JP2004204270A - Ultrasonic continuous pickling method - Google Patents

Ultrasonic continuous pickling method Download PDF

Info

Publication number
JP2004204270A
JP2004204270A JP2002373228A JP2002373228A JP2004204270A JP 2004204270 A JP2004204270 A JP 2004204270A JP 2002373228 A JP2002373228 A JP 2002373228A JP 2002373228 A JP2002373228 A JP 2002373228A JP 2004204270 A JP2004204270 A JP 2004204270A
Authority
JP
Japan
Prior art keywords
strip
continuous pickling
ultrasonic
tank
sieve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002373228A
Other languages
Japanese (ja)
Inventor
Yuusuke Ichinose
祐亮 一ノ瀬
Kazuto Yamamura
和人 山村
Yoshihiro Yamada
義博 山田
Itaru Hashimoto
格 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002373228A priority Critical patent/JP2004204270A/en
Publication of JP2004204270A publication Critical patent/JP2004204270A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic continuous pickling method by which a pickling efficiency is made stable by reducing the bubble concentration of hydrogen generated by the dissolution of a strip in a pickling liquid, thereby increasing the intensity of ultrasonic waves applied to the strip by an ultrasonic vibrator. <P>SOLUTION: The ultrasonic continuous pickling method where a running strip is dipped into a continuous pickling tank, and is pickled while applying ultrasonic waves thereto, the inside of the continuous pickling tank is provided with a mesh-like sieve, and bubbles generated by the pickling are removed. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、連続酸洗槽(酸洗槽という)内において、酸洗液中を走行する金属帯板に超音波を印加し、酸洗処理する方法に関する。
【0002】
【従来の技術】
図12に示すように帯板2を連続して酸洗処理する装置において酸洗液3中に超音波を印加して、その酸洗効果を向上させる超音波式酸洗装置が特許文献1に開示されている。その装置は酸洗槽1内に充満された酸洗液3中を走行する帯板2に、超音波振動子4から超音波を印加している。
また、酸洗装置は、図13に示すように酸洗槽1内の酸洗液3を循環ポンプ9により酸溶液タンク10との間で循環しているが、塩酸濃度が一定になるように水を水供給源11から給水経路12を通って供給し、塩酸が酸供給源13から給酸経路14を通り供給している。特許文献2では、水供給源11と酸溶液タンク9との間に脱気装置15を設置し、水中に解けている空気の濃度を下げることにより、超音波印加で発生するキャビテーション衝撃圧力を大きくしている。
【0003】
しかし、この方法は、酸溶液タンク8に供給される水中に溶解した空気の量を下げるため、90℃に加熱又は減圧するものである。そのため、操業中に鉄の溶解によって水素が発生して気泡となり、酸洗槽1内において酸洗液3中の気泡濃度が増加するという問題を解決することができなかった。酸洗液3中の気泡濃度が増加すると、超音波が気泡により減衰し、帯板に印加される超音波の強度が低下するため、スケールの除去残り(デスケムラという)が生じた。
図12及び13に模式的に示した酸洗設備は、帯板2が酸洗槽1を通過するとき、帯板2に付着していたスケールを酸洗液により溶解する装置であるが、酸洗液により溶解されるのはスケールのみではなく、スケールが溶解して露出した鉄も酸洗液中に溶解する。酸洗液中において鉄の溶解によって発生した水素は気泡となり、帯板2の移動により、酸洗液と共に酸洗槽1内を循環する。
【0004】
また、酸洗液中を通過する超音波の減衰率は酸洗液中に含有する気泡濃度に比例して大きくなる。そのため、気泡濃度が増加すると超音波の減衰が大きくなり、帯板に印加される超音波の強度が小さくなり酸洗速度が低下する。このような状態で帯板2に印加される超音波の強度を強くするためには、超音波の出力を大きくする方法や超音波振動子4を帯板2に近づける方法がある。しかし、超音波の出力を大きくするには、振動子のコストが高くなる。また、超音波振動子4を帯板2に近づけると、帯板2の蛇行や振動により帯板2が超音波振動子4と接触し易くなり、品質欠陥が生じる可能性が高くなる。
また、操業時に酸洗槽1を通過する帯板2の鋼種、板幅、通板速度は一定でなく、操業条件により変わるため発生する気泡の量や移動速度は大きく異なり、酸洗槽中の気泡濃度には濃淡が発生する。このような状態で超音波を印加すると、帯板に印加される超音波の強度にムラが発生し、デスケムラ等の品質欠陥となる。
【0005】
【特許文献1】
特開平5−78874号公報
【特許文献2】
特開平5−78871号公報
【0006】
【発明が解決しようとする課題】
本発明は、酸洗液中において帯板の溶解によって発生する水素の気泡濃度を下げることにより、超音波振動子より帯板に印加される超音波の強度を高くし、酸洗効率の安定した酸洗装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の超音波式連続酸洗装置は以下の通りである。
(1) 連続酸洗槽内に走行する帯板を浸漬して、前記帯板に超音波を印加しながら酸洗する方法において、前記連続酸洗槽内に網目状ふるいを設け、酸洗により発生した気泡を除去することを特徴とする超音波式連続酸洗方法。
