JP2004202693A - Titanium foil-coated steel material and its manufacturing method - Google Patents

Titanium foil-coated steel material and its manufacturing method Download PDF

Info

Publication number
JP2004202693A
JP2004202693A JP2002370922A JP2002370922A JP2004202693A JP 2004202693 A JP2004202693 A JP 2004202693A JP 2002370922 A JP2002370922 A JP 2002370922A JP 2002370922 A JP2002370922 A JP 2002370922A JP 2004202693 A JP2004202693 A JP 2004202693A
Authority
JP
Japan
Prior art keywords
steel material
titanium foil
coated steel
resin
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002370922A
Other languages
Japanese (ja)
Inventor
Masahiro Yamamoto
正弘 山本
Yoshiyuki Harada
佳幸 原田
Nobuki Yoshizaki
信樹 吉崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002370922A priority Critical patent/JP2004202693A/en
Publication of JP2004202693A publication Critical patent/JP2004202693A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a titanium foil-coated steel material excellent in durability and scene and a method for manufacturing it. <P>SOLUTION: In the titanium foil-coated steel material, a resin corrosion-proof layer, an organic resin adhesive layer and a titanium foil with a thickness of 0.5 mm or below are successively laminated on the surface of a steel material. In the titanium foil-coated steel material and its manufacturing method, the organic resin adhesive layer comprises a hot-melt adhesive or a thermosetting adhesive. This titanium foil-coated steel material keeps a corrosion-proof capacity over a long period of time because it has excellent adhesive force and high durability and can have a beautiful surface appearance. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、鋼構造物が港湾・河川の桟橋や護岸等の激しい腐食環境に曝される場合に、長期の防食性を確保する防食被覆鋼材及びその製造法に関し、これまで以上に長期の耐久性や景観性に優れた防食被覆鋼材及びその製造法に関する。
【0002】
【従来の技術】
激しい腐食環境に使用される鋼管杭、鋼管矢板、鋼矢板等の海洋鋼構造物は、防食塗装が行われ、中でも厚みが数mmに及ぶ重防食塗装が有効である。数十年に及ぶ長期耐久性が必要とされる場合、電気絶縁性、耐薬品性等の種々の防食性に優れ、安価な樹脂であるポリオレフィン、あるいはポリウレタンといった樹脂を被覆材として使用した重防食被覆鋼材が製造されている。重防食被覆では、特開平3−23527号公報(特許文献1)に示されるような、特殊な鋼材の下地処理、プライマー処理に防食被覆を組み合わせることで、長期の接着耐久性を確保している。
【0003】
重防食被覆を行うと、鋼材表面へのイオン、酸素、水、バクテリア等の各種の腐食環境因子の到達を防止することができる。しかしながら、樹脂は、酸素、水を完全に遮蔽することができないため、数十年間の長期使用では、接着や樹脂被覆の劣化が問題となる。また、一般に、樹脂は紫外線に対する耐性が弱いために、太陽光が当たる部分では、樹脂が劣化し、耐食性を落としてしまう難点がある。そのため、紫外線を透し難い色として、黒色の皮膜にする場合が多い。そこで、劣化要因である水や酸素、そして、太陽光線を完全に遮蔽する方法があれば、より信頼性の高い長期の耐久性が期待できる。
【0004】
一方、金属は、樹脂と異なり、水や酸素、並びに紫外線を透過することが無い。そこで、樹脂の上に金属を被覆することで、これらの因子を遮蔽することが期待できる。しかしながら、鉄や亜鉛、アルミニウム等は、それ自身が大気中や海水中で腐食し溶出するため、長期の使用では耐久性に問題がある。これに対して、チタンは腐食による損耗が極めて少ないために、これを表面に被覆することで耐久性を大きく向上することが期待できる。そのため、チタンを表面に被覆する方法が種々検討されている。
【0005】
