JP2004204671A - Skeleton type breakwater - Google Patents

Skeleton type breakwater Download PDF

Info

Publication number
JP2004204671A
JP2004204671A JP2003176122A JP2003176122A JP2004204671A JP 2004204671 A JP2004204671 A JP 2004204671A JP 2003176122 A JP2003176122 A JP 2003176122A JP 2003176122 A JP2003176122 A JP 2003176122A JP 2004204671 A JP2004204671 A JP 2004204671A
Authority
JP
Japan
Prior art keywords
slab
sea
unit structure
breakwater
type breakwater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003176122A
Other languages
Japanese (ja)
Inventor
Genkai Ryo
元 會 梁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2004204671A publication Critical patent/JP2004204671A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/06Moles; Piers; Quays; Quay walls; Groynes; Breakwaters ; Wave dissipating walls; Quay equipment

Abstract

<P>PROBLEM TO BE SOLVED: To provide a breakwater having a relatively simple structure so that an exchange of seawater between inland sea and open sea is smoothly carried out and using an excessive quantity of rubble mounds is prevented while it is aimed to construct the breakwater quickly and also at a low cost. <P>SOLUTION: The skeleton type break water is constructed by at least one unit structure, which is composed of a rubble-mounded stylobate (12), a lower slab (13), a plurality of vertical pillars (20), many slanting pillars (14), an upper slab (15), a front face wall (16) with many seawater flow holes (18) on one side (sea-side), a rear face wall (17) on the other side, and a concrete cap (19) which is provided on an upper surface of the upper slab (15) by placement and curing at the construction site. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は上・下スラブ、この上・下スラブの間で上スラブを支持する複数本の柱及びこれらの柱を横方向で連結支持する連結ビーム(corss beam)とで構成される単位構造体を組立ててなる骨組型防波堤に関するものである。
【0002】
【従来の技術】
従来の一般的な防波堤は、捨石堤又はケーソン(caisson)堤、又は混成堤等の堤体で構成されるが、これらの防波堤は構築作業が複雑で時間がかかり、海水流通を遮断するから内海と外海への海水交換が実質的にできなかった。そこで、従来からいろいろな形の海水交換防波堤が提案されて来た。
【0003】
例えば図1に示された基本的な形態の防波堤体である従来の捨石防波堤体1の場合は、捨石2のみでなる外海側の勾配1/2及び内海側の勾配1/1.5とすることが通常的である為、過多量の捨石が要求されるばかりでなく、工期が長くなる。
【0004】
その為、図2で示したように内海・外海の捨石基礎壇(マウンド)2aの句配を共に1/1.5として捨石基礎壇2aの幅を減り、この捨石基礎壇2aの上面にケーソン3を据置することによって捨石の所要量を減らす方法も考えられたのである。
【0005】
【発明が解決しようとする課題】
しかしながら、ケーソン3となる上部構造物には波力が加える上に暴風、台風等が来襲する場合、ケーソン3が転倒される恐れが尚存される。これを解決する為には、図3で示したように捨石基礎壇2aを低くする方法の代わりに堤体の安定の為、ケーソン3の大きさを大形のものとする必要があった。
【0006】
この場合、大形ケーソン3の製造及び運搬、構築時に困難がある等、現実的に大形ケーソン使用が難しくなり、大きいほど反射波が大きくなると共に海水流通までも完全に遮断される問題があった。
【0007】
本発明者は、大部分の海水波圧及び来襲される波の波力は主に海水上部及び表面に作用されるのに着目して、海水の自由な交換が行われるように堤の下部を開放するのが効果的である点を考えることに至った。
【0008】
本発明は上記のような点に鑑みて開発されたものであって、その目的とするところは、比較的に簡単な構造を有する防波堤によって、内海と外海との間に海水交換が円滑に行われるようにし、過多量の捨石使用を防ぐと共に低廉且つ迅速に防波堤の築造を図ることにある。
【0009】
なお、防波堤に関する特許文献としては次のような先願がある。
【0010】
【特許文献1】特開2003−147747号
【特許文献2】特開2003−096742号
【特許文献3】特開2003−082636号
【0011】
【課題を解決するための手段】
本発明は上記した目的を有効に達成するために、次のような構成にしてある。すなわち、請求項1記載の本発明の骨組型防波堤は、少なくとも1つの単位構造体によって構築される骨組型防波堤であって、上記単位構造体は、海底(11)の表面上に設けられる捨石基礎壇(12)と、捨石基礎壇(12)の幅より小さい幅を有して捨石基礎壇(12)の上に設けられる下部スラブ(13)と、下部スラブ(13)の長さ方向の内側部に同一間隔で列をなして設けられる複数の垂直柱(20)と、各々の垂直柱(20)の左右両側に設けられる多数の傾斜柱(14)と、垂直柱(20)並びに傾斜柱(14)の上端部を被覆する上部スラブ(15)と、上部スラブ(15)の両側部に一体に形成されかつ上記傾斜柱(14)に沿って上記傾斜柱(14)の先端部側を被うように下向に形成されている、多数の海水通水孔(18)を有する片側(海側)の前面壁(16)、並びに片側の背面壁(17)と、現場打設及び養生によって上部スラブ(15)の上表面に設けられるコンクリートキャップ(19)とによって構成される。
【0012】
請求項2記載の本発明の骨組型防波堤は、請求項1記載の骨組型防波堤の構成において、上記傾斜柱(14)は、水平ビーム(21)によって連設・支持され、かつ垂直柱(20)の両側部に内海と外海に向って傾斜・対称となるように設けられると共に水平ビーム(21)並びに上・下部スラブ(15) (13)と一体に連設される構成である。
【0013】
請求項3記載の本発明の骨組型防波堤は、少なくとも1つの単位構造体によって構築される骨組型防波堤であって、上記単位構造体は、海底(11)の表面に構築された捨石基礎壇(12)と、この基礎壇(12)の幅より狭い幅を有する下部スラブ(13)と、長さ方向の下部スラブ(13)の両側部に各々同一間隔で列をなしてある複数の垂直柱(14a)と、上記垂直柱(14a)を被覆し、下部スラブ(13)と平行に設けられ、かつ下部スラブ(13)の長さ及び幅より狭い長さ及び幅を有する上部スラブ(15a)と、上部スラブ(15a)の両側で一体に連結され、垂直柱(14a)の上側面部に平行に下向延伸されている、多数の海水通水孔(18a)有する片側(海側)の前面壁(16a)、並びに片側の背面壁(17a)と、現場打設及び養生によって上部スラブ(15a)の上表面に設けられるコンクリートキャップ(19a)とによって構成される。
【0014】
請求項4記載の本発明の骨組型防波堤は、請求項1または3記載の骨組型防波堤の構成において、上記単位構造体は上部スラブと柱とがコンクリート材として一体となり、そのコンクリートは鉄骨コンクリートとなる構成である。
【0015】
請求項5記載の本発明の骨組型防波堤は、請求項1または3記載の骨組型防波堤の構成において、上記単位構造体の下部スラブ及び上部スラブの各前・後側部には凸凹部の雄・雌キーが形成され、上記凸凹部の雄・雌キーによる雌雄結合によって多数の単位構造体が組み立てられる構成である。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
