JP2004204269A - Ultrasonic continuous pickling method - Google Patents

Ultrasonic continuous pickling method Download PDF

Info

Publication number
JP2004204269A
JP2004204269A JP2002373227A JP2002373227A JP2004204269A JP 2004204269 A JP2004204269 A JP 2004204269A JP 2002373227 A JP2002373227 A JP 2002373227A JP 2002373227 A JP2002373227 A JP 2002373227A JP 2004204269 A JP2004204269 A JP 2004204269A
Authority
JP
Japan
Prior art keywords
pickling
strip
tank
ultrasonic
continuous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002373227A
Other languages
Japanese (ja)
Inventor
Yuusuke Ichinose
祐亮 一ノ瀬
Kazuto Yamamura
和人 山村
Yoshihiro Yamada
義博 山田
Itaru Hashimoto
格 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002373227A priority Critical patent/JP2004204269A/en
Publication of JP2004204269A publication Critical patent/JP2004204269A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic pickling method stable in pickling efficiency by reducing the bubble concentration of hydrogen generated by the dissolution of a steel strip in a pickling liquid, and therefore increasing the intensity of ultrasonic waves applied to the strip by an ultrasonic vibrator. <P>SOLUTION: In the ultrasonic continuous pickling method where a running strip 2 is dipped into a continuous pickling tank 1, and is pickled while applying ultrasonic waves thereto, a pickling liquid 3 inside the continuous pickling tank 1 is sucked to a bubble removal tank 19, and, after the removal of bubbles, the pickling liquid 3 is returned to the continuous pickling tank 1. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、連続酸洗槽(酸洗槽という)内において、酸洗液中を走行する金属帯板に超音波を印加し、酸洗処理する方法に関する。
【0002】
【従来の技術】
図8に示すように帯板2を連続して酸洗処理する装置において酸洗液3中に超音波を印加して、その酸洗効果を向上させる超音波式酸洗装置が特許文献1に開示されている。その装置は酸洗槽1内に充満された酸洗液3中を走行する帯板2に、超音波振動子4から超音波を印加している。
また、酸洗装置は、図9に示すように酸洗槽1内の酸洗液3を循環ポンプ9により酸溶液タンク10との間で循環しているが、塩酸濃度が一定になるように水を水供給源11から給水経路12を通って供給し、塩酸を酸供給源13から給酸経路14を通り供給している。特許文献2では、水供給源11と酸溶液タンク9との間に脱気装置15を設置し、水中に解けている空気の濃度を下げることにより、超音波印加で発生するキャビテーション衝撃圧力を大きくしている。
【0003】
しかし、この方法は、酸溶液タンク8に供給される水中に溶解した空気の量を下げるため、90℃に加熱又は減圧するものである。そのため、操業中に鉄の溶解によって水素が発生して気泡となり、酸洗槽1内において酸洗液3中の気泡濃度が増加するという問題を解決することができなかった。酸洗液3中の気泡濃度が増加すると、超音波が気泡により減衰し、帯板に印加される超音波の強度が低下するため、スケールの除去残り(デスケムラという)が生じた。
図8及び9に模式的に示した酸洗設備は、帯板2が酸洗槽1を通過するとき、帯板2に付着していたスケールを酸洗液により溶解する装置であるが、酸洗液により溶解されるのはスケールのみではなく、スケールが溶解して露出した鉄も酸洗液中に溶解する。酸洗液中において鉄の溶解によって発生した水素は気泡となり、帯板2の移動により、酸洗液と共に酸洗槽1内を循環する。
【0004】
また、酸洗液中を通過する超音波の減衰率は酸洗液中に含有する気泡濃度に比例して大きくなる。そのため、気泡濃度が増加すると超音波の減衰が大きくなり、帯板に印加される超音波の強度が小さくなり酸洗速度が低下する。このような状態で帯板2に印加される超音波の強度を強くするためには、超音波の出力を大きくする方法や超音波振動子4を帯板2に近づける方法がある。しかし、超音波の出力を大きくするには、振動子のコストが高くなる。また、超音波振動子4を帯板2に近づけると、帯板2の蛇行や振動により帯板2が超音波振動子4と接触し易くなり、品質欠陥が生じる可能性が高くなる。