例えば、特開平7−279191号公報(特許文献2)に示されるように、金属クラッドを用いて、鋼材に高耐食金属を溶接固定する方法があるが、異種金属接触腐食や高価な点が問題である。一方、特開平9−273697号公報(特許文献3)のように、支持バンドを用いる方法や、特開平8−53853号公報(特許文献4)のように、高耐食金属薄板を用いて、鋼材との間に硬化性充填材を注入する方法も検討されている。しかしながら、これらの方法は、全て処理に時間がかかり、かつ、被覆部での耐久性等にも難があった。
【0006】
【引用文献】
(1)特許文献1(特開平3−23527号公報)
(2)特許文献2(特開平7−279191号公報)
(3)特許文献3(特開平9−273697号公報)
(4)特許文献4(特開平8−53853号公報)
【0007】
【発明が解決しようとする課題】
そこで、本発明は、上記問題を解決し、これまで以上に長期の耐久性や景観性に優れたチタン箔被覆鋼材及びその製造法を提供することを目的とする。
【0008】
【課題を解決するための手段】
そこで、本発明者らは、チタンを鋼材表面に貼り付ける方法を種々検討し、下記の方法により、接着耐久性に優れたチタン箔被覆鋼材を製造できることを見出した。すなわち、本発明では、以下のようにチタン被覆鋼材並びに製造方法を規定する。
(1)鋼材の表面に、樹脂防食層、有機樹脂接着層、及び0.5mm厚以下のチタン箔を順次積層してなることを特徴とするチタン箔被覆鋼材。
【0009】
(2)前記有機樹脂接着層が、熱溶融性接着剤又は熱硬化型接着剤からなる(1)記載のチタン被覆鋼材。
(3)片面に予め有機樹脂接着層を形成した0.5mm厚以下のチタン箔の接着層と、樹脂防食層を形成した鋼材の接着層とを積層し、加熱により前記層同士を接着させることを特徴とするチタン被覆鋼材の製造法、
(4)前記有機樹脂接着層が、熱融着性接着剤又は熱硬化型接着剤で形成されている(3)記載のチタン被覆鋼材の製造法である。
【0010】
【発明の実施の形態】
本発明においては、0.5mm厚以下のチタン箔の片面にあらかじめ有機樹脂接着層を付着させ、樹脂防食層を形成した鋼材の樹脂面とチタン箔の有機樹脂接着層を積層し、加熱により接着させて製造する。このときのチタン箔の板厚が0.5mmを超えると、チタン箔自身の強度が増し、加熱により接着する際に、チタン箔自身の応力が増し、十分な密着力を得ることができない。特に、鋼材が平面ではない場合には、浮きが生じやすくなる。チタン箔の厚みの下限値は、特に規定するものではないが、0.02mm未満になると、チタン箔にしわや破れが生じやすく、作業性が悪くなってしまうため、0.02mm以上の厚みを有することが望ましい。
【0011】
また、あらかじめ付着させる有機樹脂接着層の厚みについては、特に規定するものではないが、上限値としてはチタン箔の厚みの3倍以下が望ましい。この厚みが3倍超になると、加熱接着時に熱が均一に接着層にかかわらず、密着不良を起こしやすい。また、下限値としては、接着層が均一に表面を覆うことが必要であり、10μm以上が望ましい。
また、樹脂防食層を形成した鋼材については、特に規定するものではないが、チタン箔を接着する圧力がかかりやすい形状が必要であり、棒鋼や線材には適用できない。それ以外では、鋼帯、厚板、形鋼、鋼管に適用可能であり、さらに、鋼管杭、鋼矢板、鋼管矢板等の重防食用素材や、各種配管用の鋼管、照明柱や標識柱、屋根・壁用の建材やカーテンウォール用の素材に適用可能である。
【0012】
本発明における樹脂防食層については、特に規定するものではないが、チタン箔の劣化因子遮断作用を効果的に利用して、防食機能を向上させる被覆として、ポリオレフィン樹脂による被覆、ウレタン樹脂による被覆、天然ゴムもしくは合成ゴムによる被覆、塩ビ樹脂による被覆、アクリル樹脂による被覆、ポリエステル樹脂による被覆、又は、エポキシ樹脂による被覆等が適用可能である。
また、本発明における加熱による接着について、加熱温度、加熱時間、加熱方法等は、チタン箔に付着させた有機樹脂接着層の材質と鋼材表面の樹脂防食層の組み合わせや鋼材の形状、板厚等により適宜選択される。
【0013】
さらに、本発明では、チタン箔の付着させる樹脂接着層として、熱融着性の接着剤であることを規定する。このときの熱融着性の樹脂としては、基本的には鋼材に形成された樹脂防食層と相溶性があることが前提となり、望ましくは、同じ樹脂骨格で、かつチタン箔とも接着しやすく官能基を変性させた樹脂が適当である。例えば、防食層がポリエチレン樹脂の場合、酸変性やプラズマ変性したポリエチレン、防食層がゴム類の場合、加硫度を上げ、接着性を向上させたゴム等が適用可能である。
【0014】
また、チタン箔の付着させる樹脂接着層として、熱硬化型の接着剤であることを規定する。このときの熱硬化型の接着剤としては、硬化剤を常温で反応しないようにブロック化したものを用いる。具体的には、イソシアネート基やアミン基をブロックしたエポキシ系、ウレタン系の接着剤を用いることが可能である。この場合も、鋼材に形成された樹脂防食層との接着性の高いものを選ぶことが重要であり、さらに、鋼材に形成された樹脂防食層をより接着性を上げるために、表面処理したり、接着しやすい層を積層することも可能である。
【0015】
【実施例】
以下に、実施例を用いて、本発明を詳細に説明する。
(実施例1)
表1に示すように、板厚を変化させたチタン箔を用いた。
また、鋼材としては、6mm厚、600mmφの鋼管を200mm×100mmの大きさに切断し、管外面側にグリッドブラスト処理を施し、スケール等を除去した後、プライマーとしてイソシアネート末端プレポリマーによる湿気硬化型ウレタン樹脂塗料を15〜60μm膜厚となるようにスプレー塗布して硬化させた。次いで、その表面に、カオリンクレー微粉末を含有する2液硬化ウレタンエラストマーをミキサーで混合してスプレー塗装し、3mm厚みの従来のポリウレタン重防食被覆を行った。各チタン箔の片面には、イソシアネート硬化剤をブロックした熱硬化型ウレタン接着剤を0.2mm厚みで塗布し、50℃で乾燥させた。その後、切断鋼管を90℃に予熱し、重防食被覆面にチタン箔を圧着しながら、150℃の加熱ロールで押し付けて接着させた。表1に接着後の形態とチタン箔のピール試験結果を示す。本発明が優れた接着性を有していることが分かる。
【0016】
【表1】

