JP2004205183A - 太陽熱収集装置の熱移送装置 - Google Patents

太陽熱収集装置の熱移送装置 Download PDF

Info

Publication number
JP2004205183A
JP2004205183A JP2002383519A JP2002383519A JP2004205183A JP 2004205183 A JP2004205183 A JP 2004205183A JP 2002383519 A JP2002383519 A JP 2002383519A JP 2002383519 A JP2002383519 A JP 2002383519A JP 2004205183 A JP2004205183 A JP 2004205183A
Authority
JP
Japan
Prior art keywords
heat
pipe
steam
water
solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002383519A
Other languages
English (en)
Inventor
Shunsaku Nakauchi
俊作 中内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Gijutsu Kaihatsu Co Ltd
Original Assignee
Kokusai Gijutsu Kaihatsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Gijutsu Kaihatsu Co Ltd filed Critical Kokusai Gijutsu Kaihatsu Co Ltd
Priority to JP2002383519A priority Critical patent/JP2004205183A/ja
Publication of JP2004205183A publication Critical patent/JP2004205183A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/10Details of absorbing elements characterised by the absorbing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/75Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits with enlarged surfaces, e.g. with protrusions or corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/50Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings
    • F24S80/54Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings using evacuated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S90/00Solar heat systems not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S2025/01Special support components; Methods of use
    • F24S2025/011Arrangements for mounting elements inside solar collectors; Spacers inside solar collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

【課題】蒸気による熱移送を行って、所定量の熱媒体で大量の熱を移送できるようにし、即応性があって、安価で効率の良い太陽熱収集装置を得ることを課題とする。
【解決手段】給水管8から供給される所定量の熱媒体を、太陽熱を収集する集熱板5に接触した蒸気発生用のパイプ6内で蒸気にして蓄熱槽に送り、蓄熱槽でエネルギーを外部に取り出す太陽熱収集装置1の熱移送装置であって、前記パイプ6の内面の少なくとも一部に前記熱媒体を吸収し易い布状の給水膜7を取り付けた。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、太陽熱収集装置において、太陽熱を収集した集熱板から熱エネルギーを外部に取り出す技術分野に属し、特に液体の熱媒体の気化潜熱を利用して熱移送を行う太陽熱収集装置の熱移送装置に関するものである。
【0002】
【従来の技術】
【非特許文献1】
書名:SOLAR ENERGY,Vol.65,pp111〜118,1990年
発行:Elsevier Science Ltd.
論文名:HIGH EFFICIENCY EVACUATED FLAT−PLATED SOLAR COLLECTOR FOR PROCE−SS SYSTEM PRODUCTION
著者:N.BENZ AND T.BEIKIRCHER
【0003】
従来の代表的な太陽熱収集装置では、太陽熱を採るのに、太陽熱温水器のように、集熱板の表面或いは裏面に接触して取り付けられた金属製のパイプの内部に流される太陽熱で温められた液体を循環させて、エネルギーを外部に取り出していた。
