カソード側電極となる酸化剤極15とが一体に形成されている。燃料極14の他方の面には、多孔質導電性物質で形成され燃料ガスの通路16aが設けられた集電板16が配置されている。また、酸化剤極15の他方の面には、多孔質導電性物質で形成され酸化剤ガスである空気の通路17aが設けられた集電板17が配置されている。これら集電板16、17のガス通路が設けられた面とは反対側の面には、冷却水を通流させる通路16b、17bが設けられている。これら高分子電解質膜13、燃料極14、酸化剤極15、および集電板16、17の積層体により発電セル12が構成されており、このような発電セル12を電気絶縁板18を介して複数直列に積層することにより燃料電池本体1が構成されている。
【0025】
燃料電池本体1の電解質膜としては、高エネルギー密度化、低コスト化、軽量化等を考慮して、例えば固体高分子電解質膜が用いられる。固体高分子電解質膜は、例えばフッ素樹脂系イオン交換膜等、イオン(プロトン)伝導性の高分子膜からなるものであり、飽和含水することによりイオン伝導性電解質として機能する。
【0026】
本発明を適用した燃料電池システムにおいては、以上の構成を有する燃料電池本体1が圧力容器10内に収納されるが、その具体的構造については、詳細を後述する。
【0027】
燃料ガス供給系2は、燃料ガス供給部21、エゼクタポンプ22、燃料ガス供給配管23、水素循環配管24を備えている。そして、燃料ガス供給部21から供給される水素ガス(或いは水素リッチな改質ガス)が、エゼクタポンプ22を通って燃料ガス供給配管23へと送り込まれ、燃料電池本体1の燃料極へと供給されるようになっている。
【0028】
燃料電池本体1では供給された水素ガスが全て消費されるわけではなく、残った水素ガス(燃料電池本体1から排出される水素ガス)は、水素循環配管24を通ってエゼクタポンプ22により循環され、新たに供給される水素ガスと混合されて、再び燃料電池本体1の燃料極に供給される。
【0029】
空気供給系3は、空気を送り込むブロア31及び空気供給配管32を備えている。そして、ブロア31の駆動によって吸気管33から吸い込まれた大気中の空気が、酸化剤として、空気供給配管32を通って燃料電池本体1の酸化剤極に供給されるようになっている。なお、燃料電池本体1の酸化剤極から排出される未利用の酸素は、排気管34からそのまま大気中へ排出される。
【0030】
ここで、本実施形態の燃料電池システムでは、空気供給系3のブロア31から燃料電池本体1の酸化剤極へと酸化剤ガスを供給する空気供給配管32が、その途中で分岐配管35によって分岐されており、この分岐配管35が燃料電池本体1の全体を収納する圧力容器10に接続されている。そして、空気供給系3からの酸化剤としての空気の一部が、分岐配管35を通って圧力容器10内へと供給されるようになっている。これにより、圧力容器10の内圧が燃料電池本体1の酸化剤極に供給される空気の圧力と常に等しく保たれることになり、燃料電池本体1の耐圧構造を強化することなく、この燃料電池本体1に供給する水素ガスや空気の圧力を上昇させることが可能となる。
【0031】
また、固体高分子電解質型の燃料電池本体1は、適正な作動温度が80℃程度と比較的低く、過熱時には冷却することが必要である。そこで、この燃料電池システムにおいては、燃料電池本体1を冷却する冷却系4が設けられている。この冷却系4は、冷却水を循環させながら燃料電池本体1へと供給する冷却水循環経路41を有し、冷却水により燃料電池本体1を冷却し、これを最適な温度に維持するようになっている。冷却水循環経路41には、燃料電池本体1に供給する冷却水量を制御する冷却水圧力レギュレータ42、燃料電池本体1内で熱交換を行う熱交換部43、冷却水の温度を検出する冷却水温度検出手段44、冷却水を循環させる冷却水循環ポンプ45、冷却水に含まれる気体成分を分離除去すると共に冷却水を貯蔵する気液分離器46、冷却水を外気により冷却するラジエータ47及びラジエータ冷却ファン48、冷却水をラジエータ47から迂回させるバイパス管路49、バイパス管路49を通流する冷却水の流量を制御するバイパス弁50がそれぞれ設けられている。
