JP2004204349A - Flexible multilayered wiring board, and electroplating method therefor - Google Patents

Flexible multilayered wiring board, and electroplating method therefor Download PDF

Info

Publication number
JP2004204349A
JP2004204349A JP2003409933A JP2003409933A JP2004204349A JP 2004204349 A JP2004204349 A JP 2004204349A JP 2003409933 A JP2003409933 A JP 2003409933A JP 2003409933 A JP2003409933 A JP 2003409933A JP 2004204349 A JP2004204349 A JP 2004204349A
Authority
JP
Japan
Prior art keywords
plating
wiring board
electrolytic plating
reel
multilayer wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003409933A
Other languages
Japanese (ja)
Other versions
JP4466063B2 (en
Inventor
Naoto Ono
直人 大野
Masataka Maehara
正孝 前原
Koji Ichikawa
浩二 市川
Hiroki Kobayashi
浩希 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2003409933A priority Critical patent/JP4466063B2/en
Publication of JP2004204349A publication Critical patent/JP2004204349A/en
Application granted granted Critical
Publication of JP4466063B2 publication Critical patent/JP4466063B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plating method where, at the time when filled via plating of filling blind via holes connecting the upper and lower wiring layers in a multilayered wiring board is carried out by an electroplating device performing reel-to-reel continuous treatment, the filled via plating is made possible without requiring a long time for the via filling. <P>SOLUTION: As for the electroplating method, in a continuous electroplating process where blind via holes connecting the upper and lower wiring layers in a flexible multilayered wiring board in which insulating layers and wiring layers are alternately stacked are filled with plating metal, using a reel to reel continuous electroplating device where a cathode power feed part is arranged inside an electroplating liquid, the cathode power feed part is provided with a shield plate for preventing the precipitation of plating, and a plurality of metallic rollers are set in the cathode power feed part for supporting a substrate so as to closely be stuck, the filled via holes are formed in this way. In the plating device, as the conveyance system of the substrate, a vertical conveyance system is adopted. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、ポリイミド等の樹脂からなる絶縁層と配線層が交互に積層してなる多層構造を有するフレキシブル多層配線基板の製造方法に関し、特に、半導体素子搭載用インターポーザに用いられ、微小径のブラインドビアホールにリールトゥリール連続電解めっき方法を用いてフィルドビアホールを形成するフレキシブル多層配線基板及びその電解めっき方法に関する。   The present invention relates to a method for manufacturing a flexible multilayer wiring board having a multilayer structure in which insulating layers and wiring layers made of a resin such as polyimide are alternately laminated, and in particular, is used for an interposer for mounting a semiconductor element, and has a small diameter blind. The present invention relates to a flexible multilayer wiring board in which a filled via hole is formed in a via hole using a reel-to-reel continuous electrolytic plating method and an electrolytic plating method thereof.

近年、大規模集積回路(LSI)等の半導体素子ではトランジスターの集積度が高まり、その動作速度はクロック周波数で1GHzに達するものが、また、入出力端子数では1000を越えるものが出現するに至っている。   In recent years, in a semiconductor element such as a large scale integrated circuit (LSI), the degree of integration of transistors has increased, and the operating speed of the semiconductor device has reached 1 GHz in terms of clock frequency, and the number of input / output terminals has exceeded 1000. Yes.

半導体素子をプリント配線基板に実装するために、BGAやCSP等のインターポーザが開発され、実用化されている。   In order to mount a semiconductor element on a printed wiring board, interposers such as BGA and CSP have been developed and put into practical use.

このような多層配線基板は銅貼基板やセラミック基板上に絶縁樹脂層と導体の配線層を交互に積み上げて形成される(例えば特許文献1参照)。この工法にて作製された多層配線基板の絶縁層は、ポリイミド等の樹脂を塗布することにより形成し、薄膜化することができる。また、配線層はめっき法により形成され、微細配線が可能となる。一方、上下の配線層を接続するビアホールはレーザ加工等にて孔を形成し、孔内部をめっきすることにより形成できる。   Such a multilayer wiring board is formed by alternately stacking insulating resin layers and conductor wiring layers on a copper-clad substrate or a ceramic substrate (see, for example, Patent Document 1). The insulating layer of the multilayer wiring board manufactured by this method can be formed and thinned by applying a resin such as polyimide. Further, the wiring layer is formed by a plating method, and fine wiring is possible. On the other hand, the via hole connecting the upper and lower wiring layers can be formed by forming a hole by laser processing or the like and plating the inside of the hole.

また、これとは別に、従来の多層プリント配線基板に銅箔付ポリイミドフィルムを接着剤で貼り合わせた構成のものも提案されている(例えば特許文献2参照)。この構成においても、銅箔の薄さから微細配線を形成することが可能となり、同様に高配線密度化、薄膜化、小型化を図ることができる。さらにテープ状のフィルムのためリールトゥリールでの処理が可能となり従来の枚葉処理とは異なり生産効率の向上も可能となる。   Separately from this, a structure in which a polyimide film with copper foil is bonded to a conventional multilayer printed wiring board with an adhesive has also been proposed (for example, see Patent Document 2). Also in this configuration, it is possible to form fine wiring from the thin copper foil, and similarly, high wiring density, thin film, and miniaturization can be achieved. Furthermore, since it is a tape-like film, reel-to-reel processing is possible and, unlike conventional single wafer processing, production efficiency can be improved.

一方、多層プリント配線基板では、上下の配線層を接続する孔は、エキシマーレーザやYAG第3高調波、第4高調波を用いたレーザ加工機を用いて、微小径のブラインドビアホールの形成が行われている。上下の配線層を接続する孔は、上部の配線層及び有機絶縁材料の絶縁層と順番にレーザでブラインドビアホールを形成して、下部の配線層表面を露出させた後、ブラインドビアホールの底部の下部配線層上に堆積した有機絶縁材の残査を除去し、無電解めっき等で電解めっきのシード層を形成し、このシード層を電極にしてブラインドビアホール内部の側壁面や底部面に一定厚の電解めっきを析出させビアホールを形成する。   On the other hand, in a multilayer printed wiring board, a hole for connecting the upper and lower wiring layers is formed by using a laser processing machine using an excimer laser, a YAG third harmonic, or a fourth harmonic to form a small-diameter blind via hole. It has been broken. The holes connecting the upper and lower wiring layers are formed in order with the upper wiring layer and the insulating layer of the organic insulating material by forming a blind via hole with a laser in order to expose the lower wiring layer surface, and then at the bottom of the bottom of the blind via hole The residue of the organic insulating material deposited on the wiring layer is removed, an electroplating seed layer is formed by electroless plating, etc., and this seed layer is used as an electrode to form a constant thickness on the side wall surface and bottom surface inside the blind via hole. Electrolytic plating is deposited to form via holes.

