JP2004203173A - Pneumatic tire for aircraft - Google Patents

Pneumatic tire for aircraft Download PDF

Info

Publication number
JP2004203173A
JP2004203173A JP2002373684A JP2002373684A JP2004203173A JP 2004203173 A JP2004203173 A JP 2004203173A JP 2002373684 A JP2002373684 A JP 2002373684A JP 2002373684 A JP2002373684 A JP 2002373684A JP 2004203173 A JP2004203173 A JP 2004203173A
Authority
JP
Japan
Prior art keywords
tire
groove
circumferential
edge portion
chamfered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002373684A
Other languages
Japanese (ja)
Inventor
Sukeo Hamazaki
祐生 浜崎
Takashi Unoki
崇 鵜木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2002373684A priority Critical patent/JP2004203173A/en
Publication of JP2004203173A publication Critical patent/JP2004203173A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1307Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls
    • B60C11/1323Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls asymmetric

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pneumatic tire for aircraft capable of suppressing generation of reversion. <P>SOLUTION: In the pneumatic tire for aircraft, a plurality of circumferential grooves 9 extending in the circumferential direction of a tire are formed in a tread surface 8, and ribs 10 are division-formed by the circumferential grooves 9. At least an outer edge portion 11 of the tire of the rib 10 is formed in a chamfered surface 11a chamfered at the radius R of curvature of 0.6-2.5 times the groove depth d of the circumferential groove 9, and the opening width Wa of the circumferential groove 9 is set to be 2.0-4.0 times the groove depth d. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、航空機用空気入りタイヤに関し、更に詳しくは、リバージョンの発生を抑制するようにした航空機用空気入りタイヤに関する。
【0002】
【従来の技術】
航空機用空気入りタイヤは、一般の車両に使用される空気入りタイヤに比べ、高速・高荷重に耐えることが要求される。特に離着陸の際の高速走行時に発生するスタンディングウェーブ現象により、特にショルダー部に大きな発熱を引き起こし、最悪の場合にはタイヤ破壊につながる恐れがある。