Figure 2004202693
【0017】
(実施例2)
100mm×200mm×6mmの鋼材をグリッドブラスト処理し、クロメート処理を300mg/m2 施し、その上に熱硬化型のエポキシ樹脂層を約50μm塗布し、マレイン酸変性ポリエチレン層を200μm付着させ、さらに1mm厚の低密度ポリエチレンのシートを付着させ、防食被覆鋼材を作製した。これとは別に、0.15mm厚のチタン箔の片面に200μmのマレイン酸変性ポリエチレンのシートを積層した積層チタン箔を作製した。この積層チタン箔を90mm×180mmサイズに切断し、防食被覆鋼材と共に200℃のオーブン中で5分加熱し、接着層をポリエチレンシートに押し当て、ロールにより接着させた(プレ被覆Ti積層)。比較材として、防食被覆鋼材を加熱後に、マレイン酸変性ポリエチレン層をシートにより接着させた後にチタン箔を接着したものを作製した(ポストTi被覆)。
【0018】
作製条件の違いは表2に示す。あわせて、チタン被覆を行わなかったもの、並びに実施例1の方法によるチタン箔を作製しなかったウレタン被覆材も含め、接着耐久性試験をした結果を表2に示す。
回転浸漬試験は、空気飽和した5%NaCl溶液50℃中に6回/分で試験片を回転させ、剥離進展を評価する方法である。本発明による接着法が接着力に優れ、かつ耐久性に優れることが明らかになった。
【0019】
【表2】
Figure 2004202693
【0020】
【発明の効果】
以上述べたように、本発明により、チタン箔を積層した鋼材は、接着力に優れ、かつ耐久性が高くなるため、長期に防食性能を維持し続け、かつ美麗な表面外観を有することができる。また、本発明の製造法は、特別な設備や手間を必要とせず、低コストで簡便にチタン箔被覆鋼材を製造できる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an anticorrosion-coated steel material which ensures long-term anticorrosion when a steel structure is exposed to a severe corrosive environment such as a harbor or river pier or seawall, and a method for producing the same. The present invention relates to an anticorrosion-coated steel material having excellent properties and landscape properties and a method for producing the same.
[0002]
[Prior art]
Marine steel structures such as steel pipe piles, steel pipe sheet piles, and steel sheet piles used in severely corrosive environments are subjected to anticorrosion coating, and heavy anticorrosion coating having a thickness of several mm is particularly effective. When long-term durability is required for several decades, heavy corrosion protection using a resin such as polyolefin or polyurethane, which is an inexpensive resin with excellent corrosion protection such as electrical insulation and chemical resistance, as a coating material. Coated steel is manufactured. In the heavy-duty anticorrosion coating, long-term adhesion durability is secured by combining the anticorrosion coating with a special steel base treatment and a primer treatment as shown in JP-A-3-23527 (Patent Document 1). .
[0003]
The heavy anticorrosion coating can prevent various corrosive environmental factors such as ions, oxygen, water, and bacteria from reaching the steel surface. However, since the resin cannot completely shield oxygen and water, long-term use for several decades causes problems of adhesion and deterioration of the resin coating. Further, in general, the resin has low resistance to ultraviolet rays, so that there is a problem that the resin is deteriorated in a portion exposed to sunlight and the corrosion resistance is reduced. Therefore, a black film is often used as a color that is hardly transparent to ultraviolet light. Therefore, if there is a method of completely shielding water, oxygen, and sunlight, which are factors of deterioration, more reliable long-term durability can be expected.
[0004]
On the other hand, unlike a resin, a metal does not transmit water, oxygen, and ultraviolet rays. Therefore, it can be expected that these factors are shielded by coating a metal on the resin. However, iron, zinc, aluminum and the like themselves corrode and elute in the air or seawater, and thus have a problem in durability in long-term use. On the other hand, since titanium is hardly damaged by corrosion, it can be expected that durability is greatly improved by coating the surface with titanium. Therefore, various methods for coating the surface with titanium have been studied.
[0005]
For example, as shown in Japanese Patent Application Laid-Open No. 7-279191 (Patent Document 2), there is a method of welding and fixing a highly corrosion-resistant metal to a steel material using a metal clad. It is. On the other hand, as disclosed in Japanese Patent Application Laid-Open No. 9-273697 (Patent Document 3), a method using a support band, and as described in Japanese Patent Application Laid-Open No. 8-53853 (Patent Document 4), using a highly corrosion-resistant thin metal sheet, A method of injecting a curable filler between the two is also being studied. However, all of these methods require a long processing time, and also have difficulty in durability and the like at the covering portion.
[0006]
[References]
(1) Patent Document 1 (JP-A-3-23527)
(2) Patent Document 2 (JP-A-7-279191)
(3) Patent Document 3 (JP-A-9-273697)
(4) Patent Document 4 (JP-A-8-53853)
[0007]
[Problems to be solved by the invention]
Then, an object of the present invention is to solve the above-mentioned problems, and to provide a titanium foil-coated steel material excellent in long-term durability and landscape properties more than ever, and a method for producing the same.