この、ブラインドビアホール内部の側壁面や底部に一定厚の電解めっき析出を行う電解めっき工程では、近年高速信号を通すため、あるいは配線の自由度を上げる目的でブラインドビアホール内部を電解めっき金属で埋めるフィルドビアめっきを用いてフィルドビアホールを形成し、この直上へフィルドビアホールを形成するスタックドビア方式が盛んに用いられている。前記フィルドビアめっきは、種々のポリマー、ブライトナー、レベラーと称する添加剤によって選択的に孔内部に電解めっき金属を析出させる手法をとっている(例えば特許文献3参照)。このフィルドビアめっきを銅箔付ポリイミドフィルムなどのテープ状の基板で行う場合はリールトゥリールで連続処理を行う電解めっき装置が必要となる。   In this electroplating process in which electrolytic plating deposition of a certain thickness is performed on the side wall surface and bottom of the inside of the blind via hole, in recent years, filled vias that fill the inside of the blind via hole with electroplated metal for the purpose of passing high-speed signals or increasing the degree of freedom of wiring. A stacked via system in which a filled via hole is formed using plating and a filled via hole is formed directly above the filled via hole is actively used. The filled via plating employs a technique in which an electrolytic plating metal is selectively deposited inside the hole by various additives called polymers, brighteners, and levelers (see, for example, Patent Document 3). When this filled via plating is performed on a tape-shaped substrate such as a polyimide film with a copper foil, an electrolytic plating apparatus that performs continuous processing on a reel-to-reel basis is required.

このリールトゥリールで連続処理を行う電解めっき装置は通常めっき槽の中に陰極給電部分があると陰極給電部分にも電解めっきが析出してしまい、搬送および基板に傷ができる等の支障が出る為、めっき槽外の電解めっき液が無い部分に陰極給電部分を設置する。また連続電解めっき装置の場合電解めっき時間と搬送速度に応じてめっき槽の長さが決定されるが、一基のめっき槽でその両端に陰極給電部分を設けたものでは、めっき槽が長い場合は基材の抵抗にもよるが、電解めっき時の設定電流に対して電圧が非常に大きくなり、基材の発熱等の問題があるために、複数のめっき槽を設け、その間に陰極給電部を配置する場合が多い。   In an electroplating apparatus that performs continuous processing on a reel-to-reel basis, if there is a cathode power feeding part in the plating tank, electrolytic plating is deposited on the cathode power feeding part, resulting in problems such as transportation and damage to the substrate. For this reason, a cathode feeding portion is installed in a portion where there is no electrolytic plating solution outside the plating tank. In the case of continuous electrolytic plating equipment, the length of the plating tank is determined according to the electroplating time and conveyance speed. However, in the case where a cathode feeding part is provided at both ends of one plating tank, the plating tank is long. Depending on the resistance of the base material, the voltage becomes very large with respect to the set current during electrolytic plating, and there are problems such as heat generation of the base material. Is often placed.

この給電部分は、めっき槽の両端に配置され、電解めっき液には浸漬されずに気中に存在し、基板と給電部分の接触不良により充分な給電が出来なくなるのを防止する為に、水等の液体を供給している。しかし、フィルドビアめっきを行う場合、この給電部分の水供給および、給電部分が気中であるために添加剤の消失、基板の酸化、ブラインドビアホール内の金属イオン濃度低下等の問題により、フィルドビアめっきが通常の電解めっき時間よりも長くかかる、つまりビアフィリングが遅れるという問題があった。
特開平4−148590号公報 特開2001−53115号公報 特開2001−200386号公報
These power supply parts are arranged at both ends of the plating tank, exist in the air without being immersed in the electrolytic plating solution, and in order to prevent insufficient power supply due to poor contact between the substrate and the power supply part, Etc. are supplied. However, when filled via plating is performed, filled via plating is not possible due to problems such as water supply in the power feeding portion and loss of additives, substrate oxidation, and metal ion concentration in the blind via hole because the power feeding portion is in the air. There is a problem that it takes longer than a normal electrolytic plating time, that is, via filling is delayed.
JP 4-148590 A JP 2001-53115 A Japanese Patent Laid-Open No. 2001-200386

本発明は係る従来技術の問題点に鑑みてなされたもので、このリールトゥリールで連続処理を行う電解めっき装置によって、多層配線基板の上下の配線層を接続するブラインドビアホールを穴埋めするフィルドビアめっきを行う場合にビアフィリングに時間がかかることなくフィルドビアめっきが可能となるめっき方法を提供することを課題とする。   The present invention has been made in view of the problems of the related art, and filled via plating for filling blind via holes for connecting upper and lower wiring layers of a multilayer wiring board is performed by an electrolytic plating apparatus that performs continuous processing on a reel-to-reel basis. It is an object of the present invention to provide a plating method that enables filled via plating without taking time for via filling.

本発明において上記の課題を達成するために、本発明の請求項1に係る発明は、有機絶縁材料からなる絶縁層と導体材料からなる配線層が交互に積層し、上下の配線層を接続するブラインドビアホールを有するフレキシブル多層配線基板のブラインドビアホールをめっき金属で埋めることにより導通させるリールトゥリール連続電解めっき工程において、陰極給電部分が電解めっき液中にあることを特徴とするフレキシブル多層配線基板の電解めっき方法である。   In order to achieve the above-mentioned problems in the present invention, the invention according to claim 1 of the present invention is such that an insulating layer made of an organic insulating material and a wiring layer made of a conductor material are alternately stacked, and upper and lower wiring layers are connected. Electrolysis of a flexible multilayer wiring board characterized in that in a reel-to-reel continuous electrolytic plating process in which a blind via hole of a flexible multilayer wiring board having a blind via hole is made conductive by filling with a plating metal, a cathode feeding portion is in an electrolytic plating solution. It is a plating method.

また、本発明の請求項2に係る発明は、陰極給電部分におけるめっき析出を防止するために陰極給電部分に遮蔽板を設けることを特徴とする請求項1記載のフレキシブル多層配線基板の電解めっき方法である。   The invention according to claim 2 of the present invention is characterized in that a shielding plate is provided at the cathode power feeding portion in order to prevent plating deposition at the cathode power feeding portion. It is.

また、本発明の請求項3に係る発明は、陰極給電部分に設ける遮蔽板が、絶縁体であることを特徴とする請求項1、又は請求項2記載のフレキシブル多層配線基板の電解めっき方法である。   The invention according to claim 3 of the present invention is the method for electroplating a flexible multilayer wiring board according to claim 1 or 2, wherein the shielding plate provided in the cathode feeding portion is an insulator. is there.