(2) 連続酸洗槽内の帯板の出口及び/又は帯板の入口の近傍に網目状ふるいを設けることを特徴とする(1)記載の超音波式連続酸洗方法。
(3) 連続酸洗槽内の帯板の出口及び/又は入口の近傍に設ける網目状ふるいの個数を、帯板の出口と入口の中間部に設ける網目状ふるいの個数より多くすることを特徴とする(2)記載の超音波式連続酸洗方法。
(4) 連続酸洗槽内の帯板の出口と入口の間に帯板を下から支える堰を設け、連続酸洗槽内の帯板の出口、帯板の入口、堰の何れか1以上の近傍に網目状ふるいを設けることを特徴とする(1)記載の超音波式連続酸洗方法。
(5) 連続酸洗槽内の帯板の出口、入口、堰の何れか1以上の近傍に設ける網目状ふるいの個数を、帯板の出口と堰との中間部及び/又は帯板の入口と堰との中間部に設ける網目状ふるいの個数より多くすることを特徴とする(4)記載の超音波式連続酸洗方法。
(6) 連続酸洗槽内の網目状ふるいの材質をガラスとすることを特徴とする(1)〜(5)の何れか1項記載の超音波式連続酸洗方法。
(7) 連続酸洗槽内に設置する網目状ふるいに負の電圧をかけることを特徴とする(1)〜(5)の何れか1項記載の超音波式連続酸洗方法。
(8) 連続酸洗槽内の網目状ふるいを発熱体とし、ふるいを酸洗液よりも高温に加熱することを特徴とする(1)〜(5)の何れか1項記載の超音波式連続酸洗方法。
(9) 連続酸洗槽内の気泡濃度分布、帯板の鋼種、板幅、板の位置の何れか1以上に応じて、網目状ふるいにかける電圧を制御することを特徴とする(7)記載の超音波式連続酸洗方法。
(10) 連続酸洗槽内の気泡濃度分布、帯板の鋼種、板幅、板の位置の何れか1以上に応じて、網目状ふるいの加熱温度を制御することを特徴とする(8)記載の超音波式連続酸洗装置方法。
(11) 連続酸洗槽内の網目状ふるいを回転し、気泡を除去することを特徴とする(1)〜(8)の何れか1項記載の超音波式連続酸洗方法。
(12) 連続酸洗槽の上で網目状ふるいに風を当て、ふるいに付着した気泡を除去することを特徴とする(11)記載の超音波式連続酸洗方法。
(13) (1)〜(10)の何れか1項記載の方法により操業中に気泡を除去した後、操業停止中に連続酸洗槽内の網目状ふるいを振動させて、及び/又は正の電圧をかけて、ふるいに吸着した泡を除去することを特徴とする超音波式連続酸洗方法。
(14) (1)〜(10)の何れか1項記載の方法により操業中に気泡を除去した後、操業停止中に連続酸洗槽内の網目状ふるいを他の槽に入れ、網目状ふるいに付着した気泡を除去することを特徴とする超音波式連続酸洗方法。
【0008】
【発明の実施の形態】
本発明は、このような課題を解決するために、酸洗液中の水素からなる気泡を網目状ふるい16により除去するものである。気泡を含んだ酸洗液3中に網目状ふるい16を設置すると気泡がふるいの線に吸着し、気泡の含まない酸洗液3はふるいを通過し、液中の気泡は除去される。
図1に本発明の基本的概要の平面図、図2に通板方向側面図を示す。超音波振動子4及び網目状ふるい16は酸洗槽1内の側面に配置し、帯板2との間を充分距離を持って設置することにより、帯板2の幅方向の蛇行による超音波振動子4及び網目状ふるい16への接触を防止できる。
【0009】
網目状ふるい16は、図3に示すように酸洗槽の側面に配置している。また、図3のCを拡大した正面図及び側面図をそれぞれ図4及び図5に示すが、網目状ふるい16は、線19を直角状に配置したものであり、酸洗液3は線19と線19の間を通り抜けるが、気泡は線19に吸着して捕集される。
なお、網目状ふるい16の線19には、耐熱及び耐酸性があるフッ素樹脂、塩化ビニル樹脂、エポキシ樹脂などの樹脂単体、カーボン、白金、ニクロム線を樹脂やゴムでコーティングした複合材を使用することができる。気泡の線19への吸着を促進するには、線19の材質をガラスにすることが好ましい。これは、ガラスは酸洗液3中で正の電気を帯び、気泡はプラスの電気を帯びているため、線と気泡が電気的に引き合うためである。
網目状ふるい16の線19の太さは、太すぎると液の流れの抵抗になり気泡との接近の確率が減少し、細すぎると気泡との吸着が困難になるため、1μmから5mmの間であることが好ましく、線19は単線である必要はなく数本の線を編んだものでもよい。線19と線19の間隔も狭くすると液の流れの抵抗になり、広くしすぎると気泡が通過するため吸着が困難になるため、10μmから5mmの間であることが好ましい。
【0010】
図6に示すように、外部電源20により網目状ふるい16を負極、対極21を正極に電圧をかけると、気泡はプラスの電気を帯びているため線19と電気的に引き合い、気泡を効率的に網目状ふるい16に吸着させることができる。網目状ふるい16に電圧をかけるには導電性が必要であり、カーボン、白金などを使用することが好ましい。網目状ふるい19にかける電圧は、吸着効率を増すために−0.01V以下にすることが好ましい。また、−10.0Vよりも低すぎると酸洗液を電気分解する。そのため−0.01Vから−10.0Vの範囲に設定することが好ましい。
【0011】
また、網目状ふるい16を加熱することにより気泡の凝集が加速されて大きな気泡となり液中から除される。加熱の方法は、図7に示すように網目状ふるい16を外部電源20により通電加熱する方法や、線19をチューブ状にして中に蒸気を通す方法がある。また、網目状ふるい16を加熱する場合は、ふるいの温度を10〜100℃の範囲内で酸洗液3の温度よりも高くすることが好ましい。これは、網目状ふるいの温度を高くすると気泡の凝集は促進するものの、コストがかかるためである。網目状ふるい16を通電加熱する場合はニクロム線を樹脂やゴムでコーティングした複合材を使用することが好ましい。対極の材料として、カーボン、白金などを使用することができる。
【0012】
なお、操業停止中に網目状ふるい16に吸着した気泡を除去することにより、操業中の気泡の吸着の効率を上げることができる。気泡を除去する方法としては、網目状ふるい16に正の電圧をかける方法、バイブレーターにより振動する方法、水を入れた他の槽に入れる方法がある。網目状ふるい16に正の電圧をかける方法は、図6に示すように、外部電源20により網目状ふるい16を正極、対極21を負極として電圧をかける方法である。
【0013】
また、図8、図9、図10に示すように、網目状ふるい16を回転することにより、酸洗液3と網目状ふるい16の接触が促進するため、気泡の除去を促進することができる。図8及び9は、それぞれ、網目状ふるいを羽根車22の形状した通板方向側面図及び平面図である。
また、図10は、網目状ふるいをベルト24の形状にする方法である。羽根車22及びベルト24は、回転軸に直結したモーター23により回転している。網目状ふるい16、羽根車22の軸、ベルト23のロールは耐熱及び耐酸性があるフッ素樹脂、塩化ビニル樹脂、エポキシ樹脂などの樹脂単体、ガラス繊維などを使用できる。
なお、網目状ふるい16を羽根車として回転する場合は、回転速度が100rpmより速いと吸着した気泡が分離するため、回転速度を0.1〜100rpmの範囲とすることが好ましい。また、網目状ふるい16をベルトとして移動する場合は、ベルトの移動速度が1m/sより速いと吸着した気泡が分離するため、1mm/sから1m/sの間であることが好ましい。