また、液体の熱媒体を蒸気として取り出して、気化潜熱を利用するものとしては非特許文献1が挙げられる。
【0004】
【発明が解決しようとする課題】
従来の方式は熱媒体として液体を用いているが、最も比熱の高い水を熱媒体として用いても、水1ccが運べる熱量は、1℃当たり1カロリーである。
その水で大量の熱移送を行うと、大量の水をポンプで集熱器内を循環させるか、また自然循環を利用する場合には、大量の水を屋根の上などに置かなければならない。
【0005】
何れの場合でも多くの熱を移送するには大量の水を移送しなければならないために、太い配管を必要としたり、ポンプを使うときは、大きなポンプを必要とすると言う欠点があった。
また昼間の太陽熱を夜間の用途に用いるには、大きな蓄熱槽を必要とするので、蓄熱槽を地上に置き、集熱器を屋根上に置く場合が多いが、この場合、温水で熱移送をするのは大量の温水の循環を必要として経済性が低い。
【0006】
また非特許文献1のように、集熱器に集めた太陽熱を蒸気の形で移送する方式があったが、この方式は、集熱板にパイプを取り付け、そのパイプ内に熱媒体を満たし、その熱媒体を沸騰させて蒸気を作って、蒸気によって熱を移送する方式であるので、沸騰する蒸気によって水がパイプから押し出されて、パイプが空焚きのようになると言う欠点があった。この欠点を除くために沸騰する蒸気によって受熱用のパイプから押し出された水を、集熱板の背後に取り付けたリサイクル用のパイプによって還流する方式をとっていた。
また出力蒸気の温度を制御するのに熱移送系に窒素ガスを充填し、このガスの圧力を調整して出力温度をきめる方法を用いていた。
【0007】
また従来の太陽熱温水器は、太陽熱が到来し始めてから、高温の水を得るまでには長時間を必要とした。この欠点は太陽熱収集装置の利用分野を限定していた。例えば乾燥等は太陽熱の到来と同時に高温の蒸気によって高温の気体を得て乾燥を行うのが望ましい。
【0008】
【発明が解決しようとする課題】
本発明は上記した諸欠点を取り除き、蒸気による熱移送を行いながら、リサイクル用のパイプを不要にし、温度制御のために熱移送系に窒素ガスを充填することも不要にし、太陽熱の強度に応じた必要且つ十分な所定量の熱媒体で大量の熱を移送できるようにして、効率を向上すると共に、熱媒体移送用のポンプの負荷を軽減し、蒸気を利用することにより即応性を上げて用途を広げた太陽熱収集装置を得ることを課題とする。
【0009】
【課題を解決するための手段】
本発明は、少量の熱媒体で大量の熱エネルギーを運ぶために、蒸気のもつ気化潜熱を利用する。
熱媒体としては、通常は水を用いるが、寒冷地ではアルコール、或いはフロンの代替品等も用いる。エチルアルコールやメチルアルコールは−100℃前後まで凍結しない。
一般に液体の気化熱は大きく、例えば水1ccを気化するには、25℃で約580カロリー、100℃で約540カロリーを必要とする。エチルアルコールでも、1ccの気化熱は200カロリーに達する。
【0010】
従って集熱器の中の液体を気化させることによって、少ない液体で多くの熱を吸収して移送することができる。
例えば1kWの熱量を送るために必要な水は約0.43cc/sである。
以下記述を簡明にするために、熱媒体を例えば水とした場合について述べるが、以下の記述は水以外の熱媒体を利用したときにも当てはまる。
【0011】
集熱板の表面は選択吸収膜で処理されており、そこで太陽熱を吸収する。集熱板が吸収した熱を外部に移送するために、集熱板に密着させた蒸気発生用のパイプに熱を伝え、その中に、気化熱によって太陽熱を吸収できるのに必要且つ十分な所定量の水を送り、それを気化させて蒸気として、その蒸気を外部に移送する方法を採る。
この時パイプ内の水が、パイプ内壁に良く接して効率良く蒸発するように、パイプ内壁に繊維質の布状の膜を張り、また複数本あるパイプの1本毎に、そのパイプの吸収できる太陽熱に見合った必要且つ十分な水をパイプ毎に制御して送り込む。そのために、1本のパイプ毎に、高い流路抵抗を持つ給水用の1本の細管を用いて給水を行う。
【0012】
低い温度でも水が容易に沸騰して気化できるようにするために、水を蒸発させるためのパイプと、蒸発した蒸気を蓄熱槽まで運ぶ蒸気配管と、水を送るポンプと、気化した水を溜める水槽等とで構成した熱移送系を、水の蒸気以外の気体例えば空気等が存在しないようにして完全に密閉した閉じた密閉空間にする。
水蒸気以外の気体が存在しないと言っても、理論上全く存在しない0パスカルは不可能であるから、通常の概念で、現在の技術で可能である範囲として、この密閉空間内の水蒸気以外の気体による圧力は、1000パスカル以下位にするのが望ましい。
【0013】
熱移送系は密閉されているが、幾つかの接続点を持っているので、長年の間には大気がこれらの点を通して熱移送系内に入ってくる可能性がある。このように熱移送系に多少の大気からの漏れがあっても、密閉空間である熱移送系内の気体圧力の急な増大を来さないように、水槽にはある程度の容積例えば数リットル程度の容積を持たせて置く。なお熱移送系が必要としている真空度は1/100気圧程度であって、それほど高度な真空度を必要とはしない。
【0014】
蒸発発生用のパイプに発生した蒸気は、蓄熱槽内の熱交換器を通り、熱交換を行って液化し、水槽に送られ、そこに蓄えられる。
蒸気発生用のパイプ内の水の量は、蒸発によって減少するので、それを補うために水槽内の水をポンプによってパイプ内に還流させる。
【0015】