【0003】
そこで、従来、スタンディングウェーブ現象の発生を抑制するため、トレッド面の曲率半径を小さく設定している。また、トレッドパターンにリブパターンを採用し、排水性も確保するようになっている(例えば、特許文献1参照)。
【0004】
【特許文献1】
特開2000−313207号公報
【0005】
【発明が解決しようとする課題】
しかし、上記のように構成した航空機用空気入りタイヤは、リブのエッジ部に高い接地圧が作用し易くなるため、離着陸の際の高速走行時にエッジ部の溝底近傍で大きな圧縮歪みが繰り返し発生し、それによるヒステリシスロスによりエッジ部の溝底近傍のゴム部分がその周辺より大幅に高い温度で発熱し、その結果、ゴムが変質して亀裂(リバージョン)が発生するという問題があった。
【0006】
特にリブのタイヤ外側エッジ部にこのリバージョンが起こり易く、またリム径が18インチ以下のリムを使用する、タイヤ周長が比較的短くなる航空機用空気入りタイヤにおいて顕著である。
【0007】
本発明の目的は、リバージョンの発生を抑制することが可能な航空機用空気入りタイヤを提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成する本発明の航空機用空気入りタイヤは、トレッド面にタイヤ周方向に延在する複数の周方向溝を設け、該周方向溝によりリブを区分形成した航空機用空気入りタイヤにおいて、前記リブの少なくともタイヤ外側エッジ部を前記周方向溝の溝深さdの0.6〜2.5倍の曲率半径Rで面取りすると共に前記周方向溝の開口幅Waを溝深さdの2.0〜4.0倍にしたことを特徴とする。
【0009】
本発明の他の航空機用空気入りタイヤは、トレッド面にタイヤ周方向に延在する複数の周方向溝を設け、該周方向溝によりリブを区分形成した航空機用空気入りタイヤにおいて、前記リブの少なくともタイヤ外側エッジ部を断面直線状の面取り面に形成し、該面取り面の深さcを前記周方向溝の溝深さdの0.3〜0.8倍にすると共に前記周方向溝の開口幅Waを溝深さdの2.0〜4.0倍にしたことを特徴とする。
【0010】
上述した本発明によれば、タイヤ外側エッジ部の剛性が増加し、リブにおける接地圧を均一的に分散させることが可能になる。そのため、離着陸の際の高速走行時にタイヤ外側エッジ部の溝底近傍で繰り返される大きな圧縮歪みを緩和することができるので、タイヤ外側エッジ部の溝底近傍で発生するリバージョンの抑制が可能になる。
【0011】
【発明の実施の形態】
以下、本発明の構成について添付の図面を参照しながら詳細に説明する。
【0012】
図1は本発明の航空機用空気入りタイヤの一例である航空機用空気入りラジアルタイヤを示し、1はトレッド部、2はサイドウォール部、3はビード部である。
【0013】
タイヤ内部には有機繊維コードからなる補強コードをタイヤ周方向に対して70〜90°に傾斜配列した3〜12層のカーカス層4が埋設され、内側のカーカス層4Aの両端部4aがビード部に埋設したビードコア5の周りにビードフィラー6を挟み込むようにしてタイヤ内側から外側へ折り返されている。外側のカーカス層4Bの両端部4bは、ビードコア5の周りにタイヤ外側から内側に巻き付けられている。
【0014】
ビードコア5は、1本の太径のスチール芯線の周囲に複数の細径のスチールワイヤーを螺旋状に巻き付けた断面円形のケーブルビードから構成されている。トレッド部1のカーカス層4の外周側には、有機繊維コードからなる補強コードをタイヤ周方向に対して傾斜方向を逆向きにして層間で交差するように配列した4〜14層のベルト層7が配置されている。
【0015】
トレッド面8には、タイヤ周方向に沿ってストレート状に延在する複数の周方向溝9が設けら、これら周方向溝9によりタイヤ周方向に延在する複数のリブ10が区分形成されている。
【0016】
各リブ10のタイヤ外側エッジ部11及びタイヤ内側エッジ部12は、断面円弧状の面取り面11a,12aに形成され、図2に示すように、その曲率半径Rをエッジ部11,12が面する周方向溝9の溝深さdの0.6〜2.5倍にし、従来より面取り径を大きくしている。また、このように面取りしたエッジ部11,12間の周方向溝9の開口幅Waを溝深さdの2.0〜4.0倍にしてある。
【0017】
図2では、両方のエッジ部11,12を同じように面取りしたが、図3に示すように、リバージョンが発生し易いタイヤ外側エッジ部11のみを上記のように面取りし、タイヤ内側エッジ部12は従来と同じ曲率半径の小さな円弧で面取りしてもよい。開口幅Waは上記と同じ溝深さdの2.0〜4.0倍である。