本発明は図4〜図6で示したように基本的に多数個の単位構造体を側面に連結して構築する骨組型防波堤に関するものであって、この骨組型防波堤は通常鉄骨、鉄筋で強化されている複数本の柱、これらの柱の上・下側に設けられる上・下コンクリート製スラブ及びコンクリートキャップからなっている。
【0017】
本発明の骨組型防波堤の単位構造体の基本構成は次の通りである。
図4、図5に示すように海底11の表面上に構築された捨石基礎壇12と、この基礎壇12の幅より狭い幅を有する下部スラブ13と、上記下部スラブ13の長さ方向の内側部に柱と柱が同一間隔で列をなしてある多数の垂直柱20と各々の垂直柱20の左右側に設けられる多数の傾斜柱14と、上記柱の上端部を被覆し、上記下部スラブ13の長さ及び幅より小さい長さ及び幅を有する上部スラブ15と、上記上部スラブ15の両端部から一体で連結され、上記スラブの両側の海側先端部で両側柱と同一方向に下向設置される多数の海水通水孔18形式の前面壁16と背面壁17と、上記上部スラブ15の上表面にはコンクリートキャップ19を現場打設及び養生することによって本発明の骨組型防波堤の単位構造体が作られる。
【0018】
本発明骨組型防波堤の他の一実施例を図6で示されているその単位構造体を以下に説明する。
【0019】
この単位構造体は、海底11の表面に構築された捨石基礎壇12と、この基礎壇12の幅より狭い幅を有する下部スラブ13と、下部スラブ13の長さ方向の両側部に各々同一間隔で列をなしてある多数の垂直柱14aと、上記垂直柱を被覆し、下部スラブ13と平行に設けられ、かつ、下部スラブの長さ及び幅より狭い長さ及び幅を有する上部スラブ15aと、
上部スラブ15aに両側で一体に連結され、垂直柱14aの上側部面に平行に下向延伸されている多数の海水通水孔18a形成の前面壁16aと背面壁17と、上記上部スラブ15aの上部表面にはコンクリートキャップ19aを現場打設及び養生することによって本発明の他の骨組型防波堤が構成される。
【0020】
本発明によって捨石所要量が減少でき、海水も内海と外海の間に自由的に交換できるようになると共に本発明骨組型防波堤を簡単に且つ低費用で短期間に築造することができる。その上に反射波の弱化又は消波ができるので海水の交換が自動的に可能になることに本発明の特徴がある。
【0021】
本発明を添付図面によって以下に詳細に説明する。
本発明の骨組型防波堤において、その単位構造体10は図4及び図6で示したように堤体の設置位置、水深、潮位差、港の規模等によってその構造を異にする。
【0022】
海底面11の上に所定の幅と高さを有する捨石基礎壇12を設け、この捨石基礎壇12の上に、この捨石基礎壇12の幅より小さい幅と高さを有する下部スラブ(slab)13を設置する。この下部スラブ13の床の内海側と外海側周辺部に各々列を形成し、又、同一間隔で離隔された位置に四角断面を有する所定の高さの柱を多数個下部スラブ13の床に設置し、この下部スラブ13の床面に設けられた上部スラブ支持用柱14の上端に、下部スラブ13とほぼ同じ面積及び厚さを有する上部スラブ15を下部スラブ13と併設する。
【0023】
上記柱は比較的に水深が浅い且つ潮位差が小さい場所の場合、主に垂直柱で構成するが、一般的には下部スラブの床の中央部に垂直柱を、両側部には傾斜柱を設ける。
【0024】
図4は長さ方向の両側部上の傾斜柱14、14が水平ビーム21、21によって互いに一体に連結及び支持されることを一実施例として示している。図5は2本の垂直柱20及び2本の傾斜柱14が横ビーム21、21によって一体に連結及び支持されることを現わす。
【0025】
上記図4に示されている本発明の防波堤の骨組型単位構造体10はその下部スラブの中央部の上に2本の垂直柱20、20が垂設され、内海と外海に向かうその下部スラブの側部には傾斜柱14、14が上記垂直柱の両側方向に対称に設けられる。上記両傾斜柱14、14の上部外側面には前面壁16と背面壁17が上記上部スラブ15と一体で構成され、その上側端部から上部スラブ15と平行に各々下向連設される。
【0026】
上記前面壁16には海水通水孔18が形成される。上記傾斜柱14と垂直柱20とは、水平(横)ビーム21によって一体に連結される。この単位構造体10は、強い波が来襲する場合、適切に対処する為に所要長さと幅の凹部および凸部からなる雌キー22および雄キー23によって組み立てられる。
【0027】
図5は前述した垂直柱20と傾斜柱14とが水平(横)ビーム21によって完全に連結されることを図示したのであり、又、柱の上端部とこの柱の上端部を被覆する上部スラブ15とが一体に連結された関係を示したのである。
【0028】
図6は本発明の第2実施例としての骨組型防波堤であって、その柱が垂直柱のみで構築されることを示したのである。ここで垂直柱は通常波の来襲方向、換言すれば内海と外海に向かう方向に水平(横)ビーム21aによって互いに連結支持される一対の垂直柱14a、14aが一定間隔を置いて、多数列並設される。
【0029】
上記骨組形防波堤(BW)の単位構造体における垂直柱14aは通常6本以上設けられる。各柱は通常四角断面で図6でのように柱と柱14a、14aとの間の横間隔を同一にして下部スラブ13の長さ方向の両側部に一体で多数設けられて両列をなしている。上記上部スラブ15の内海側及び外海側部にも、図6のように各々垂直下向連設される前面壁16aと背面壁17aを備え、この前面壁16aには多数の海水通水孔18を穿設する。
【0030】
尚、上記上部スラブ15aの上面にはコンクリート キャップ(concrete cap)19aを現場打設・養生することによって設けられ、これによって骨組型防波堤(BW)の単位構造体10aが構成される。この単位構造体の上部スラブと柱とができる限りコンクリト材として一体となるように形成し、特に鉄筋のような鉄骨コンクリト材で構築する。
【0031】
換言すれば骨組型防波堤を組み立てる為の単位構造体は、各部位がコンクリート材として一体となり、そのコンクリートは鉄筋コンクリートとで構成する。これは第2の実施例にも同じに適用される。垂直柱又は傾斜柱の高さは水深、波力、潮水位による波高等によって決まる。
【0032】
【発明の効果】
本発明の骨組型防波堤によれば、上記傾斜柱及び垂直柱によって、暴風又は魔風に困る強い波にも十分対処できるようになり、前述した外海に向かう前面壁の海水通水孔の中にオーバフロ-の海水を通過させることによって、来襲する波の衝撃を吸収すると共に上記柱の間での空間を通じて海水を自由に交換することができることになる。
【0033】
その上に従来の防波堤においては強い波力によるケーソンの転倒可能性があるのに反し、本発明の骨組型防波堤では強い波力にも安全性を与え、以前より大規模のマウンド及びケーソンなしに経済的にも一層有利である。
【0034】
本発明の骨組型防波堤は、構造の単純化によって、構築費用及び築造業期間の著しい減縮が可能になった。
【0035】
本発明の骨組型防波堤は、上記以外にも柱と柱との間の空間に多数の魚巣を設けることによって自然的な養魚環境の提供も可能である。
【0036】
なによりも、本発明の骨組型防波堤は、外海と内海の間に自由な海水交換の以外にも図7で示すように本発明による構造体は従来の構造体にくらべてその造成すべき海底地盤(グラウト量も含む)の大きさ、幅が小さくなる為、換言すれば海底地盤造成において造成すべき範囲が大幅に小さくなる為、築造コストや築造期間が短縮できることによって非常に作業性の高いかつ、安定的な防波堤を提供することができるようになった。
【図面の簡単な説明】
【図1】従来の一般的な捨石防波堤の一例を図示した堤の横断面図である。
【図2】従来の混成防波堤において下部捨石基礎壇(マウンド)を高める場合の横断面図である。
【図3】従来の混成防波堤においてケーソンを高める場合の横断面図である。
【図4】本発明の防波堤の一実施例としての単位構造体の一部切欠した斜視図である。
【図5】図5は図4のA-A線断面図である。
【図6】本発明の防波堤の他の一実施例としての単位構造体の一部切欠した斜視図である。
【図7】図1で示した従来の防波堤と図5で示した本発明の防波堤において造成すべき海底地盤の大きさを対比した説明図である。
【符号の説明】
1 防波堤
2 捨石防波堤
2a 捨石
12 捨石基礎壇
3 ケーソン(caisson)
10、10a 単位構造体
11 海底面
13 下部スラブ
14 傾斜柱
14a 垂直柱
15 上部スラブ
15a 上部スラブ
16、16a 前面壁
17、17a 背面壁
18、18a 海水通水孔
19、19a コンクリートキャップ(concrete cap)
20 垂直柱
21 水平ビーム(beam)
22 雌キー(female key)
23 雄キー(male key)
[0001]
[Industrial applications]
The present invention relates to a unit structure comprising an upper and lower slab, a plurality of columns supporting the upper slab between the upper and lower slabs, and a connecting beam (corss beam) for connecting and supporting these columns in a lateral direction. And a frame-type breakwater constructed by assembling the same.
[0002]
[Prior art]