本発明の請求項4に係る発明は、陰極給電部分に設ける遮蔽板が、導電体であることを特徴とする請求項1又は2項記載のフレキシブル多層配線基板の電解めっき方法である。   The invention according to claim 4 of the present invention is the method for electrolytic plating of a flexible multilayer wiring board according to claim 1 or 2, wherein the shielding plate provided in the cathode feeding portion is a conductor.

本発明の請求項5に係る発明は、陰極給電部分が、金属ローラーであり、陰極給電部分に金属ローラーを複数本設置することにより基板を支持し、密着させることを特徴とする請求項1乃至4のいずれか1項記載のフレキシブル多層配線基板の電解めっき方法である。   The invention according to claim 5 of the present invention is characterized in that the cathode feeding portion is a metal roller, and a plurality of metal rollers are installed on the cathode feeding portion to support and adhere to the substrate. 5. The method for electrolytic plating of a flexible multilayer wiring board according to any one of 4 above.

本発明の請求項6に係る発明は、陰極給電部分が金属ローラーであり、金属ローラー外周の中央部が絶縁材料からなる絶縁体で覆われており、絶縁体で覆われていない両端の金属部分で給電を行うことを特徴とする請求項1乃至5乃いずれか1項記載のフレキシブル多層配線基板の電解めっき方法である。   In the invention according to claim 6 of the present invention, the cathode feeding portion is a metal roller, the central portion of the outer periphery of the metal roller is covered with an insulator made of an insulating material, and the metal portions at both ends not covered with the insulator The method of electroplating a flexible multilayer wiring board according to any one of claims 1 to 5, characterized in that power is fed at.

本発明の請求項7に係る発明は、リールトゥリール連続電解めっき工程における搬送方式が垂直搬送であることを特徴とする請求項1乃至6項のいずれか1項記載のフレキシブル多層配線基板の電解めっき方法である。   The invention according to claim 7 of the present invention is the electrolysis of a flexible multilayer wiring board according to any one of claims 1 to 6, characterized in that the conveying method in the reel-to-reel continuous electrolytic plating step is vertical conveyance. It is a plating method.

本発明の請求項8に係る発明は、前記請求項1乃至7項のいずれかに記載のフレキシブル多層配線基板の電解めっき方法を用いて形成されたフィルドビアホールを有することを特徴とするフレキシブル多層配線基板である。   The invention according to claim 8 of the present invention has a filled via hole formed by using the electrolytic plating method for a flexible multilayer wiring board according to any one of claims 1 to 7. It is a substrate.

本発明の多層配線基板の製造方法によれば、リールトゥリール連続電解めっき装置にてフィルドビアめっきを行う際に、基材の発熱、ビアフィリングの遅れ、めっき表面の欠陥等の問題が発生することなくフィルドビアめっきが可能となり、それを用いたフレキシブル多層配線基板およびその電解めっき方法が提供できる。   According to the method for manufacturing a multilayer wiring board of the present invention, when filled via plating is performed in a reel-to-reel continuous electrolytic plating apparatus, problems such as heat generation of the substrate, delay in via filling, and defects in the plating surface may occur. Filled via plating is possible, and a flexible multilayer wiring board using the plated via plating and an electrolytic plating method thereof can be provided.

以下に、本発明の実施の形態を詳細に説明する。図4(a)〜(f)は、本発明によるフレキシブル多層配線基板の電解めっき方法の一実施例を断面(ブラインドビアホール部分を拡大)で示す工程図である。   Hereinafter, embodiments of the present invention will be described in detail. 4 (a) to 4 (f) are process diagrams showing, in cross section (enlarging the blind via hole portion), one embodiment of the electrolytic plating method for the flexible multilayer wiring board according to the present invention.

図4(a)に示すように、有機絶縁材からなる絶縁層(102)と導体材料からなる配線層(101)が交互に積層してなる多層構造を有するフレキシブル多層配線基板に、上下の配線層を接続するブラインドビアホールを形成する。なおフレキシブル多層配線基板に使用する基材は、リールトゥリール処理が出来るものであれば各種基材が使用できるが、絶縁材料にポリイミド、導体材料に銅箔を使用した銅箔付きポリイミドフィルムがより好ましい。ここで銅箔付きポリイミドフィルムを推奨する理由として、リールトゥリール処理ができる絶縁層には液晶ポリマー、ポリイミド樹脂、ポリオレフィン樹脂等が挙げられるが、耐熱性、可撓性、平滑性、低吸水率を満足するものとしてポリイミド樹脂を推奨する。また導体層には金属から成り、導電性のよいものであれば構わないが、コストおよび導電性から一般的に銅が好ましく、電解銅箔、圧延銅箔等の平滑性の良い銅箔がより好ましい。   As shown in FIG. 4A, upper and lower wirings are formed on a flexible multilayer wiring board having a multilayer structure in which insulating layers (102) made of an organic insulating material and wiring layers (101) made of a conductor material are alternately laminated. Blind via holes connecting the layers are formed. In addition, as long as the base material used for a flexible multilayer wiring board can be reel-to-reel processing, various base materials can be used, but the polyimide film with copper foil which uses polyimide for an insulating material and copper foil for a conductor material is more. preferable. The reason why the polyimide film with copper foil is recommended here is that the insulating layer capable of reel-to-reel processing includes liquid crystal polymer, polyimide resin, polyolefin resin, etc., heat resistance, flexibility, smoothness, low water absorption Polyimide resin is recommended as satisfying The conductor layer may be made of metal and has good conductivity. However, copper is generally preferable from the viewpoint of cost and conductivity, and copper foil having good smoothness such as electrolytic copper foil and rolled copper foil is more preferable. preferable.

図4(b)に示すように、ブラインドビアホールを形成する方法については、レーザ加工が好ましい。レーザについては炭酸ガスレーザ、YAG(基本波、第2高調波、第3高調波、第4高調波)レーザ、エキシマーレーザ等があるが、導体層、絶縁層共に加工を行う為、両者を同時に加工することの出来る400nm以下の短波長レーザであるYAG第3高調波、第4高調波ならびにエキシマーレーザがより好ましい。なお、レーザ加工の際、配線層(101)のブラインドビアホール周囲には、ドロス(103)、ブラインドビアホール下層には有機絶縁材料の残査(104)が堆積する。   As shown in FIG. 4B, laser processing is preferable for the method of forming blind via holes. There are carbon dioxide laser, YAG (fundamental wave, 2nd harmonic, 3rd harmonic, 4th harmonic) laser, excimer laser, etc., but since both conductor layer and insulating layer are processed, both are processed simultaneously. YAG third harmonic, fourth harmonic, and excimer lasers, which are short wavelength lasers of 400 nm or less that can be used, are more preferable. During laser processing, dross (103) is deposited around the blind via hole in the wiring layer (101), and an organic insulating material residue (104) is deposited under the blind via hole.