【0032】
以上のような冷却系4において、冷却水圧力レギュレータ42の基準圧検知部と気液分離器46の気層部とは、燃料電池本体1の酸化剤極に空気を供給するブロア31と燃料電池本体1との間に位置する空気供給配管32に接続されており、冷却水の圧力は、燃料電池本体1に供給される空気の圧力に対してある一定の値、例えば30kPaだけ低くなるように保持される。
【0033】
また、大気に開放されたブロア31の吸気管33には大気圧検出手段51が設けられており、この大気圧検出手段51によって大気圧が検出されるようになっている。そして、大気圧検出手段51の出力信号は、冷却水温度検出手段44からの出力信号と共に制御装置52に入力されるようになっている。制御装置52は、検出された大気圧に対応して設定される冷却水温度を保持するように、ラジエタ冷却ファン48及びバイパス弁50を制御する。
【0034】
図3は、本発明を適用した燃料電池システムにおける燃料電池本体1に直接関わる部分を概念的に示したものである。この図3に示すように、本発明を適用した燃料電池システムでは、燃料電池本体1が圧力容器10内に収納されて、この圧力容器10により全体を覆われるようになっている。
【0035】
圧力容器10は耐圧ケース61と、この耐圧ケース61の内周面に貼り付けられた例えば発泡樹脂等の保温断熱層62とで構成される。断熱保温層62と燃料電池本体1との間は、ある一定の空間が設けられており、酸化剤ガス供給分岐管である分岐配管35は、この圧力容器10の断熱保温層62と燃料電池本体1との間の空間に接続されている。そして、酸化剤ガスである空気の一部が分岐配管35を介してこの空間内に供給されることで、この空間内の圧力が、燃料電池本体1の内部を通流する空気と略等しい圧力に保持されるようになっている。
【0036】
燃料電池システムの運転が停止中であり、燃料電池本体1内の冷却水が凍結する恐れがある場合、例えば冷却水温度検出手段44の出力信号が1℃以下となった場合には、制御装置52は冷却水圧力レギュレータ42にバルブ開信号を送り、冷却水圧力レギュレータ42を開く。これにより、空気が燃料電池本体1の冷却水入口配管(冷却水循環経路41)に送り込まれ、この空気によって燃料電池本体1内に通流していた冷却水が排出されて、気液分離器46のタンク内に回収されることになる。その結果、燃料電池本体1内で冷却水が凍結して燃料電池本体1の破損に至る不都合が未然に防止される。
【0037】
ここで、保温断熱層62を持たない燃料電池システムでは、外気温度が氷点下である場合、燃料電池システムの運転を停止する毎に燃料電池本体1内の冷却水を排出しなくてはならないため、再始動時には燃料電池本体1内の冷却水通路に注水した後でなければ燃料電池本体1を起動できない。これに対して、本実施形態の燃料電池システムにおいては、保温断熱層62を有する圧力容器10内に燃料電池本体1を収納しているので、運転停止後もある程度の時間は冷却水を燃料電池本体1内に保持しておくことが可能となり、停止後の再始動時の注水工程を省略できるため再始動時間を大幅に短縮できる。
【0038】
以上の構成を有する燃料電池システムにおいては、燃料電池本体1を圧力容器10内に収納し、燃料電池本体1と圧力容器10とで形成される空間に酸化剤ガスである空気の一部を供給して、この空間の圧力を燃料電池本体1に供給される酸化剤ガスと略等しい圧力に保持し、燃料電池本体1の内部圧力と燃料電池本体1を取り巻く雰囲気の圧力とが略等しくなるようにしたので、燃料電池本体1の耐圧構造を強化することなく、特に多孔質集電板の外周部に特別なシールを施すことなく、大気圧よりも高い圧力で運転することができる。したがって、システム全体をシンプル且つコンパクトに構成できると共に、外部から水を補給することなく長時間の継続的な運転が可能であり、特に燃料電池自動車に搭載して使用する場合にその有用性は極めて高い。
【0039】