網目状ふるい16に吸着した気泡は、回転により槽の上部に移動した際に、網目状ふるいにファンなどにより風を当て、除去することができる。この方法によれば、操業中に網目状ふるい16に吸着した気泡を除去することができるため、酸洗液中の気泡濃度を効率良く低下させることが可能である。
帯板2の溶解で発生した気泡は帯板2の移動と共に酸洗槽の出口1bの方向へ運ばれて、帯板の出口1bに多く溜まる。また、気泡は、酸洗槽1の側面に沿った通板方向と逆方向の酸洗液の流れにより帯板の入口1aの方へ運ばれて帯板の入口1aに溜まる。
したがって、網目状ふるい16を、帯板の出口1b、帯板の入口1aの10m以内に、帯板の出口1bと帯板の入口1aの中間部よりも多く設置することにより多くの気泡が網目状ふるい16に吸着し、気泡の除去が効率的に行われる。
【0014】
また、図11に示すように、酸洗槽1の中に堰25が設置されている設備がある。帯板2と共に運ばれた気泡は、堰25により移動が遮られ、堰25の近傍にも多く溜まる。そのため、網目状ふるい16を堰25近傍5m以内に、堰22と酸洗槽の出入り口の中間部よりも多く配置することが気泡の除去に効率的である。
【0015】
帯板2より発生する気泡の量は、鋼種、板幅により異なり、酸洗槽内に発生する液の流れは、板幅、板厚、通板速度により異なるため、酸洗槽内あるいは上部に設置した気泡センサー17及び気泡可視装置18により気泡濃度分布、気泡径を測定する。気泡センサーとしては光学式気泡センサー、電磁式気泡センサー、超音波式気泡センサー、ビデオマイクロスコープの映像を処理する方法などがあり、可視化装置としてはビデオカメラ、CCDカメラ、デジタルカメラなどがある。
【0016】
網目状ふるい16に負の電圧をかける際又は網目状ふるい16を加熱する際に、効率的に気泡を除去するには、気泡センサー17及び気泡可視化装置18により測定した気泡濃度が高いときに、電圧や温度を上げることが好ましい。また、網目状ふるい16による気泡除去の効果を気泡センサー17及び気泡可視化装置18により再度測定することにより、網目状ふるい16の通電条件を最適化することが可能である。さらに、帯板の鋼種、板幅、板厚、通板速度等の酸洗設備の操業条件による網目状ふるい16の最適通電条件を求めることにより、気泡測定の測定時間を省略することも可能である。
【0017】
また、気泡濃度を連続的に測定せず、定期的に測定することが可能になる。そのため、測定操作の省略、画像解析、データー処理のための装置の省略が可能になる。さらに、気泡濃度を測定しないときには、センサーを酸洗槽から引き上げることができる。
これにより、80℃の酸洗槽の場合、連続測定を行うには、冷却等の装置も大がかりとなるという問題が、定期的測定では簡易な冷却で十分であるため、解決できる。さらに、冷却を行ってもセンサーは精密機器のため酸洗雰囲気で長時間使用すると寿命の点で問題となるが、これについても、定期的測定を行うことにより解決できる。
【0018】
超音波振動子4の材質は、耐食性かつ弾性があるチタン合金やステンレス或いはエポキシ樹脂、塩化ビニル樹脂、エチレン樹脂、フッ素樹脂などの樹脂や塩化ゴム、軟質ゴムなどのゴムをコーティングした物を使用できる。
超音波振動子4から印加する超音波の強度は、最大値を100Pa以上とすることが好ましいが、超音波の強度を高くしすぎると超音波振動子のコストが増大するので、150kPa以下とすることが好ましい。また、印加する周波数も10kHzから200kHzの範囲内の機器が性能及び装置コストの点から好ましい。
【0019】
【実施例】
本発明の実施例として、図1に示したように超音波振動子4を酸洗槽の側面の中温部に設置し、酸洗槽出口1bと入口1aから1m、槽側面から500mm、液面から300mmの場所に、ガラス繊維製網目状ふるい16を各4枚設置した。超音波振動子4の材質は、チタン合金をエポキシ樹脂にてコーティングした複合材料を採用した。
超音波振動板4の大きさは、何れも幅300mm、高さ300mmとし、網目状ふるい16は幅400mm、長さ1500mmとし、下端を槽の底部に固定した。超音波振動子4から印加する超音波の周波数は28kHz、音圧の最大値を100kPaとした。気泡センサー17及び気泡可視化装置18として、それぞれ光学式気泡センサー及びビデオカメラを用いた。
一方、比較例は超音波振動子4のみとし、網目状ふるい16、気泡センサー17、気泡可視化装置18を除いた方法とした。
その結果、本発明例では高い音圧の超音波が安定して帯板に印加されて帯板全面にわたりスケールが除去されたが、比較例はデスケムラが生じた。
【0020】
【発明の効果】
操業中に酸洗槽内に発生する気泡を除去する網目状ふるいを酸洗槽に設置することにより、高い音圧の超音波を安定して帯板に印加することが可能となり、デスケムラ等の欠陥の発生を抑制することができるため、産業上の貢献が極めて高い。
【図面の簡単な説明】
【図1】酸洗槽内の側面に超音波振動子、網目状ふるい、気泡センサーを配置した超音波式酸洗装置の平面図である。
【図2】酸洗槽内の側面に超音波振動板、網目状ふるい、気泡センサー、気泡可視化装置を配置した超音波式酸洗装置のAA’面からの通板方向断面図である。
【図3】酸洗槽内に網目状ふるいを配置した超音波式酸洗装置のBB’断面図である
【図4】C部を拡大した網目状ふるいの正面図である
【図5】C部を拡大した網目状ふるいの側面図である
【図6】網目状ふるいを帯電する方法の断面図である
【図7】網目状ふるいを通電加熱する方法の断面図である。
【図8】羽根車方式を用いた酸洗槽の断面図である。
【図9】羽根車方式を用いた酸洗槽の平面図である。
【図10】ベルト方式を用いた酸洗槽の断面図である。
【図11】堰がある酸洗槽に超音波振動子、網目状ふるいを設置した超音波式酸洗装置の通販方向断面図である。
【図12】超音波振動子を帯板の上下に対向して配置した従来の超音波式酸洗装置の幅方向断面図である。
【図13】超音波振動子を帯板の上下に対向して配置し、酸溶液タンクに供給する水を脱気した従来の超音波式酸洗装置の通板方向断面図である
【符号の説明】
1 :酸洗槽
1a:酸洗槽入口
2b:酸洗槽出口
2 :帯板
3 :酸洗液
4 :超音波振動子
5 :超音波振動板
6 :超音波発振子
7 :超音波発振器
8 :シールロール
9 :循環ポンプ
10:酸溶液タンク
11:水供給源
12:給水経路
13:酸供給源
14:給酸経路
15:脱気装置
16:網目状ふるい
17:気泡センサー
18:気泡可視化装置
19:線
20:外部電源
21:対極
22:羽根車
23:モーター
24:ベルト
25:堰
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of applying an ultrasonic wave to a metal strip running in a pickling solution in a continuous pickling tank (referred to as a pickling tank) to perform a pickling treatment.