また、操業時に酸洗槽1を通過する帯板2の鋼種、板幅、通板速度は一定でなく、操業条件により変わるため発生する気泡の量や移動速度は大きく異なり、酸洗槽中の気泡濃度には濃淡が発生する。このような状態で超音波を印加すると、帯板に印加される超音波の強度にムラが発生し、デスケムラ等の品質欠陥となる。
【0005】
【特許文献1】
特開平5−78874号公報
【特許文献2】
特開平5−78871号公報
【0006】
【発明が解決しようとする課題】
本発明は、酸洗液中において帯板の溶解によって発生する水素の気泡濃度を下げることにより、超音波振動子より帯板に印加される超音波の強度を高くし、酸洗効率の安定した酸洗装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の超音波式連続酸洗装置は以下の通りである。
(1) 連続酸洗槽内に走行する帯板を浸漬して、前記帯板に超音波を印加しながら酸洗する方法において、前記連続酸洗槽内の酸洗液を気泡除去槽に吸引し、気泡の除去後、前記連続酸洗槽に酸洗液を戻すことを特徴とする超音波式連続酸洗方法。
(2) 連続酸洗槽内の帯板の出口及び/又は帯板の入口の近傍から酸洗液を気泡除去槽に吸引することを特徴とする(1)記載の超音波式連続酸洗方法。
(3) 連続酸洗槽内の帯板の出口及び/又は帯板の入口の近傍から吸引する酸洗液の量を、帯板の出口と入口の中間部から吸引する酸洗液の量より多くすることを特徴とする(2)記載の超音波式連続酸洗方法。
(4) 連続酸洗槽内の帯板の出口と入口の間に帯板を下から支える堰を設け、連続酸洗槽内の帯板の出口、帯板の入口、堰の何れか1以上の近傍から酸洗液を気泡除去槽に吸引することを特徴とする(1)記載の超音波式連続酸洗方法。
(5) 連続酸洗槽内の帯板の出口、入口、堰の何れか1以上の近傍から吸引する酸洗液の量を、帯板の出口と堰との中間部及び/又は帯板の入口と堰との中間部から吸引する酸洗液の量より多くすることを特徴とする(4)記載の超音波式連続酸洗方法。
(6) 酸洗液を吸引する位置を移動させて、酸洗液を吸引することを特徴とする(1)〜(5)の何れか1項記載の超音波式連続酸洗方法。
(7) 酸洗浴中の気泡濃度、分布を測定し、その値、帯板の鋼種、板幅、板の位置の何れか1以上をもとに、酸洗液を吸引する位置を制御することを特徴とする(6)記載の超音波式連続酸洗方法。
【0008】
【発明の実施の形態】
本発明は、このような課題を解決するために、酸洗液中の気泡を除去する気泡除去槽を設置し、酸洗液を吸引及び排出配管によって酸洗槽内の酸洗液を気泡除去槽に吸引し、気泡の除去後、酸洗槽に酸洗液を戻す超音波式連続酸洗方法である。
図1に本発明の基本的概要の平面図、図2に通板方向側面図を示す。図2に示したように、超音波振動子4及び酸洗液吸引口16は、酸洗槽1内に帯板2との間を充分距離を持って設置することにより、帯板2の幅方向の蛇行による超音波振動子4及び酸洗液吸引口16への接触を防止できる。酸洗液3は循環ポンプ9により酸洗液吸引口16より吸引され、酸洗液吸引経路17を通り気泡除去槽19へ運ばれる。気泡除去槽19の気泡除去方法の例を図3、図4に示す。
【0009】
図3、図4の方法は壁22をラビリンス構造にしたものである。気泡除去槽19に注入された酸洗液3は下部のみを切り欠いた壁22のため下部から次の区間に流されるが、次の区間の壁22は上部のみを切り欠いているため、酸洗液3は上部まで流れて次の区間に移る。この様に、壁22は交互に上部と下部を切り欠いているため酸洗液3は上下に流れて平均滞留時間が長くなり、酸洗液3中に含まれる気泡が除去される。また、気泡濃度は下の方が低いため、上下のラビリンス構造にすることにより気泡濃度が低い液が次の区間に流れていき効率的に気泡を除去することができる。壁の数を増やすと除去の効果が上がるが、設置コストが増加するため2個から20個の間で設置することが望ましい。
【0010】
図5、図6の方法は、気泡除去槽19内に羽根車23を設置して攪拌することにより、気泡を気泡除去槽中央部に集めて除去する方法である。酸洗液3を羽根車23で攪拌し渦を作成すると、比重が高いものは渦の外側に集まり、比重が低いものは渦の中心部に集まる。気泡は酸洗液3に比べて比重が低いため渦の中心に集まる。集まった気泡は凝集が促進されて大きな泡となり、上昇速度が速くなり、酸洗液中から除去される。渦の外側の酸洗液は気泡が除去され、循環ポンプ9により吸引される。
【0011】
図3、図4、図5及び図6の気泡除去槽において、気泡が除去された酸洗液3は循環ポンプ9により吸引され、酸洗液供給経路18を通り酸洗槽1へ戻される。
帯板2の溶解で発生した気泡は帯板2の移動と共に酸洗槽の出口1bの方向へ運ばれて、帯板の出口1bに多く溜まる。また、気泡は、酸洗槽1の側面に沿った通板方向と逆方向の酸洗液の流れにより帯板の入口1aの方へ運ばれて帯板の入口1aに溜まる。
したがって、帯板の出口1b及び/又は帯板の入口1aの10m以内に、帯板の出口1bと帯板の入口1aの中間部よりも、酸洗液吸引口16を多く設置し、帯板の出口1b及び/又は帯板の入口1aの10m以内から吸引される酸洗液の量を、中間部から吸引される酸洗液の量よりも多くすれば、気泡濃度の高い液が気泡除去槽19に運ばれて酸洗液中から多くの気泡を除去することができる。
【0012】
また、図7に示すように、酸洗槽1の中に堰24が設置されている設備においては、帯板2と共に運ばれた気泡の移動が、堰24により遮られ、堰24の近傍にも多く溜まる。そのため、堰24と酸洗槽の出入り口の中間部よりも、堰24近傍5m以内に、酸洗液吸引口16を多く配置して、堰24と酸洗槽の出入り口との中間部から吸引する酸洗液の量よりも、堰24近傍5m以内から吸引する酸洗液の量を多くすることが効率的である。
【0013】