Conventional general breakwaters are composed of levee or caisson levee, or mixed levee bodies, but these breakwaters are complicated and time-consuming to construct, and they interrupt seawater circulation because they prevent seawater circulation. And the exchange of seawater into the open sea was virtually impossible. Therefore, various types of seawater exchange breakwaters have been proposed.
[0003]
For example, in the case of the conventional rubble breakwater 1 which is the breakwater of the basic form shown in FIG. 1, the slope of the open sea side composed of only the rubble 2 and the slope of the inland sea side are 1 / 1.5. Since this is common, not only an excessive amount of rubble is required, but also the construction period becomes long.
[0004]
Therefore, as shown in Fig. 2, the width of the rubble foundation 2a is reduced by setting the arrangement of the mound 2a of the inland sea and the open sea to 1 / 1.5, and the width of the rubble foundation 2a is reduced. A method of reducing the required amount of rubble by installing No. 3 was also considered.
[0005]
[Problems to be solved by the invention]
However, there is still a danger that the caisson 3 will fall if a storm, a typhoon, or the like strikes the upper structure serving as the caisson 3 in addition to a wave force. In order to solve this, the caisson 3 had to be made large to stabilize the embankment instead of lowering the rubble foundation 2a as shown in FIG.
[0006]
In this case, the use of the large caisson 3 is actually difficult, such as difficulty in manufacturing, transporting, and constructing the large caisson 3. There is a problem that the larger the caisson 3 is, the larger the reflected wave becomes and the distribution of seawater is completely shut off. Was.
[0007]
The present inventor has focused on the fact that most of the seawater wave pressure and the wave power of the invading waves are mainly applied to the upper part and the surface of the seawater, and the lower part of the embankment so that the seawater can be freely exchanged. I came to think that it is effective to open it.
[0008]
The present invention has been developed in view of the above points, and an object of the present invention is to facilitate seawater exchange between an inland sea and an open sea by a breakwater having a relatively simple structure. It is an object of the present invention to prevent excessive use of rubble and to construct a breakwater inexpensively and quickly.
[0009]
In addition, there is the following prior application as a patent document relating to a breakwater.
[0010]
[Patent Document 1] JP-A-2003-147747 [Patent Document 2] JP-A-2003-096742 [Patent Document 3] JP-A-2003-082636
[Means for Solving the Problems]
The present invention has the following configuration in order to effectively achieve the above object. That is, the frame-type breakwater of the present invention according to claim 1 is a frame-type breakwater constructed by at least one unit structure, and the unit structure is a rubble foundation provided on the surface of the seabed (11). A platform (12), a lower slab (13) having a width smaller than the width of the rubble foundation (12) and provided on the rubble foundation (12), and an inner side in the longitudinal direction of the lower slab (13). A plurality of vertical pillars (20) provided in rows at the same interval in the part, a large number of inclined pillars (14) provided on the left and right sides of each vertical pillar (20), the vertical pillars (20) and the inclined pillars An upper slab (15) covering the upper end of (14), and a tip end side of the inclined column (14) formed integrally on both sides of the upper slab (15) and along the inclined column (14). One-side (sea-side) front wall (16) having a large number of seawater holes (18) and one-side back wall (17) formed downward so as to cover, and casting and curing on site By It constituted by a concrete cap (19) provided on the surface of the upper slab (15) Te.
[0012]
According to a second aspect of the present invention, there is provided the framework type breakwater according to the first aspect, wherein the inclined pillars (14) are connected and supported by a horizontal beam (21), and the vertical pillars (20). ) Are provided on both sides so as to be inclined and symmetrical toward the inner sea and the outer sea, and are integrally connected to the horizontal beam (21) and the upper and lower slabs (15) and (13).