[0002]
[Prior art]
As shown in FIG. 12, Patent Document 1 discloses an ultrasonic pickling apparatus for improving the pickling effect by applying ultrasonic waves to a pickling liquid 3 in an apparatus for continuously pickling a strip 2. It has been disclosed. The apparatus applies an ultrasonic wave from an ultrasonic vibrator 4 to a strip 2 traveling in a pickling solution 3 filled in a pickling tank 1.
In the pickling apparatus, the pickling solution 3 in the pickling tank 1 is circulated between the pickling tank 3 and the acid solution tank 10 by a circulation pump 9 as shown in FIG. Water is supplied from a water supply 11 through a water supply path 12, and hydrochloric acid is supplied from an acid supply 13 through an acid supply path 14. In Patent Literature 2, a deaerator 15 is installed between a water supply source 11 and an acid solution tank 9 to reduce the concentration of air dissolved in water, thereby increasing cavitation impact pressure generated by application of ultrasonic waves. are doing.
[0003]
However, in this method, heating or decompression is performed at 90 ° C. in order to reduce the amount of air dissolved in water supplied to the acid solution tank 8. Therefore, it was not possible to solve the problem that hydrogen was generated due to the dissolution of iron during operation to form bubbles, and the concentration of bubbles in the pickling liquid 3 in the pickling tank 1 increased. When the concentration of bubbles in the pickling liquid 3 increases, the ultrasonic waves are attenuated by the bubbles, and the intensity of the ultrasonic waves applied to the strip decreases, so that residual scale is removed (called deschemla).
The pickling equipment schematically shown in FIGS. 12 and 13 is an apparatus for dissolving the scale attached to the strip 2 with the pickling liquid when the strip 2 passes through the pickling tank 1. Not only the scale is dissolved by the washing solution, but also the iron exposed by the dissolution of the scale is dissolved in the pickling solution. Hydrogen generated by the dissolution of iron in the pickling liquid becomes bubbles, and circulates in the pickling tank 1 together with the pickling liquid by the movement of the strip 2.
[0004]
Further, the attenuation rate of the ultrasonic wave passing through the pickling solution increases in proportion to the concentration of bubbles contained in the pickling solution. Therefore, when the bubble concentration increases, the attenuation of the ultrasonic wave increases, the intensity of the ultrasonic wave applied to the strip decreases, and the pickling speed decreases. In order to increase the intensity of the ultrasonic wave applied to the band 2 in such a state, there are a method of increasing the output of the ultrasonic wave and a method of bringing the ultrasonic vibrator 4 closer to the band 2. However, to increase the output of the ultrasonic wave, the cost of the vibrator increases. Further, when the ultrasonic vibrator 4 is brought close to the band plate 2, the band plate 2 easily comes into contact with the ultrasonic vibrator 4 due to the meandering and vibration of the band plate 2, and the possibility of quality defects increases.
Further, the steel type, the width and the passing speed of the strip 2 passing through the pickling tank 1 during the operation are not constant, and vary depending on the operating conditions. Shading occurs in the bubble concentration. When an ultrasonic wave is applied in such a state, the intensity of the ultrasonic wave applied to the band plate becomes uneven, resulting in a quality defect such as unevenness of the surface.
[0005]
[Patent Document 1]
JP-A-5-78874 [Patent Document 2]
JP-A-5-78871
[Problems to be solved by the invention]
The present invention increases the intensity of the ultrasonic wave applied to the band plate from the ultrasonic vibrator by lowering the bubble concentration of hydrogen generated by dissolving the band plate in the pickling solution, and stabilizes the pickling efficiency. An object of the present invention is to provide a pickling apparatus.
[0007]
[Means for Solving the Problems]
The ultrasonic continuous pickling apparatus of the present invention is as follows.
(1) In a method of immersing a running strip in a continuous pickling tank and pickling while applying ultrasonic waves to the strip, a mesh screen is provided in the continuous pickling tank, and the pickling is performed by pickling. An ultrasonic continuous pickling method comprising removing generated bubbles.
(2) The ultrasonic continuous pickling method according to (1), wherein a mesh sieve is provided near an outlet of the strip and / or an inlet of the strip in the continuous pickling tank.
(3) The number of mesh sieves provided near the outlet and / or inlet of the strip in the continuous pickling tank is larger than the number of mesh sieves provided at the intermediate portion between the outlet and the inlet of the strip. (2) The ultrasonic continuous pickling method according to (2).
(4) A weir is provided between the outlet and the inlet of the strip in the continuous pickling tank to support the strip from below, and at least one of the outlet of the strip, the inlet of the strip, and the weir in the continuous pickling tank. (1) The continuous ultrasonic pickling method according to (1), wherein a mesh sieve is provided in the vicinity of.