帯板2より発生する気泡の量は、鋼種、板幅により異なり、酸洗槽内に発生する液の流れは、板幅、板厚、通板速度により異なる。したがって、酸洗槽1内あるいは上部に設置した気泡センサー20及び気泡可視装置21により気泡濃度の分布を測定し、酸洗液吸引口16を可動として、気泡濃度が高い部分の酸洗液3を吸引することにより、効率的に気泡を除去することができる。また、吸引流量を可変とし、気泡濃度が高いときは吸引速度を増やすことにより酸洗槽3内の気泡濃度の増加を防止することができる。
【0014】
また、酸洗液吸引口16の位置の移動には電動モータや油圧駆動装置を使用でき、深さ方向の位置移動は液面から酸洗槽の底部まで、幅方向は酸洗槽の側面から2mまで、通板方向は酸洗槽の堰、酸洗槽出口1b又は酸洗槽入口1aから10mまでの間とすることが好ましいが、装置コストが増大するので可動範囲はできるだけ小さくすることが好ましい。
【0015】
気泡センサーとしては光学式気泡センサー、電磁式気泡センサー、超音波式気泡センサー、ビデオマイクロスコープの映像を処理する方法などがあり、可視化装置としてはビデオカメラ、CCDカメラ、デジタルカメラなどがある。
【0016】
吸引による気泡除去の効果を気泡センサー20及び気泡可視化装置21により再度測定することにより吸引条件を最適化することが可能であり、帯板の鋼種、板幅、板厚、通板速度等の酸洗設備の操業条件による吸引の最適印加条件を求めることにより、気泡測定の測定時間を省略することも可能である。
また、気泡濃度を連続的に測定せず、定期的に測定することが可能になる。そのため、測定操作の省略、画像解析、データー処理のための装置の省略が可能になる。さらに、気泡濃度を測定しないときには、センサーを酸洗槽から引き上げることができる。
これにより、80℃の酸洗槽の場合、連続測定を行うには、冷却等の装置も大がかりとなるという問題が、定期的測定では簡易な冷却で十分であるため、解決できる。さらに、冷却を行ってもセンサーは精密機器のため酸洗雰囲気で長時間使用すると寿命の点で問題となるが、これについても、定期的測定を行うことにより解決できる。
【0017】
超音波振動子4の材質は、耐食性かつ弾性があるチタン合金やステンレスエポキシ樹脂、塩化ビニル樹脂、エチレン樹脂、フッ素樹脂などの樹脂や塩化ゴム、軟質ゴムなどのゴムをコーティングした物を使用でき、酸洗液吸引口16及び酸洗液吸引経路17、酸洗液供給経路18、気泡除去槽19、壁22、羽根車は耐熱及び耐酸性があるフッ素樹脂、塩化ビニル、エポキシ樹脂などの樹脂単体や金属に樹脂やゴムをコーティングした複合材も使用できる。
超音波振動子4から印加する超音波の強度は、最大値を100Pa以上とすることが好ましいが、超音波の強度を高くしすぎると超音波振動子のコストが増大するので、150kPa以下とすることが好ましい。また、印加する周波数も10kHzから200kHzの範囲内の機器が性能及び装置コストの点から好ましい。
【0018】
【実施例】
本発明の実施例として、図1に示したように超音波振動子4を酸洗槽の側面の中央部に設置し、酸洗槽出口1bと入口1aから1m、酸洗槽側面から500mm、液面から300mmの場所に、酸洗液吸引口16、気泡除去槽19を設置した。可動範囲は、通板方向500mm、板幅方向200mm、上下方向300mmとし、可動は電動モータにて行った。
気泡除去槽19の材質はフッ素樹脂にし、高さ1000mm、幅1000mm、奥行き1000mmの大きさにし、図3に示すように中に200mmピッチにフッ素樹脂製の壁22を4枚設置した。
超音波振動板4の大きさは、何れも幅300mm、高さ300mmとした。超音波振動子4から印加する超音波の周波数は28kHz、音圧の最大値を100kPaとした。
気泡センサー20としては光学式気泡センサーを用い、気泡可視化装置21にはビデオカメラを用いた。
一方、比較例は超音波振動子4のみとし、吸引による気泡除去設備、気泡センサー20、気泡可視化装置21を除いた方法とした。
その結果、本発明例では高い音圧の超音波が安定して帯板に印加されて帯板全面にわたりスケールが除去されたが、比較例はデスケムラがあった
【0019】
【発明の効果】
操業中に酸洗槽内に発生する気泡を除去することにより、高い音圧の超音波を安定して帯板に印加することが可能となり、デスケムラ等の欠陥の発生を抑制することができるため、産業上の貢献が極めて高い。
【図面の簡単な説明】
【図1】酸洗槽内の側面に超音波振動子、吸引による気泡除去設備、気泡センサーを配置した超音波式酸洗装置の平面図である。
【図2】酸洗槽内の側面に超音波振動板、吸引による気泡除去設備、気泡可視化装置を配置した超音波式酸洗装置のAA’面からの通板方向断面図である。
【図3】壁を用いた気泡除去槽の断面図である。
【図4】壁を用いた気泡除去槽の平面図である。
【図5】羽根車を用いた気泡除去槽の断面図である。
【図6】羽根車を用いた気泡除去槽の平面図である。
【図7】堰がある酸洗槽に超音波振動子、吸引による気泡除去設備を配置した超音波式酸洗装置の通板方向断面図である。
【図8】超音波振動子を帯板の上下に対向して配置した従来の超音波式酸洗装置の幅方向断面図である。
【図9】超音波振動子を帯板の上下に対向して配置し、酸溶液タンクに供給する水を脱気した従来の超音波式酸洗装置の通板方向断面図である。
【符号の説明】
1 :酸洗槽
1a:帯板の入口
2b:帯板の出口
2 :帯板
3 :酸洗液
4 :超音波振動子
5 :超音波振動板
6 :超音波発振子
7 :超音波発振器
8 :シールロール
9 :循環ポンプ
10:酸溶液タンク
11:水供給源
12:給水経路
13:酸供給源
14:給酸経路
15:脱気装置
16:酸洗液吸引口
17:酸洗液吸引経路
18:酸洗液供給経路
19:気泡除去槽
20:気泡センサー
21:気泡可視化装置
22:壁
23:羽根車
24:堰
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of applying an ultrasonic wave to a metal strip running in a pickling solution in a continuous pickling tank (referred to as a pickling tank) to perform a pickling treatment.