[0013]
The frame type breakwater according to the present invention according to claim 3 is a frame type breakwater constructed by at least one unit structure, wherein the unit structure is a rubble foundation built on a surface of a seabed (11). 12), a lower slab (13) having a width smaller than the width of the foundation platform (12), and a plurality of vertical columns arranged at equal intervals on both sides of the lower slab (13) in the longitudinal direction. (14a) and the upper slab (15a) which covers the vertical column (14a), is provided in parallel with the lower slab (13), and has a length and width smaller than the length and width of the lower slab (13). And one side (sea side) having a number of seawater holes (18a), which are integrally connected on both sides of the upper slab (15a), and extend downward parallel to the upper side of the vertical pillar (14a). A front wall (16a), and a rear wall (17a) on one side, and a concrete cap (19a) provided on the upper surface of the upper slab (15a) by casting and curing on site. It is constituted by.
[0014]
According to a fourth aspect of the present invention, in the structure of the skeleton type breakwater according to the first or third aspect, the unit structure is such that an upper slab and a column are integrated as a concrete material, and the concrete is a steel concrete. Configuration.
[0015]
According to a fifth aspect of the present invention, in the structure of the skeleton type breakwater according to the first or third aspect, the front and rear sides of the lower slab and the upper slab of the unit structure have male and female recesses. A female key is formed, and a large number of unit structures are assembled by the male and female keys connecting the convex and concave portions with the male and female keys.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
The present invention relates to a frame-type breakwater basically constructed by connecting a plurality of unit structures to side surfaces as shown in FIGS. 4 to 6, and the frame-type breakwater is usually reinforced with steel frames and reinforcing bars. Slabs, upper and lower concrete slabs and concrete caps provided on the upper and lower sides of these columns.
[0017]
The basic structure of the unit structure of the frame type breakwater of the present invention is as follows.
As shown in FIGS. 4 and 5, a rubble foundation 12 constructed on the surface of the seabed 11, a lower slab 13 having a width smaller than the width of the foundation 12, and an inner side of the lower slab 13 in the longitudinal direction. A plurality of vertical columns 20 in which the columns are arranged at equal intervals, a large number of inclined columns 14 provided on the left and right sides of each vertical column 20, and the lower slab covering the upper end of the column, An upper slab 15 having a length and width smaller than the length and width of the upper and lower slabs 13 is integrally connected from both ends of the upper slab 15, and downwards in the same direction as the pillars at both ends of the slab on both sides of the sea. A unit of the frame type breakwater of the present invention by placing and curing a concrete cap 19 on the front wall 16 and the rear wall 17 in the form of a large number of seawater holes 18 and the upper surface of the upper slab 15. A structure is created.
[0018]
Another embodiment of the frame type breakwater of the present invention will be described below with reference to the unit structure shown in FIG.
[0019]
The unit structure includes a rubble foundation 12 built on the surface of the seabed 11, a lower slab 13 having a width smaller than the width of the foundation 12, and both sides of the lower slab 13 in the longitudinal direction at the same intervals. A number of vertical pillars 14a arranged in a row, and an upper slab 15a covering the vertical pillars, provided in parallel with the lower slab 13, and having a length and width smaller than the length and width of the lower slab. ,