蒸気発生用に必要とする水の量は、そのときの太陽熱の大きさで決まる。従って太陽熱の大きさを太陽熱収集装置の近傍に設置した測定器、例えば太陽熱輻射計或いは太陽電池等で測定して、その大きさに比例した水の量をポンプで送るようにする。
ポンプには、正確に流量を制御でき、且つ高圧を出せる容積式ポンプを用いる。パイプの入口では水は液体であり、出口では蒸気になっている。
【0016】
水の流量を制御する方法としては、上記の方法以外にも次のような方法もある。
パイプと水槽等に蓄えられている水の総量は製造時に十分なだけ注入されており、その総量は一定であり、その大半は水槽の中にある。
従って水槽内の水の総量を計ってその値から蒸発用パイプ内の水の量を推測してその推測値に従って、パイプへの水の流量を制御する。
このように必要以上に多量の水を集熱器に送り込まないようにして、リサイクル用のパイプを省略する。
【0017】
多数のパイプ群全体への流量を制御した後、この総流量を各パイプの各々に必要にして且つ十分な所定の流量を分配するために、各パイプの入口に、そのパイプに適応した細い口径の、高い流路抵抗を持つ流量制御用パイプを取り付ける。
必要な水の量はその時の天候、パイプの長さ等によって変わるが、快晴の真昼の場合で長さ1mのパイプ1本につき一般的には0.1cc/s程度である。
【0018】
パイプには銅のような熱伝導の良い材料を用いる。そうしてその内部に水を流す。
熱伝導の良い銅パイプ等では、水はパイプ壁全体に接していなくても、その一部に接しておれば、あまり熱損失無くそのパイプの熱を吸収することができる。
【0019】
上記のようにパイプの内部に何も工作せず、裸のパイプに水を流しても、パイプの熱は吸収できるが、更に少量の水でパイプの内壁が常に直接熱媒体に触れているような状態にする。換言すればパイプの内面が常に水で湿っているようにすると、更に熱吸収の効率が上がる。
そのため水の分量を少なくして有効に湿らせられるように、水の吸収性の良い繊維質の布状の膜(以下給水膜と言う)をパイプの内面に広く接して張り付ける。
この方法によって、パイプ内の水の流下速度を遅くし、水の滞留時間を長くして有効に水を蒸発をさせられる。
【0020】
太陽熱収集装置を垂直壁に取り付けたときのように、集熱板が垂直になっているときでも、給水膜があると、熱媒体は給水膜に吸収されて、急速に流れ落ちることがないから、熱媒体は有効にパイプの熱を奪って蒸気を作る。
また垂直の給水膜に水が行き渡るように、給水用のパイプの水の出口を給水膜の上部付近に設ける
また余分に供給された水をパイプから蒸気とともに排出するために、蒸気排出口をパイプの最下部に付ける。
【0021】
発生する蒸気の温度を一定の値に制御するには、蒸気発生の出口に所定の温度の蒸気圧になったときを感知して開閉動作をする圧力弁等の弁を設け、出力蒸気の蒸気圧を制御して温度を制御する方法によって行う。
この方法は、真空式太陽熱収集装置等に応用して、高温の蒸気によって空気のような比熱の小さい物質の温度を高温にするときに用いて有効である。
この方式によって温度制御にガスの充填をせずに高温を得ることができる。但しこの方法は断熱膨張を伴うので、それによる温度低下を予め予測して置くことが必要である。
【0022】
【発明の実施の形態】
図1は本発明の第1の実施形態を示す図で、太陽熱収集装置の集熱部を示している。
以下の実施形態では熱媒体として水を用いた平板式太陽熱収集装置の例で説明する。
図1で(a)は縦断面図、(b)は横断面図、(c)はパイプ6の拡大断面図で、1は太陽熱収集装置、2は筺体、3は窓ガラス、4は集熱器、5は集熱板、6は蒸気発生用のパイプ、7はパイプ6の内部にある給水膜、8はパイプ6に水を供給する給水管、9は蒸気管、10は集熱器を支える柱、11は窓ガラスを支える柱、12は給水管の入口、13は蒸気管の出口である。
【0023】
集熱板5と蒸気発生用のパイプ6とで集熱器4を形成している。
窓ガラス3は筺体2の底板と柱11によって支えられている。
太陽熱収集装置1は、集熱器4が斜めに傾けて又は垂直になるように設置し、その何れの配置方法でも給水管8がパイプ6の最上部に位置するようにし、パイプ6に接続されて蒸気を出す蒸気管9がパイプ6の最下部になるように配置する。
なお、パイプ6の内部の給水膜7を繊維質で形成した場合には、毛細管現象により水を供給することができるので、集熱器4を水平に設置しても構わない。
【0024】
集熱器4を斜めに傾けて又は垂直になるように設置した場合には、重力によって水はパイプ6内の給水膜7の中を進みながら給水膜7全体を濡らし、太陽熱によってパイプ6の温度が上がるとその熱エネルギーで蒸発して蒸気となり、下部にある蒸気管9から外部に排出される。
給水管8が蒸気発生用のパイプ6の最上部に取り付けられているから、太陽熱収集装置1は垂直に取り付けられても十分にその機能を発揮する。
【0025】
図2は蒸気発生用のパイプ6の内部構造を示す断面図で、21は給水膜7を支える螺旋状のばねである。
図示したように給水膜7はパイプ6の内壁に接している。給水膜7は常に全面的にパイプ6の内壁に接していることが理想であるが、少なくともその一部はパイプ6に常時接している必要がある。
【0026】
そのための一つの方法は図2に示したように、ばね性をもつ金属線等で出来た螺旋状のばね21の外側を給水膜7で包んでそれをパイプ6の中に入れる。
このときばね21を給水膜7で包んだときの外径を、パイプ6の内径よりやや大きくなるようにする。そしてばね21を押しつぶしながら、それをパイプ6の中に入れる。こうすると、ばね21の力で、給水膜7の一部は常にパイプ6の内壁に接しているようになる。