[0002]
[Prior art]
As shown in FIG. 8, Patent Document 1 discloses an ultrasonic pickling apparatus for applying an ultrasonic wave to a pickling liquid 3 to improve the pickling effect in a device for continuously pickling a strip 2. It has been disclosed. The apparatus applies an ultrasonic wave from an ultrasonic vibrator 4 to a strip 2 traveling in a pickling solution 3 filled in a pickling tank 1.
In the pickling apparatus, the pickling solution 3 in the pickling tank 1 is circulated between the pickling tank 3 and the acid solution tank 10 by a circulation pump 9 as shown in FIG. Water is supplied from a water supply 11 through a water supply path 12, and hydrochloric acid is supplied from an acid supply 13 through an acid supply path 14. In Patent Literature 2, a deaerator 15 is installed between a water supply source 11 and an acid solution tank 9 to reduce the concentration of air dissolved in water, thereby increasing cavitation impact pressure generated by application of ultrasonic waves. are doing.
[0003]
However, in this method, heating or decompression is performed at 90 ° C. in order to reduce the amount of air dissolved in water supplied to the acid solution tank 8. Therefore, it was not possible to solve the problem that hydrogen was generated due to the dissolution of iron during operation to form bubbles, and the concentration of bubbles in the pickling liquid 3 in the pickling tank 1 increased. When the concentration of bubbles in the pickling liquid 3 increases, the ultrasonic waves are attenuated by the bubbles, and the intensity of the ultrasonic waves applied to the strip decreases, so that residual scale is removed (called deschemla).
The pickling equipment schematically shown in FIGS. 8 and 9 is an apparatus that dissolves the scale attached to the strip 2 with the pickling liquid when the strip 2 passes through the pickling tank 1. Not only the scale is dissolved by the washing solution, but also the iron exposed by the dissolution of the scale is dissolved in the pickling solution. Hydrogen generated by the dissolution of iron in the pickling liquid becomes bubbles, and circulates in the pickling tank 1 together with the pickling liquid by the movement of the strip 2.
[0004]
Further, the attenuation rate of the ultrasonic wave passing through the pickling solution increases in proportion to the concentration of bubbles contained in the pickling solution. Therefore, when the bubble concentration increases, the attenuation of the ultrasonic wave increases, the intensity of the ultrasonic wave applied to the strip decreases, and the pickling speed decreases. In order to increase the intensity of the ultrasonic wave applied to the band 2 in such a state, there are a method of increasing the output of the ultrasonic wave and a method of bringing the ultrasonic vibrator 4 closer to the band 2. However, to increase the output of the ultrasonic wave, the cost of the vibrator increases. Further, when the ultrasonic vibrator 4 is brought close to the band plate 2, the band plate 2 easily comes into contact with the ultrasonic vibrator 4 due to the meandering and vibration of the band plate 2, and the possibility of quality defects increases.
Further, the steel type, the width and the passing speed of the strip 2 passing through the pickling tank 1 during the operation are not constant, and vary depending on the operating conditions. Shading occurs in the bubble concentration. When an ultrasonic wave is applied in such a state, the intensity of the ultrasonic wave applied to the band plate becomes uneven, resulting in a quality defect such as unevenness of the surface.
[0005]
[Patent Document 1]
JP-A-5-78874 [Patent Document 2]
JP-A-5-78871
[Problems to be solved by the invention]
The present invention increases the intensity of the ultrasonic wave applied to the band plate from the ultrasonic vibrator by lowering the bubble concentration of hydrogen generated by dissolving the band plate in the pickling solution, and stabilizes the pickling efficiency. An object of the present invention is to provide a pickling apparatus.
[0007]
[Means for Solving the Problems]
The ultrasonic continuous pickling apparatus of the present invention is as follows.
(1) In a method of immersing a running strip in a continuous pickling tank and pickling while applying ultrasonic waves to the strip, the pickling liquid in the continuous pickling tank is sucked into a bubble removing tank. And removing the bubbles and returning the pickling solution to the continuous pickling tank.