[0008]
[Means for Solving the Problems]
Therefore, the present inventors have studied various methods of attaching titanium to the surface of a steel material, and have found that a titanium foil-coated steel material having excellent adhesion durability can be manufactured by the following method. That is, in the present invention, a titanium-coated steel material and a manufacturing method are specified as follows.
(1) A titanium foil-coated steel material characterized by sequentially laminating a resin anticorrosive layer, an organic resin adhesive layer, and a titanium foil having a thickness of 0.5 mm or less on a surface of the steel material.
[0009]
(2) The titanium-coated steel material according to (1), wherein the organic resin adhesive layer comprises a hot-melt adhesive or a thermosetting adhesive.
(3) Laminating an adhesive layer of a titanium foil having a thickness of 0.5 mm or less, on which an organic resin adhesive layer is formed in advance on one side, and an adhesive layer of a steel material having a resin anticorrosive layer, and bonding the layers by heating. A method for producing a titanium-coated steel material,
(4) The method for producing a titanium-coated steel material according to (3), wherein the organic resin adhesive layer is formed of a heat-fusible adhesive or a thermosetting adhesive.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, an organic resin adhesive layer is previously attached to one side of a titanium foil having a thickness of 0.5 mm or less, and the resin surface of the steel material on which the resin anticorrosion layer is formed and the organic resin adhesive layer of the titanium foil are laminated and bonded by heating. Let it be manufactured. If the thickness of the titanium foil at this time exceeds 0.5 mm, the strength of the titanium foil itself increases, and when bonding by heating, the stress of the titanium foil itself increases, and it is not possible to obtain a sufficient adhesive force. In particular, when the steel material is not flat, floating is likely to occur. The lower limit of the thickness of the titanium foil is not particularly specified, but if it is less than 0.02 mm, the titanium foil is likely to be wrinkled or torn, and the workability is deteriorated. It is desirable to have.
[0011]
Further, the thickness of the organic resin adhesive layer to be attached in advance is not particularly limited, but the upper limit is desirably three times or less the thickness of the titanium foil. If the thickness is more than three times, poor adhesion is likely to occur at the time of heat bonding regardless of the adhesive layer. Further, as the lower limit value, it is necessary that the adhesive layer uniformly covers the surface, and it is preferably 10 μm or more.
Further, the steel material on which the resin anticorrosion layer is formed is not particularly limited, but the steel material needs to have a shape to which the pressure for bonding the titanium foil is likely to be applied, and cannot be applied to steel bars and wires. Other than that, it is applicable to steel strips, thick plates, shaped steel, steel pipes, and furthermore, heavy corrosion protection materials such as steel pipe piles, steel sheet piles, steel pipe sheet piles, etc., steel pipes for various piping, lighting poles and signposts, It is applicable to building materials for roofs and walls and materials for curtain walls.
[0012]
With respect to the resin anticorrosion layer in the present invention, although not particularly defined, a coating with a polyolefin resin, a coating with a urethane resin, as a coating for improving the anticorrosion function by effectively utilizing the deterioration factor blocking action of titanium foil, Coating with natural rubber or synthetic rubber, coating with vinyl chloride resin, coating with acrylic resin, coating with polyester resin, coating with epoxy resin, or the like is applicable.
Regarding the adhesion by heating in the present invention, the heating temperature, heating time, heating method, etc. are determined by the combination of the material of the organic resin adhesive layer adhered to the titanium foil and the resin anticorrosive layer on the steel material surface, the shape of the steel material, the plate thickness, etc. Is selected as appropriate.
[0013]
