JP2004203660A - Metallic fiber-reinforced composite material - Google Patents

Metallic fiber-reinforced composite material Download PDF

Info

Publication number
JP2004203660A
JP2004203660A JP2002373554A JP2002373554A JP2004203660A JP 2004203660 A JP2004203660 A JP 2004203660A JP 2002373554 A JP2002373554 A JP 2002373554A JP 2002373554 A JP2002373554 A JP 2002373554A JP 2004203660 A JP2004203660 A JP 2004203660A
Authority
JP
Japan
Prior art keywords
composite material
sic
reinforced composite
fiber
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002373554A
Other languages
Japanese (ja)
Inventor
Tomoyuki Hikita
友幸 引田
Hiroyuki Tsuto
宏之 津戸
Ichiro Aoki
一郎 青木
Yoshibumi Takei
義文 武井
Tatsuya Shiogai
達也 塩貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2002373554A priority Critical patent/JP2004203660A/en
Publication of JP2004203660A publication Critical patent/JP2004203660A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metallic fiber-reinforced composite material having improved strength while keeping the characteristics of an SiC reinforced composite material such as lightweight and high rigidity. <P>SOLUTION: The lightweight and high rigidity metallic fiber-reinforced composite material having improved strength is obtained by compositing the metallic long fiber having higher coefficient of thermal expansion and higher melting point than those of Si and SiC as reinforcing materials with an Si matrix. The strength of the composite material is improved by using the metallic long fiber having higher coefficient of thermal expansion and higher melting point than those of Si as an additional reinforcing material to the conventional SiC-reinforced composite material in this way to cause compression stress due to the shrinkage of the metallic long fiber during the cooling from a high temperature in the composite treatment to room temperature in the composite material. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、軽量で高剛性という特徴を有する金属繊維強化複合材料に関し、特に、強度を改善した金属繊維複合材料に関するものである。
【0002】
【従来の技術】
SiをマトリックスとしSiCを強化材として用いたSiC強化複合材料は、軽量、高剛性という特徴を有しており、半導体熱処理装置などに広く用いられるようになってきている。(例えば、特許文献1参照。)
【0003】
【特許文献1】
特開平14−179465号公報
【0004】
【発明が解決しようとする課題】
しかしながら、上述のSiC強化複合材料は、セラミックスのSiC焼結体と比較し強度が低いという問題がある。例えばセラミックスのSiC焼結体の強度が400MPa程度であるのに対し、SiC強化複合材料の強度は300MPa程度に留まっていた。したがって、このことが上述のSiC強化複合材料が普及する妨げとなっていた。
【0005】
本発明は、上述したSiC強化複合材料の課題を解決するために鋭意検討してなされたものであって、その目的は、SiC強化複合材料の軽量で高剛性という特徴を維持しながら、強度を改善した金属繊維強化複合材料を提供することである。
【0006】
【課題を解決するための手段】
上述した本発明の目的は、下記の金属繊維強化複合材料よって達成することができる。
(1)Siマトリックス中に強化材が複合された金属繊維強化複合材料であって、該強化材が金属長繊維およびSiCであることを特徴とする金属繊維強化複合材料。
(2)前記金属長繊維の融点がSiの融点より高く、かつ、前記金属長繊維の熱膨張係数がSiの熱膨張係数より大きいことを特徴とする(1)に記載の金属繊維強化複合材料。
【0007】
【発明の実施の形態】
以下に、本発明をさらに詳細に説明する。
本発明では、Siマトリックス中に強化材が複合された金属繊維強化複合材料であって、該強化材が金属長繊維およびSiCであることを特徴とする金属繊維強化複合材料を提案している。
その理由は、本発明者らは、上記課題を鑑み鋭意研究した結果、強化材として金属長繊維およびSiCを用いることにより、従来のSiCのみを強化材として用いた複合材料より強度が向上することを見出したからである。ここで、金属長繊維とは長さが50mm以上の長繊維を言い、例えば、これを網目状やシート状に成形したものを用いることができる。
【0008】
さらに、金属長繊維を強化材として用いた理由は、以下の理由による。
一般に破壊は、部材に発生する引っ張り応力がその材料の引っ張り強度を超えたとき起こる。ここで、Siより熱膨張係数の大きい金属長繊維を複合化すると、高温での複合化処理から室温までの冷却の間に、金属長繊維の収縮による圧縮応力が複合材料内部に発生する。次に、この複合材料に引っ張り応力を加えると、上記圧縮応力の分だけ大きな引張り荷重に耐えることができるため、結果として強度が向上することとなる。これは曲げ試験においても、材料の荷重を印加した面と反対側の面には引っ張り応力が発生するので、強度向上の効果は十分に発現できる。
このような効果は、繊維長さが50mm未満の金属短繊維では期待できない。こうした金属長繊維は通常、シート状かメッシュ状のものをプリフォーム上に配置することによって十分な効果が得られる。もちろんこの発明の金属長繊維の形態はシート状やメッシュ状に限定されるものではなく、長繊維自体を等間隔に配置することによっても同様の効果は得られ、これも本発明に包含される。
【0009】
次に、もう一つの強化材であるSiCの粒径は、100μm以下であることが、特に好ましい。その理由は、SiCの粒径が100μmより大きい場合、複合材料の強度が100μm以下の場合よりも低くなってしまうからである。
また、該複合材料中のSiCの含有率は、30体積%以上であることが好ましい。その理由は、SiCの含有率が30体積%より少ないとプリフォーム強度が低下して、成形が困難となるからである。
すなわち本発明の強化材は、金属長繊維、および粒径が100μm以下で該複合材料中の充填率が30体積%以上のSiCであることが、特に好ましい。
【0010】
次に、本発明者らは、前記金属長繊維の融点がSiの融点より高く、かつ、前記金属長繊維の熱膨張係数がSiの熱膨張係数より大きいことを特徴とする金属繊維強化複合材料を提案している。
その理由は、金属長繊維の融点がSiの融点より低いと高温での複合化処理時に溶けてるため好ましくなく、また、前記金属長繊維の熱膨張係数がSiの熱膨張係数より小さいと高温での複合化処理から室温までの冷却の間に、金属長繊維の収縮による圧縮応力が発生せず強度の向上を期待できなくなるからである。