(5) The number of mesh sieves provided in the vicinity of any one or more of the outlet, inlet, and weir of the strip in the continuous pickling tank is determined by determining the number of mesh screens at the intermediate portion between the outlet of the strip and the weir and / or the inlet of the strip. (4) The continuous ultrasonic pickling method according to (4), wherein the number of the sieves is greater than the number of mesh sieves provided at an intermediate portion between the weir and the weir.
(6) The ultrasonic continuous pickling method according to any one of (1) to (5), wherein the material of the mesh sieve in the continuous pickling tank is glass.
(7) The ultrasonic continuous pickling method according to any one of (1) to (5), wherein a negative voltage is applied to a mesh sieve provided in the continuous pickling tank.
(8) The ultrasonic method according to any one of (1) to (5), wherein the mesh sieve in the continuous pickling tank is used as a heating element, and the sieve is heated to a higher temperature than the pickling liquid. Continuous pickling method.
(9) The voltage applied to the mesh sieve is controlled according to at least one of the bubble concentration distribution in the continuous pickling tank, the steel type of the strip, the width of the strip, and the position of the strip. (7) The ultrasonic continuous pickling method described.
(10) The heating temperature of the mesh sieve is controlled according to at least one of the bubble concentration distribution in the continuous pickling tank, the steel type of the strip, the width of the strip, and the position of the strip. An ultrasonic continuous pickling apparatus method according to the above.
(11) The ultrasonic continuous pickling method according to any one of (1) to (8), wherein the reticulated sieve in the continuous pickling tank is rotated to remove bubbles.
(12) The ultrasonic continuous pickling method according to (11), wherein air is applied to the mesh sieve on the continuous pickling tank to remove bubbles attached to the sieve.
(13) After removing air bubbles during the operation by the method according to any one of (1) to (10), the mesh sieve in the continuous pickling tank is vibrated while the operation is stopped, and / or A continuous ultrasonic pickling method characterized by removing the bubbles adsorbed on the sieve by applying a voltage of (i).
(14) After removing air bubbles during operation by the method according to any one of (1) to (10), the mesh sieve in the continuous pickling tank is put into another tank while the operation is stopped, and the mesh is removed. An ultrasonic continuous pickling method characterized by removing air bubbles adhering to a sieve.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
In order to solve such a problem, the present invention is to remove bubbles formed of hydrogen in the pickling liquid by a mesh sieve 16. When the mesh sieve 16 is placed in the pickling liquid 3 containing bubbles, the bubbles are adsorbed to the line of the sieve, and the pickling liquid 3 containing no bubbles passes through the sieve, and the bubbles in the liquid are removed.
FIG. 1 is a plan view of the basic outline of the present invention, and FIG. The ultrasonic vibrator 4 and the mesh sieve 16 are arranged on the side surface in the pickling tank 1 and are installed at a sufficient distance from the band plate 2 so that the ultrasonic wave due to the meandering in the width direction of the band plate 2 is obtained. The contact with the vibrator 4 and the mesh sieve 16 can be prevented.
[0009]
The mesh sieve 16 is disposed on the side of the pickling tank as shown in FIG. 4 and 5 are enlarged front and side views, respectively, of FIG. 3C. The mesh sieve 16 has a line 19 arranged at right angles, and the pickling liquid 3 has a line 19. And the air bubbles pass between the lines 19, and the air bubbles are adsorbed on the lines 19 and collected.
The wire 19 of the mesh sieve 16 is made of a heat-resistant and acid-resistant fluororesin, vinyl chloride resin, epoxy resin, or another resin alone, or a composite material obtained by coating a carbon, platinum, or nichrome wire with a resin or rubber. be able to. In order to promote the adsorption of bubbles to the wire 19, the material of the wire 19 is preferably glass. This is because the glass is charged with positive electricity in the pickling liquid 3 and the bubbles are charged with positive electricity, so that the lines and the bubbles are electrically attracted.
If the thickness of the line 19 of the mesh sieve 16 is too large, the flow resistance of the liquid is increased and the probability of approaching the bubbles is reduced. If the thickness is too small, it becomes difficult to adsorb the bubbles. It is preferable that the wire 19 is not necessarily a single wire, but may be a braid of several wires. If the distance between the lines 19 is too small, the flow resistance of the liquid will be low. If the distance is too wide, air bubbles will pass, making it difficult to adsorb. Therefore, the distance is preferably 10 μm to 5 mm.
[0010]
As shown in FIG. 6, when a voltage is applied to the mesh sieve 16 as a negative electrode and the counter electrode 21 to a positive electrode by an external power supply 20, the bubbles are positively charged, so that the bubbles are electrically attracted to the line 19, and the bubbles are efficiently removed. Can be adsorbed on the mesh sieve 16. In order to apply a voltage to the mesh screen 16, conductivity is required, and it is preferable to use carbon, platinum, or the like. The voltage applied to the mesh screen 19 is preferably -0.01 V or less in order to increase the adsorption efficiency. If the voltage is lower than -10.0 V, the pickling solution is electrolyzed. Therefore, it is preferable to set it in the range of -0.01V to -10.0V.
[0011]
Further, by heating the mesh-shaped sieve 16, the aggregation of the bubbles is accelerated to become large bubbles and is removed from the liquid. As a heating method, as shown in FIG. 7, there is a method in which the mesh sieve 16 is electrically heated by an external power supply 20, or a method in which the wire 19 is formed into a tube and steam is passed through the tube. When heating the mesh sieve 16, the temperature of the sieve is preferably higher than the temperature of the pickling liquid 3 within a range of 10 to 100C. This is because, when the temperature of the mesh sieve is increased, aggregation of bubbles is promoted, but costs are increased. In the case where the mesh sieve 16 is electrically heated, it is preferable to use a composite material in which a nichrome wire is coated with a resin or rubber. As a material of the counter electrode, carbon, platinum, or the like can be used.
[0012]
In addition, by removing the air bubbles adsorbed on the mesh-shaped sieve 16 while the operation is stopped, the efficiency of adsorption of the air bubbles during the operation can be increased. As a method for removing bubbles, there are a method of applying a positive voltage to the mesh screen 16, a method of vibrating with a vibrator, and a method of placing the mesh in another tank containing water. As shown in FIG. 6, a method of applying a positive voltage to the mesh sieve 16 is a method of applying a voltage using an external power supply 20 with the mesh sieve 16 as a positive electrode and the counter electrode 21 as a negative electrode.