次に、図4(c)に示すように、ブラインドビアホールが導体材料、有機絶縁材料の順にレーザで形成される際に発生する導体材料によるドロス(103)を物理研磨もしくは化学研磨により除去する。   Next, as shown in FIG. 4C, the dross (103) due to the conductive material generated when the blind via hole is formed by the laser in the order of the conductive material and the organic insulating material is removed by physical polishing or chemical polishing.

次に、図4(d)に示すように、ブラインドビアホール下層に堆積した有機絶縁材料の残査(104)を過マンガン酸カリウムと水酸化ナトリウムの混合液等の液中に基板を浸漬させ、デスミア処理を行う。   Next, as shown in FIG. 4D, the substrate of the organic insulating material (104) deposited in the lower layer of the blind via hole is immersed in a liquid such as a mixture of potassium permanganate and sodium hydroxide, Perform desmear processing.

次いで図4(e)に示すように、樹脂面に電解めっきのシード層を形成する為、無電解めっきまたはダイレクトプレーティングを行いシード層(無電解めっき層(105))を形成する。   Next, as shown in FIG. 4E, in order to form an electroplating seed layer on the resin surface, electroless plating or direct plating is performed to form a seed layer (electroless plating layer (105)).

図4(f)は、無電解めっき層(105)上に電解めっきを形成し、電解めっき層(106)(ビアホール)を形成する。   In FIG. 4F, electrolytic plating is formed on the electroless plating layer (105) to form an electrolytic plating layer (106) (via hole).

次に、図1(a)〜(b)は、本発明のリールトゥリール連続電解めっき装置の側断面図である。図1(a)は、電解めっき装置の一例の全体の上面視の模式図であり、巻き出しリール(201)と巻取りリール(205)を備え、フレキシブル多層配線基板の巾方向を垂直にして搬送するリールトゥリール連続電解めっき装置である。電解めっき装置は1つのめっき槽では槽の長さが長くなり、両端での給電では基材の抵抗により、設定電流に対し、電圧が大きくなり基材の発熱等の問題が生じるため、めっき槽(203)を複数設け、その間に陰極給電部分(202)を配置してある。めっき槽には基板(206)が通る片側または両側に陽極(204)が配置してある。搬送方式は水平搬送でもかまわないが、水平搬送で両面めっきの場合、下側にも陽極が存在し、メンテナンス性に問題があるため、垂直搬送が好ましい。   Next, FIGS. 1A to 1B are side sectional views of the reel-to-reel continuous electrolytic plating apparatus of the present invention. FIG. 1A is a schematic top view of an example of an electroplating apparatus, which includes a take-up reel (201) and a take-up reel (205), with the width direction of the flexible multilayer wiring board being vertical. It is a reel-to-reel continuous electrolytic plating apparatus to be conveyed. Electrolytic plating equipment has a long plating tank in one plating tank. Due to the resistance of the base material, the voltage increases with respect to the set current due to the resistance of the base material, causing problems such as heat generation of the base material. A plurality of (203) are provided, and the cathode power feeding portion (202) is arranged between them. In the plating tank, an anode (204) is arranged on one side or both sides through which the substrate (206) passes. The conveyance method may be horizontal conveyance, but in the case of double-sided plating with horizontal conveyance, an anode is present on the lower side and there is a problem in maintainability, so vertical conveyance is preferable.

また、図1(b)は、めっき槽(203)の拡大上面視詳細図であり、めっき槽には噴流を行うためのノズル(207)も設置する。また、リールトゥリール電解めっき装置では、搬送方向の膜厚ばらつきは搬送により平均化されるが、巾方向については膜厚のばらつきが発生してしまう。特に基板の両端に電流線の集中が見られるため、基板の上部及び下部の左右に遮蔽板(208)を設置し、基板の上部及び下部への電流線の集中を防止し、巾方向のばらつきを制御する。   Moreover, FIG.1 (b) is an enlarged top view detail drawing of a plating tank (203), and the nozzle (207) for performing a jet flow is also installed in a plating tank. In the reel-to-reel electroplating apparatus, the film thickness variation in the conveyance direction is averaged by conveyance, but the film thickness variation occurs in the width direction. In particular, since current lines are concentrated at both ends of the substrate, shielding plates (208) are installed on the upper and lower sides of the substrate to prevent the concentration of current lines on the upper and lower portions of the substrate, thereby causing variations in the width direction. To control.

次に、陰極給電部分(202)は金属ローラーを用いて図2(a)のように金属ローラー(301)を2本、図2(b)のように3本等、複数本設置することにより、基板をニップし、金属ローラーに基板を密着させることにより給電不良および基板の蛇行を防ぐことができる。   Next, a plurality of cathode power feeding portions (202), such as two metal rollers (301) as shown in FIG. 2 (a) and three as shown in FIG. 2 (b), are installed using metal rollers. Suppose that the substrate is nipped and the substrate is brought into close contact with the metal roller, thereby preventing power feeding failure and substrate wobbling.

図3は、めっき槽(203)の上面図で、(a)は従来のものであり、(b)は本発明のめっき槽である。陰極給電部分(202)は、従来までは図3(a)のように電解めっき液に浸されない気中部分に設置していた。電解めっき途中に気中に放置することはビアフィリングには好ましくない。本発明では、図3(b)のように電解めっき液中に設置を行う。なお、陰極給電部分をそのまま電解めっき液中に設置すると陰極給電部分に電解めっきが析出してしまうため、陰極給電部分を遮蔽板(209)にて覆うようにして設置する。   FIG. 3 is a top view of the plating tank (203), (a) is a conventional one, and (b) is a plating tank of the present invention. Conventionally, the cathode feeding portion (202) has been installed in an air portion that is not immersed in the electrolytic plating solution as shown in FIG. 3 (a). It is not preferable for via filling to leave in the air during electroplating. In the present invention, installation is performed in an electrolytic plating solution as shown in FIG. If the cathode power feeding portion is installed in the electrolytic plating solution as it is, electrolytic plating will be deposited on the cathode power feeding portion, so that the cathode power feeding portion is installed so as to be covered with the shielding plate (209).