Further, in the present invention, it is specified that the resin adhesive layer to which the titanium foil is adhered is a heat-fusible adhesive. At this time, the heat-fusible resin is basically assumed to be compatible with the resin anticorrosive layer formed on the steel material, and is desirably the same resin skeleton, and easily adheres to the titanium foil, and is functional. Resins with modified groups are suitable. For example, when the anticorrosion layer is a polyethylene resin, acid-modified or plasma-modified polyethylene can be used, and when the anticorrosion layer is a rubber, a rubber having an increased degree of vulcanization and improved adhesion can be used.
[0014]
Further, it is specified that the resin adhesive layer to which the titanium foil is adhered is a thermosetting adhesive. At this time, as the thermosetting adhesive, an adhesive obtained by blocking a curing agent so as not to react at room temperature is used. Specifically, an epoxy-based or urethane-based adhesive in which an isocyanate group or an amine group is blocked can be used. In this case as well, it is important to select a material having high adhesion to the resin anticorrosion layer formed on the steel material, and furthermore, in order to further enhance the adhesion of the resin anticorrosion layer formed on the steel material, surface treatment or the like is performed. It is also possible to laminate a layer that is easily adhered.
[0015]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples.
(Example 1)
As shown in Table 1, a titanium foil having a changed thickness was used.
As a steel material, a 6 mm thick, 600 mmφ steel pipe is cut into a size of 200 mm × 100 mm, grid blasting is performed on the outer surface of the pipe, scales and the like are removed, and then a moisture-curing type using an isocyanate-terminated prepolymer as a primer is used. The urethane resin paint was spray-coated to a thickness of 15 to 60 μm and cured. Next, a two-component curable urethane elastomer containing fine kaolin clay powder was mixed with a mixer and spray-coated on the surface, and a 3 mm-thick conventional polyurethane heavy anticorrosive coating was applied. On one side of each titanium foil, a thermosetting urethane adhesive blocking an isocyanate curing agent was applied in a thickness of 0.2 mm and dried at 50 ° C. Thereafter, the cut steel pipe was preheated to 90 ° C., and the titanium foil was pressed against a heavy corrosion protection-coated surface with a 150 ° C. heating roll to adhere the titanium foil. Table 1 shows the form after bonding and the results of the peel test of the titanium foil. It can be seen that the present invention has excellent adhesiveness.
[0016]
[Table 1]
Figure 2004202693
[0017]
(Example 2)
A 100 mm × 200 mm × 6 mm steel material is grid blasted, chromate-treated at 300 mg / m 2 , a thermosetting epoxy resin layer is applied thereon at about 50 μm, a maleic acid-modified polyethylene layer is attached at 200 μm, and a further 1 mm A sheet of thick low-density polyethylene was adhered to produce an anticorrosion-coated steel material. Separately, a laminated titanium foil was prepared by laminating a 200 μm maleic acid-modified polyethylene sheet on one side of a 0.15 mm thick titanium foil. This laminated titanium foil was cut into a size of 90 mm × 180 mm, heated in an oven at 200 ° C. for 5 minutes together with the anticorrosion-coated steel material, the adhesive layer was pressed against a polyethylene sheet, and adhered by a roll (pre-coated Ti lamination). As a comparative material, one prepared by heating a corrosion-resistant coated steel material, bonding a maleic acid-modified polyethylene layer with a sheet, and then bonding a titanium foil (post Ti coating).
[0018]
Table 2 shows the difference in the manufacturing conditions. In addition, Table 2 shows the results of an adhesion durability test, including those that were not coated with titanium and those that did not produce titanium foil according to the method of Example 1.
The rotation immersion test is a method of evaluating a peeling progress by rotating a test piece in an air-saturated 5% NaCl solution at 50 ° C. at 6 times / min. It has been clarified that the bonding method according to the present invention has excellent adhesive strength and excellent durability.
[0019]
[Table 2]
Figure 2004202693
[0020]
【The invention's effect】
As described above, according to the present invention, a steel material on which a titanium foil is laminated has excellent adhesive strength and high durability, so that it can maintain the anticorrosion performance for a long time and have a beautiful surface appearance. . Further, the production method of the present invention does not require any special equipment or labor, and can easily produce a titanium foil-coated steel material at low cost.