(2) The ultrasonic continuous pickling method according to (1), wherein the pickling solution is sucked into the bubble removing tank from near the outlet of the strip and / or near the inlet of the strip in the continuous pickling tank. .
(3) The amount of the pickling liquid sucked from near the outlet of the strip and / or the inlet of the strip in the continuous pickling tank is determined by the amount of the pickling liquid sucked from the intermediate portion between the outlet and the inlet of the strip. The ultrasonic continuous pickling method according to (2), wherein the method is increased.
(4) A weir is provided between the outlet and the inlet of the strip in the continuous pickling tank to support the strip from below, and at least one of the outlet of the strip, the inlet of the strip, and the weir in the continuous pickling tank. (1) The continuous ultrasonic pickling method according to (1), wherein the pickling liquid is sucked into the bubble removing tank from the vicinity of (1).
(5) The amount of the pickling liquid sucked from at least one of the outlet, the inlet, and the weir of the strip in the continuous pickling tank is adjusted to an intermediate part between the outlet of the strip and the weir and / or the height of the strip. (4) The ultrasonic continuous pickling method according to (4), wherein the amount of the pickling solution sucked from an intermediate portion between the inlet and the weir is larger than the amount of the pickling solution.
(6) The ultrasonic continuous pickling method according to any one of (1) to (5), wherein the pickling solution is sucked by moving a position where the pickling solution is sucked.
(7) Measure the concentration and distribution of bubbles in the pickling bath, and control the position where the pickling liquid is sucked based on at least one of the value, the steel type of the strip, the width of the strip, and the position of the strip. (6) The continuous ultrasonic pickling method according to (6).
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
In order to solve such problems, the present invention installs a bubble removing tank for removing bubbles in the pickling solution, and removes bubbles in the pickling solution in the pickling tank by a suction and discharge pipe for the pickling solution. This is an ultrasonic continuous pickling method in which the pickling solution is sucked into the tank, the bubbles are removed, and then the pickling liquid is returned to the pickling tank.
FIG. 1 is a plan view of the basic outline of the present invention, and FIG. As shown in FIG. 2, the ultrasonic vibrator 4 and the pickling solution suction port 16 are installed in the pickling tank 1 with a sufficient distance from the band plate 2 so that the width of the band plate 2 Contact with the ultrasonic vibrator 4 and the pickling solution suction port 16 due to meandering in the direction can be prevented. The pickling liquid 3 is sucked from the pickling liquid suction port 16 by the circulation pump 9, and is conveyed to the bubble removal tank 19 through the pickling liquid suction path 17. 3 and 4 show an example of a method of removing bubbles in the bubble removing tank 19.
[0009]
3 and 4, the wall 22 has a labyrinth structure. The pickling liquid 3 injected into the bubble removing tank 19 flows from the lower portion to the next section due to the wall 22 having only the lower portion cut off. However, since the wall 22 in the next section has only the upper portion cut off, the acid 22 is removed. The washing liquid 3 flows to the upper part and moves to the next section. As described above, the pickling liquid 3 flows up and down because the walls 22 are alternately cut off at the upper part and the lower part, so that the average residence time becomes longer, and the bubbles contained in the pickling liquid 3 are removed. Further, since the lower bubble concentration is lower, the liquid having a lower bubble concentration flows to the next section by forming the upper and lower labyrinth structure, so that the bubbles can be efficiently removed. Increasing the number of walls increases the removal effect, but increases the installation cost, so it is desirable to install between 2 and 20 walls.
[0010]
5 and 6 are methods in which the impeller 23 is installed in the bubble removing tank 19 and stirred to collect and remove bubbles in the center of the bubble removing tank. When the pickling liquid 3 is stirred by the impeller 23 to form a vortex, those having a high specific gravity are collected outside the vortex, and those having a low specific gravity are collected at the center of the vortex. Bubbles gather at the center of the vortex because the specific gravity is lower than that of the pickling liquid 3. The collected bubbles are promoted to be coagulated and become large bubbles, the rising speed is increased, and the bubbles are removed from the pickling liquid. The pickling liquid outside the vortex has bubbles removed and is sucked by the circulation pump 9.
[0011]
In the bubble removing tanks of FIGS. 3, 4, 5 and 6, the pickling liquid 3 from which bubbles have been removed is sucked by the circulation pump 9 and returned to the pickling tank 1 through the pickling liquid supply path 18.
Bubbles generated by the dissolution of the strip 2 are carried toward the outlet 1b of the pickling tank along with the movement of the strip 2, and are accumulated at the outlet 1b of the strip. Further, the bubbles are carried toward the inlet 1a of the strip by the flow of the pickling liquid in the direction opposite to the passing direction along the side surface of the pickling tank 1, and are accumulated at the inlet 1a of the strip.
Accordingly, the pickling liquid suction port 16 is provided more within 10 m of the strip plate outlet 1b and / or the strip plate inlet 1a than the intermediate portion between the strip plate outlet 1b and the strip plate inlet 1a. If the amount of the pickling liquid sucked from within 10 m of the outlet 1b and / or the inlet 1a of the strip is larger than the amount of the pickling liquid sucked from the middle part, the liquid having a high bubble concentration can remove bubbles. A large number of bubbles can be removed from the pickling liquid by being transported to the tank 19.