【0027】
ばねの力の利用ではなくて、給水膜7の一部に繊維と金属を接着できる接着剤を付けて置き、その接着剤が硬化する前に、接着剤7をパイプ6の内部に引き込んでおくことによって給水膜7をパイプ6の内壁に接するようにする方法もある。この方法では給水膜7を袋状に形成し、その袋の外側に接着剤を塗り、パイプ6を引き込んだ後に給水膜7に空気を送り込み、空気圧で袋状の給水膜7を膨らませて、給水膜7をパイプ6に密着させることが推奨される。接着剤としては、エポキシ樹脂その他多くの接着剤が有効である。
【0028】
本発明を真空式太陽熱収集装置に適用する場合は、集熱器4から、それの持つ吸蔵ガスが、筺体2内の真空中に放出されて、その真空が崩れるのを防止するために、製造時に予めベーキングによって集熱器4等の持っている吸蔵ガスを追い出して置く工程が組まれるが、この工程でパイプ6が200℃以上の温度に曝される場合がある。
このような場合には、高温に適応できるように、給水膜7の材料には、ガラス繊維のような耐熱性の良い材料が選ばれる。
【0029】
図1に示した給水管8は入口12を通り、集熱器4の上部からパイプ6内の給水膜7に水を供給している。
給水膜7は厚さが数mm以下の薄い布状の繊維質のもので作られており、保水能力は高いが、そこに保たれている水は少量であって、太陽熱によって集熱板5の温度が上がると殆ど同時に、その水の温度も上がり蒸気を発生する。
【0030】
給水膜7は吸水性の高い繊維性の膜で作られているので、その一部に到達した水は毛細管現象で膜全面に広がるから、蒸気発生用のパイプ6の単体の場合の蒸発面積より遥に広い蒸発面積を得ることができて、そのため蒸発が容易且つ円滑に行われ、蒸気の通る道の面積も大きいので、蒸気の移動も円滑に行われる。
【0031】
給水膜7を持たないパイプ6だけの場合のように、水の沸騰現象のために水が蒸気と共に送り出されたり、沸騰によって部分的に水が切れて乾き切ってしまい、太陽熱が徒に集熱板5を暖めるだけで、蒸気を出せなくて損失を生ずると言うようなこともない。従ってリサイクル用の水パイプも必要ではない。
給水膜7は給水管8によってその上部から水を常時供給され、常に湿っているが、余分に供給された水はパイプ6の下部にある図1に示した蒸気管9から湯として排出される。
【0032】
パイプ6への水は給水管8から圧入される。圧入するときの圧力は、得ようとする蒸気温度によって異なるが、少なくともその出力温度における水の蒸気圧より大きくなければならない。
例えば150℃の蒸気温度を得ようとすれば、その温度の水の蒸気圧である5気圧以上の圧力は必要である。
【0033】
パイプ6全体での必要量は太陽電池等からの信号で推測することはできるが、その量を給水管8に送り込んでも、給水管8の一つの出口から出た水が、分岐しているパイプ6の夫れ夫れに適正に供給されるとは限らない。それを適正にするために、細管と容積型のポンプが使われる。
【0034】
容積型のポンプを使用すると、給水管8を通して十分高い圧力と定まった流量をパイプ6の全体に与えることができる。この総流量を各パイプに分配するには、複数のパイプ6の各々に、それに付属する高い且つ適正な流路抵抗をもつ細管を付属させておき、細管を通してパイプ6に水を送り込むようにする。すると各パイプ6には細管の流路抵抗に従って、ポンプの総流量を案分比例した水量が流れる。
【0035】
南面の垂直壁に多くの太陽熱収集装置を垂直に設置した場合のように、個々の太陽熱収集装置のパイプ6にかかる給水の水圧が、高低差だけ異なるような場合は、5〜10気圧程度の高い供給水圧に対して適正な水量を与えられるような、直径と長さを持つ細管を通して給水するようにすると、高低差による給水圧力の差が給水量に与える影響が少なくなって良い。
【0036】
図3は第3の実施形態を示す図で、複数のパイプ6の各々に細い給水用の細管31を通して適正な量の水を送り込む方法を図示する。
図3で(a)は円形の集熱板5の場合、(b)は矩形の集熱板5の場合を示している。
細管31は給水管8から枝分かれして、夫れ夫れのパイプ6に水を送り込む給水用のパイプで、細管31−1、2、3…は夫れ夫れパイプ6−1、2、3…に水を供給する細管である。
図3(a)では、パイプ6は外側のパイプ6−1、6−3と内側のパイプ6−2、6−4に枝分かれしている。この例ではパイプ6−1とパイプ6−3とは同じ長さで、パイプ6−2とパイプ6−4も同じ長さであるが、パイプ6−1、6−3とパイプ6−2、6−4とは2倍程度の長さの差がある。
【0037】
パイプ6は集熱板5の集熱した太陽熱を集める役目をしているが、何れの枝分かれしたパイプ6もその単位長さ当たりの受け持つ集熱板5の広さ、換言すれば蒸発させるべき水の量は、ほぼ同じになるように作られている。それ故、パイプ6−1はパイプ6−3の2倍程度の長さになっているのである。
従って長さに差のあるパイプ6について、夫れ夫れの長さに応じた適正な水量を供給する必要がある。
【0038】
細管31は極く細い管で、その内径は1mm以下位の管である。この程度の太さの管では水の流れは層流として扱われ、その流量は直径の4乗に比例するので、内径を細くすることによって同じ供給圧力に対して流量を容易に小さく、換言すれば流路抵抗を大きくすることができる。
それ故、細管31の直径を給水管8の直径より遥に細くしておくと、細管31の流路抵抗は給水管8の流路抵抗に比較して十分大きく、少なくとも10倍以上、100倍或いはそれ以上程度になり、パイプ6に流入する水の量は、殆ど細管31の直径とその長さ、換言すればその流路抵抗と細管31に与えられる供給水圧とポンプの流量によって決められるようになる。