ここで、より具体的には、本発明で提案した金属繊維強化複合材料に用いられる金属長繊維強化材としては、タングステン(以下、Wとも標記する。)、モリブデン(以下、Moとも標記する。)などのSiより融点が高く、その熱膨張係数がSiより大きい金属が挙げられる。
【0011】
金属長繊維を強化材とした金属繊維強化複合材料の作製方法としては、例えば、金属長繊維からなる強化材を少なくとも2層挟み込んだSiC成形体中の空隙に、溶融したSiを真空中またはアルゴン雰囲気中で浸透させる方法がある。この際のSiの浸透温度としては1500℃〜強化材に使用する金属長繊維の融点温度未満が好ましい。その理由は、1500℃より低いと緻密な複合材料が得られず、また金属長繊維の融点より高い温度では、金属長繊維が溶融して複合材料中で強化材としての効果が得られなくなるからである。
【0012】
次に、以下に本発明の実施例と比較例により本発明を詳細に説明する。
(実施例1)
SiC原料粉末としては、信濃電気精錬社製の#2000(平均粒径7μm)100重量部に有機バインダーとしてフェノール樹脂(群栄化学工業社製、PG2523)を10重量部加えて混合し、これを目的の形状が得られる金型でプレスした後に成形した。
次に、成形体上に金属長繊維がシート状に成形されたタングステンシート(バックスメタル社製)を挟み込み、さらに上記の混合粉末を加えてプレス成形する作業を繰り返し行い、タングステンシートが厚み方向に1mm間隔で挟み込まれた成形体を得た。これを非酸化雰囲気中200℃で脱バインダーした後に、1000℃まで昇温して焼成することによりSiC−Wシート成形体を得た。
次に、得られた成形体の上面にSiのインゴット(日本電工社製)を載せ、真空中で1500℃の温度で3時間熱処理することにより、溶融Siを成形体中に浸透させてSiCの含有率が50体積%のタングステン繊維強化SiC複合材料を得た。
この材料の3点曲げ強度をJIS1604の方法に従い測定した結果、550MPaという結果が得られた。
【0013】
(実施例2)
SiCの粒径を150μmにした以外は実施例1と同様の方法および手段でタングステン繊維強化SiC複合材料複合材料を得た。この材料の3点曲げ強度を実施例1と同様の方法により測定した。その結果、400MPaという結果が得られた。
【0014】
(実施例3)
金属繊維強化材料にモリブデンシート(バックスメタル社製)を使用した以外は実施例1と同様の方法および手段でモリブデン繊維強化SiC複合材料を得た。この材料の3点曲げ強度を実施例1と同様の方法により測定した。その結果、430MPaという結果が得られた。
【0015】
(比較例)
金属繊維強化材料をSiC成形体に挟み込まない以外は実施例と同様の方法および手段でSiC複合材料を得た。この材料の3点曲げ強度を実施例1と同様の方法により測定した。その結果、280MPaと強度は低かった。
【0016】
以上の結果より、従来のSiC強化複合材料のもう一つの強化材としてSiより融点が高く、その熱膨張係数がSiより大きい金属長繊維を併用することで、高温での複合化処理から室温までの冷却の間に、金属長繊維の収縮による圧縮応力が複合材料に発生し該複合材料の強度を向上することが分かった。
【0017】
【発明の効果】
本発明によれば、従来のSiC強化複合材料よりも強度が高く、セラミックスのSiC焼結体並みの強度を有する複合材料を得ることができる。
したがって、これまで強度が高くないためあまり普及しなかったSiC強化複合材料を幅広い分野に普及させることができる。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a metal fiber reinforced composite material having features of light weight and high rigidity, and more particularly to a metal fiber composite material having improved strength.
[0002]
[Prior art]
A SiC reinforced composite material using Si as a matrix and SiC as a reinforcing material has features of light weight and high rigidity, and has been widely used in semiconductor heat treatment equipment and the like. (For example, refer to Patent Document 1.)
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. H14-179465
[Problems to be solved by the invention]
However, the above-mentioned SiC reinforced composite material has a problem that its strength is lower than that of a ceramic SiC sintered body. For example, the strength of a ceramic SiC sintered body is about 400 MPa, while the strength of a SiC reinforced composite material is only about 300 MPa. Therefore, this hindered the spread of the above-mentioned SiC reinforced composite material.
[0005]
The present invention has been made intensively in order to solve the above-described problems of the SiC reinforced composite material, and the purpose is to increase the strength while maintaining the characteristics of the lightweight and high rigidity of the SiC reinforced composite material. It is to provide an improved metal fiber reinforced composite material.
[0006]
[Means for Solving the Problems]
The above object of the present invention can be achieved by the following metal fiber reinforced composite material.
(1) A metal fiber reinforced composite material in which a reinforcing material is compounded in a Si matrix, wherein the reinforcing material is a metal long fiber and SiC.
(2) The metal fiber reinforced composite material according to (1), wherein a melting point of the metal filament is higher than a melting point of Si, and a coefficient of thermal expansion of the metal filament is larger than a coefficient of thermal expansion of Si. .
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail.
The present invention proposes a metal fiber reinforced composite material in which a reinforcing material is compounded in a Si matrix, wherein the reinforcing material is a metal long fiber and SiC.