【0018】
このようにリブ10のエッジ部11,12の内、少なくともタイヤ外側エッジ部11の面取り径を従来より大きくすることで、タイヤ外側エッジ部11の剛性を高め、リブ10における接地圧を均一的な方向に分散させることができるので、離着陸の際の高速走行時にタイヤ外側エッジ部11の溝底近傍で繰り返される大きな圧縮歪みを緩和することができる。従って、タイヤ外側エッジ部11の溝底近傍でリバージョンが発生するのを抑制することが可能になる。
【0019】
タイヤ外側エッジ部11の面取り面11aの曲率半径Rが溝深さdの0.6倍より小さいと、また開口幅Waが溝深さdの2.0倍未満であると、圧縮歪みを効果的に緩和することができないため、リバージョンを改善することが難しくなる。逆に、曲率半径Rが溝深さdの2.5倍を超えると、また開口幅Waが溝深さdの4.0倍より大きいと、接地時に溝形状が広く押しつぶされて溝面積が大きく減少するため、排水性の低下を招く。
【0020】
図4は、上述したエッジ部11,12の他の面取り形状を示し、各リブ10のタイヤ外側エッジ部11及びタイヤ内側エッジ部12が、断面直線状の面取り面11b,12bに形成され、その面取り面11b,12bの深さc(トレッド面8から面取り面11b,12bと溝壁面9aとの交差位置までを溝中心Oに沿って測定した深さ)を周方向溝9の溝深さdの0.3〜0.8倍にしたものである。面取りしたエッジ部11,12間の周方向溝9の開口幅Waは上記と同じで溝深さdの2.0〜4.0倍である。
【0021】
図4では、両方のエッジ部11,12を同じように面取りしたが、図5に示すように、リバージョンが発生し易いタイヤ外側エッジ部11のみを上記のように面取りし、タイヤ内側エッジ部12は従来と同じ円弧で面取りしてもよい。開口幅Waは上記と同じである。
【0022】
このように少なくともタイヤ外側エッジ部11を上記のように特定した断面直線状の面取り面11bに形成し、周方向溝9の開口幅Waを溝深さdの2.0〜4.0倍にすることによっても、上記と同様の効果を奏することができる。
【0023】
タイヤ外側エッジ部11の面取り面11bの深さcが溝深さdの0.3倍より小さいと、また開口幅Waが溝深さdの2.0倍未満であると、圧縮歪みを効果的に緩和することができないため、リバージョンを改善することが難しくなる。逆に、深さcが溝深さdの0.8倍を超えると、また開口幅Waが溝深さdの4.0倍より大きいと、接地時に溝形状が広く押しつぶされて溝面積が大きく減少するため、排水性の低下を招く。
【0024】
本発明において、上記実施形態では、航空機用空気入りラジアルタイヤについて説明したが、有機繊維コードからなる補強コードをタイヤ周方向に対して20〜60°に傾斜配列した5〜30層のカーカス層を埋設した航空機用空気入りバイアスタイヤであってもよい。
【0025】
本発明は、特にリム径が18インチ(46cm)以下のリムを使用する、タイヤ周長が比較的短い航空機用空気入りタイヤに好適に用いることができる。
【0026】
【実施例】
実施例1
タイヤサイズを27.75×8.75R14.5 24PR、タイヤ構成を図1で共通にし、図2または図3の面取り形状を有するタイヤにおいて、曲率半径Rと周方向溝の溝深さdとの比R/dと、開口幅Waと周方向溝の溝深さdとの比Wa/dを表1のようにした本発明タイヤ1〜3と比較タイヤ1、及び従来タイヤをそれぞれ作製した。
【0027】
これら各試験タイヤをリムサイズ27.75×8.75R14.5のリムに装着し、以下に示す測定条件により、耐久性の評価試験を行ったところ、表1に示す結果を得た。
【0028】
耐久性
各試験タイヤを空気圧320PSI(2205kPa)にして室内ドラム試験機に取り付け、荷重21500LBS(9752kg)の条件下で、時速30mile/h(48km/h)で228秒間走行(タクシー走行)させた後、時速259mile/h(417km/h)で35.5秒間走行(テイクオフ走行)させ、これを24サイクル繰り返し行い、次いで時速30mile/h(48km/h)で228秒間走行(タクシー走行)させた後、時速230mile/h(370km/h)で41.4秒間走行(テイクオフ走行)させ、これを23サイクル繰り返し行った。
【0029】
【表1】