【0039】
以上のような考え方から、色々の長さのパイプ6に対して、細管31の直径と長さを決めることにより細管31の流路抵抗を定めて、適正な流入量を決めるようにする。
一般的には、細管31の入口と出口での圧力差が数気圧のときに適正な流入量になるような細管31の直径と長さを選ぶ。
色々のパイプ6の種類に応じて適正な直径と長さを持つ細管31を作り、その入口は給水管8の出口の所で分岐して、その出口は夫れ夫れのパイプ6の入口の近辺に置く。
【0040】
このとき、細管31の直径は予め決めておき、その長さで供給量を決めるようにするのが、普通の方法である。その理由はパイプの直径には、あまり多くの種類はないが、長さは自由にきめられるので、長さで供給量を決める方が実際的だからである。
例えば細管31−1は細管31−2のパイプに対して同じ直径で長さは半分にする。
【0041】
この時の必要な最低限の給水量は、晴天の真昼の時で集熱板5の面積1m当たり、0.3cc/s位である。適正な給水量としては、細管31の直径のばらつきその他の誤差要因を考慮にいれて、余裕をみて、この1.5〜3倍程度にするのが良い。余分に供給された水は高温の湯となって蒸気管9から外部に出され、熱移送に多少の貢献はする。
余分の水の排出は、前記のように、蒸気管9をパイプ6の最下部になるように配置したから可能である。
上記のように、細管31を利用することにより、必要以上に多量の水を送ることがなくなり、ポンプの負荷を軽減し、そのためポンプの電源に太陽電池を使用することを容易にし、太陽熱収集装置1の重量も軽くすることができて大変有益である。
【0042】
図4は本発明の第3の実施形態を示す図で、パイプ6内で発生した蒸気を運ぶ熱移送系を示す。
図4で41は蒸気配管、42は蓄熱槽、43は蓄熱槽への入力用の熱交換器、44は蓄熱槽からの出力用の熱交換器、45は熱媒体の液体槽である水槽、46は給水用のポンプ、47は逆止弁、48は水槽45に溜まった水の量を計る計測器、49は蒸気管9の出口13での蒸気圧が所定の温度の蒸気圧になったら開閉する圧力弁、50は太陽熱収集装置1の近傍に設置された太陽電池、51はポンプ46と並列に設けられるリーク、52は水の中の塵を採るフィルターである。
【0043】
図1に示した筺体3の内部は非真空式の場合は大気で充満しているが、真空式の場合は、集熱板5に集められた太陽熱が外部に逃げないように、熱絶縁を目的として0.1パスカル以下程度の高真空に保たれている。
非真空式でも真空式でも、その何れの場合でも、パイプ6、給水管8、蒸気管9、蒸気配管41等で形成される熱移送系の内部には、水及びその蒸気以外の気体は存在しない密閉空間になっている。それ故0℃近辺の温度では、熱移送系内の気圧はその温度での水の蒸気圧である600パスカル程度になっている。但し数100パスカル程度の残存気体があっても性能にはあまり影響はない。
【0044】
太陽熱が到来した時は、パイプ6は暖められて、蒸気を発生するが、その時の蒸気温度は蓄熱槽42内の熱交換器43の温度に影響される。熱交換器43の温度が低い時はそこでの蒸気の温度も低く、蒸気圧も低い。従って蒸気管9の出口13における温度と熱交換器43での温度に大きな差が生じ、蒸気圧にも大きな差が生じ、その圧力差によって蒸気はパイプ6から熱交換器43に向かって流れる。
熱交換器43の温度が太陽熱によって上がるにつれて、パイプ6からの蒸気温度も上がる。
【0045】
太陽熱収集装置1には固有の損失があり、その損失は太陽熱収集装置1の温度が上昇するにつれて増加し、ある温度に達すると、到来する太陽熱のエネルギーと太陽熱収集装置1の損失とが等しくなり、太陽熱収集装置1は外部にエネルギーを送出できなくなる。この時点で蓄熱槽42の温度上昇も停止する。
夜間等で太陽熱収集装置1の温度が蓄熱層42の温度より低くなると、エネルギーの流れは逆転して、蓄熱槽42から太陽熱収集装置1の方にエネルギーが流れ出すようになる。それを防ぐために、逆止弁47を設ける。
【0046】
当然のことであるが、出力温度を上げると、太陽熱収集装置1から二次放射等によって無駄に外部に逃げる熱が増えて、太陽熱収集装置1としての総合効率は低下し、出力温度を下げると、総合効率は向上する。
従って蓄熱槽42内の蓄熱材の温度の低いうちは、低い温度の蒸気で熱を送り、蓄熱材の温度が上がるに従って蒸気温度が上がるのが良い太陽熱収集方法であるが、本発明の方式では、特に出力蒸気の温度を制御しなくても、蓄熱槽42の温度に従って、熱交換器43での水の蒸気圧が変わるために、自動的に出力蒸気の温度と圧力が最適に制御される。そのため本発明の太陽熱収集装置1はその熱移送方法と相俟って最善の太陽熱収集方法を提供している。
【0047】
パイプ6からの蒸気は熱交換器43を通過する時に、その潜熱を蓄熱槽42に与えて水となり、水槽45に蓄えられ、その分だけパイプ6内の水は減少する。
従ってパイプ6には、太陽熱のある間、常に水の補給を受けなければならないが、それはポンプ46によって行われる。
ポンプ46には、ポンプ46と太陽熱収集装置1との高低差等を勘案して、その吐出圧力が10数気圧程度まで取れる容積型ポンプを選ぶ。
【0048】
図3に示した細管31は管径が細いから、その流路抵抗は、給水管8の流路抵抗に比べて遥に高いので、ポンプ46の吐出圧力は給水管8を通しても殆ど減衰することなく、細管31の入口に到達する。それ故、多数の太陽熱収集装置1を並列に並べて給水管8で繋いだシステムにおいても、細管31の位置がポンプ46の近傍でも、或いは遠方にあっても、細管31の入口の圧力は殆ど変わらない。