[0013]
Further, as shown in FIGS. 8, 9 and 10, the rotation of the mesh screen 16 promotes the contact between the pickling liquid 3 and the mesh screen 16, thereby facilitating the removal of air bubbles. . 8 and 9 are a side view and a plan view, respectively, in the direction of the plate passing the mesh-shaped sieve in the shape of the impeller 22.
FIG. 10 shows a method of forming a mesh sieve into the shape of the belt 24. The impeller 22 and the belt 24 are rotated by a motor 23 directly connected to a rotating shaft. The mesh sieve 16, the shaft of the impeller 22, and the roll of the belt 23 can be made of heat-resistant and acid-resistant resin such as fluororesin, vinyl chloride resin, epoxy resin, and glass fiber.
When rotating the mesh sieve 16 as an impeller, if the rotation speed is higher than 100 rpm, the adsorbed bubbles are separated, so the rotation speed is preferably in the range of 0.1 to 100 rpm. When the mesh sieve 16 is moved as a belt, if the moving speed of the belt is faster than 1 m / s, the adsorbed bubbles are separated, so that the speed is preferably between 1 mm / s and 1 m / s.
The air bubbles adsorbed on the mesh sieve 16 can be removed by blowing air to the mesh sieve with a fan or the like when the bubbles move to the upper part of the tank by rotation. According to this method, the air bubbles adsorbed on the mesh sieve 16 can be removed during the operation, so that the air bubble concentration in the pickling liquid can be efficiently reduced.
Bubbles generated by the dissolution of the strip 2 are carried toward the outlet 1b of the pickling tank along with the movement of the strip 2, and are accumulated at the outlet 1b of the strip. Further, the bubbles are carried toward the inlet 1a of the strip by the flow of the pickling liquid in the direction opposite to the passing direction along the side surface of the pickling tank 1, and are accumulated at the inlet 1a of the strip.
Therefore, by installing the mesh-shaped sieve 16 within 10 m of the strip outlet 1b and the strip inlet 1a more than the intermediate portion between the strip outlet 1b and the strip inlet 1a, more air bubbles are generated. The bubbles are adsorbed on the sieve 16 and the bubbles are efficiently removed.
[0014]
Further, as shown in FIG. 11, there is a facility in which a weir 25 is installed in the pickling tank 1. The movement of the air bubbles carried along with the band plate 2 is blocked by the weir 25, and a large amount of air bubbles also accumulates near the weir 25. For this reason, it is efficient to remove the air bubbles by arranging the mesh sieve 16 within 5 m near the weir 25 and more than the middle part between the weir 22 and the entrance of the pickling tank.
[0015]
The amount of bubbles generated from the strip 2 depends on the type of steel and the width of the plate, and the flow of the liquid generated in the pickling tank varies depending on the width, thickness and passing speed of the pickling tank. The bubble concentration distribution and the bubble diameter are measured by the installed bubble sensor 17 and bubble visualizing device 18. Examples of the bubble sensor include an optical bubble sensor, an electromagnetic bubble sensor, an ultrasonic bubble sensor, a method of processing an image of a video microscope, and the like, and examples of a visualization device include a video camera, a CCD camera, and a digital camera.
[0016]
When applying a negative voltage to the mesh sieve 16 or heating the mesh sieve 16, to efficiently remove bubbles, when the bubble concentration measured by the bubble sensor 17 and the bubble visualization device 18 is high, It is preferable to increase the voltage and the temperature. Further, by measuring the effect of removing the bubbles by the mesh screen 16 again by the bubble sensor 17 and the bubble visualizing device 18, it is possible to optimize the energization conditions of the mesh screen 16. Further, by determining the optimal energizing conditions of the mesh-shaped sieve 16 according to the operating conditions of the pickling equipment such as the steel type, the width, the thickness, and the passing speed of the strip, the measurement time of the bubble measurement can be omitted. is there.
[0017]
In addition, it is possible to measure the bubble concentration periodically instead of continuously. Therefore, it is possible to omit the measurement operation, and to omit the devices for image analysis and data processing. Further, when the bubble concentration is not measured, the sensor can be pulled out of the pickling tank.
Thus, in the case of an 80 ° C. pickling tank, the problem of large-scale equipment such as cooling for continuous measurement can be solved because simple cooling is sufficient for periodic measurement. Further, even if the sensor is cooled, the sensor is a precision instrument, and if it is used for a long time in an acid pickling atmosphere, there is a problem in terms of its life. However, this can also be solved by performing periodic measurements.
[0018]
As the material of the ultrasonic vibrator 4, a material coated with a resin such as titanium alloy, stainless steel, epoxy resin, vinyl chloride resin, ethylene resin, or fluororesin having corrosion resistance and elasticity, or rubber such as chloride rubber or soft rubber can be used. .
The intensity of the ultrasonic wave applied from the ultrasonic vibrator 4 is preferably set to a maximum value of 100 Pa or more, but if the intensity of the ultrasonic wave is too high, the cost of the ultrasonic vibrator increases. Is preferred. Further, a device whose applied frequency is in the range of 10 kHz to 200 kHz is preferable in terms of performance and device cost.
[0019]
【Example】
As an embodiment of the present invention, as shown in FIG. 1, an ultrasonic vibrator 4 is installed at a middle temperature part of the side of the pickling tank, 1 m from the pickling tank outlet 1b and the inlet 1a, 500 mm from the tank side, and the liquid level. , Four glass fiber mesh sieves 16 were installed at a distance of 300 mm from each other. As the material of the ultrasonic vibrator 4, a composite material obtained by coating a titanium alloy with an epoxy resin was used.
The size of the ultrasonic vibration plate 4 was 300 mm in width and 300 mm in height, the mesh sieve 16 was 400 mm in width and 1500 mm in length, and the lower end was fixed to the bottom of the tank. The frequency of the ultrasonic wave applied from the ultrasonic vibrator 4 was 28 kHz, and the maximum value of the sound pressure was 100 kPa. An optical bubble sensor and a video camera were used as the bubble sensor 17 and the bubble visualizing device 18, respectively.
On the other hand, in the comparative example, only the ultrasonic transducer 4 was used, and the mesh sieve 16, the bubble sensor 17, and the bubble visualizing device 18 were omitted.
As a result, in the example of the present invention, ultrasonic waves having a high sound pressure were stably applied to the band and the scale was removed over the entire surface of the band, but in the comparative example, descheming occurred.
[0020]
【The invention's effect】
By installing a mesh sieve in the pickling tank to remove air bubbles generated in the pickling tank during operation, it becomes possible to apply ultrasonic waves with high sound pressure to the strip in a stable manner. Since the occurrence of defects can be suppressed, industrial contribution is extremely high.
[Brief description of the drawings]
FIG. 1 is a plan view of an ultrasonic pickling apparatus in which an ultrasonic vibrator, a mesh sieve, and a bubble sensor are arranged on a side surface in a pickling tank.
FIG. 2 is a cross-sectional view of the ultrasonic pickling apparatus in which an ultrasonic vibration plate, a mesh sieve, a bubble sensor, and a bubble visualization device are arranged on a side surface in a pickling tank in a direction of a plate passing from the AA ′ plane.
FIG. 3 is a cross-sectional view taken along the line BB ′ of the ultrasonic pickling apparatus in which a mesh sieve is arranged in a pickling tank. FIG. FIG. 6 is a cross-sectional view of a method for charging the mesh-shaped sieve. FIG. 7 is a cross-sectional view of a method for electrically heating the mesh-shaped sieve.
FIG. 8 is a sectional view of an pickling tank using an impeller method.
FIG. 9 is a plan view of an pickling tank using an impeller method.
FIG. 10 is a sectional view of a pickling tank using a belt method.
FIG. 11 is a sectional view in the mail order direction of an ultrasonic pickling apparatus in which an ultrasonic vibrator and a mesh sieve are installed in a pickling tank having a weir.
FIG. 12 is a cross-sectional view in the width direction of a conventional ultrasonic pickling apparatus in which ultrasonic vibrators are arranged so as to face up and down a strip.
FIG. 13 is a cross-sectional view in the passing direction of a conventional ultrasonic pickling apparatus in which ultrasonic vibrators are arranged oppositely above and below a strip plate and water supplied to an acid solution tank is degassed. Description】
1: pickling tank 1a: pickling tank inlet 2b: pickling tank outlet 2: strip plate 3: pickling liquid 4: ultrasonic vibrator 5: ultrasonic vibrating plate 6: ultrasonic oscillator 7: ultrasonic oscillator 8 : Seal roll 9: Circulation pump 10: Acid solution tank 11: Water supply source 12: Water supply path 13: Acid supply source 14: Acid supply path 15: Deaerator 16: Mesh sieve 17: Bubble sensor 18: Bubble visualization apparatus 19: line 20: external power supply 21: counter electrode 22: impeller 23: motor 24: belt 25: weir

Claims (14)

連続酸洗槽内に走行する帯板を浸漬して、前記帯板に超音波を印加しながら酸洗する方法において、前記連続酸洗槽内に網目状ふるいを設け、酸洗により発生した気泡を除去することを特徴とする超音波式連続酸洗方法。In the method of immersing a strip running in a continuous pickling tank and performing pickling while applying ultrasonic waves to the strip, a mesh sieve is provided in the continuous pickling tank, and bubbles generated by the pickling are provided. An ultrasonic continuous pickling method, characterized in that the acid is removed. 連続酸洗槽内の帯板の出口及び/又は帯板の入口の近傍に網目状ふるいを設けることを特徴とする請求項1記載の超音波式連続酸洗方法。The ultrasonic continuous pickling method according to claim 1, wherein a mesh screen is provided near an outlet of the strip and / or an inlet of the strip in the continuous pickling tank. 連続酸洗槽内の帯板の出口及び/又は入口の近傍に設ける網目状ふるいの個数を、帯板の出口と入口の中間部に設ける網目状ふるいの個数より多くすることを特徴とする請求項2記載の超音波式連続酸洗方法。The number of mesh sieves provided near the outlet and / or inlet of the strip in the continuous pickling tank is greater than the number of mesh sieves provided at an intermediate portion between the outlet and the inlet of the strip. Item 4. The ultrasonic continuous pickling method according to Item 2. 連続酸洗槽内の帯板の出口と入口の間に帯板を下から支える堰を設け、連続酸洗槽内の帯板の出口、帯板の入口、堰の何れか1以上の近傍に網目状ふるいを設けることを特徴とする請求項1記載の超音波式連続酸洗方法。A weir is provided between the outlet and the inlet of the strip in the continuous pickling tank to support the strip from below, near the exit of the strip, the inlet of the strip, and at least one of the weirs in the continuous pickling tank. 2. The ultrasonic continuous pickling method according to claim 1, wherein a mesh screen is provided. 連続酸洗槽内の帯板の出口、入口、堰の何れか1以上の近傍に設ける網目状ふるいの個数を、帯板の出口と堰との中間部及び/又は帯板の入口と堰との中間部に設ける網目状ふるいの個数より多くすることを特徴とする請求項4記載の超音波式連続酸洗方法。The number of mesh sieves provided in the vicinity of any one or more of the outlet, inlet, and weir of the strip in the continuous pickling tank is determined by changing the number of mesh sieves between the outlet and the weir of the strip and / or the inlet and weir of the strip 5. The ultrasonic continuous pickling method according to claim 4, wherein the number of the sieves is larger than the number of the mesh sieves provided in the middle part of the method. 連続酸洗槽内の網目状ふるいの材質をガラスとすることを特徴とする請求項1〜5の何れか1項記載の超音波式連続酸洗方法。The ultrasonic continuous pickling method according to any one of claims 1 to 5, wherein the material of the mesh sieve in the continuous pickling tank is glass. 連続酸洗槽内に設置する網目状ふるいに負の電圧をかけることを特徴とする請求項1〜5の何れか1項記載の超音波式連続酸洗方法。The ultrasonic continuous pickling method according to any one of claims 1 to 5, wherein a negative voltage is applied to a mesh sieve provided in the continuous pickling tank. 連続酸洗槽内の網目状ふるいを発熱体とし、ふるいを酸洗液よりも高温に加熱することを特徴とする請求項1〜5の何れか1項記載の超音波式連続酸洗方法。The ultrasonic continuous pickling method according to any one of claims 1 to 5, wherein the reticulated sieve in the continuous pickling tank is used as a heating element, and the sieve is heated to a temperature higher than the pickling liquid. 連続酸洗槽内の気泡濃度分布、帯板の鋼種、板幅、板の位置の何れか1以上に応じて、網目状ふるいにかける電圧を制御することを特徴とする請求項7記載の超音波式連続酸洗方法。8. The super-sizing device according to claim 7, wherein the voltage applied to the mesh sieve is controlled in accordance with at least one of the bubble concentration distribution in the continuous pickling tank, the steel type of the strip, the width of the strip, and the position of the strip. Sonic continuous pickling method. 連続酸洗槽内の気泡濃度分布、帯板の鋼種、板幅、板の位置の何れか1以上に応じて、網目状ふるいの加熱温度を制御することを特徴とする請求項8記載の超音波式連続酸洗装置方法。The heating temperature of the mesh sieve is controlled according to any one or more of the bubble concentration distribution in the continuous pickling tank, the steel type of the strip, the width of the strip, and the position of the strip. Sonic continuous pickling method. 連続酸洗槽内の網目状ふるいを回転し、気泡を除去することを特徴とする請求項1〜8の何れか1項記載の超音波式連続酸洗方法。The ultrasonic continuous pickling method according to any one of claims 1 to 8, wherein a reticulated sieve in the continuous pickling tank is rotated to remove bubbles. 連続酸洗槽の上で網目状ふるいに風を当て、ふるいに付着した気泡を除去することを特徴とする請求項11記載の超音波式連続酸洗方法。12. The ultrasonic continuous pickling method according to claim 11, wherein air is applied to the mesh sieve on the continuous pickling tank to remove air bubbles adhering to the sieve. 請求項1〜10の何れか1項記載の方法により操業中に気泡を除去した後、操業停止中に連続酸洗槽内の網目状ふるいを振動させて、及び/又は正の電圧をかけて、ふるいに吸着した泡を除去することを特徴とする超音波式連続酸洗方法。11. After removing air bubbles during operation by the method according to any one of claims 1 to 10, vibrating the mesh sieve in the continuous pickling tank during operation stop and / or applying a positive voltage. And an ultrasonic continuous pickling method comprising removing bubbles adsorbed on a sieve. 請求項1〜10の何れか1項記載の方法により操業中に気泡を除去した後、操業停止中に連続酸洗槽内の網目状ふるいを他の槽に入れ、網目状ふるいに付着した気泡を除去することを特徴とする超音波式連続酸洗方法。11. After removing air bubbles during the operation by the method according to any one of claims 1 to 10, the mesh sieve in the continuous pickling tank is put into another tank while the operation is stopped, and the air bubbles adhered to the mesh sieve. An ultrasonic continuous pickling method, characterized in that the acid is removed.
JP2002373228A 2002-12-24 2002-12-24 Ultrasonic continuous pickling method Withdrawn JP2004204270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002373228A JP2004204270A (en) 2002-12-24 2002-12-24 Ultrasonic continuous pickling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002373228A JP2004204270A (en) 2002-12-24 2002-12-24 Ultrasonic continuous pickling method

Publications (1)

Publication Number Publication Date
JP2004204270A true JP2004204270A (en) 2004-07-22

Family

ID=32811592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002373228A Withdrawn JP2004204270A (en) 2002-12-24 2002-12-24 Ultrasonic continuous pickling method

Country Status (1)

Country Link
JP (1) JP2004204270A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012060672A2 (en) * 2010-11-05 2012-05-10 (주)지바이오텍 Bleached wood powder, a production method for bleached wood powder, paper which uses the same and a production method for the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012060672A2 (en) * 2010-11-05 2012-05-10 (주)지바이오텍 Bleached wood powder, a production method for bleached wood powder, paper which uses the same and a production method for the same
WO2012060672A3 (en) * 2010-11-05 2012-09-13 (주)지바이오텍 Bleached wood powder, a production method for bleached wood powder, paper which uses the same and a production method for the same
KR101207845B1 (en) 2010-11-05 2012-12-04 (주)지바이오텍 Wood Particles, Manufacturing Method for paper of using the Same
CN103348061A (en) * 2010-11-05 2013-10-09 吉拜特有限公司 Bleached wood powder, production method for bleached wood powder, paper which uses same and production method for same

Similar Documents

Publication Publication Date Title
CN105921431B (en) A kind of transfer plate cleaning equipment and its cleaning method
US5593505A (en) Method for cleaning semiconductor wafers with sonic energy and passing through a gas-liquid-interface
WO2010021405A1 (en) Ultrasonic cleaning apparatus
JP2015063464A (en) Glass manufacturing apparatus with fine particle removal device, and use thereof
JP5872382B2 (en) Ultrasonic cleaning method
JP5453488B2 (en) Ultrasonic cleaning method and ultrasonic cleaning apparatus
JP2012081430A (en) Ultrasonic cleaning apparatus
JP2004204270A (en) Ultrasonic continuous pickling method
JP5525765B2 (en) Ultrasonic cleaning apparatus and ultrasonic cleaning processing method
RU2764255C1 (en) Ultrasonic strip degreasing
JP2012004294A (en) Substrate processing apparatus and substrate processing method
JP2003040649A (en) Chemical process for glass substrate and apparatus for the same
JP2010099637A (en) Apparatus and method for cleaning substrate
JP4815000B2 (en) Ultrasonic cleaning equipment
JP2004204269A (en) Ultrasonic continuous pickling method
JP6895818B2 (en) Treatment liquid supply device and treatment liquid supply method
EP1057546A1 (en) Megasonic cleaner
JP4007742B2 (en) Ultrasonic cleaning method
JP2004204268A (en) Ultrasonic continuous pickling method
JP2003313688A (en) Continuous ultrasonic-cleaning apparatus
KR101014520B1 (en) The apparatus and method of single wafer cleaning
JP4065683B2 (en) Gas blowing device
JP2011183300A (en) Ultrasonic cleaning apparatus
JPH11340192A (en) Wet treatment device
JP4307973B2 (en) Supercritical fluid processing apparatus and method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060307