The reason is that the present inventors have conducted intensive studies in view of the above problems, and as a result, by using long metal fibers and SiC as the reinforcing material, the strength is improved as compared with the conventional composite material using only SiC as the reinforcing material. Is found. Here, the metal long fiber refers to a long fiber having a length of 50 mm or more. For example, a metal long fiber formed into a mesh or sheet shape can be used.
[0008]
Further, the reason why the long metal fiber is used as the reinforcing material is as follows.
Generally, fracture occurs when the tensile stress generated in a member exceeds the tensile strength of the material. Here, when a long metal fiber having a larger coefficient of thermal expansion than Si is compounded, a compressive stress due to shrinkage of the long metal fiber is generated in the composite material during the high temperature composite treatment and cooling to room temperature. Next, when a tensile stress is applied to the composite material, the composite material can withstand a large tensile load by the amount of the compressive stress, and as a result, the strength is improved. This is because even in the bending test, a tensile stress is generated on the surface opposite to the surface to which the load of the material is applied, so that the effect of improving the strength can be sufficiently exhibited.
Such an effect cannot be expected with short metal fibers having a fiber length of less than 50 mm. Generally, a sufficient effect can be obtained by arranging such a long metal fiber sheet or mesh on the preform. Of course, the form of the metal long fiber of the present invention is not limited to a sheet shape or a mesh shape, and similar effects can be obtained by arranging the long fibers themselves at equal intervals, and this is also included in the present invention. .
[0009]
Next, it is particularly preferable that the particle size of SiC as another reinforcing material is 100 μm or less. The reason is that when the particle size of SiC is larger than 100 μm, the strength of the composite material is lower than when the particle size is 100 μm or less.
The content of SiC in the composite material is preferably 30% by volume or more. The reason is that if the content of SiC is less than 30% by volume, the strength of the preform decreases, and molding becomes difficult.
That is, it is particularly preferable that the reinforcing material of the present invention is a long metal fiber and SiC having a particle size of 100 μm or less and a filling rate in the composite material of 30% by volume or more.
[0010]
Next, the present inventors have proposed a metal fiber reinforced composite material, wherein the melting point of the long metal fiber is higher than the melting point of Si, and the coefficient of thermal expansion of the long metal fiber is larger than the coefficient of thermal expansion of Si. Has been proposed.
The reason is that if the melting point of the long metal fiber is lower than the melting point of Si, it is unfavorable because it melts during the compounding treatment at a high temperature, and if the coefficient of thermal expansion of the long metal fiber is smaller than the coefficient of thermal expansion of the Si, This is because no compressive stress due to shrinkage of the long metal fiber is generated during the cooling from the compounding treatment to the room temperature, and improvement in strength cannot be expected.
Here, more specifically, as the metal long fiber reinforcement used for the metal fiber reinforced composite material proposed in the present invention, tungsten (hereinafter, also referred to as W) and molybdenum (hereinafter, also referred to as Mo). ), Etc., which have a higher melting point than Si and a coefficient of thermal expansion larger than that of Si.
[0011]