【0049】
換言すれば、細管31の圧力低下に比較して、給水管8の圧力低下は殆ど無視できて、細管31の流量はポンプ46の吐出圧力と流量によって一元的に管理できる。
そのときの水の送り量はそのときの太陽熱の強度に比例するべきであるから、太陽熱収集装置1の近傍に設置された測定器、例えば太陽電池50の指示値によってポンプ46を制御して送り量が決められる。勿論図示されていないが、太陽熱輻射計の指示値によっても良い。
【0050】
更に合理的な方法は、太陽電池50の出力で直接ポンプ46を動かすようにする方法である。この方法はポンプ46として、その出力流量特性が太陽電池50の出力にほぼ比例するようなタイプのポンプを選ぶことによって太陽熱に比例した合理的な水量を細管31に送ることができる。
【0051】
太陽電池50でポンプ46を運転することによる他の利点は、夜間のように太陽の出てないときには、自動的にポンプ46の運転が止まり、給水管8とパイプ6や蒸気配管41等の中の水が重力によって水槽45内に落下して、パイプ6等に水がなくなり、寒い時期の夜間に水の凍結によってパイプ6等が破損する事故を自動的に防げる点である。そのために、ポンプ46には僅かに水を通すリーク51を並列に設けて置くか、或いはポンプ46自身に、不動作時にリークのあるもの又は逆流を許すものを用いる。
【0052】
太陽電池50を使用する更に他の利点は、停電でポンプ46が停止すると、空焚きの状態になって、パイプ6の温度が上がり過ぎて、色々の故障の原因になることもあり好ましくないが、太陽電池50を利用する利点は、この停電の機会を通常の商用電源利用の場合より減らせる点にある。
太陽電池50の電源を独立に2系統持たせておくと、更に停電の機会を減らせる。
【0053】
細管31は流路の直径が小さいから、微細なごみでも管路が詰まる可能性があるので、ポンプ46の出口の近傍にフィルター52を設ける。
ポンプ46に要求される水の供給量は、従来の水循環型の太陽熱温水器で、同じ熱量を移送するのに使われたポンプの約1/10以下であって、小型のポンプで用が足せる。このことは太陽電池50をポンプ46の電源とするのを容易にする。
【0054】
本発明の熱移送系に用いられる熱媒体は密閉空間に閉じ込められて用いられるものであるから、その材料には、化学的に安定しており、長年に亙って熱移送系や図1の集熱器4等の、熱媒体に触れる材料に錆びや腐食をもたらさないものを選ぶ。例えば純水とかアルコール等である。水道水は塩素を含み、その他、多少のミネラルを含んでいるので好ましくない。
【0055】
純水を、それに含まれている酸素等のガスを追い出した状態で用いるのが良い。そうすると、熱移送系は予め真空ポンプで空気等のガスは殆ど存在しないように排気されているので、酸素のない状態にあるから、熱移送系その他の水に接触する部分に錆びや腐食が発生する可能性がなくなる。
水は化学的にも安定しているので、数十年の長期に亙り使用可能となる。エチルアルコールや、メチルアルコールも同じように長期に使えるし、寒冷地にも適している。
熱媒体を上記のように適正に選んだ本発明の熱移送装置を利用することによって、長年に亙って冬季の寒冷地のように気温の低いところでも、高い効率で熱移送が行われ、高い経済的効果を発揮する。
【0056】
図5は本発明の第4の実施形態を示す図で、蓄熱槽42の部分を示している。
55は蒸気抜き、56は安全弁、57はフィンである。
蓄熱槽42の上部には、太陽熱の量が多過ぎたり、熱消費量が少な過ぎたりして、蓄熱槽42内の水の温度が上がり過ぎた時に、その蒸気圧のために蓄熱槽42等が破壊するのを防ぐために、蒸気圧を下げるための蒸気抜き55が設けられている。
【0057】
蒸気抜き55の下部には、蓄熱槽42の圧力が所定の値を越すと開く安全弁56が設けられている。
安全弁56が動作すると、そこを通って蒸気が蒸気抜き56の上部に達する。
蒸気抜き55は密閉された管である。蒸気抜き55の上部には熱交換のためのフィン57が取り付けられており、蒸気抜き55内の蒸気はフィン57によって大気と熱交換を行い、水となって、安全弁56を通って再び蓄熱槽42に還流する。
従って、安全弁56の動作によって、蓄熱槽42の水を減少させずに、圧力だけを減ずることができる。
この場合、熱移送系の耐圧性能によって、蓄積できる太陽エネルギーの量が決まる。例えば熱移送系及び蓄熱槽42が5気圧まで耐えられるなら、蓄熱槽42は150℃になるでエネルギーを蓄えられ、晴天時に多くのエネルギーを蓄えて、曇天時に使うことができる。
なお、安全弁56は上方に向かう蒸気と下方に向かう水とを共存させ得るだけの大きい口径を持つものでなければならない。
【0058】
上記の実施形態では、熱媒体が水の場合について説明したが、熱媒体は水に限らず、熱せられて蒸気となる液体例えばアルコール等でも良い。従って、給水膜、給水管、水槽等と表現した構成要素も水に限定されない熱媒体用であることは勿論である。
【0059】
上記の説明では、平板式太陽熱収集装置への本発明の適用例について述べたが、本発明は集熱板5とパイプ6を持つ太陽熱収集装置全般に用いて有効である。
例えば、非真空式太陽熱温水器、真空平板式太陽熱収集装置、真空ガラス管式太陽熱収集装置等にも同じように適用され効果を発揮する。
【0060】
【発明の効果】
上記したように、本発明によれば、所定量の熱媒体を蒸気にして熱移送するので、即応性があって多くの熱を効率良く移送することができる。