なお、この遮蔽板は陰極給電部分に電解めっき析出を防止するために設置するので、陽極からの電流線を遮蔽する絶縁体でも構わないし、ダミー基板としてそこに電解めっきをつけるようにする導電体でも構わない。   In addition, since this shielding plate is installed in order to prevent electrolytic plating deposition on the cathode feeding portion, it may be an insulator that shields the current line from the anode, or a conductor that is to be electroplated as a dummy substrate. It doesn't matter.

またこの陰極給電部分に使用する金属ローラー301については、陰極給電部分に遮蔽版を設置した場合においても、めっき金属が析出する恐れがある。金属ローラーにめっきが析出した場合にテープ状基材は析出しためっき金属による打痕、めっき金属の転写による突起、その後のめっき析出異常等の欠陥を生じる。以上のような欠陥を生じさせないために、金属ローラーの中央の製品部分は図6(a)(b)に示すように絶縁材料603による絶縁体を巻きつけておき、中央製品部分にめっきが析出しないようにしておく。なおこの場合、給電についてはテープ状基材の両端部分に接する部分の金属ローラーの導電部分602により給電を行う。   Moreover, about the metal roller 301 used for this cathode electric power feeding part, even when a shielding plate is installed in a cathode electric power feeding part, there exists a possibility that a plating metal may precipitate. When the plating is deposited on the metal roller, the tape-like substrate causes defects such as a dent due to the deposited plating metal, a protrusion due to the transfer of the plating metal, and subsequent plating deposition abnormality. In order to prevent the above-described defects from occurring, the product portion in the center of the metal roller is wrapped with an insulating material 603 as shown in FIGS. 6A and 6B, and plating is deposited on the center product portion. Do not do it. In this case, the power supply is performed by the conductive portions 602 of the metal roller in contact with both end portions of the tape-like base material.

なお金属ローラー301に外周中央部に絶縁材料を巻きつける場合、フラットな金属ローラーに巻きつけてしまうと境界部分に段差が発生し、基材に折れ等の不良が発生するので、金属ローラーをあらかじめ段つき加工をしておき、絶縁材を巻きつけ金属部分と絶縁部分がほぼフラットになるようにしておく。   Note that when an insulating material is wound around the metal roller 301 at the center of the outer periphery, if it is wound around a flat metal roller, a step occurs at the boundary portion, and a defect such as a fold occurs in the substrate. Step processing is performed, and an insulating material is wound so that the metal portion and the insulating portion are substantially flat.

以上のように中央製品部分のところの給電ローラーを絶縁材で覆うことにより、めっき液中の陰極給電部分において不良を発生させることなく、基材両端で確実に給電が可能となる。   As described above, by covering the power supply roller at the central product portion with the insulating material, it is possible to reliably supply power at both ends of the substrate without causing defects in the cathode power supply portion in the plating solution.

電解めっき条件についてはめっき槽の長さに対してフィリングに対して十分な電解めっき時間を確保できる搬送速度、陰極電流密度等をパラメーターとする。このような電解めっき方法にて形成したフレキシブル多層配線基板は、図4(f)のようにブラインドビアホールを適切な電解めっき時間でビアフィリングすることが可能である。   Regarding the electrolytic plating conditions, the transport speed, the cathode current density, and the like that can secure a sufficient electrolytic plating time for filling with respect to the length of the plating tank are used as parameters. The flexible multilayer wiring board formed by such an electrolytic plating method can be filled with blind via holes in an appropriate electrolytic plating time as shown in FIG.

以下に、具体的な実施例により本発明を説明する。尚、本発明は後述する実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described by way of specific examples. In addition, this invention is not limited to the Example mentioned later at all.

図5(a)〜(f)を参照して実施例1を説明する。基板1には両面銅箔101付きポリイミドテープ102(三井化学製 ネオフレックスCu/PI/Cu=9μm/30μm/9μm)を使用した。図5(a)を参照する。   Example 1 will be described with reference to FIGS. A polyimide tape 102 with a double-sided copper foil 101 (Neolex Cu / PI / Cu = 9 μm / 30 μm / 9 μm manufactured by Mitsui Chemicals) was used for the substrate 1. Reference is made to FIG.

この基板1にブラインドビアホールを加工する為に、355nmの波長の紫外線レーザを使用し、ブラインドビアホール(2)加工を行った。加工したブラインドビアホール径は30μmであった。   In order to process the blind via hole on the substrate 1, a blind via hole (2) was processed using an ultraviolet laser having a wavelength of 355 nm. The processed blind via hole diameter was 30 μm.

加工したブラインドビアホールを光学顕微鏡にて観察したところ、ブラインドビアホール開口端部にビア加工によるドロスが発生していることを確認した。そこでドロス部分を除去する為に物理研磨を行った。その後、ブラインドビアホール底部に堆積した樹脂残査を除去する為に、過マンガン酸カリウムと水酸化ナトリウムを3対2の重量割合でイオン交換水に溶解させ、約50℃に加熱した。この混合液中に基板を浸漬させ、樹脂残査を除去した。   When the processed blind via hole was observed with an optical microscope, it was confirmed that dross due to via processing was generated at the opening end of the blind via hole. Therefore, physical polishing was performed to remove the dross portion. Thereafter, in order to remove the resin residue deposited on the bottom of the blind via hole, potassium permanganate and sodium hydroxide were dissolved in ion exchange water at a weight ratio of 3 to 2, and heated to about 50 ° C. The substrate was immersed in this mixed solution, and the resin residue was removed.

次いで、電解めっきのシード層3を形成する為に通常の無電解銅めっき処理を行った。   Then, in order to form the electroplating seed layer 3, a normal electroless copper plating process was performed.