Figure 2004203173
【0030】
表1から、本発明タイヤは、耐久試験においていずれも異常なく完走し、リバージョンを改善できることがわかる。なお、比較タイヤ1は、リバージョンを改善できるが、接地時に溝形状が広く押しつぶされて溝面積が大きく減少していた。
【0031】
実施例2
タイヤサイズ、タイヤ構成を実施例1と同じにし、図4または図5の面取り形状を有するタイヤにおいて、面取り面の深さcと周方向溝の溝深さdとの比c/dと、開口幅Waと周方向溝の溝深さdとの比Wa/dを表2のようにした本発明タイヤ4〜6と比較タイヤ2〜4をそれぞれ作製した。
【0032】
これら各試験タイヤを実施例1と同様にして耐久性の評価試験を行ったところ、表2に示す結果を得た。
【0033】
【表2】
Figure 2004203173
【0034】
表2から、本発明タイヤは、耐久試験においていずれも異常なく完走し、リバージョンを改善できることがわかる。なお、比較タイヤ3,4は、リバージョンを改善できるが、接地時に溝形状が広く押しつぶされて溝面積が大きく減少していた。
【0035】
【発明の効果】
上述したように本発明は、リブの少なくともタイヤ外側エッジ部を上記のように特定した面取り面に形成すると共に周方向溝の開口幅を上述した範囲に規定することにより、タイヤ外側エッジ部の溝底近傍で繰り返される大きな圧縮歪みを緩和し、リバージョンの発生を抑制することができる。
【図面の簡単な説明】
【図1】本発明の航空機用空気入りタイヤの一例である航空機用空気入りラジアルタイヤの例を示すタイヤ子午線半断面図である。
【図2】図1のリブのエッジ部を拡大断面で示す説明図である。
【図3】リブのエッジ部の他の例を拡大断面で示す説明図である。
【図4】リブのエッジ部の更に他の例を拡大断面で示す説明図である。
【図5】リブのエッジ部の更に他の例を拡大断面で示す説明図である。
【符号の説明】
1 トレッド部 2 サイドウォール部
3 ビード部 4 カーカス層
7 ベルト層 8 トレッド面
9 周方向溝 10 リブ
11 タイヤ外側エッジ部 11a,11b 面取り面
12 タイヤ内側エッジ部 12a,12b 面取り面[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an aircraft pneumatic tire, and more particularly, to an aircraft pneumatic tire that suppresses the occurrence of reversion.
[0002]
[Prior art]
2. Description of the Related Art A pneumatic tire for an aircraft is required to withstand high speed and high load compared to a pneumatic tire used for a general vehicle. In particular, a standing wave phenomenon that occurs during high-speed running during take-off and landing causes a large amount of heat, particularly in the shoulder portion, and in the worst case, may lead to tire destruction.
[0003]
Therefore, conventionally, in order to suppress the occurrence of the standing wave phenomenon, the radius of curvature of the tread surface is set to be small. In addition, a rib pattern is adopted as a tread pattern to ensure drainage (see, for example, Patent Document 1).
[0004]
[Patent Document 1]
JP 2000-313207 A
[Problems to be solved by the invention]
However, in the aircraft pneumatic tire configured as described above, a high contact pressure easily acts on the edge of the rib, so that a large compressive strain is repeatedly generated near the groove bottom of the edge during high-speed running during takeoff and landing. However, the resulting hysteresis loss causes the rubber portion near the groove bottom of the edge portion to generate heat at a temperature significantly higher than the surrounding portion, resulting in a problem that the rubber is deteriorated and cracks (reversion) occur.
[0006]
This reversion is likely to occur particularly at the tire outer edge portion of the rib, and is remarkable in an aircraft pneumatic tire using a rim having a rim diameter of 18 inches or less and having a relatively short tire circumference.
[0007]
An object of the present invention is to provide an aircraft pneumatic tire capable of suppressing occurrence of reversion.
[0008]
[Means for Solving the Problems]
The aircraft pneumatic tire of the present invention that achieves the above object is provided with a plurality of circumferential grooves extending in the tire circumferential direction on the tread surface, and in an aircraft pneumatic tire in which ribs are separately formed by the circumferential grooves. At least the tire outer edge portion of the rib is chamfered with a radius of curvature R of 0.6 to 2.5 times the groove depth d of the circumferential groove, and the opening width Wa of the circumferential groove is set to 2 of the groove depth d. 0.0 to 4.0 times.
[0009]
Another aircraft pneumatic tire of the present invention is an aircraft pneumatic tire in which a plurality of circumferential grooves extending in the tire circumferential direction are provided on a tread surface, and ribs are sectioned by the circumferential grooves. At least the outer edge portion of the tire is formed in a chamfered surface having a linear cross section, the depth c of the chamfered surface is set to 0.3 to 0.8 times the groove depth d of the circumferential groove, and the circumferential groove is formed. The opening width Wa is set to be 2.0 to 4.0 times the groove depth d.
[0010]
According to the present invention described above, the rigidity of the outer edge portion of the tire is increased, and the contact pressure at the rib can be uniformly dispersed. As a result, a large compression strain that is repeated in the vicinity of the groove bottom of the tire outer edge portion during high-speed running during takeoff and landing can be mitigated, so that reversion occurring near the groove bottom of the tire outer edge portion can be suppressed. .
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the configuration of the present invention will be described in detail with reference to the accompanying drawings.
[0012]
FIG. 1 shows an aircraft pneumatic radial tire as an example of the aircraft pneumatic tire of the present invention, wherein 1 is a tread portion, 2 is a sidewall portion, and 3 is a bead portion.
[0013]