The front wall 16a and the back wall 17 are integrally connected on both sides to the upper slab 15a and extend downwardly in parallel with the upper surface of the vertical pillar 14a to form a plurality of seawater holes 18a. Another frame-type breakwater of the present invention is formed on the upper surface by casting and curing a concrete cap 19a on site.
[0020]
According to the present invention, the required amount of rubble can be reduced, seawater can be freely exchanged between the inland sea and the open sea, and the framed breakwater of the present invention can be easily and inexpensively constructed in a short time. In addition, the present invention is characterized in that seawater can be automatically exchanged because the reflected wave can be weakened or eliminated.
[0021]
The present invention will be described in detail below with reference to the accompanying drawings.
In the frame type breakwater of the present invention, the unit structure 10 has a different structure depending on the installation position of the embankment, water depth, tide level difference, scale of the port, etc. as shown in FIGS.
[0022]
A rubble foundation 12 having a predetermined width and height is provided on the sea floor 11, and a lower slab (slab) having a width and height smaller than the width of the rubble foundation 12 is provided on the rubble foundation 12. 13 is installed. A row is formed on each of the inner sea side and the outer sea side peripheral portions of the floor of the lower slab 13, and a plurality of columns having a predetermined height having a square cross section are provided on the floor of the lower slab 13 at positions separated at the same interval. An upper slab 15 having substantially the same area and thickness as the lower slab 13 is provided along with the lower slab 13 on the upper end of the upper slab support column 14 provided on the floor of the lower slab 13.
[0023]
In the place where the water depth is relatively shallow and the tide level difference is small, the pillars are mainly composed of vertical pillars.In general, vertical pillars are provided at the center of the floor of the lower slab, and inclined pillars are provided at both sides. Provide.
[0024]
FIG. 4 shows, as an example, that the inclined columns 14, 14 on both longitudinal sides are connected and supported together by horizontal beams 21, 21. FIG. 5 shows that two vertical columns 20 and two inclined columns 14 are integrally connected and supported by the transverse beams 21, 21.
[0025]
The breakwater frame-type unit structure 10 of the present invention shown in FIG. 4 has two vertical columns 20, 20 suspended above the central part of the lower slab, and the lower slab heading to the inner sea and the outer sea. Are provided symmetrically on both sides of the vertical column. A front wall 16 and a back wall 17 are integrally formed with the upper slab 15 on the upper outer surfaces of the two inclined columns 14, 14, and each of the front walls 16 and the rear wall 17 are downwardly connected in parallel from the upper end to the upper slab 15.
[0026]
A seawater passage hole 18 is formed in the front wall 16. The inclined column 14 and the vertical column 20 are integrally connected by a horizontal (lateral) beam 21. The unit structure 10 is assembled by a female key 22 and a male key 23 having concave portions and convex portions of a required length and width to appropriately cope with a strong wave.
[0027]
FIG. 5 illustrates that the vertical column 20 and the inclined column 14 described above are completely connected by a horizontal (lateral) beam 21. Also, the upper end of the column and the upper slab covering the upper end of the column are illustrated. 15 shows a relationship of being integrally connected.
[0028]
FIG. 6 shows a frame type breakwater according to a second embodiment of the present invention, in which the pillars are constructed of only vertical pillars. Here, a vertical column is composed of a large number of vertical columns 14a, 14a, which are connected and supported by a horizontal (lateral) beam 21a in the direction of the normal wave arrival, in other words, in the direction toward the inner sea and the outer sea, at regular intervals. Is established.