As a method for producing a metal fiber reinforced composite material using a metal long fiber as a reinforcing material, for example, molten Si is filled in a gap in a SiC molded body sandwiching at least two layers of a reinforcing material made of a metal long fiber in a vacuum or argon. There is a method of permeating in the atmosphere. In this case, the permeation temperature of Si is preferably 1500 ° C. to less than the melting point of the long metal fiber used for the reinforcing material. The reason is that if the temperature is lower than 1500 ° C., a dense composite material cannot be obtained, and if the temperature is higher than the melting point of the long metal fiber, the long metal fiber is melted and the effect as a reinforcing material in the composite material cannot be obtained. It is.
[0012]
Next, the present invention will be described in detail below with reference to examples and comparative examples of the present invention.
(Example 1)
As the SiC raw material powder, 10 parts by weight of a phenol resin (PG2523, manufactured by Gunei Chemical Industry Co., Ltd.) as an organic binder was added to 100 parts by weight of # 2000 (average particle size: 7 μm) manufactured by Shinano Electric Refinery, and mixed. Molding was performed after pressing with a mold having the desired shape.
Next, a tungsten sheet (manufactured by Bax Metal Co., Ltd.) in which a long metal fiber is formed into a sheet shape is sandwiched on the molded body, and the above-mentioned mixed powder is added and press-molding is repeated. A molded product sandwiched at 1 mm intervals was obtained. After debinding this at 200 ° C. in a non-oxidizing atmosphere, the temperature was raised to 1000 ° C. and baked to obtain a molded SiC-W sheet.
Next, a Si ingot (manufactured by Nippon Denko Corporation) is placed on the upper surface of the obtained molded body, and heat treatment is performed in a vacuum at a temperature of 1500 ° C. for 3 hours to infiltrate the molten Si into the molded body to form SiC. A tungsten fiber reinforced SiC composite material having a content of 50% by volume was obtained.
As a result of measuring the three-point bending strength of this material according to the method of JIS1604, a result of 550 MPa was obtained.
[0013]
(Example 2)
A tungsten fiber reinforced SiC composite material was obtained in the same manner and in the same manner as in Example 1 except that the particle size of SiC was changed to 150 μm. The three-point bending strength of this material was measured by the same method as in Example 1. As a result, a result of 400 MPa was obtained.
[0014]
(Example 3)
A molybdenum fiber reinforced SiC composite material was obtained in the same manner and in the same manner as in Example 1, except that a molybdenum sheet (manufactured by Bax Metal) was used as the metal fiber reinforced material. The three-point bending strength of this material was measured by the same method as in Example 1. As a result, a result of 430 MPa was obtained.
[0015]
(Comparative example)
An SiC composite material was obtained by the same method and means as in the example except that the metal fiber reinforced material was not sandwiched between the SiC molded bodies. The three-point bending strength of this material was measured by the same method as in Example 1. As a result, the strength was as low as 280 MPa.
[0016]
From the above results, by using a long metal fiber having a higher melting point than Si and a thermal expansion coefficient larger than that of Si as another reinforcing material of the conventional SiC reinforced composite material, from composite treatment at high temperature to room temperature It was found that compressive stress due to shrinkage of the long metal fiber was generated in the composite material during cooling of the composite material, thereby improving the strength of the composite material.
[0017]
【The invention's effect】
According to the present invention, it is possible to obtain a composite material having a higher strength than a conventional SiC reinforced composite material and having a strength similar to that of a ceramic SiC sintered body.
Therefore, the SiC reinforced composite material, which has not been widely used because of its low strength, can be widely used.