Inside the tire, 3 to 12 layers of carcass layers 4 in which reinforcing cords made of organic fiber cords are arranged at an angle of 70 to 90 ° with respect to the tire circumferential direction are embedded, and both end portions 4 a of the inner carcass layer 4 A are bead portions. The bead filler 6 is folded around the bead core 5 embedded in the tire from the inside to the outside of the tire. Both ends 4b of the outer carcass layer 4B are wound around the bead core 5 from the outside to the inside of the tire.
[0014]
The bead core 5 is composed of a cable bead having a circular cross section in which a plurality of small-diameter steel wires are spirally wound around one large-diameter steel core wire. On the outer peripheral side of the carcass layer 4 of the tread portion 1, a 4 to 14-layer belt layer 7 in which reinforcing cords made of organic fiber cords are arranged so as to intersect between the layers with the inclination direction being opposite to the tire circumferential direction. Is arranged.
[0015]
The tread surface 8 is provided with a plurality of circumferential grooves 9 extending straight along the tire circumferential direction, and the circumferential grooves 9 define a plurality of ribs 10 extending in the tire circumferential direction. I have.
[0016]
The tire outer edge portion 11 and the tire inner edge portion 12 of each rib 10 are formed on chamfered surfaces 11a, 12a having an arc-shaped cross section, and as shown in FIG. The depth of the circumferential groove 9 is set to 0.6 to 2.5 times the groove depth d, and the chamfer diameter is made larger than that of the related art. Further, the opening width Wa of the circumferential groove 9 between the chamfered edge portions 11 and 12 is set to 2.0 to 4.0 times the groove depth d.
[0017]
In FIG. 2, both the edge portions 11 and 12 are chamfered in the same manner. However, as shown in FIG. 3, only the tire outer edge portion 11 where reversion is likely to occur is chamfered as described above, and the tire inner edge portion is formed. 12 may be chamfered with a small arc having the same radius of curvature as the conventional one. The opening width Wa is 2.0 to 4.0 times the same groove depth d as above.
[0018]
By increasing the chamfer diameter of at least the outer edge portion 11 of the tire among the edge portions 11 and 12 of the rib 10 as described above, the rigidity of the outer edge portion 11 of the tire is increased, and the contact pressure on the rib 10 is made uniform. Since it can be dispersed in the direction, it is possible to reduce a large compressive strain that is repeated near the groove bottom of the tire outer edge portion 11 at the time of high-speed running during takeoff and landing. Therefore, it is possible to suppress the occurrence of reversion near the groove bottom of the tire outer edge portion 11.
[0019]
When the radius of curvature R of the chamfered surface 11a of the tire outer edge portion 11 is smaller than 0.6 times the groove depth d, and when the opening width Wa is smaller than 2.0 times the groove depth d, the compressive strain is reduced. It is difficult to improve reversion because it cannot be mitigated. Conversely, if the radius of curvature R exceeds 2.5 times the groove depth d, and if the opening width Wa is larger than 4.0 times the groove depth d, the groove shape is widely crushed at the time of grounding, and the groove area is reduced. Because of a large decrease, drainage is reduced.
[0020]
FIG. 4 shows another chamfered shape of the edge portions 11 and 12 described above. The tire outer edge portion 11 and the tire inner edge portion 12 of each rib 10 are formed on chamfered surfaces 11b and 12b having a straight cross section. The depth c of the chamfered surfaces 11b and 12b (the depth measured from the tread surface 8 to the intersection of the chamfered surfaces 11b and 12b and the groove wall surface 9a along the groove center O) is determined by the groove depth d of the circumferential groove 9. 0.3 to 0.8 times of the above. The opening width Wa of the circumferential groove 9 between the chamfered edge portions 11 and 12 is the same as described above, and is 2.0 to 4.0 times the groove depth d.
[0021]
In FIG. 4, both edge portions 11 and 12 are chamfered in the same manner. However, as shown in FIG. 5, only the tire outer edge portion 11 where reversion easily occurs is chamfered as described above, and the tire inner edge portion is formed. 12 may be chamfered with the same arc as before. The opening width Wa is the same as above.
[0022]
In this manner, at least the tire outer edge portion 11 is formed on the chamfered surface 11b having a linear cross section specified as described above, and the opening width Wa of the circumferential groove 9 is set to 2.0 to 4.0 times the groove depth d. By doing so, the same effect as described above can be obtained.
[0023]