また、大量の熱媒体の供給、移送を必要としないので、大きなポンプがいらず、リサイクル用のパイプを不要にすることができる。
また、温度制御する場合は、蒸気圧を制御することにより行うので、温度制御のための窒素ガスを充填することが不要になる。
従って、本発明の熱移送装置を、太陽熱収集装置に採用することによって、安価で効率の良い太陽熱収集装置を得ることができる。
【0061】
また、本発明は、太陽電池でポンプを運転するようにした場合には、夜間は自動的にポンプの運転が止まり、給水管やパイプ等に熱媒体がなくなるので、寒冷地においても夜間における凍結の心配がなく、長年の使用に耐える太陽熱収集装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態を示す図
【図2】蒸気発生用パイプの内部構造を示す断面図
【図3】本発明の第2の実施形態を示す図
【図4】本発明の第3の実施形態を示す図
【図5】本発明の第4の実施形態を示す図
【符号の説明】
1 太陽熱集装置
4 集熱器
5 集熱板
6,6−1,6−2,6−3,6−4 パイプ
7 給水膜
8 給水管
9 蒸気管
12 給水管入口
13 蒸気管出口
21 ばね
31,31−1,31−2,3−3,3−4 細管
41 蒸気配管
42 蓄熱槽
43 入力用熱交換器
44 出力用熱交換器
45 水槽
46 ポンプ
47 逆止弁
48 計測器
49 圧力弁
50 太陽電池
55 蒸気管
56 安全弁
57 フィン

Claims (16)

  1. 給水管から供給される所定量の熱媒体を、太陽熱を収集する集熱板に接触した蒸気発生用のパイプ内で蒸気にして蓄熱槽に送り、前記蓄熱槽でエネルギーを外部に取り出す太陽熱収集装置の熱移送装置であって、
    前記パイプの内面の少なくとも一部に前記熱媒体を吸収し易い布状の給水膜を取り付けたことを特徴とする太陽熱収集装置の熱移送装置。
  2. 前記給水膜が繊維質の膜であることを特徴とする請求項1記載の太陽熱収集装置の熱移送装置。
  3. 前記繊維質の膜がガラス繊維で形成されたことを特徴とする請求項2記載の太陽熱収集装置の熱移送装置。
  4. 前記給水膜を螺旋状のばねで前記パイプの内面に押し付けるように取り付けたことを特徴とする請求項1〜3のいずれかに記載の太陽熱収集装置の熱移送装置。
  5. 前記給水膜の少なくとも一部を、前記パイプの内面に接着剤で接着したことを特徴とする請求項1〜3のいずれかに記載の太陽熱収集装置の熱移送装置。
  6. 前記集熱板とパイプとで形成された集熱器を斜めに傾けて又は垂直に設置した際に、前記パイプに熱媒体を供給する給水管が前記パイプの最上部に位置し、前記パイプに接続されて蒸気を出す蒸気管が前記パイプの最下部に位置するように配置されたことを特徴とする請求項1〜5のいずれかに記載の太陽熱収集装置の熱移送装置。
  7. 給水管から供給される所定量の熱媒体を、太陽熱を収集する集熱板に接触した蒸気発生用の複数のパイプ内で蒸気にして蓄熱槽に送り、前記蓄熱槽でエネルギーを外部に取り出す太陽熱収集装置の熱移送装置であって、
    前記パイプ毎に前記給水管から枝分かれして前記熱媒体を供給する高い流路抵抗を持つ細管を設けたことを特徴とする太陽熱収集装置の熱移送装置。
  8. 前記細管の流路抵抗は前記給水管の流路抵抗の少なくとも10倍以上であることを特徴とする請求項7記載の太陽熱収集装置の熱移送装置。
  9. 前記細管の長さによって前記熱媒体の供給量を制御することを特徴とする請求項7又は8記載の太陽熱収集装置の熱移送装置。
  10. 給水管から供給される所定量の熱媒体を、太陽熱を収集する集熱板に接触した蒸気発生用のパイプ内で蒸気にして蓄熱槽に送り、前記蓄熱槽でエネルギーを外部に取り出す太陽熱収集装置の熱移送装置であって、
    少なくとも前記パイプと、蒸気管と、前記蓄熱槽内の熱交換器と、熱媒体の液体槽と、熱媒体供給用のポンプとを接続した熱移送系を、前記熱媒体の蒸気以外の気体が存在しない密閉空間にしたことを特徴とする太陽熱収集装置の熱移送装置。
  11. 前記ポンプが容積型のポンプであることを特徴とする請求項10記載の太陽熱収集装置の熱移送装置。
  12. 前記太陽熱収集装置の近傍に設置された測定器により測定された太陽熱の大きさに従って前記ポンプの熱媒体の送り量を制御することを特徴とする請求項10又は11記載の太陽熱収集装置の熱移送装置。
  13. 前記太陽熱収集装置の近傍に設置された太陽電池により前記ポンプを運転することを特徴とする請求項10又は11記載の太陽熱収集装置の熱移送装置。
  14. 前記蒸気管の出口に所定の蒸気圧で開閉する圧力弁を設け、前記蒸気管から出力した蒸気の蒸気圧を制御して前記蒸気の温度を制御することを特徴とする請求項10〜13のいずれかに記載の太陽熱収集装置の熱移送装置。
  15. 前記蓄熱槽の上部に、安全弁と熱交換のためのフィンとを取り付けた蒸気抜きを設けたことを特徴とする請求項10〜14のいずれかに記載の太陽熱収集装置の熱移送装置。
  16. 前記熱媒体を純水又はアルコールにしたことを特徴とする請求項1〜15のいずれかに記載の太陽熱収集装置の熱移送装置。
JP2002383519A 2002-12-20 2002-12-20 太陽熱収集装置の熱移送装置 Pending JP2004205183A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002383519A JP2004205183A (ja) 2002-12-20 2002-12-20 太陽熱収集装置の熱移送装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002383519A JP2004205183A (ja) 2002-12-20 2002-12-20 太陽熱収集装置の熱移送装置

Publications (1)

Publication Number Publication Date
JP2004205183A true JP2004205183A (ja) 2004-07-22

Family

ID=32818205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002383519A Pending JP2004205183A (ja) 2002-12-20 2002-12-20 太陽熱収集装置の熱移送装置

Country Status (1)

Country Link
JP (1) JP2004205183A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100554813C (zh) * 2006-08-13 2009-10-28 唐少章 汽液环流式太阳能集热器
JP2009264712A (ja) * 2008-04-30 2009-11-12 Daikin Ind Ltd 真空管式太陽集熱器及び暖房システム
JP2011043285A (ja) * 2009-08-20 2011-03-03 Cosmobios:Kk 太陽熱蓄熱装置
CN102741621A (zh) * 2009-07-23 2012-10-17 W&E国际(加拿大)公司 太阳能烹茶/咖啡机和烹饪设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100554813C (zh) * 2006-08-13 2009-10-28 唐少章 汽液环流式太阳能集热器
JP2009264712A (ja) * 2008-04-30 2009-11-12 Daikin Ind Ltd 真空管式太陽集熱器及び暖房システム
CN102741621A (zh) * 2009-07-23 2012-10-17 W&E国际(加拿大)公司 太阳能烹茶/咖啡机和烹饪设备
JP2011043285A (ja) * 2009-08-20 2011-03-03 Cosmobios:Kk 太陽熱蓄熱装置

Similar Documents

Publication Publication Date Title
US4232656A (en) Integral storage collector solar heating system
JP5631318B2 (ja) 過熱防止機能を備えた適応型セルフポンピング太陽熱給湯システム
Alshukri et al. Thermal performance of heat pipe evacuated tube solar collector integrated with different types of phase change materials at various location
US3390672A (en) Solar heating device
US20060011193A1 (en) Water pre-heating arrangement
AU2009313036A1 (en) A solar water heater
GB2032613A (en) Heat transfer system
EP2888535A1 (en) A solar water heater
JP2013122370A (ja) 太陽熱利用温水器
Lin et al. Thermal performance of a two-phase thermosyphon energy storage system
JP6155069B2 (ja) 太陽熱利用温水システム
CN111365755A (zh) 一种太阳能相变储热式供热系统
US20120125320A1 (en) Method for providing heat
WO2001057453A1 (fr) Systeme de captage de l'energie solaire
KR100622949B1 (ko) 히트파이프와 태양전지 모듈을 이용한 하이브리드태양에너지 장치
JP2004205183A (ja) 太陽熱収集装置の熱移送装置
CN106323064B (zh) 一种采用超导热管和泡沫铜相变材料的移动式蓄能装置
CN101634467A (zh) 一种太阳能热管供暖系统
EP0015017B1 (en) Heat transport tube solar collector and system comprising at least such a collector
CN206056367U (zh) 采用超导热管和泡沫铜相变材料的新型移动式蓄能装置
JP2004108747A (ja) 平板式太陽熱収集装置及び太陽熱収集システム
JPS62210352A (ja) ヒ−トパイプ式融雪兼太陽熱温水装置
US20050133023A1 (en) Water pre-heating arrangement
CN212227184U (zh) 一种太阳能相变储热式供热系统
JP2012002493A (ja) 太陽熱利用温水器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071002