[0029]
Usually, six or more vertical columns 14a are provided in the unit structure of the skeleton type breakwater (BW). As shown in FIG. 6, each pillar has a generally square cross section and the same horizontal spacing between the pillars and the pillars 14a, 14a. ing. As shown in FIG. 6, a front wall 16a and a rear wall 17a are respectively provided on the inner sea side and the outer sea side of the upper slab 15 so as to extend vertically downward. Drilling.
[0030]
It should be noted that a concrete cap 19a is provided on the upper surface of the upper slab 15a by casting and curing on site, thereby forming a unit structure 10a of a frame type breakwater (BW). The upper slab and the column of this unit structure are formed as a unitary concrete material as much as possible, and are constructed of a steel frame concrete material such as a reinforcing bar.
[0031]
In other words, in the unit structure for assembling the frame type breakwater, each part is integrated as a concrete material, and the concrete is made of reinforced concrete. This applies equally to the second embodiment. The height of the vertical or inclined column is determined by the water depth, wave power, wave height based on the tide level, and the like.
[0032]
【The invention's effect】
According to the framework type breakwater of the present invention, the inclined pillars and the vertical pillars can sufficiently cope with strong waves that are troubled by storms or magic winds. By passing the overflowing seawater, the impact of the invading waves can be absorbed and the seawater can be freely exchanged through the space between the pillars.
[0033]
On top of that, in the conventional breakwater, there is a possibility that the caisson may fall due to strong wave force, whereas the frame type breakwater of the present invention also provides safety to strong wave force, without a larger mound and caisson than before. It is more economically advantageous.
[0034]
The skeletal breakwater of the present invention has made it possible to significantly reduce the construction cost and the construction period by simplifying the structure.
[0035]
In addition to the above, the frame type breakwater of the present invention can provide a natural fish culture environment by providing a large number of fish nests in the space between the pillars.
[0036]
Above all, besides the free seawater exchange between the open sea and the inland sea, the framework according to the present invention is not limited to the seawater to be formed as compared with the conventional structure, as shown in FIG. Extremely high workability because the size and width of the ground (including grout amount) are reduced, in other words, the area to be built in undersea ground development is significantly reduced, and the construction cost and construction period can be shortened In addition, a stable breakwater can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an embankment illustrating an example of a conventional general rubble breakwater.
FIG. 2 is a cross-sectional view when a lower rubble mound is raised in a conventional hybrid breakwater.
FIG. 3 is a cross-sectional view when a caisson is raised in a conventional hybrid breakwater.
FIG. 4 is a partially cutaway perspective view of a unit structure as an embodiment of the breakwater of the present invention.
FIG. 5 is a sectional view taken along the line AA of FIG. 4;
FIG. 6 is a partially cutaway perspective view of a unit structure as another embodiment of the breakwater of the present invention.
7 is an explanatory diagram comparing the size of the seabed to be formed in the conventional breakwater shown in FIG. 1 and the breakwater of the present invention shown in FIG. 5;
[Explanation of symbols]
1 Breakwater 2 Ripstone breakwater
2a rubble
12 Ripstone Foundation 3 Caisson
10, 10a Unit structure 11 Sea bottom 13 Lower slab 14 Inclined column 14a Vertical column 15 Upper slab 15a Upper slab
16, 16a Front wall
17, 17a rear wall
18, 18a Seawater passage
19, 19a concrete cap
20 Vertical column 21 Horizontal beam
22 female key
23 male key