When the depth c of the chamfered surface 11b of the tire outer edge portion 11 is smaller than 0.3 times the groove depth d, and when the opening width Wa is smaller than 2.0 times the groove depth d, compressive strain is produced. It is difficult to improve reversion because it cannot be mitigated. Conversely, if the depth c exceeds 0.8 times the groove depth d, and if the opening width Wa is larger than 4.0 times the groove depth d, the groove shape is widely crushed at the time of grounding, and the groove area is reduced. Because of a large decrease, drainage is reduced.
[0024]
In the present invention, in the above embodiment, the pneumatic radial tire for an aircraft has been described. However, a reinforcing cord made of an organic fiber cord is arranged at a tilt angle of 20 to 60 ° with respect to the tire circumferential direction. It may be a buried aircraft pneumatic bias tire.
[0025]
INDUSTRIAL APPLICABILITY The present invention can be suitably used particularly for an aircraft pneumatic tire having a relatively short tire circumference, using a rim having a rim diameter of 18 inches or less.
[0026]
【Example】
Example 1
The tire size is 27.75 × 8.75R14.5 24PR, the tire configuration is common in FIG. 1, and in the tire having the chamfered shape in FIG. 2 or FIG. 3, the radius of curvature R and the groove depth d of the circumferential groove are different. The present invention tires 1 to 3, the comparative tire 1, and the conventional tire having the ratio R / d and the ratio Wa / d of the opening width Wa and the groove depth d of the circumferential groove as shown in Table 1 were produced.
[0027]
Each of the test tires was mounted on a rim having a rim size of 27.75 × 8.75R14.5, and a durability evaluation test was performed under the following measurement conditions. As a result, the results shown in Table 1 were obtained.
[0028]
Durability Each test tire was mounted on an indoor drum tester at an air pressure of 320 PSI (2205 kPa), and after running (taxi running) at a speed of 30 mile / h (48 km / h) for 228 seconds under a load of 21500 LBS (9752 kg). After running for 35.5 seconds at 259 mph (417 km / h) (take-off running) and repeating this cycle for 24 cycles, and then running for 228 seconds at 30 mph (48 km / h) (taxi running), The vehicle was run (take-off run) at 230 mph / h (370 km / h) for 41.4 seconds, and this was repeated for 23 cycles.
[0029]
[Table 1]
Figure 2004203173
[0030]
From Table 1, it can be seen that the tire of the present invention completed the running without any abnormality in the durability test, and the reversion could be improved. Although the reversion of the comparative tire 1 can be improved, the groove shape was widely crushed during the contact with the ground, and the groove area was greatly reduced.
[0031]
Example 2
In the tire having the same tire size and tire configuration as those in Example 1, the ratio c / d of the depth c of the chamfered surface to the groove depth d of the circumferential groove, and the opening of the tire having the chamfered shape of FIG. Inventive tires 4 to 6 and comparative tires 2 to 4 having a ratio Wa / d between the width Wa and the groove depth d of the circumferential groove as shown in Table 2 were produced.
[0032]
When a durability evaluation test was performed on each of these test tires in the same manner as in Example 1, the results shown in Table 2 were obtained.
[0033]
[Table 2]
Figure 2004203173
[0034]
From Table 2, it can be seen that the tire of the present invention completed the running without any abnormalities in the durability test and could improve the reversion. Although the comparative tires 3 and 4 can improve the reversion, the groove shape was widely crushed at the time of contact with the ground, and the groove area was greatly reduced.
[0035]
【The invention's effect】
As described above, the present invention provides a groove at the tire outer edge portion by forming at least the tire outer edge portion of the rib on the chamfered surface specified as described above and defining the opening width of the circumferential groove in the above-described range. Large compressive strain repeated near the bottom can be reduced, and the occurrence of reversion can be suppressed.
[Brief description of the drawings]
FIG. 1 is a tire meridian half sectional view showing an example of an aircraft pneumatic radial tire which is an example of the aircraft pneumatic tire of the present invention.
FIG. 2 is an explanatory view showing an edge portion of a rib in FIG. 1 in an enlarged cross section.
FIG. 3 is an explanatory view showing another example of an edge portion of a rib in an enlarged cross section.
FIG. 4 is an explanatory view showing still another example of an edge portion of a rib in an enlarged cross section.
FIG. 5 is an explanatory view showing still another example of an edge portion of a rib in an enlarged cross section.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Tread part 2 Side wall part 3 Bead part 4 Carcass layer 7 Belt layer 8 Tread surface 9 Circumferential groove 10 Rib 11 Tire outer edge part 11a, 11b Chamfer surface 12 Tire inner edge part 12a, 12b Chamfer surface