電解銅めっきは本発明の垂直搬送のリールトゥリール連続電解めっき装置で行った。めっき槽の長さは3mでめっき槽の両端に給電ローラーが設置されている。なお、めっき槽は3槽使用した。陰極給電部分は金属ローラーの中央部がテフロン(登録商標)の熱収縮チューブにて覆われたものを2本設置しS字ニップを行った。給電ローラーの周囲は塩ビの遮蔽板で覆い、給電ローラー部分は電解めっき液で浸されるようにした。めっき槽には基板の両側に陽極をチタンケースの中に含リン銅ボールを入れ設置した。また陽極と陽極の間に噴流用のノズルを設置し、基板の上下部分に膜厚ばらつき制御用の遮蔽板を塩ビプレートにて設置した。電解めっき液の組成は硫酸銅5水和物を200g/L、硫酸を50g/L、塩素を50mg/L、めっき添加剤を25ml/Lとした。電解めっきの電流密度と電解めっき時間は枚葉処理でフィルドビアめっきが可能な1A/dm、30分に設定するために搬送速度を0.3m/minに設定した。前記シード層(3)上にフィルドビアめっき(4)を行った。図5(c)参照する。 Electrolytic copper plating was performed with the reel-to-reel continuous electrolytic plating apparatus of the vertical conveyance of the present invention. The length of the plating tank is 3 m, and feed rollers are installed at both ends of the plating tank. Three plating tanks were used. Two cathode power supply portions in which the central portion of the metal roller was covered with a Teflon (registered trademark) heat-shrinkable tube were installed, and an S-shaped nip was performed. The power supply roller was covered with a vinyl chloride shielding plate, and the power supply roller was immersed in the electrolytic plating solution. In the plating tank, anodes were placed on both sides of the substrate, and phosphorus-containing copper balls were placed in a titanium case. In addition, a nozzle for jet flow was installed between the anodes, and a shielding plate for controlling film thickness variation was installed on the upper and lower portions of the substrate with a PVC plate. The composition of the electrolytic plating solution was 200 g / L for copper sulfate pentahydrate, 50 g / L for sulfuric acid, 50 mg / L for chlorine, and 25 ml / L for plating additives. In order to set the electroplating current density and electroplating time to 1 A / dm 2 , which allows filled via plating by single wafer processing, and 30 minutes, the conveyance speed was set to 0.3 m / min. Filled via plating (4) was performed on the seed layer (3). Reference is made to FIG.

めっき後導体層の表面の観察を行ったところ、基材中央部分の製品面には打痕や突起などの不良は観察されなかった。   When the surface of the conductor layer after plating was observed, no defects such as dents and protrusions were observed on the product surface at the center of the base material.

次に両面の配線パターン形成するために、配線形成用のドライフィルムレジストをラミネーターにより加熱加圧し張り合わせレジスト層を形成した。   Next, in order to form a wiring pattern on both sides, a dry film resist for wiring formation was heated and pressed with a laminator to form a laminated resist layer.

次いで、所定のパターンを形成したフォトマスクを用いて超高圧水銀ランプを光源とした平行光にて露光し、1重量%の炭酸ナトリウム水溶液にて現像を行い、所望のレジスト形状を得た。   Next, using a photomask having a predetermined pattern, exposure was performed with parallel light using an ultrahigh pressure mercury lamp as a light source, and development was performed with a 1% by weight aqueous sodium carbonate solution to obtain a desired resist shape.

銅のエッチングは比重1.50の塩化第二鉄にてエッチングを行い形成した。その後、レジストを3重量%水酸化ナトリウム水溶液にて剥離を行い、回路パターン(5)を得た。図5(d)参照する。   Copper was etched by ferric chloride having a specific gravity of 1.50. Thereafter, the resist was stripped with a 3% by weight aqueous sodium hydroxide solution to obtain a circuit pattern (5). Reference is made to FIG.

その後、両面に接着剤を介して片面銅箔付きポリイミド(三井化学 商品名ネオフレックス)をロールラミネーターにて張り合わせ、その後同様にフィルドビアホールを形成、回路形成を行った。図5(e)参照する。   Thereafter, polyimide with a single-sided copper foil (Mitsui Chemicals product name Neofrex) was pasted on both sides with a roll laminator via an adhesive, and then filled via holes were similarly formed to form circuits. Reference is made to FIG.

次いで外層部分にソルダーレジストによりパターンを形成し、ソルダー層(7)を形成する。次に、開口部にニッケル金めっき処理を行い、ニッケル金端子(6)を形成しフレキシブル多層配線基板を得た。図5(f)参照する。   Next, a pattern is formed on the outer layer portion with a solder resist to form a solder layer (7). Next, nickel gold plating treatment was performed on the opening to form a nickel gold terminal (6) to obtain a flexible multilayer wiring board. Reference is made to FIG.

その後基板の断面観察を行い、銅の充填不良をフィルドビアホール1250個で調査したが、ビアフィリングが完了していない不良部分は0個であった。
<比較例1>
比較例1として、上記実施例1の電解めっき装置の陰極給電部分に、電解めっき液を浸さず、気中に給電ローラーを設置して同様に電解めっきを行った。その後基板の断面観察を行ったが、すべてのフィルドビアホールにおいてフィリングが完了せず、ビア部分に凹みが残っていた。
<比較例2>
比較例2として電解めっき装置のめっき槽を9mとしてその両端に陰極給電ローラーを設置し、めっき槽1つで電解めっきを行った。なお陰極給電ローラーは電解めっき液には浸さず気中に設置した。搬送速度は、0.3m/minで電流密度は1A/dmとした。その結果、9mという長いめっき槽を給電しているため、基板の抵抗により設定電流に対し電圧が最大5V前後まで上昇し、基板の表面温度が70℃程度まで上昇していることが確認された。したがって9mという長いめっき槽を両端のみで給電するのは無理と判断した。
<比較例3>
比較例3として上記実施例1の電解めっき装置の陰極給電ローラーの外周中央部を絶縁材で覆わず電解めっきを行った。その後めっき上がりの導体層の表面を観察すると、約5から30μmくらいの打痕および突起が観察された。なおこの基材を回路形成まで行ったが、打痕や突起の影響により、回路の欠け、断線が発生していた。
Thereafter, the cross-section of the substrate was observed, and copper filling defects were investigated in 1250 filled via holes. However, there were 0 defective portions in which via filling was not completed.
<Comparative Example 1>
As Comparative Example 1, the electroplating was performed in the same manner by placing a feeding roller in the air without immersing the electroplating solution in the cathode feeding portion of the electroplating apparatus of Example 1 above. Thereafter, cross-sectional observation of the substrate was performed, but filling was not completed in all filled via holes, and dents remained in the via portions.
<Comparative Example 2>
As Comparative Example 2, the plating tank of the electroplating apparatus was set to 9 m, and cathode feeding rollers were installed at both ends thereof, and electrolytic plating was performed with one plating tank. The cathode feeding roller was installed in the air without being immersed in the electrolytic plating solution. The conveyance speed was 0.3 m / min and the current density was 1 A / dm 2 . As a result, since a long plating tank of 9 m was fed, it was confirmed that the voltage increased to a maximum of around 5 V with respect to the set current due to the resistance of the substrate, and the surface temperature of the substrate increased to about 70 ° C. . Therefore, it was determined that it was impossible to feed power to the long plating tank of 9 m only at both ends.
<Comparative Example 3>
As Comparative Example 3, electrolytic plating was performed without covering the outer peripheral central portion of the cathode feeding roller of the electrolytic plating apparatus of Example 1 with an insulating material. Thereafter, when the surface of the conductor layer after plating was observed, dents and protrusions of about 5 to 30 μm were observed. In addition, although this base material was performed to circuit formation, the chip | tip of the circuit and the disconnection had generate | occur | produced by the influence of a dent and a protrusion.