Claims (5)

少なくとも1つの単位構造体によって構築される骨組型防波堤であって、上記単位構造体は、海底(11)の表面上に設けられる捨石基礎壇(12)と、捨石基礎壇(12)の幅より小さい幅を有して捨石基礎壇(12)の上に設けられる下部スラブ(13)と、下部スラブ(13)の長さ方向の内側部に同一間隔で列をなして設けられる複数の垂直柱(20)と、各々の垂直柱(20)の左右両側に設けられる多数の傾斜柱(14)と、垂直柱(20)並びに傾斜柱(14)の上端部を被覆する上部スラブ(15)と、上部スラブ(15)の両側部に一体に形成されかつ上記傾斜柱(14)に沿って上記傾斜柱(14)の先端部側を被うように下向に形成されている、多数の海水通水孔(18)を有する片側(海側)の前面壁(16)、並びに片側の背面壁(17)と、現場打設及び養生によって上部スラブ(15)の上表面に設けられるコンクリートキャップ(19)とによって構成されることを特徴とする骨組型防波堤。A frame-type breakwater constructed by at least one unit structure, wherein the unit structure has a width of a rubble foundation (12) provided on a surface of a sea floor (11) and a rubble foundation (12). A lower slab (13) having a small width and provided on a rubble foundation (12), and a plurality of vertical columns provided at equal intervals in a longitudinally inner portion of the lower slab (13). (20), a number of inclined columns (14) provided on the left and right sides of each vertical column (20), and an upper slab (15) that covers the upper ends of the vertical columns (20) and the inclined columns (14). A large number of seawaters integrally formed on both sides of the upper slab (15) and formed downward along the inclined column (14) so as to cover the tip side of the inclined column (14). One side (sea side) front wall (16) with water holes (18), and one side back wall (17), and concrete provided on the upper surface of the upper slab (15) by casting and curing on site A frame-type breakwater characterized by comprising a cap (19). 上記傾斜柱(14)は、水平ビーム(21)によって連設・支持され、かつ垂直柱(20)の両側部に内海と外海に向って傾斜・対称となるように設けられると共に水平ビーム(21)並びに上・下部スラブ(15) (13)と一体に連設されることを特徴とする請求項1記載の骨組型防波堤。The inclined column (14) is continuously provided and supported by a horizontal beam (21), and is provided on both sides of the vertical column (20) so as to be inclined and symmetrical toward the inland sea and the open sea, and the horizontal beam (21) is provided. 2. The frame-type breakwater according to claim 1, wherein the breakwater is integrally and continuously provided with the upper and lower slabs (15) and (13). 少なくとも1つの単位構造体によって構築される骨組型防波堤であって、上記単位構造体は、海底(11)の表面に構築された捨石基礎壇(12)と、この基礎壇(12)の幅より狭い幅を有する下部スラブ(13)と、長さ方向の下部スラブ(13)の両側部に各々同一間隔で列をなしてある複数の垂直柱(14a)と、上記垂直柱(14a)を被覆し、下部スラブ(13)と平行に設けられ、かつ下部スラブ(13)の長さ及び幅より狭い長さ及び幅を有する上部スラブ(15a)と、上部スラブ(15a)の両側で一体に連結され、垂直柱(14a)の上側面部に平行に下向延伸されている、多数の海水通水孔(18a)有する片側(海側)の前面壁(16a)、並びに片側の背面壁(17a)と、現場打設及び養生によって上部スラブ(15a)の上表面に設けられるコンクリートキャップ(19a)とによって構成されることを特徴とする骨組型防波堤。A frame-type breakwater constructed by at least one unit structure, wherein the unit structure includes a rubble foundation (12) constructed on the surface of the sea floor (11) and a width of the foundation platform (12). A lower slab (13) having a narrow width, a plurality of vertical columns (14a) arranged in rows at equal intervals on both sides of the lower slab (13) in the longitudinal direction, and the vertical columns (14a) are covered. The upper slab (15a), which is provided in parallel with the lower slab (13) and has a length and width smaller than the length and width of the lower slab (13), is integrally connected on both sides of the upper slab (15a). The front wall (16a) on one side (sea side) having a number of seawater holes (18a) and the rear wall (17a) on one side are extended downwardly in parallel with the upper side of the vertical pillar (14a). ) And a concrete cap (19a) provided on the upper surface of the upper slab (15a) by casting and curing on site. Type breakwater. 上記単位構造体は上部スラブと柱とがコンクリート材として一体となり、そのコンクリートは鉄骨コンクリートとなることを特徴とする請求項1または3記載の骨組型防波堤。4. The frame-type breakwater according to claim 1, wherein the upper slab and the pillar of the unit structure are integrated as a concrete material, and the concrete is steel concrete. 上記単位構造体の下部スラブ及び上部スラブの各前・後側部には凸凹部の雄・雌キーが形成され、上記凸凹部の雄・雌キーによる雌雄結合によって多数の単位構造体が組み立てられることを特徴とする請求項1または3記載の骨組型防波堤。Male / female keys having convex and concave portions are formed on the front and rear sides of the lower slab and upper slab of the unit structure, and a large number of unit structures are assembled by male / female coupling by the male / female keys of the convex and concave portions. The frame-type breakwater according to claim 1 or 3, wherein:
JP2003176122A 2002-12-23 2003-06-20 Skeleton type breakwater Pending JP2004204671A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0082261A KR100521906B1 (en) 2002-12-23 2002-12-23 Frame type breakwater