Claims (2)

トレッド面にタイヤ周方向に延在する複数の周方向溝を設け、該周方向溝によりリブを区分形成した航空機用空気入りタイヤにおいて、
前記リブの少なくともタイヤ外側エッジ部を前記周方向溝の溝深さdの0.6〜2.5倍の曲率半径Rで面取りすると共に前記周方向溝の開口幅Waを溝深さdの2.0〜4.0倍にした航空機用空気入りタイヤ。
A plurality of circumferential grooves extending in the circumferential direction of the tire are provided on the tread surface, and an aircraft pneumatic tire in which ribs are formed separately by the circumferential grooves,
At least the tire outer edge portion of the rib is chamfered with a radius of curvature R of 0.6 to 2.5 times the groove depth d of the circumferential groove, and the opening width Wa of the circumferential groove is set to 2 of the groove depth d. Aircraft pneumatic tires with a size of 0.0 to 4.0 times.
トレッド面にタイヤ周方向に延在する複数の周方向溝を設け、該周方向溝によりリブを区分形成した航空機用空気入りタイヤにおいて、
前記リブの少なくともタイヤ外側エッジ部を断面直線状の面取り面に形成し、該面取り面の深さcを前記周方向溝の溝深さdの0.3〜0.8倍にすると共に前記周方向溝の開口幅Waを溝深さdの2.0〜4.0倍にした航空機用空気入りタイヤ。
In the aircraft pneumatic tire provided with a plurality of circumferential grooves extending in the tire circumferential direction on the tread surface, ribs are formed separately by the circumferential grooves,
At least a tire outer edge portion of the rib is formed into a chamfered surface having a linear cross section. An aircraft pneumatic tire in which the opening width Wa of the direction groove is 2.0 to 4.0 times the groove depth d.
JP2002373684A 2002-12-25 2002-12-25 Pneumatic tire for aircraft Pending JP2004203173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002373684A JP2004203173A (en) 2002-12-25 2002-12-25 Pneumatic tire for aircraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002373684A JP2004203173A (en) 2002-12-25 2002-12-25 Pneumatic tire for aircraft