以上の結果より、長いめっき槽を両端のみで給電することは難しいため、途中に陰極給電ローラーを設置することが必要であり、途中に設置する陰極給電ローラーは気中に設置するのではなく、液中に設置し、陰極給電ローラーの製品中央部を絶縁体で覆うことにより、製品面の欠陥なくフィリングが可能である。   From the above results, it is difficult to feed a long plating tank only at both ends, so it is necessary to install a cathode feeding roller in the middle, and the cathode feeding roller installed in the middle is not installed in the air, By installing in the liquid and covering the product central part of the cathode power supply roller with an insulator, filling can be performed without defects on the product surface.

本発明のリールトゥリール連続電解めっき装置を示す上面図であり、(a)は全体図、(b)は部分拡大図。It is a top view which shows the reel to reel continuous electroplating apparatus of this invention, (a) is a general view, (b) is the elements on larger scale. 本発明の陰極給電部分を示す上面図であり、(a)、(b)は一例である。It is a top view which shows the cathode electric power feeding part of this invention, (a), (b) is an example. (a)〜(b)は、本発明の陰極給電部分の遮蔽板を示す図(A)-(b) is a figure which shows the shielding board of the cathode electric power feeding part of this invention. (a)〜(f)は、本発明の多層配線基板の製造工程を示す図。(A)-(f) is a figure which shows the manufacturing process of the multilayer wiring board of this invention. (a)〜(f)は、本発明の多層配線基板の一実施例のフレキシブル多層配線基板の製造工程を示す図。(A)-(f) is a figure which shows the manufacturing process of the flexible multilayer wiring board of one Example of the multilayer wiring board of this invention. 本発明の陰極給電ローラーを示す図であり、(a)は断面図、(b)は平面図である。It is a figure which shows the cathode electric power feeding roller of this invention, (a) is sectional drawing, (b) is a top view.

符号の説明Explanation of symbols

1…基板
2…ブラインドビアホール
3…シード層
4…フィルドビアめっき
5…回路パターン
6…ニッケル金端子
7…ソルダー層
101…導体層
102…絶縁層
103…ドロス
104…有機絶縁材料残さ
105…無電解めっき層
106…電解めっき層
201…巻き出しリール
202…陰極給電部分
203…めっき槽
204…アノード
205…巻取りリール
206…基板
207…噴流ノズル
208…膜厚制御用遮蔽板
209…陰極給電部分用遮蔽板
210…電解めっき液
301…金属ローラー
602…導体材料
603…絶縁材料
DESCRIPTION OF SYMBOLS 1 ... Board | substrate 2 ... Blind via hole 3 ... Seed layer 4 ... Filled via plating 5 ... Circuit pattern 6 ... Nickel gold terminal 7 ... Solder layer 101 ... Conductive layer 102 ... Insulating layer 103 ... Dross 104 ... Organic insulating material residue 105 ... Electroless plating Layer 106 ... Electrolytic plating layer 201 ... Unwinding reel 202 ... Cathode feeding portion 203 ... Plating tank 204 ... Anode 205 ... Winding reel 206 ... Substrate 207 ... Jet nozzle 208 ... Film thickness control shielding plate 209 ... Cathode feeding portion shielding Plate 210 ... Electrolytic plating solution 301 ... Metal roller 602 ... Conductive material 603 ... Insulating material

Claims (8)

有機絶縁材料からなる絶縁層と導体材料からなる配線層が交互に積層し、上下の配線層を接続するブラインドビアホールを有するフレキシブル多層配線基板のブラインドビアホールをめっき金属で埋めることにより導通させるリールトゥリール連続電解めっき工程において、陰極給電部分が電解めっき液中にあることを特徴とするフレキシブル多層配線基板の電解めっき方法。   Reel-to-reel, in which insulating layers made of an organic insulating material and wiring layers made of a conductive material are alternately laminated, and the blind via holes of a flexible multilayer wiring board having blind via holes connecting upper and lower wiring layers are made conductive by filling them with plating metal An electrolytic plating method for a flexible multilayer wiring board, characterized in that, in the continuous electrolytic plating step, the cathode feeding portion is in an electrolytic plating solution. 陰極給電部分におけるめっき析出を防止するために陰極給電部分に遮蔽板を設けることを特徴とする請求項1記載のフレキシブル多層配線基板の電解めっき方法。   2. The method of electrolytic plating of a flexible multilayer wiring board according to claim 1, wherein a shielding plate is provided at the cathode power feeding portion in order to prevent plating deposition at the cathode power feeding portion. 陰極給電部分に設ける遮蔽板が、絶縁体であることを特徴とする請求項1、又は請求項2記載のフレキシブル多層配線基板の電解めっき方法。   3. The method for electrolytic plating of a flexible multilayer wiring board according to claim 1, wherein the shielding plate provided in the cathode power feeding portion is an insulator. 陰極給電部分に設ける遮蔽板が、導電体であることを特徴とする請求項1又は2項記載のフレキシブル多層配線基板の電解めっき方法。   3. The method for electrolytic plating of a flexible multilayer wiring board according to claim 1, wherein the shielding plate provided in the cathode power feeding portion is a conductor. 陰極給電部分が、金属ローラーであり、陰極給電部分に金属ローラーを複数本設置することにより基板を支持し、密着させることを特徴とする請求項1乃至4のいずれか1項記載のフレキシブル多層配線基板の電解めっき方法。   5. The flexible multilayer wiring according to claim 1, wherein the cathode feeding portion is a metal roller, and a plurality of metal rollers are installed on the cathode feeding portion to support and adhere to the substrate. Electrolytic plating method for substrates. 陰極給電部分が金属ローラーであり、金属ローラー外周の中央部が絶縁材料からなる絶縁体で覆われており、絶縁体で覆われていない両端の金属部分で給電を行うことを特徴とする請求項1乃至5乃いずれか1項記載のフレキシブル多層配線基板の電解めっき方法。   The cathode feeding part is a metal roller, the central part of the outer periphery of the metal roller is covered with an insulator made of an insulating material, and feeding is performed with the metal parts at both ends not covered with the insulator. The electrolytic plating method for a flexible multilayer wiring board according to any one of 1 to 5 above. リールトゥリール連続電解めっき工程における搬送方式が垂直搬送であることを特徴とする請求項1乃至6項のいずれか1項記載のフレキシブル多層配線基板の電解めっき方法。   The method for electrolytic plating of a flexible multilayer wiring board according to any one of claims 1 to 6, wherein the conveying method in the reel-to-reel continuous electrolytic plating step is vertical conveyance. 前記請求項1乃至7項のいずれかに記載のフレキシブル多層配線基板の電解めっき方法を用いて形成されたフィルドビアホールを有することを特徴とするフレキシブル多層配線基板。   A flexible multilayer wiring board comprising filled via holes formed by using the electrolytic plating method for a flexible multilayer wiring board according to any one of claims 1 to 7.
JP2003409933A 2002-12-11 2003-12-09 Flexible multilayer wiring board and electrolytic plating method thereof Expired - Fee Related JP4466063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003409933A JP4466063B2 (en) 2002-12-11 2003-12-09 Flexible multilayer wiring board and electrolytic plating method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002359141 2002-12-11
JP2003409933A JP4466063B2 (en) 2002-12-11 2003-12-09 Flexible multilayer wiring board and electrolytic plating method thereof