[0012]
Further, as shown in FIG. 7, in a facility in which a weir 24 is installed in the pickling tank 1, the movement of air bubbles carried together with the band plate 2 is blocked by the weir 24, and Also accumulates. For this reason, more pickling liquid suction ports 16 are arranged within 5 m in the vicinity of the weir 24 than the middle part between the weir 24 and the entrance of the pickling tank, and suction is performed from the middle part between the weir 24 and the entrance of the pickling tank. It is more efficient to increase the amount of the pickling solution sucked from within 5 m near the weir 24 than the amount of the pickling solution.
[0013]
The amount of bubbles generated from the strip 2 varies depending on the type of steel and the plate width, and the flow of the liquid generated in the pickling tank varies depending on the plate width, the plate thickness, and the passing speed. Therefore, the distribution of the bubble concentration is measured by the bubble sensor 20 and the bubble visualizing device 21 installed in or on the pickling tank 1, and the pickling solution suction port 16 is moved to remove the pickling solution 3 in the portion having a high bubble concentration. By sucking, air bubbles can be efficiently removed. In addition, the suction flow rate is variable, and when the bubble concentration is high, the suction speed is increased to prevent the bubble concentration in the pickling tank 3 from increasing.
[0014]
In addition, an electric motor or a hydraulic drive can be used to move the position of the pickling liquid suction port 16, and the position in the depth direction can be moved from the liquid level to the bottom of the pickling tank, and the width direction can be moved from the side of the pickling tank. It is preferable that the passing direction is between 10 m from the pickling tank weir, pickling tank outlet 1b or pickling tank inlet 1a up to 2m, but the movable range should be as small as possible because the equipment cost increases. preferable.
[0015]
Examples of the bubble sensor include an optical bubble sensor, an electromagnetic bubble sensor, an ultrasonic bubble sensor, a method of processing an image of a video microscope, and the like, and examples of a visualization device include a video camera, a CCD camera, and a digital camera.
[0016]
It is possible to optimize the suction conditions by measuring the effect of removing bubbles by suction again with the bubble sensor 20 and the bubble visualizing device 21, and to adjust the acidity such as the steel type, the width, the thickness, and the passing speed of the strip. It is also possible to omit the measurement time of the bubble measurement by obtaining the optimum application condition of suction according to the operation condition of the washing facility.
In addition, it is possible to measure the bubble concentration periodically instead of continuously. Therefore, it is possible to omit the measurement operation, and to omit the devices for image analysis and data processing. Further, when the bubble concentration is not measured, the sensor can be pulled out of the pickling tank.
Thus, in the case of an 80 ° C. pickling tank, the problem of large-scale equipment such as cooling for continuous measurement can be solved because simple cooling is sufficient for periodic measurement. Further, even if the sensor is cooled, the sensor is a precision instrument, and if it is used for a long time in an acid pickling atmosphere, there is a problem in terms of its life. However, this can also be solved by performing periodic measurements.
[0017]
As the material of the ultrasonic vibrator 4, a material coated with a resin such as a corrosion-resistant and elastic titanium alloy, a stainless steel epoxy resin, a vinyl chloride resin, an ethylene resin, a fluororesin or a rubber such as a chloride rubber or a soft rubber can be used. Pickling liquid suction port 16 and pickling liquid suction path 17, pickling liquid supply path 18, bubble removing tank 19, wall 22, impeller is made of heat-resistant and acid-resistant resin such as fluororesin, vinyl chloride, epoxy resin Alternatively, a composite material obtained by coating a resin or rubber on a metal can be used.
The intensity of the ultrasonic wave applied from the ultrasonic vibrator 4 is preferably set to a maximum value of 100 Pa or more, but if the intensity of the ultrasonic wave is too high, the cost of the ultrasonic vibrator increases. Is preferred. Further, a device whose applied frequency is in the range of 10 kHz to 200 kHz is preferable in terms of performance and device cost.
[0018]
【Example】
As an embodiment of the present invention, as shown in FIG. 1, the ultrasonic transducer 4 is installed at the center of the side of the pickling tank, 1 m from the pickling tank outlet 1b and the inlet 1a, 500 mm from the pickling tank side, The pickling solution suction port 16 and the bubble removal tank 19 were set at a position 300 mm from the liquid level. The movable range was 500 mm in the sheet passing direction, 200 mm in the sheet width direction, and 300 mm in the vertical direction, and the movement was performed by an electric motor.
The material of the bubble removing tank 19 was made of fluororesin and had a size of 1000 mm in height, 1000 mm in width, and 1000 mm in depth. As shown in FIG. 3, four fluororesin walls 22 were arranged at a pitch of 200 mm in the inside.
The size of each of the ultrasonic vibration plates 4 was 300 mm in width and 300 mm in height. The frequency of the ultrasonic wave applied from the ultrasonic vibrator 4 was 28 kHz, and the maximum value of the sound pressure was 100 kPa.
An optical bubble sensor was used as the bubble sensor 20, and a video camera was used as the bubble visualization device 21.
On the other hand, in the comparative example, only the ultrasonic vibrator 4 was used, and the method of removing the bubble removing device by suction, the bubble sensor 20, and the bubble visualizing device 21 was adopted.
As a result, in the example of the present invention, ultrasonic waves having a high sound pressure were stably applied to the band plate, and the scale was removed over the entire surface of the band plate.