Publications (1)

Publication Number Publication Date
JP2004203173A true JP2004203173A (en) 2004-07-22

Family

ID=32811896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002373684A Pending JP2004203173A (en) 2002-12-25 2002-12-25 Pneumatic tire for aircraft

Country Status (1)

Country Link
JP (1) JP2004203173A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100644101B1 (en) 2004-12-07 2006-11-10 금호타이어 주식회사 Aircraft tire
EP2072288A1 (en) 2007-12-20 2009-06-24 Continental Aktiengesellschaft Pneumatic tyres for a vehicle
EP2093081A1 (en) * 2008-02-22 2009-08-26 Continental Aktiengesellschaft Pneumatic tyres for a vehicle
CN102341252A (en) * 2009-03-04 2012-02-01 大陆轮胎德国有限公司 Pneumatic tire for vehicles
WO2014167763A1 (en) * 2013-04-12 2014-10-16 株式会社ブリヂストン Pneumatic tire
WO2014175125A1 (en) * 2013-04-25 2014-10-30 株式会社ブリヂストン Aircraft tire
JP2014213743A (en) * 2013-04-25 2014-11-17 株式会社ブリヂストン Aircraft tire
JP2015131634A (en) * 2013-12-13 2015-07-23 株式会社ブリヂストン pneumatic tire

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100644101B1 (en) 2004-12-07 2006-11-10 금호타이어 주식회사 Aircraft tire
EP2072288A1 (en) 2007-12-20 2009-06-24 Continental Aktiengesellschaft Pneumatic tyres for a vehicle
EP2093081A1 (en) * 2008-02-22 2009-08-26 Continental Aktiengesellschaft Pneumatic tyres for a vehicle
CN102341252A (en) * 2009-03-04 2012-02-01 大陆轮胎德国有限公司 Pneumatic tire for vehicles
WO2014167763A1 (en) * 2013-04-12 2014-10-16 株式会社ブリヂストン Pneumatic tire
JP2014205425A (en) * 2013-04-12 2014-10-30 株式会社ブリヂストン Pneumatic tire
WO2014175125A1 (en) * 2013-04-25 2014-10-30 株式会社ブリヂストン Aircraft tire
JP2014213743A (en) * 2013-04-25 2014-11-17 株式会社ブリヂストン Aircraft tire
JP2015131634A (en) * 2013-12-13 2015-07-23 株式会社ブリヂストン pneumatic tire

Similar Documents

Publication Publication Date Title
JP6003024B2 (en) Pneumatic radial tire for passenger cars
JP6111792B2 (en) Pneumatic tire
JP5342366B2 (en) Pneumatic tire
JP2004203173A (en) Pneumatic tire for aircraft
JP5770847B2 (en) Pneumatic tires for motorcycles
CN109476183B (en) Pneumatic tire
JP6269306B2 (en) Rehabilitation tire
JP2009280009A (en) Tire for heavy load
JP2008189274A (en) Pneumatic radial tire
JP2013112131A (en) Pneumatic tire
WO2014002719A1 (en) Pneumatic tire and manufacturing method therefor
JP2006205817A (en) Pneumatic tire
JP5405992B2 (en) Heavy duty pneumatic radial tire
JP2007008406A (en) Pneumatic tire
EP3517319A1 (en) Motorcycle tire
JP2006193126A (en) Pneumatic tire
US20120125511A1 (en) Pneumatic tire carcass with non-continuous ply in the bead areas
JP2016002983A (en) Pneumatic tire
JP2008149904A (en) Pneumatic tire
JP2004359099A (en) Pneumatic tire
JP2014118011A (en) Pneumatic tire
JP2001301418A (en) Pneumatic tire
JP7133412B2 (en) pneumatic tire
EP4249286A1 (en) Heavy duty tire and production method for heavy duty tire
JP5066914B2 (en) Heavy duty pneumatic radial tire