Claims (4)

鋼材の表面に、樹脂防食層、有機樹脂接着層、及び0.5mm厚以下のチタン箔を順次積層してなることを特徴とするチタン箔被覆鋼材。A titanium foil-coated steel material comprising a steel material and a resin anticorrosion layer, an organic resin adhesive layer, and a titanium foil having a thickness of 0.5 mm or less sequentially laminated on the surface of the steel material. 前記有機樹脂接着層が、熱溶融性接着剤又は熱硬化型接着剤からなる請求項1記載のチタン箔被覆鋼材。The titanium foil-coated steel material according to claim 1, wherein the organic resin adhesive layer is made of a hot-melt adhesive or a thermosetting adhesive. 片面に予め有機樹脂接着層を形成した0.5mm厚以下のチタン箔の接着層と、樹脂防食層を形成した鋼材の防食層とを積層し、加熱により前記層同士を接着させることを特徴とするチタン箔被覆鋼材の製造法。An adhesive layer of titanium foil having a thickness of 0.5 mm or less, on which an organic resin adhesive layer is formed in advance on one side, and an anticorrosion layer of steel having a resin anticorrosion layer are laminated, and the layers are adhered to each other by heating. Manufacturing method of titanium foil coated steel material. 前記有機樹脂接着層が、熱融着性接着剤又は熱硬化型接着剤で形成されている請求項3記載のチタン箔被覆鋼材の製造法。The method for producing a titanium foil-coated steel material according to claim 3, wherein the organic resin adhesive layer is formed of a heat-fusible adhesive or a thermosetting adhesive.
JP2002370922A 2002-12-20 2002-12-20 Titanium foil-coated steel material and its manufacturing method Pending JP2004202693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002370922A JP2004202693A (en) 2002-12-20 2002-12-20 Titanium foil-coated steel material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002370922A JP2004202693A (en) 2002-12-20 2002-12-20 Titanium foil-coated steel material and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004202693A true JP2004202693A (en) 2004-07-22