Publications (1)

Publication Number Publication Date
JP2004204671A true JP2004204671A (en) 2004-07-22

Family

ID=32588874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003176122A Pending JP2004204671A (en) 2002-12-23 2003-06-20 Skeleton type breakwater

Country Status (3)

Country Link
US (1) US20040120768A1 (en)
JP (1) JP2004204671A (en)
KR (1) KR100521906B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101275500B1 (en) * 2012-11-02 2013-06-20 주식회사 혜인이엔씨 Breakwater using jacket structures

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002020905A1 (en) * 2000-08-29 2002-03-14 Artificial Surf Reefs Limited Method of shore protection
US20060104719A1 (en) * 2004-11-17 2006-05-18 Israel Fainman Wave-absorbing breakwater
KR100650540B1 (en) 2005-04-13 2006-12-01 주식회사 한길 Hydrophilic revetment block having seawater flow ports and construction method thereof
NL2001034C2 (en) * 2006-11-27 2008-09-08 Tebezo Waterbouw B V Groyne for protecting bank of tidal river, comprises sloping bank with spaced apart gabions on top of its crown
FR2926566B1 (en) * 2008-01-21 2013-10-25 Dietswell Engineering Sa DEVICE FOR PREVENTING AQUATIC POLLUTION
KR101094520B1 (en) 2009-12-17 2011-12-19 삼성중공업 주식회사 Floating breakwater
KR101163360B1 (en) 2009-12-17 2012-07-09 삼성중공업 주식회사 Floating type breakwater
ES2390718B1 (en) * 2010-02-12 2013-05-14 Acre 5 S.L. ANTIRREFLEXION WAVE CHAMBER IN PORT DARSENS
CN102535392B (en) * 2012-01-17 2014-01-22 河海大学 Communication type breakwater wave dissipation structure for resisting wave suction force
US9339017B1 (en) 2012-12-12 2016-05-17 David Walter Living wave barrier
CN103243679B (en) * 2013-05-30 2014-12-31 江苏科技大学 High-pile permeable breakwater
US11603636B2 (en) * 2021-07-13 2023-03-14 Pepsy M. Kettavong Interlocking modular smart seawall diversion and recreation system and method of installation
CN114319227B (en) * 2021-12-30 2023-05-02 中交一航局第三工程有限公司 Slope type breakwater cross-platform wind season platform prevention construction process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738820U (en) * 1980-08-11 1982-03-02
JPH04134533U (en) * 1991-05-27 1992-12-15 運輸省港湾技術研究所長 Wave control structure using columnar members
JPH07216844A (en) * 1994-02-08 1995-08-15 Nippon Steel Corp Underwater framed structure and construction method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2967398A (en) * 1958-01-02 1961-01-10 Alonzo L Smith Breakwater
US3309876A (en) * 1964-02-13 1967-03-21 John M Potter Erosion prevention apparatus
FR2184200A5 (en) * 1972-05-10 1973-12-21 Doris Dev Richesse Sous Marine
US3844125A (en) * 1973-07-13 1974-10-29 J Williams Anti-erosion device
US3952521A (en) * 1974-10-29 1976-04-27 Potter John M Portable floating wave tripper
US4539078A (en) * 1984-10-22 1985-09-03 Synthetic Breakwater Method of and apparatus for making a synthetic breakwater
CA1251650A (en) * 1986-05-09 1989-03-28 Canadian Patents And Development Limited/Societe Canadienne Des Brevets Et D'exploitation Limitee Stability optimized perforated breakwaters
US4921373A (en) * 1988-12-07 1990-05-01 Coffey Robert C Barrier for containing floods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738820U (en) * 1980-08-11 1982-03-02
JPH04134533U (en) * 1991-05-27 1992-12-15 運輸省港湾技術研究所長 Wave control structure using columnar members
JPH07216844A (en) * 1994-02-08 1995-08-15 Nippon Steel Corp Underwater framed structure and construction method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101275500B1 (en) * 2012-11-02 2013-06-20 주식회사 혜인이엔씨 Breakwater using jacket structures

Also Published As

Publication number Publication date
KR20040055845A (en) 2004-06-30
US20040120768A1 (en) 2004-06-24
KR100521906B1 (en) 2005-10-17

Similar Documents

Publication Publication Date Title
JP2004204671A (en) Skeleton type breakwater
KR102314601B1 (en) A transparent flood wall and construction method thereof
CN212103878U (en) Breakwater component and breakwater structure thereof
GB2424655A (en) Pontoon housing for flood plains
JP2005146556A (en) Soil improving body, foundation structure of building comprising mat foundation, and construction method of soil improving mat foundation
KR100663689B1 (en) Assembly type breakwater
US8142105B2 (en) Wave-motion reducing structure
JP3041280B1 (en) Prefabricated embankment
KR20050105137A (en) Embankment block
CN206448235U (en) Harbor breakwater structure
CN105625257B (en) Ecological environment-friendly type bunding protecting wall and the H-type prestressed-concrete pile for the protecting wall
KR100406812B1 (en) Lattice embankment block
JP3793196B2 (en) Wave-dissipating block and artificial leaf
CN110939100A (en) Breakwater component and application thereof
CN216006901U (en) Assembled lock chamber structure of ship lock
KR200259236Y1 (en) Dike structure for a dike river
KR100433498B1 (en) Bank protection which has a function of artificial fishing
KR200310135Y1 (en) Frame type breakwater
KR200262769Y1 (en) Bank protection which has a function of artificial fishing
JP3585037B2 (en) Stationary double curtain wall type breakwater and its construction method
CN215105050U (en) Dyke reinforcing structure
JPS62233318A (en) Concrete sink frame
KR200250172Y1 (en) Embankment block set
JP2007138686A (en) Construction of underground reservoir space by curved-face beam/column block
KR100649392B1 (en) Environment-friendly shore institution for river

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060620