また、この燃料電池システムにおいては、燃料電池本体1を収納する圧力容器10を、燃料電池本体1に供給する酸化剤ガス(空気)の供給通路と接続し連通させる構成としたため、圧力容器10に圧力を供給するための特別なガス供給装置を追加設定することなく、圧力容器10内の圧力を燃料電池本体1内部のガス圧力と略等しく維持することが可能となる。また、圧力容器10内の圧力は大気圧よりも高い圧力に保持されているため、圧力容器内に、塵埃、水などが浸入することを防止することもできる。特に、圧力容器10内の圧力は常に外気圧より高い状態に保たれるので、外部から水などが浸入することを積極的に防止できる上に、圧力容器10そのものが燃料電池本体1の保護ケースとしても機能するので、燃料電池自動車の床下に搭載した場合のチッピングや、路面干渉から燃料電池本体1がダメージを受けることがなくなり、信頼性及び車両レイアウトの自由度が増す。
【0040】
さらに、この燃料電池システムにおいては、例えば発泡樹脂等の保温断熱層62を備える圧力容器10内に燃料電池本体1を収納する構成としたので、氷点下において停止している状態で燃料電池本体1内の冷却水が凍結し、燃料電池本体1が破損に至ることを未然に防止できると共に、燃料電池本体1内からの冷却水の排出を最小限にすることができ、再始動時における迅速な運転再開が実現される。
【0041】
(第2の実施形態)
本実施形態の燃料電池システムは、図4に示すように、上述した第1の実施形態の燃料電池システムの構成に、燃料電池本体1と圧力容器10との間の空間の燃料ガス濃度を検出する燃料ガス濃度検出手段71と、この空間内のガスを大気中に放出するためのガス排出装置72とを付加したものである。以下、第1の実施形態の燃料電池システムと同一の構成要素については同一の符号を付して詳細な説明を省略し、本実施形態の特徴的な部分についてのみ説明する。
【0042】
上述したように、燃料電池本体1と圧力容器10との間の空間には、分岐配管51を通して酸化剤である空気が供給されるようになっており、圧力容器10の内部圧力が燃料電池本体1内部に通流するガスの圧力とが略等しくされているので、基本的には、燃料電池本体1の内部を通流する燃料ガスが燃料電池本体1と圧力容器10との間の空間に漏出することはない。しかしながら、過渡運転時、特に急減速運転時等では、一時的に燃料電池本体1内のガス圧力、特に出口側ガス通路の内部ガス圧力が圧力容器10の内部圧力より高くなり、燃料電池本体1内を流通する燃料ガスが圧力容器10内の空間へと僅かではあるが漏出する場合もある。そして、このような運転を繰り返すことによって、燃料電池本体1と圧力容器10との間の空間内の燃料ガス濃度が高まり、可燃域にまで達してしまうことも想定される。
【0043】
そこで、本実施形態の燃料電池システムでは、燃料ガス濃度検出手段71によって燃料電池本体1と圧力容器10との間の空間内の燃料ガス濃度を検出し、この空間内の燃料ガス濃度が予め設定された値よりも大きくなった場合には、ガス排出装置72によってこの空間内のガスを外部に排出するようにしている。
【0044】
すなわち、本実施形態の燃料電池システムでは、燃料電池本体1と圧力容器10との間の空間内の燃料ガス濃度を燃料ガス濃度検出手段71によって検出して、その検出値を制御装置52へと送るようにしている。制御装置52は、燃料ガス濃度検出手段71によって検出された燃料ガス濃度を予め設定された閾値(例えば水素濃度3%)と比較し、燃料ガス濃度がこの閾値を越えた場合には、ガス排出装置72に駆動信号を送る。これにより、ガス排出装置72に組み込まれたガス排出バルブが開放され、燃料電池本体1と圧力容器10との間の空間内のガスが外部に排出されることになる。そして、ガス濃度が閾値を下回った時点で、制御装置52は、ガス排出装置72に駆動解除信号を送る。これにより、ガス排出装置72のガス排出バルブが閉じられて、通常の運転状態に復帰することになる。
【0045】
以上のように、本実施形態の燃料電池システムでは、燃料ガス濃度検出手段71によって燃料電池本体1と圧力容器10との間の空間内の燃料ガス濃度を検出し、この空間内の燃料ガス濃度が予め設定された値よりも大きくなった場合には、ガス排出装置72によってこの空間内のガスを外部に排出するようにしたので、微量に漏れ出してきた燃料ガスが燃料電池本体1と圧力容器10との間の空間に蓄積し可燃域に至ることを未然に防止することができる。
【0046】
(第3の実施形態)
本実施形態の燃料電池システムは、燃料電池本体1と圧力容器10との間の空間に、燃料電池本体1に供給する酸化剤ガスの一部ではなく、燃料電池本体1に供給する燃料ガスの一部を供給するようにしたものである。すなわち、本実施形態の燃料電池システムでは、図5に示すように、燃料ガス供給系2のエゼクタポンプ22から燃料電池本体1の燃料極へと導かれる燃料ガス供給配管23が、その途中で燃料ガス供給分岐管81によって分岐されており、この燃料ガス供給分岐管81が圧力容器10に接続されている。なお、その他の構成については、上述した第1の実施形態の燃料電池システムと同様であるので、同一の構成要素については同一の符号を付して、ここでは詳細な説明を省略する。
【0047】
本実施形態の燃料電池システムでは、燃料ガスとしての水素ガス(或いは水素リッチな改質ガス)の一部が、燃料ガス供給分岐管81を通って燃料電池本体1と圧力容器10との間の空間へと供給されるようになっている。これにより、圧力容器10の内圧が燃料電池本体1の燃料極に供給される水素ガス(或いは水素リッチな改質ガス)の圧力と常に等しく保たれることになり、燃料電池本体1の耐圧構造を強化することなく、この燃料電池本体1に供給する水素ガスや空気の圧力を上昇させることが可能となる。
【0048】
以上の構成を有する燃料電池システムにおいては、燃燃料電池本体1を圧力容器10内に収納し、燃料電池本体1と圧力容器10との間の空間に燃料ガスである水素ガス(或いは水素リッチな改質ガス)の一部を供給して、この空間の圧力を燃料電池本体1に供給される燃料ガスと略等しい圧力に保持し、燃料電池本体1の内部圧力と燃料電池本体1を取り巻く雰囲気の圧力とが略等しくなるようにしたので、上述した第1の実施形態の燃料電池システムと同様に、燃料電池本体1の耐圧構造を強化することなく、特に多孔質集電板の外周部に特別なシールを施すことなく、大気圧よりも高い圧力で運転することができる。したがって、システム全体をシンプル且つコンパクトに構成できると共に、外部から水を補給することなく長時間の継続的な運転が可能であり、特に燃料電池自動車に搭載して使用する場合にその有用性は極めて高い。
【0049】
(第4の実施形態)
本実施形態の燃料電池システムは、燃料電池本体1と圧力容器10との間の空間に、燃料電池本体1に供給する酸化剤ガスや燃料ガスの一部ではなく、例えばシリコンオイル等の電気絶縁性を有する流体を封入し、この空間内が電気絶縁性を有する流体で満たされるようにしたものである。その他の基本構成については、上述した各実施形態の燃料電池システムと同様である。
【0050】
本実施形態の燃料電池システムでは、燃料電池本体1と圧力容器10との間の空間を、電気絶縁性を有する流体で満たすようにしたので、電気絶縁性を有する流体がシールとしての役割を果たし、燃料電池本体1の耐圧構造を強化することなく、大気圧よりも高い圧力で運転することができる。更に、本実施形態の燃料電池システムでは、燃料電池本体1の外部に対する高い電気絶縁性を確保することができると共に、封入する流体の粘性に応じて、耐衝撃性の向上、制振効果等の二次的な効果も期待でき、特に燃料電池自動車に搭載して使用する場合にその有用性は極めて高い。無論、本実施形態の燃料電池システムにおいても、燃料電池本体1と圧力容器10との間の空間内の圧力を、燃料電池本体1に供給する酸化剤ガス或いは燃料ガスと略等しい圧力に保つことによって、燃料電池本体1の耐圧構造を強化することなく、この燃料電池本体1に供給する水素ガスや空気の圧力を上昇させることが可能となる。
【0051】
なお、以上の各実施形態では、多孔質プレートを用いた燃料電池本体1を有する燃料電池システムに本発明を適用した例を具体的に説明したが、本発明は、以上の例に限らず、例えば、ソリッド型プレートを用いた燃料電池本体等、様々なタイプの燃料電池本体を有する燃料電池システムに対して有効に適用可能である。
【図面の簡単な説明】
【図1】第1の実施形態の燃料電池システムの概略構成を示す図である。
【図2】燃料電池本体の発電セル(単セル)の構造を示す断面図である。
【図3】燃料電池本体に直接関わる部分を概念的に示す図である。
【図4】第2の実施形態の燃料電池システムの概略構成を示す図である。
【図5】第3の実施形態の燃料電池システムの概略構成を示す図である。
【符号の説明】
1 燃料電池本体
2 燃料ガス供給手段
3 空気供給手段
4 冷却装置
10 圧力容器
13 高分子電解質膜
14 燃料極
15 酸化剤極
16,17 集電板
35 分岐配管
61 耐圧ケース
62 断熱保温層
71 燃料ガス濃度検出手段
72 ガス排出装置
81 燃料ガス供給分岐管

Claims (8)

  1. 燃料ガスが供給される燃料極と酸化剤ガスが供給される酸化剤極とにより挟持された高分子電解質膜と、一方の面に燃料ガス通路が設けられた多孔質電導物質で形成される燃料極集電板と、一方の面に酸化剤ガス通路が設けられた多孔質電導物質で形成される酸化剤極集電板とを有する単セルが、複数積層されて構成される燃料電池本体と、
    前記燃料電池本体との間に空間を形成しながら前記燃料電池本体を収納する圧力容器とを備え、
    前記燃料電池本体と圧力容器とで形成される空間内に、前記燃料ガス或いは酸化剤ガスの一部を充填して、この空間内の圧力を、前記燃料電池本体に供給される燃料ガス或いは酸化剤ガスと略等しい圧力に保持することを特徴とする燃料電池システム。
  2. 前記燃料電池本体を収納する圧力容器が、前記燃料電池本体に供給される酸化剤ガスの通路に接続されていることを特徴とする請求項1に記載の燃料電池システム。
  3. 前記燃料電池本体を収納する圧力容器は、燃料ガスの濃度を検出する濃度手段とガス排出装置とを備え、
    前記燃料電池本体と前記圧力容器とで形成される空間の燃料ガス濃度が、予め設定された値より大きくなった場合には、前記ガス排出装置により前記空間内のガスを排出することを特徴とする請求項2に記載の燃料電池システム。
  4. 前記燃料電池本体を収納する圧力容器が、前記燃料電池本体に供給される燃料ガスの通路に接続されていることを特徴とする請求項1に記載の燃料電池システム。
  5. 燃料ガスが供給される燃料極と酸化剤ガスが供給される酸化剤極とにより挟持された高分子電解質膜と、一方の面に燃料ガス通路が設けられた多孔質電導物質で形成される燃料極集電板と、一方の面に酸化剤ガス通路が設けられた多孔質電導物質で形成される酸化剤極集電板とを有する単セルが、複数積層されて構成される燃料電池本体と、
    前記燃料電池本体との間に空間を形成しながら前記燃料電池本体を収納する圧力容器とを備え、
    前記燃料電池本体と圧力容器とで形成される空間が、電気絶縁性を有する流体で満たされていることを特徴とする燃料電池システム。
  6. 前記燃料電池本体と圧力容器とで形成される空間内の圧力が、前記燃料電池本体に供給される燃料ガス或いは酸化剤ガスと略等しい圧力に保持されていることを特徴とする請求項5に記載の燃料電池システム。
  7. 前記燃料電池本体と圧力容器とで形成される空間が、大気圧以上の圧力に保持されることを特徴とする請求項1乃至6の何れかに記載の燃料電池システム。
  8. 前記燃料電池本体を収納する圧力容器は、保温断熱層を備えることを特徴とする請求項1乃至7の何れかに記載の燃料電池システム。
JP2002372012A 2002-12-24 2002-12-24 燃料電池システム Pending JP2004206922A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002372012A JP2004206922A (ja) 2002-12-24 2002-12-24 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002372012A JP2004206922A (ja) 2002-12-24 2002-12-24 燃料電池システム

Publications (1)

Publication Number Publication Date
JP2004206922A true JP2004206922A (ja) 2004-07-22

Family

ID=32810737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002372012A Pending JP2004206922A (ja) 2002-12-24 2002-12-24 燃料電池システム

Country Status (1)

Country Link
JP (1) JP2004206922A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228613A (ja) * 2005-02-18 2006-08-31 Matsushita Electric Ind Co Ltd 燃料電池発電システム
US8241813B2 (en) 2005-04-05 2012-08-14 Rolls-Royce Plc Fuel cell arrangement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228613A (ja) * 2005-02-18 2006-08-31 Matsushita Electric Ind Co Ltd 燃料電池発電システム
US8241813B2 (en) 2005-04-05 2012-08-14 Rolls-Royce Plc Fuel cell arrangement

Similar Documents

Publication Publication Date Title
US8216736B2 (en) Fuel cell system using evaporative cooling method
JP5083234B2 (ja) 燃料電池システム
CN101207217B (zh) 运行燃料电池堆的方法
CA2518103A1 (en) Ambient pressure fuel cell system employing partial air humidification
JP2008147139A (ja) 燃料電池システム
JPH06333583A (ja) 固体高分子電解質型燃料電池発電装置
US7413822B2 (en) Device and method to release the overpressure of a fuel cell coolant tank
JP2007066625A (ja) 燃料電池スタック
JP5508915B2 (ja) 燃料電池システム
JP2009110684A (ja) 燃料電池システム
JP2005093374A (ja) 燃料電池発電システムおよび燃料電池発電システムの停止方法
JP2008251216A (ja) 燃料電池システム
JP5138889B2 (ja) 燃料電池システム
JP2004206922A (ja) 燃料電池システム
US20140057190A1 (en) Direct oxidation type fuel cell system
JP2005259440A (ja) 燃料電池システム
JP2008251439A (ja) 燃料電池システム
JP2007250216A (ja) 燃料電池システム及びその運転方法
JP2004235009A (ja) 燃料電池システムおよび移動装置
JP2005100701A (ja) 燃料電池スタック
JP2007227278A (ja) 燃料電池装置
JP2007179988A (ja) 燃料電池システム
JP2006049137A (ja) 燃料電池システム
JP5023568B2 (ja) 燃料電池システム及びその制御方法
JP2011009057A (ja) 燃料電池システム