Family

ID=32809959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002370922A Pending JP2004202693A (en) 2002-12-20 2002-12-20 Titanium foil-coated steel material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004202693A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1657325A1 (en) * 2004-11-04 2006-05-17 Nippon Steel Corporation Steel post embedded in the ground having corrosion control property
JP2011206754A (en) * 2010-03-31 2011-10-20 Nittetsu Corrosion Prevention Co Ltd Corrosion control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1657325A1 (en) * 2004-11-04 2006-05-17 Nippon Steel Corporation Steel post embedded in the ground having corrosion control property
JP2011206754A (en) * 2010-03-31 2011-10-20 Nittetsu Corrosion Prevention Co Ltd Corrosion control method

Similar Documents

Publication Publication Date Title
KR101750793B1 (en) Multilayer film applied to a ship
JP2004202693A (en) Titanium foil-coated steel material and its manufacturing method
JP5888743B2 (en) Corrosion protection method and corrosion protection structure of steel structure
CA2241890C (en) Method of protecting metals against corrosion
JP2007245682A (en) Corrosion-resistant metallic coating steel material
JP2006225573A (en) Covering material of steel structure
JP5361077B2 (en) Anticorrosion method
JP4595483B2 (en) Resin coated heavy duty steel
JP4648742B2 (en) Surface treated steel
CN208934087U (en) A kind of impervious lining of anti-corrosion for inspection shaft
JP4710821B2 (en) Resin coated heavy duty steel
JP4595494B2 (en) Resin coated heavy duty steel
JP3345313B2 (en) Polyester coated heavy duty corrosion resistant steel
KR200316562Y1 (en) Pile for ocean structure with ceramic coated layer
JPS6327174B2 (en)
JPH10193506A (en) Corrosion resistant coating material coated with organic resin sheet
JP2004353405A (en) Steel sheet pile anti-corrosive structure excellent in long-term durability
JP3213936B2 (en) Heavy-corrosion-coated steel sheet pile and method for producing the same
JP2008229998A (en) Heavy corrosion-proof coated steel material
JP2005113167A (en) Efficient electrolytic corrosion protection method, corrosion-protected steel, and corrosion-protected structure
JPH0445617B2 (en)
JP2023043574A (en) Anti-corrosion coating structure and marine structure comprising the anti-corrosion coating structure
JP3360907B2 (en) Super heavy corrosion protection coated steel
JPS63217012A (en) Method of applying antifouling material to structure and antifouling tape therefor
JP2005029997A (en) Long-term durable anti-corrosive structure of steel sheet pile and its construction method

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20041028

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20041109

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050106

A521 Written amendment

Effective date: 20050107

Free format text: JAPANESE INTERMEDIATE CODE: A821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050405