Claims (2)

Siマトリックス中に強化材が複合された金属繊維強化複合材料であって、該強化材が金属長繊維およびSiCであることを特徴とする金属繊維強化複合材料。A metal fiber reinforced composite material in which a reinforcing material is compounded in a Si matrix, wherein the reinforcing material is a metal long fiber and SiC. 前記金属長繊維の融点がSiの融点より高く、かつ、前記金属長繊維の熱膨張係数がSiの熱膨張係数より大きいことを特徴とする請求項1に記載の金属繊維強化複合材料。2. The metal fiber reinforced composite material according to claim 1, wherein a melting point of the long metal fiber is higher than a melting point of Si, and a coefficient of thermal expansion of the long metal fiber is larger than a coefficient of thermal expansion of Si.
JP2002373554A 2002-12-25 2002-12-25 Metallic fiber-reinforced composite material Pending JP2004203660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002373554A JP2004203660A (en) 2002-12-25 2002-12-25 Metallic fiber-reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002373554A JP2004203660A (en) 2002-12-25 2002-12-25 Metallic fiber-reinforced composite material

Publications (1)

Publication Number Publication Date
JP2004203660A true JP2004203660A (en) 2004-07-22

Family

ID=32811802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002373554A Pending JP2004203660A (en) 2002-12-25 2002-12-25 Metallic fiber-reinforced composite material

Country Status (1)

Country Link
JP (1) JP2004203660A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009214540A (en) * 2008-03-07 2009-09-24 Boeing Co:The Method for manufacturing metal-ceramic matrix hybrid composite structure, method for manufacturing composite structure and laminated composite structure
RU2819997C1 (en) * 2023-07-20 2024-05-28 Федеральное государственное бюджетное учреждение науки Институт физики твердого тела имени Ю.А. Осипьяна Российской академии наук (ИФТТ РАН) High-temperature reaction-bonded composite material based on silicon carbide ceramics, molybdenum wire and its silicides and method for production thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009214540A (en) * 2008-03-07 2009-09-24 Boeing Co:The Method for manufacturing metal-ceramic matrix hybrid composite structure, method for manufacturing composite structure and laminated composite structure
RU2819997C1 (en) * 2023-07-20 2024-05-28 Федеральное государственное бюджетное учреждение науки Институт физики твердого тела имени Ю.А. Осипьяна Российской академии наук (ИФТТ РАН) High-temperature reaction-bonded composite material based on silicon carbide ceramics, molybdenum wire and its silicides and method for production thereof

Similar Documents

Publication Publication Date Title
EP2657207B1 (en) Method of producing a melt-infiltrated ceramic matrix composite article
US5990025A (en) Ceramic matrix composite and method of manufacturing the same
EP2112128A1 (en) Silicon carbide fiber dispersion-reinforced composite refractory molding
JP2017039997A (en) Aluminum alloy-ceramic composite material and production method for aluminum alloy-ceramic composite material
JP2010064954A (en) Sic/al-based composite material and method for producing the same
JP2535768B2 (en) High heat resistant composite material
JP6807013B2 (en) Manufacturing method of aluminum alloy-ceramic composite material
JP2007016286A (en) Metal matrix composite and its manufacturing method
JP2004203660A (en) Metallic fiber-reinforced composite material
JP5068218B2 (en) Carbon fiber reinforced silicon carbide composite material and method for producing the same
JP5172232B2 (en) Aluminum-ceramic composite and its manufacturing method
JP5117085B2 (en) Metal-ceramic composite material and manufacturing method thereof
JP4907777B2 (en) Metal-ceramic composite material
JP2007270340A (en) Metal-ceramic composite material and its manufacturing method
JPH11170027A (en) Ingot for metal-ceramic composite and production thereof
JP5051834B2 (en) Thermal shock-resistant electromagnetic shielding material and method for producing the same
KR102444652B1 (en) high volume reinforced aluminum composite and method of manufacturing the same
KR102155438B1 (en) Metal matrix composite and method thereof
JP3941455B2 (en) Bonding method for high heat resistant inorganic fiber bonded ceramics
JP7394500B1 (en) Aluminum composite material containing metal and/or ceramics and graphite, and method for producing aluminum composite material containing metal and/or ceramics and graphite
JP4542747B2 (en) Manufacturing method of high strength hexagonal boron nitride sintered body
JP2000288714A (en) Production of metal-ceramics composite material
JP5880208B2 (en) Method for producing inorganic fibrous ceramic porous body
JP2003105461A (en) Ceramics/metal composite material and manufacturing method therefor
JP2024015754A (en) Method of producing ceramic matrix composites