【The invention's effect】
By removing bubbles generated in the pickling tank during operation, it is possible to apply ultrasonic waves with high sound pressure to the strip in a stable manner, and it is possible to suppress the occurrence of defects such as deschemla. The industrial contribution is extremely high.
[Brief description of the drawings]
FIG. 1 is a plan view of an ultrasonic pickling apparatus in which an ultrasonic oscillator, a device for removing bubbles by suction, and a bubble sensor are arranged on a side surface in a pickling tank.
FIG. 2 is a cross-sectional view of the ultrasonic pickling apparatus in which an ultrasonic vibration plate, a device for removing bubbles by suction, and a device for visualizing bubbles are arranged on a side surface in a pickling tank, in the direction of the plate passing from the AA ′ plane.
FIG. 3 is a sectional view of a bubble removing tank using a wall.
FIG. 4 is a plan view of an air bubble removing tank using a wall.
FIG. 5 is a sectional view of an air bubble removing tank using an impeller.
FIG. 6 is a plan view of an air bubble removing tank using an impeller.
FIG. 7 is a cross-sectional view in the passing direction of an ultrasonic pickling apparatus in which an ultrasonic oscillator and a device for removing bubbles by suction are arranged in a pickling tank having a weir.
FIG. 8 is a cross-sectional view in the width direction of a conventional ultrasonic pickling apparatus in which ultrasonic vibrators are arranged so as to face up and down a strip.
FIG. 9 is a cross-sectional view in the passing direction of a conventional ultrasonic pickling apparatus in which ultrasonic vibrators are arranged oppositely above and below a strip plate and water supplied to an acid solution tank is degassed.
[Explanation of symbols]
1: pickling tank 1a: band plate inlet 2b: band plate outlet 2: band plate 3: pickling solution 4: ultrasonic vibrator 5: ultrasonic vibrating plate 6: ultrasonic oscillator 7: ultrasonic oscillator 8 : Sealing roll 9: Circulating pump 10: Acid solution tank 11: Water supply source 12: Water supply path 13: Acid supply source 14: Acid supply path 15: Deaerator 16: Pickling liquid suction port 17: Pickling liquid suction path 18: pickling liquid supply path 19: bubble removal tank 20: bubble sensor 21: bubble visualization device 22: wall 23: impeller 24: weir

Claims (7)

連続酸洗槽内に走行する帯板を浸漬して、前記帯板に超音波を印加しながら酸洗する方法において、前記連続酸洗槽内の酸洗液を気泡除去槽に吸引し、気泡の除去後、前記連続酸洗槽に酸洗液を戻すことを特徴とする超音波式連続酸洗方法。In the method of immersing a strip running in a continuous pickling tank and pickling while applying ultrasonic waves to the strip, the pickling liquid in the continuous pickling tank is sucked into a bubble removal tank, and bubbles are removed. An ultrasonic continuous pickling method, comprising: returning the pickling solution to the continuous pickling tank after removing the acid. 連続酸洗槽内の帯板の出口及び/又は帯板の入口の近傍から酸洗液を気泡除去槽に吸引することを特徴とする請求項1記載の超音波式連続酸洗方法。2. The ultrasonic continuous pickling method according to claim 1, wherein the pickling liquid is sucked into the bubble removing tank from near the outlet of the strip and / or the inlet of the strip in the continuous pickling tank. 連続酸洗槽内の帯板の出口及び/又は帯板の入口の近傍から吸引する酸洗液の量を、帯板の出口と入口の中間部から吸引する酸洗液の量より多くすることを特徴とする請求項2記載の超音波式連続酸洗方法。The amount of pickling liquid sucked from near the outlet of the strip and / or the inlet of the strip in the continuous pickling tank should be larger than the amount of pickling liquid sucked from the intermediate part between the outlet and the inlet of the strip. The ultrasonic continuous pickling method according to claim 2, characterized in that: 連続酸洗槽内の帯板の出口と入口の間に帯板を下から支える堰を設け、連続酸洗槽内の帯板の出口、帯板の入口、堰の何れか1以上の近傍から酸洗液を気泡除去槽に吸引することを特徴とする請求項1記載の超音波式連続酸洗方法。A weir is provided between the outlet and the inlet of the strip in the continuous pickling tank to support the strip from below. From the vicinity of any one or more of the outlet of the strip, the inlet of the strip and the weir in the continuous pickling tank 2. The ultrasonic continuous pickling method according to claim 1, wherein the pickling liquid is sucked into the bubble removing tank. 連続酸洗槽内の帯板の出口、入口、堰の何れか1以上の近傍から吸引する酸洗液の量を、帯板の出口と堰との中間部及び/又は帯板の入口と堰との中間部から吸引する酸洗液の量より多くすることを特徴とする請求項4記載の超音波式連続酸洗方法。The amount of the pickling liquid sucked from at least one of the outlet, the inlet, and the weir of the strip in the continuous pickling tank is measured at an intermediate part between the outlet of the strip and the weir and / or the inlet of the strip and the weir. 5. The ultrasonic continuous pickling method according to claim 4, wherein the amount of the pickling liquid sucked from the intermediate portion between the two is increased. 酸洗液を吸引する位置を移動させて、酸洗液を吸引することを特徴とする請求項1〜5の何れか1項記載の超音波式連続酸洗方法。The ultrasonic pickling method according to any one of claims 1 to 5, wherein the pickling solution is sucked by moving a position where the pickling solution is sucked. 酸洗浴中の気泡濃度、分布を測定し、その値、帯板の鋼種、板幅、板の位置の何れか1以上をもとに、酸洗液を吸引する位置を制御することを特徴とする請求項6記載の超音波式連続酸洗方法。It is characterized by measuring the concentration and distribution of bubbles in the pickling bath, and controlling the position where the pickling liquid is sucked based on at least one of the value, the steel type of the strip, the width of the strip, and the position of the strip. The continuous ultrasonic pickling method according to claim 6.
JP2002373227A 2002-12-24 2002-12-24 Ultrasonic continuous pickling method Withdrawn JP2004204269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002373227A JP2004204269A (en) 2002-12-24 2002-12-24 Ultrasonic continuous pickling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002373227A JP2004204269A (en) 2002-12-24 2002-12-24 Ultrasonic continuous pickling method

Publications (1)

Publication Number Publication Date
JP2004204269A true JP2004204269A (en) 2004-07-22

Family

ID=32811591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002373227A Withdrawn JP2004204269A (en) 2002-12-24 2002-12-24 Ultrasonic continuous pickling method

Country Status (1)

Country Link
JP (1) JP2004204269A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108368611A (en) * 2015-11-05 2018-08-03 雷托马克斯有限公司 For to line or the pickling of line component and phosphatization processing equipment and for the processing method and treatment facility to line or line component coating
JP2021147660A (en) * 2020-03-18 2021-09-27 日本ペイント・サーフケミカルズ株式会社 Scale and/or carbon removal method, and method for producing metal material
KR20210133458A (en) * 2020-04-29 2021-11-08 연세대학교 산학협력단 Bubble Removal Apparatus using Acoustic Waves and Bubble Removal Method using the Same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108368611A (en) * 2015-11-05 2018-08-03 雷托马克斯有限公司 For to line or the pickling of line component and phosphatization processing equipment and for the processing method and treatment facility to line or line component coating
CN108368611B (en) * 2015-11-05 2020-12-29 雷托马克斯有限公司 Treatment device for pickling and phosphating of threads or thread parts, and treatment method and treatment installation for coating threads or thread parts
JP2021147660A (en) * 2020-03-18 2021-09-27 日本ペイント・サーフケミカルズ株式会社 Scale and/or carbon removal method, and method for producing metal material
JP7329472B2 (en) 2020-03-18 2023-08-18 日本ペイント・サーフケミカルズ株式会社 Method for removing scale and/or carbon, and method for producing metal material
KR20210133458A (en) * 2020-04-29 2021-11-08 연세대학교 산학협력단 Bubble Removal Apparatus using Acoustic Waves and Bubble Removal Method using the Same
US20210354054A1 (en) * 2020-04-29 2021-11-18 Industry-Academic Cooperation Foundation, Yonsei University Bubble removal apparatus using acoustic waves and bubble removal method using the same
KR102427393B1 (en) * 2020-04-29 2022-08-01 연세대학교 산학협력단 Bubble Removal Apparatus using Acoustic Waves and Bubble Removal Method using the Same
US11573436B2 (en) * 2020-04-29 2023-02-07 Industry-Academic Cooperation Foundation, Yonsei University Bubble removal apparatus comprising an acoustic wave generator that forms a standing acoustic field by generating a pair of acoustic waves and bubble removal method using the same

Similar Documents

Publication Publication Date Title
KR20070093894A (en) Method and apparatus for cleaning substrate, and program recording medium
JP2004204269A (en) Ultrasonic continuous pickling method
JP2007138423A (en) Air purifying apparatus in tunnel
RU2764255C1 (en) Ultrasonic strip degreasing
CN211734200U (en) Sea sand desalination device
JP2017006823A (en) Deaeration method and deaerator
US3494815A (en) Apparatus for etching a printing plate
CN202591161U (en) Cleaning device
EP1057546A1 (en) Megasonic cleaner
JPH11508644A (en) Method and apparatus for chemical electrolytic treatment of conductive plates and foils
JP2003313688A (en) Continuous ultrasonic-cleaning apparatus
JP2004204268A (en) Ultrasonic continuous pickling method
JP2004204270A (en) Ultrasonic continuous pickling method
JP2000331979A (en) Device and method for treating substrate
JPH09143767A (en) Method and device for cleaning surface of metallic material
RU2759938C1 (en) Management of ultrasonic degreasing
KR101014520B1 (en) The apparatus and method of single wafer cleaning
JP2005097673A (en) Method and apparatus for applying ultrasonic waves in continuous pickling facility
CN220043786U (en) Novel etching device
CN114514077B (en) Method and device for continuously cleaning a moving steel strip
JP4042519B2 (en) Ultrasonic cleaning equipment
JPWO2014069577A1 (en) Sheet glass cleaning apparatus and sheet glass cleaning method
JP2011067820A (en) Sewage treatment apparatus and solid-liquid separation membrane module
JP2003286593A (en) Facility for pickling stainless steel and process for controlling pickling solution in the facility
WO2019075592A1 (en) Film assembly cleaning device capable of improving processing uniformity

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060307