Publications (2)

Publication Number Publication Date
JP2004204349A true JP2004204349A (en) 2004-07-22
JP4466063B2 JP4466063B2 (en) 2010-05-26

Family

ID=32828566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003409933A Expired - Fee Related JP4466063B2 (en) 2002-12-11 2003-12-09 Flexible multilayer wiring board and electrolytic plating method thereof

Country Status (1)

Country Link
JP (1) JP4466063B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283044A (en) * 2005-03-31 2006-10-19 Hyomen Shori System:Kk Continuous plating equipment and method for film
WO2007116667A1 (en) * 2006-03-29 2007-10-18 Toray Industries, Inc. Power feeding method, continuous electrolytic plating apparatus for web and method for manufacturing plastic film having plating film
JP2007291507A (en) * 2006-03-29 2007-11-08 Toray Ind Inc Power feeding method, continuous electrolytic plating apparatus for web and method for manufacturing plastic film with plated film
WO2015049919A1 (en) * 2013-10-04 2015-04-09 住友電気工業株式会社 Drum electrode, method for producing drum electrode, plating device, method for producing resin molded article, and method for producing metal porous material
CN104703395A (en) * 2015-02-05 2015-06-10 叶校然 Roll-to-roll production process of flexible circuit board connection sheet
CN110325026A (en) * 2018-03-30 2019-10-11 松下知识产权经营株式会社 The configuration determining method of component reel and the configuration determination device of component reel

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283044A (en) * 2005-03-31 2006-10-19 Hyomen Shori System:Kk Continuous plating equipment and method for film
WO2007116667A1 (en) * 2006-03-29 2007-10-18 Toray Industries, Inc. Power feeding method, continuous electrolytic plating apparatus for web and method for manufacturing plastic film having plating film
JP2007291507A (en) * 2006-03-29 2007-11-08 Toray Ind Inc Power feeding method, continuous electrolytic plating apparatus for web and method for manufacturing plastic film with plated film
US8231772B2 (en) 2006-03-29 2012-07-31 Toray Industries, Inc. Power feeding method, continuous electrolytic plating apparatus for web and method for manufacturing plastic film with plated coating film
US8398827B2 (en) 2006-03-29 2013-03-19 Toray Industries, Inc. Power feeding method, continuous electrolytic plating apparatus for web and method for manufacturing plastic film with plated coating film
WO2015049919A1 (en) * 2013-10-04 2015-04-09 住友電気工業株式会社 Drum electrode, method for producing drum electrode, plating device, method for producing resin molded article, and method for producing metal porous material
CN105593412A (en) * 2013-10-04 2016-05-18 住友电气工业株式会社 Drum electrode, method for producing drum electrode, plating device, method for producing resin molded article, and method for producing metal porous material
CN105593412B (en) * 2013-10-04 2018-12-21 住友电气工业株式会社 Drum type electrode, the method for producing drum type electrode, electroplanting device, the method for producing resin-formed body and the method for producing metal porous body
CN104703395A (en) * 2015-02-05 2015-06-10 叶校然 Roll-to-roll production process of flexible circuit board connection sheet
CN110325026A (en) * 2018-03-30 2019-10-11 松下知识产权经营株式会社 The configuration determining method of component reel and the configuration determination device of component reel

Also Published As

Publication number Publication date
JP4466063B2 (en) 2010-05-26

Similar Documents

Publication Publication Date Title
JP4501427B2 (en) Manufacturing method of multilayer circuit wiring board
US7830667B2 (en) Flexible wiring substrate and method for producing the same
US10455704B2 (en) Method for copper filling of a hole in a component carrier
CN101331247B (en) Plating apparatus and plating method
JP4481854B2 (en) Ball grid array substrate having window and manufacturing method thereof
JP5862917B2 (en) Method for electroplating long conductive substrate, method for producing copper-coated long conductive substrate using this method, and roll-to-roll type electroplating apparatus
JP2008231550A (en) Electrolytic plating apparatus and method of manufacturing wiring board
JP2011058057A (en) Method of manufacturing copper coating polyimide substrate and electroplating apparatus
JP3723963B2 (en) Plating apparatus and film carrier tape manufacturing method for electronic component mounting
JP2007109706A (en) Process for producing multilayer printed wiring board
JP4466063B2 (en) Flexible multilayer wiring board and electrolytic plating method thereof
JP2011159921A (en) Method of manufacturing multilayer printed wiring board, substrate holder, and shielding plate
JP2005113173A (en) Electroplating device for flexible multilayer circuit board
JP5858286B2 (en) Method for electrolytic plating long conductive substrate and method for producing copper clad laminate
JP2004059952A (en) Method for electrolytically plating flexible multilayer interconnection substrate
JP2007335803A (en) Method for manufacturing wiring board
JP5293664B2 (en) Method and apparatus for electroplating long conductive substrate, metallized polyimide film and method for producing the same
KR101224034B1 (en) Copper foil for printed circuit and Fabrication method thereof
TWI231963B (en) Film carrier tape for mounting electronic devices thereon, production method thereof and plating apparatus
JP2005089799A (en) Plating device
JP2007173683A (en) Printed wiring board, its manufacturing method, and plating/etching/grinding processor
JP2001230507A (en) Plastic package and its manufacturing method
JP4483247B2 (en) Multilayer flexible wiring board manufacturing method and multilayer flexible wiring board
JP2010232585A (en) Multilayer wiring board and method of manufacturing the same
US20200006135A1 (en) Method and Plater Arrangement for Failure-Free Copper Filling of a Hole in a Component Carrier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

R150 Certificate of patent or registration of utility model

Ref document number: 4466063

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees