JP2004202613A - Microchannel chip - Google Patents

Microchannel chip Download PDF

Info

Publication number
JP2004202613A
JP2004202613A JP2002373371A JP2002373371A JP2004202613A JP 2004202613 A JP2004202613 A JP 2004202613A JP 2002373371 A JP2002373371 A JP 2002373371A JP 2002373371 A JP2002373371 A JP 2002373371A JP 2004202613 A JP2004202613 A JP 2004202613A
Authority
JP
Japan
Prior art keywords
plate
recess
reaction
channel
reaction channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002373371A
Other languages
Japanese (ja)
Inventor
Hirozo Matsumoto
浩造 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2002373371A priority Critical patent/JP2004202613A/en
Publication of JP2004202613A publication Critical patent/JP2004202613A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Micromachines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microchannel chip for efficiently mixing a supplied raw material fluid while securing a required miniaturization. <P>SOLUTION: This microchannel chip is constituted by joining a cover plate 1a, an intermediate plate 4 and a bottom plate 5. The cover plate 1a is provided with a recessed part being a shunt part of a plurality of supply ports 11, a takeout port 13 and a cover plate 1a side reaction passage; the bottom plate 5 is provided with a recessed part being a shunt part of the reaction passage so as to be opposed to the recessed part of the cover plate 1a; and the intermediate plate 4 is provided with a supply passage 31b and three recessed parts of a first confluent part 331, a second confluent part 333 and a third confluent part 335. A shunt part 332 is provided in the middle of the reaction passage 33b formed by joining three plate material. A high agitating effect can be provided by a combination of confluence and shunt. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、微小な流路内で微小容量の流体を混合させたり反応させたりなどするマイクロチャンネルチップに関する。
【0002】
【従来の技術】
近年、進歩の著しいマイクロマシニング技術によって、シリコンやガラス、プラスチック等の基板を加工して、微小流路(マイクロチャンネル)をもつデバイスを作製し、その微小空間を各種反応(混合や合成、分離、分析等)の場として利用することが試みられ、注目を浴びている。このようなデバイスは、その使用目的に応じて、マイクロミキサーとかマイクロリアクタと呼ばれている。
通常、反応の場となる微小空間、すなわち反応流路、の等価直径が500μmより小さいものが微小流路(マイクロチャンネル)とされており、このような微小流路をもつチップがマイクロチャンネルチップである。マイクロチャンネルチップには、1つだけの微小流路をもつものもあれば、複数の微小流路をもつものもあり、多数の微小流路をもつウェハ状のものもある。
【0003】
このようなマイクロチャンネルチップのように流路のスケールが微小化してくると、以下の特徴が得られる。
・ レイノルズ数が小さくなるので、流れは層流支配となる。
・ 単位体積当たりの表面積が非常に大きくなる。
・ 温度、圧力、濃度等の勾配が大きくなる。
これらの特徴によって、熱伝導や、拡散等の物質移動、等の効率が向上し、反応系での反応時間の短縮や、反応速度の向上、等の利点が得られる。更に、微小空間内での反応であっても適量合成とか高い再現性が得られるので、反応に使用される薬品や触媒、試薬等を含めた原料流体の量を大幅に低減することも可能となって、経済的なメリットも大きい。
【0004】
ここで、先ず、マイクロチャンネルチップの一般的な構成を説明する。
図5は、従来技術によるマイクロチャンネルチップの一例の部品を示し、(a)は蓋板1の斜視図、(b)は基板2の斜視図であり、図6は、この蓋板1および基板2が接合や接着で一体化されてマイクロチャンネルチップとなった状態での、第1の供給流路31および反応流路33に沿った断面図である。
蓋板1には、各種の原料流体(溶液や薬品、試薬等で、微小固体を含む液体や気体も含む)を混合等の反応のために供給する2つの供給口(図5では第1供給口11および第2供給口12)と、混合された結果として送り出されてくる混合流体や生成流体等の反応結果流体を取り出す取出し口13と、が形成されている。
【0005】
基板2には、2つの供給口11および12からの供給流路となる第1供給流路用溝21および第2供給流路用溝22と反応流路となる反応流路用溝23とが形成されている。反応流路用溝23の幅は、図5(b)では2つの供給流路用溝21および22の幅より広く描かれているが、その長さと合わせて必要な反応時間との兼ね合いで決定される。
基板2上に蓋板1が接合されると、図6に示した様に、第1供給流路31、不図示の第2供給流路および反応流路33からなる流路3が形成される。
第1供給口11および第2供給口12 からそれぞれに供給された原料流体は、それぞれ第1供給流路31および第2供給流路を通って反応流路33へ導かれ、ここで混合や合成等の所定の反応をし、反応結果流体として取出し口13から取り出される。
【0006】
等価直径が500μm以下の微小流路のレイノルズ数は、10〜数100程度と極めて小さい。そのため、その内部を流れる流体は、前述したように層流支配状態となる。したがって、図5に示したような流路構成の微小流路の場合には、2つの供給口11および12から供給されたそれぞれの原料流体は、反応流路33内においても2つの層流となって流れ、供給された2つの原料流体の混合は、主に2つの層流の間の拡散によって支配される。このため、両流体が完全な混合状態に達するまでには、微小流路ではあっても、ある程度の時間を必要とする。
この混合所要時間を更に短縮して効率化するために、流れを幾つにも分割して多数の層流を作り、拡散所要時間を短くしようとする試みも幾つか提案されている。
【0007】
図7は、その一例の基板2aの形状を示した平面図であって、この基板2a上に図5 (a) に示した蓋板1と同様の蓋板が接合されて、マイクロチャンネルチップとなる。なお、図7においては、流路用溝を流路として示している。
蓋板の2つの供給口11および12につながる第1供給流路31aおよび第2供給路32aは、それぞれに3段階で分岐されて、反応流路である細かい網目状のマルチ流路33aにつながれている。マルチ流路33aの出口側は供給流路側とは逆に段段に集められて取出し口13につながっている。供給される2種類の原料流体は、細かい網目状のマルチ流路33aで十分に混合される。
【0008】
以上で説明したようなマイクロチャンネルチップの基板および蓋板用の素材には、通常、シリコンやガラス、金属、プラスチック等の板が用いられる。これら素材の中から、その使用目的に適合する材料が選択され、その材料に適した加工技術で微小流路等を加工され、接合や接着、O−リング締結等で一体化されてマイクロチャンネルチップとなる。
この種のマイクロチャンネルチップの構造等に関する従来技術としては、表面に異方性エッチングにより形成された複数の独立した反応チャンバ用溝を有するシリコン基板と、このシリコン基板の表面に静電接合され反応チャンバを形成させる平板と、からなるものが知られている(特許文献1参照)。
【0009】
【特許文献1】
特開平10−337173号公報
【0010】
【発明が解決しようとする課題】
図6等に示したような同一平面上に形成された微小流路内を流れる流体は、前述したように、外部から特別な状態を付与しない限り層流となるので、供給された原料流体の混合は、主に相互拡散に依存し、均一な混合状態を得るためには、その微小さの割には長い時間を必要とする。そのため、混合効率を高めるためには、流体の流れを幾つもの流れに分割して拡散に要する時間を短縮することが必要となり、図7に示したようなマルチ流路が採用されてきた。しかし、マルチ流路方式は、原料流体の数が多くなると流路を形成する基板の面積を大きくしなければならず、小型化の要求から乖離することになる。
【0011】
同じ流路断面積を持つ流路において、平行に流れる2つの流れが相互拡散で混合するのに要する時間は、接触面積が大きいほど短くなる。したがって、図5および図6のような、供給口が同じ側に配置されているマイクロチャンネルチップの場合には、供給口から送り込まれた流体が反応流路内で幅方向に並んだ層流となるので、幅が狭くて深い反応流路を形成すれば、層流間の接触面積が大きくなって、混合時間を短縮することができる。しかし、そのような反応流路は、反応流路溝の加工時間を長くさせるのに加えて、溝の形状精度を低下させる。そのため、反応流路の形状としては、深さに比べて幅の広いものが望ましい。
【0012】
この発明の課題は、要求される小型化を確保でき、反応流路の形状精度が高く、且つ供給される複数の原料流体を効率よく混合できるマイクロチャンネルチップを提供することである。
【0013】
【課題を解決するための手段】
請求項1の発明は、原料流体を供給する複数の供給口と、供給された複数の原料流体が混合された結果として送り出されてくる反応結果流体を取り出す取出し口と、それぞれの供給口から合流部までへのそれぞれの供給流路および合流部から取出し口までへの反応流路からなる流路と、を備え、この流路を形成するための凹部や貫通孔を有する複数の板材が一体化されてなるマイクロチャンネルチップであって、前記反応流路が、板材の主面に平行な部分と垂直な部分との組み合わせで構成されている。
【0014】
反応流路が板材の主面に平行であれば、従来技術の項で説明したように、反応流路内の流体の流れは層流支配となり、複数の流体を混合させるのに要する時間が長くなる。しかし、反応流路に板材の主面に垂直な部分を組み合わせると、この部分で、流体の流れが急激に曲げられて層流支配状態を乱され、反応流路の幅全体にわたって乱流状態を発生する。その結果として、反応流路内での原料流体の攪拌効果が高まる。
請求項2の発明は、請求項1の発明において、前記の複数の板材として、蓋板、中間板および底板の3枚の板材を有し、蓋板には、前記の複数の供給口および前記取出し口となる複数の貫通孔と、反応流路の一部となる凹部と、を備え、底板には、蓋板の凹部に対向する位置に、その凹部と同じ形状で反応流路の一部となる凹部を備え、中間板には、供給口となる蓋板の複数の貫通孔にそれぞれに連通する供給流路となり且つ蓋板の凹部および底板の凹部の入口に連通して反応流路の一部となる貫通孔と、蓋板の凹部および底板の凹部がそれぞれ複数である場合に、前段の両凹部の出口および後段の両凹部の入口に連通して反応流路の一部となる貫通孔と、最終段の両凹部の出口に連通し且つ取出し口となる蓋板の貫通孔に連通して反応流路の一部となる貫通孔と、を備える。
【0015】
この発明の構成は、反応流路の途中に、互いに対称な上下2つ分岐流路を形成するものであり、分岐部で流体の流れを急激に曲げるのに加えて、合流部で分流した流体同士をぶつかり合わせるので、大きな撹拌効果を得ることができる。なお、中間板を用いても厚さが幾分厚くなるだけであって、小型化に対する要求の支障にはならない。
請求項3の発明は、請求項1の発明において、前記の複数の板材として、蓋板および基板の2枚の板材を有し、蓋板には、前記の複数の供給口となる同数の貫通孔と、基板の凹部と連通して反応流路の一部となる凹部と、反応流路となる蓋板の凹部または基板の凹部の最終端と連通して前記取出し口となる貫通孔と、を備え、基板には、供給口となる蓋板の複数の貫通孔にそれぞれに連通する供給流路となり且つ蓋板の初段の凹部と連通して反応流路の一部となる凹部と、蓋板の凹部と連通して反応流路の一部となる凹部と、を備える。
【0016】
この発明の構成は、板材2枚の構成であって最も単純な構成であるが、反応流路の流れを急激に変えさせることはできるので、撹拌効果を得ることができる。請求項4の発明は、請求項1の発明において、前記の複数の板材として、蓋板、中間板および底板の3枚の板材を有し、中間板には、蓋板の貫通孔および凹部と底板の凹部とを連通させるための複数の貫通孔を備え、蓋板には、前記の複数の供給口となる同数の貫通孔と、底板の凹部と連通して反応流路の一部となる凹部と、反応流路となる蓋板の凹部または底板の凹部の最終端と連通して前記取出し口となる貫通孔と、を備え、底板には、供給口となる蓋板の複数の貫通孔にそれぞれに連通する供給流路となり且つ蓋板の初段の凹部と連通して反応流路の一部となる凹部と、蓋板の凹部と連通して反応流路の一部となる凹部と、を備える。
【0017】
この発明の構成は、中間板を用いることによって、反応流路の流れをより急激に変えさせるものであり、より大きい撹拌効果を得ることができる。なお、中間板を用いても厚さが幾分厚くなるだけであって、小型化に対する要求の支障にはならない。
【0018】
【発明の実施の形態】
この発明によるマイクロチャンネルチップの特徴は、同じ側にある複数の供給口から供給された複数の原料流体を、反応流路の幅がその深さより大きいものにおいても効率よく混合させるために、反応流路を板材の主面に平行な部分と垂直な部分との組み合わせで構成して、流体の流れを急激に変え、乱流状態を発生させて撹拌効果を得ていることである。
以下において、この発明の実施の形態について実施例を用いてより詳しく説明する。なお、従来技術と同じ機能の部分には同じ符号を付ける。
【0019】
〔第1の実施例〕
図1は、この発明によるマイクロチャンネルチップの第1の実施例の構成を示し、(a)は外観を示す斜視図、(b)は反応流路33bに沿った断面図であり、従来例の図6に相当する。図2はこの実施例の部品を示し、(a)は蓋板1aの平面図、(b)は中間板4の平面図、(c)は底板5の平面図である。
この実施例は、蓋板1aと中間板4と底板5とが静電接合で一体化されて構成されている。蓋板1aおよび底板5には硼珪酸ガラス板を用い、中間板4にはシリコンウェハを用いた。なお、蓋板1aおよび底板5をシリコンウェハとし、中間板4を硼珪酸ガラス板とすることもできる。
【0020】
蓋板1aには、各種の原料流体を混合や化学反応等の反応をさせるために供給する2つの供給口(第1供給口11および第2供給口12)と、混合された結果として送り出されてくる反応結果流体を取り出す取出し口13と、が貫通孔として形成されており、中間板4と接合される下面には、反応流路の一部である蓋板1a側の第1分流部332および第2分流部334となる2つの凹部、すなわち第1凹部14および第2凹部15が形成されている。
底板5には、蓋板1aの第1凹部14および第2凹部15に対向する位置に、反応流路の一部である底板5側の第1分流部332および第2分流部334となる2つの凹部、すなわち第1凹部51および第2凹部52が形成されている。
【0021】
中間板4には、第1供給流路31bおよび不図示の第2供給流路および第1合流部331となる第1貫通部41と、第1分流部332と第2分流部334とを連通する第2合流部333となる第2貫通部42と、第2分流部334と取出し口13とを連通する第3合流部335となる第3貫通部43と、が形成されている。
参考までに、この実施例の板材の厚さや加工形状の一例を示すと、蓋板1aおよび底板5の厚さは0.5mm、供給口11および12の直径は0.3mm、取出し口13の直径は0.5mm、中間板4の厚さは0.35mm、第1凹部14等の凹部の深さは0.1mm、である。上記の貫通孔、凹部および貫通部の加工には、サンドブラスト加工と弗酸および硝酸の混合液による湿式エッチングとを併用した。
【0022】
蓋板1aおよび底板5が、中間板4の上下にそれぞれ静電接合によって接合されて、第1供給流路31b、不図示の第2供給流路および反応流路33bからなる流路を形成する。反応流路33bは、第1合流部331、上下2つに分かれる第1分流部332、第2合流部333、再度上下2つに分かれる第2分流部334および第3合流部335からなる。
参考までに静電接合の条件例を示すと、500℃に設定されたヒータ上に底板5、中間板4および蓋板1aの順に積層し、これらの部材が500℃に到達した段階で、450Vの直流電圧をガラス部材とシリコン部材との間に印加する。この条件で、構成部材は完全に一体化し、接合部からの液体の漏洩は全く認められなかった。
【0023】
第1供給口11および第2供給口12からそれぞれに供給された原料流体は、それぞれ第1供給流路31bおよび第2供給流路を通って反応流路33bへ導かれ、ここで混合や化学反応等をし、反応結果流体となって取出し口13から取り出される。
反応流路33b内を流れる原料流体は、第1供給流路31bおよび第2供給流路の合流部で互いに正面からぶつかり合って合流し、第1合流部331を流れ、第1分流部332の入口で流れの方向を急激に変えて乱流状態を伴いながら上下2つの流れに分かれて第1分流部332を流れる。第1分流部332の2つの流れは、第2合流部333の入口で互いに正面からぶつかり合って再度合流し、第2合流部333を流れる。第2合流部333内の流れは、第2分流部334の入口で、第1分流部332の入口におけると同様に、流れの方向を急激に変えて乱流状態を伴いながら上下2つの流れに分かれて第2分流部334を流れる。第2分流部334の2つの流れは、第3合流部335の入口で互いに正面からぶつかり合って合流し、第3合流部335を流れ、取出し口13に達する。このようにして、2つの供給口11および12から送り込まれた原料流体は、正面からぶつかり合う合流と乱流を伴う分流とによって、反応流路33b内で十分に混合される。
【0024】
この実施例は分流部を2つ備えているものであるが、分流部の数は2つに限定されるものではない。更に、分流部の数だけではなく、その配置位置や長さ等を選定することによって、反応流路の断面形状や必要とする混合条件等に合致した最適の混合状態を実現することができる。
〔第2の実施例〕
図3は、第2の実施例の構成を示す反応流路33cに沿った断面図である。
この実施例は、反応流路33cとなる凹部をそれぞれに備えた蓋板1bおよび基板2cが静電接合で接合されて構成されている。蓋板1bには硼珪酸ガラス板を用い、基板2cにはシリコンウェハを用いた。なお、蓋板1bをシリコンウェハとし、基板2cを硼珪酸ガラス板とすることもできる。
【0025】
蓋板1bには、原料流体の供給口である第1供給口11および不図示の第2供給口となる貫通孔と、反応結果流体を取り出す取出し口13となる貫通孔と、基板2cとの接合によって蓋板側反応流路336となる3つの凹部とが形成され、基板2cには、蓋板1bとの接合によって第1供給流路31cおよび不図示の第2供給流路および初段の基板側反応流路337と2段目および3段目の各基板側反応流路337となる3つの凹部が形成されている。蓋板側の凹部および基板側の凹部は、蓋板1bと基板2cとが接合された時に互いに両端部が連通して1つの流路を形成するような位置関係にある。なお、取出し口13となる貫通孔と蓋板側反応流路336となる凹部の最終端とは連通している。
【0026】
このような蓋板1bと基板2cとが接合されて、図3に示すような、基板側反応流路337と蓋板側反応流路336とが交互に端部で連通された状態の、上下にジグザグ状に曲がった反応流路33cを形成する。なお、供給流路31d等の形状は第1の実施例と同様である。
この実施例の反応流路33c内の流体の流れは、ジグザグ状に曲がる度に乱流状態を発生するので、内部を流れる原料流体は、乱流状態の撹拌効果で効率よく混合される。
〔第3の実施例〕
図4は、第3の実施例の構成を示す反応流路に沿った断面図である。
【0027】
この実施例は、第2の実施例の反応流路の曲がりをより大きくしたものであり、そのために中間板4aを追加している。なお、この実施例では、第2の実施例の基板2cに相当する部材を底板5aと呼んでいる。蓋板1cおよび底板5aには硼珪酸ガラス板を用い、中間板4aにはシリコンウェハを用いた。なお、蓋板1cおよび底板5aをシリコンウェハとし、中間板4aを硼珪酸ガラス板とすることもできる。
この実施例における蓋板1cおよび底板5aは、第2の実施例の蓋板1bおよび基板2cと同様であるので、詳しい説明は省略し、異なる点のみを説明する。
蓋板側反応流路338となる蓋板1cの凹部は2つであり、底板5aの底板側反応流路340となる凹部の最終端が取出し口13となる貫通孔と連通する位置関係になっている。
【0028】
中間板4aには、蓋板1cの貫通孔および凹部と底板4aの凹部とを連通させて反応流路33dを完成させるための、第1供給口用貫通孔44、不図示の第2供給口用貫通孔、取出し口用貫通孔46、および蓋板1cの凹部の端部と底板4aの凹部の端部とを連通させる4つの貫通孔反応流路339が形成されている。
蓋板1cおよび底板5aが、中間板4aの上下に接合されて、第1供給流路31d、不図示の第2供給流路、および大きなジグザグ状の曲がりをもつ反応流路33dからなる流路を形成する。
この実施例の反応流路33d内の流体の流れは、中間板4aでより大きくされたジグザグ状の曲がりによって、より激しい乱流状態を発生するので、内部を流れる原料流体はより効率よく混合される。
【0029】
以上に説明してきた3つの実施例では、供給流路の数がいずれも2つであったが、供給流路の数は2つに限定されるものではない。
【0030】
【発明の効果】
請求項1の発明においては、反応流路が、板材の主面に平行な部分と垂直な部分との組み合わせで構成されている。反応流路が板材の主面に平行であれば、従来技術の項で説明したように、反応流路内の流体の流れは層流支配となり、複数の流体を混合させるのに要する時間が長くなる。しかし、反応流路に板材の主面に垂直な部分を組み合わせると、この部分で、流体の流れが急激に曲げられて層流支配状態を乱され、反応流路の幅全体にわたって乱流状態を発生する。その結果として、反応流路内での原料流体の攪拌効果が高まる。
【0031】
したがって、この発明によれば、要求される小型化を確保しながら、反応流路の形状精度が高く、且つ供給される複数の原料流体を効率よく混合できるマイクロチャンネルチップを提供することができる。
請求項2の発明においては、複数の板材として、蓋板、中間板および底板の3枚の板材を有し、蓋板には、複数の供給口および取出し口となる複数の貫通孔と、反応流路の一部となる凹部と、を備え、底板には、蓋板の凹部に対向する位置に、その凹部と同じ形状で反応流路の一部となる凹部を備え、中間板には、供給口となる蓋板の複数の貫通孔のそれぞれに連通する供給流路となり且つ反応流路の一部となる貫通孔と、反応流路の一部となり且つ蓋板の凹部および底板の凹部の両方に連通する貫通孔と、を備える。この構成は、反応流路の途中に、互いに対称な上下2つの分岐流路を形成するものであり、分岐部で流体の流れを急激に曲げるのに加えて、合流部で分流した流体同士をぶつかり合わせるので、撹拌効果を一段と高める。
【0032】
したがって、この発明によれば、要求される小型化を確保しながら、反応流路の形状精度が高く、且つ供給される複数の原料流体を効率よく混合できるマイクロチャンネルチップを確実に提供することができる。
請求項3の発明においては、複数の板材として、蓋板および基板の2枚の板材を用い、蓋板に形成した反応流路の一部となる凹部と、基板に形成した反応流路の一部となる凹部とを、それぞれの端部で連通させて、反応流路を構成しているので、連通させた凹部の端部が、板材の主面に垂直な反応流路部分として機能して、反応流路の流れを急激に変えさせ、反応流路の幅全体にわたって乱流状態を発生させる。なお、この発明は板材2枚で構成されるので、構成が単純でありコストも安い。
【0033】
請求項4の発明においては、複数の板材として、蓋板、中間板および底板の3枚の板材を用い、蓋板に形成した反応流路の一部となる凹部と、底板に形成した反応流路の一部となる凹部とを、中間板に形成した貫通孔で連通させて、反応流路を構成しているので、板材の主面に垂直な部分が、凹部の深さに中間板の厚さ分を加えた大きさとなり、反応流路の流れをより急激に変えさせて、反応流路の幅全体にわたってより激しい乱流状態を発生させる。
なお、請求項2および請求項4の発明においては中間板を用いているが、中間板を用いても厚さが幾分厚くなるだけであって、小型化に対する要求の支障とはならない。
【図面の簡単な説明】
【図1】この発明によるマイクロチャンネルチップの第1の実施例の構成を示し、(a)は外観を示す斜視図、(b)は反応流路に沿った断面図
【図2】第1の実施例の部品を示し、(a)は蓋板の平面図、(b)は中間板の平面図、(c)は底板の平面図
【図3】第2の実施例の構成を示す反応流路に沿った断面図
【図4】第3の実施例の構成を示す反応流路に沿った断面図
【図5】従来技術によるマイクロチャンネルチップの一例の部品を示し、(a)は蓋板の斜視図、(b)は基板の斜視図
【図6】図5の部品による従来例の断面図
【図7】従来技術によるマイクロチャンネルチップの他例の基板の形状を示す平面図
【符号の説明】
1, 1a 蓋板
11 第1の供給口 12 第2の供給口
13 取出し口 14 第1凹部
15 第2凹部
2, 2a, 2c 基板 2b 圧電体製基板
21 第1の供給流路用溝 22 第2の供給流路用溝
23 反応流路用溝 23b 反応流路用凹部
24 内側共通電極 25 外側電極
3 流路
31, 31a, 31b, 31c, 31d 第1の供給流路
32a 第2の供給流路
33, 33b, 33c, 33d 反応流路 33a マルチ流路
331 第1合流部 332 第1分流部
333 第2合流部 334 第2分流部
335 第3合流部 336, 338 蓋板側反応流路
337 基板側反応流路 339 貫通孔反応流路
340 底板側反応流路
4, 4a 中間板
41 第1貫通部 42 第2貫通部
43 第3貫通部 44 第1供給口用貫通孔
46 取出し口用貫通孔
5, 5a 底板
51 第1凹部 52 第2凹部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a microchannel chip for mixing and reacting a small volume of fluid in a small channel.
[0002]
[Prior art]
In recent years, micro-machining technology, which has progressed remarkably, processes substrates such as silicon, glass, and plastic to produce devices with micro-channels (micro-channels). The micro-space is subjected to various reactions (mixing, synthesis, separation, Analysis) has been gaining attention. Such a device is called a micromixer or a microreactor depending on the purpose of use.
Usually, a micro space that is a reaction space, that is, a reaction channel, having an equivalent diameter of less than 500 μm is defined as a micro channel, and a chip having such a micro channel is a micro channel chip. is there. Some microchannel chips have only one microchannel, some microchannels have a plurality of microchannels, and some wafer channels have many microchannels.
[0003]
When the scale of the flow channel becomes smaller as in such a microchannel chip, the following features are obtained.
・ Since the Reynolds number becomes smaller, the flow is dominated by laminar flow.
・ The surface area per unit volume becomes very large.
・ The gradient of temperature, pressure, concentration, etc. increases.
Due to these characteristics, the efficiency of heat transfer, mass transfer such as diffusion, and the like are improved, and advantages such as shortening of the reaction time in the reaction system and improvement of the reaction speed are obtained. Furthermore, even in reactions in a small space, appropriate amount of synthesis and high reproducibility can be obtained, so it is possible to greatly reduce the amount of raw material fluid including chemicals, catalysts, reagents, etc. used in the reaction. As a result, economic benefits are great.
[0004]
Here, first, a general configuration of the microchannel chip will be described.
5A and 5B show parts of an example of a microchannel chip according to the prior art, wherein FIG. 5A is a perspective view of a cover plate 1, FIG. 5B is a perspective view of a substrate 2, and FIG. FIG. 2 is a cross-sectional view along a first supply channel 31 and a reaction channel 33 in a state where the microchannel chips 2 are integrated by bonding or bonding to form a microchannel chip.
The cover plate 1 is provided with two supply ports (first supply in FIG. 5) for supplying various raw material fluids (solutions, chemicals, reagents, etc., including liquids and gases containing fine solids) for reactions such as mixing. A port 11 and a second supply port 12), and a take-out port 13 for taking out a reaction result fluid such as a mixed fluid or a generated fluid sent out as a result of mixing are formed.
[0005]
The substrate 2 includes a first supply channel groove 21 and a second supply channel groove 22 serving as supply channels from the two supply ports 11 and 12, and a reaction channel groove 23 serving as a reaction channel. Is formed. Although the width of the reaction channel groove 23 is drawn wider than the widths of the two supply channel grooves 21 and 22 in FIG. 5B, the width is determined in consideration of the required reaction time in consideration of the length thereof. Is done.
When the cover plate 1 is joined to the substrate 2, a flow path 3 including a first supply flow path 31, a second supply flow path (not shown), and a reaction flow path 33 is formed as shown in FIG. .
The raw material fluids respectively supplied from the first supply port 11 and the second supply port 12 are guided to the reaction flow path 33 through the first supply flow path 31 and the second supply flow path, respectively, where they are mixed and synthesized. And the like, and is taken out from the outlet 13 as a reaction result fluid.
[0006]
The Reynolds number of a microchannel having an equivalent diameter of 500 μm or less is as small as about 10 to several hundreds. Therefore, the fluid flowing through the inside thereof is in a laminar flow dominant state as described above. Therefore, in the case of a microchannel having a channel configuration as shown in FIG. 5, each of the source fluids supplied from the two supply ports 11 and 12 has two laminar flows even in the reaction channel 33. The mixing of the two feed fluids supplied and fed is governed primarily by diffusion between the two laminar flows. For this reason, it takes a certain amount of time for the two fluids to reach a completely mixed state, even if they are microchannels.
In order to further shorten the mixing time and improve the efficiency, several attempts have been proposed to divide the flow into a number of parts to create a large number of laminar flows to shorten the diffusion time.
[0007]
FIG. 7 is a plan view showing the shape of an example of the substrate 2a. A cover plate similar to the cover plate 1 shown in FIG. Become. In FIG. 7, the flow channel groove is shown as a flow channel.
The first supply channel 31a and the second supply channel 32a connected to the two supply ports 11 and 12 of the lid plate are each branched in three stages, and are connected to a fine mesh-shaped multi-channel 33a that is a reaction channel. ing. The outlet side of the multi flow path 33a is gathered in a stepped manner opposite to the supply flow path side and is connected to the outlet 13. The supplied two types of raw material fluids are sufficiently mixed in the fine network-like multi-channel 33a.
[0008]
As a material for the substrate and cover plate of the microchannel chip as described above, a plate of silicon, glass, metal, plastic, or the like is usually used. From these materials, a material suitable for the purpose of use is selected, a micro channel is processed by a processing technology suitable for the material, and a micro channel chip is integrated by joining, bonding, O-ring fastening, etc. It becomes.
Conventional techniques relating to the structure and the like of this type of microchannel chip include a silicon substrate having a plurality of independent reaction chamber grooves formed on the surface by anisotropic etching, and a reaction substrate which is electrostatically bonded to the surface of the silicon substrate. 2. Description of the Related Art A flat plate for forming a chamber is known (see Patent Document 1).
[0009]
[Patent Document 1]
JP-A-10-337173
[Problems to be solved by the invention]
As described above, the fluid flowing in the microchannel formed on the same plane as shown in FIG. 6 and the like becomes a laminar flow unless a special state is given from the outside as described above. Mixing mainly depends on interdiffusion, and it takes a long time for its fineness to obtain a uniform mixed state. Therefore, in order to increase the mixing efficiency, it is necessary to divide the flow of the fluid into several flows to reduce the time required for diffusion, and a multi-channel as shown in FIG. 7 has been employed. However, in the multi-flow channel method, as the number of raw material fluids increases, the area of the substrate forming the flow channel must be increased, deviating from the demand for miniaturization.
[0011]
In a channel having the same channel cross-sectional area, the time required for two parallel flows to be mixed by mutual diffusion decreases as the contact area increases. Therefore, in the case of a microchannel chip in which the supply ports are arranged on the same side as in FIGS. 5 and 6, the fluid sent from the supply ports is a laminar flow arranged in the width direction in the reaction channel. Therefore, if a narrow and deep reaction channel is formed, the contact area between the laminar flows increases, and the mixing time can be shortened. However, such a reaction channel not only increases the processing time of the reaction channel groove, but also reduces the shape accuracy of the groove. Therefore, the shape of the reaction channel is desirably wider than the depth.
[0012]
An object of the present invention is to provide a microchannel chip capable of ensuring required miniaturization, having high shape accuracy of a reaction channel, and efficiently mixing a plurality of supplied material fluids.
[0013]
[Means for Solving the Problems]
According to the first aspect of the present invention, a plurality of supply ports for supplying a raw material fluid, an outlet for extracting a reaction result fluid sent out as a result of mixing the plurality of supplied raw material fluids, and a merging from each of the supply ports And a flow path comprising a reaction flow path from the merging section to the discharge port, and a plurality of plate members having recesses and through holes for forming the flow path are integrated. Wherein the reaction channel is constituted by a combination of a portion parallel to the main surface of the plate and a portion perpendicular to the main surface.
[0014]
If the reaction channel is parallel to the main surface of the plate, as described in the section of the related art, the flow of the fluid in the reaction channel is dominated by laminar flow, and the time required to mix a plurality of fluids is long. Become. However, when the reaction flow path is combined with a part perpendicular to the main surface of the plate, the fluid flow is sharply bent at this point, disturbing the laminar flow dominant state, and creating a turbulent flow state over the entire width of the reaction flow path. appear. As a result, the effect of stirring the raw material fluid in the reaction channel increases.
According to a second aspect of the present invention, in the first aspect of the present invention, the plurality of plate members include a lid plate, an intermediate plate, and a bottom plate. A plurality of through-holes serving as outlets, and a concave portion serving as a part of the reaction channel; a bottom plate having a part having the same shape as the concave portion at a position facing the concave portion of the lid plate; The intermediate plate has a supply passage communicating with a plurality of through-holes of the cover plate serving as a supply port, and the reaction passage communicates with the inlet of the recess of the cover plate and the recess of the bottom plate. When there are a plurality of through-holes, a plurality of recesses in the cover plate, and a plurality of recesses in the bottom plate, the through-holes which communicate with the outlets of the two recesses on the front stage and the inlets of the two recesses on the rear stage to become part of the reaction channel The reaction flow path communicates with the hole and the through-hole of the lid plate, which communicates with the outlets of both recesses in the final stage and also serves as an outlet. Comprising a through hole serving as a part of, a.
[0015]
The configuration of the present invention forms two symmetrical upper and lower branch flow paths in the middle of the reaction flow path, and in addition to sharply bending the flow of the fluid at the branch part, the fluid divided at the junction part Since they collide with each other, a large stirring effect can be obtained. It should be noted that the use of the intermediate plate only slightly increases the thickness, and does not obstruct the demand for miniaturization.
According to a third aspect of the present invention, in the first aspect of the present invention, the plurality of plate members include two plate members of a lid plate and a substrate, and the lid plate has the same number of through holes serving as the plurality of supply ports. A hole, a recess that communicates with the recess of the substrate and becomes a part of the reaction channel, and a through hole that communicates with the final end of the recess of the lid plate or the recess of the substrate that becomes the reaction channel and serves as the outlet, A concave portion that becomes a supply flow path that communicates with each of the plurality of through holes of the lid plate that is a supply port, and that communicates with the first-stage concave portion of the lid plate to become a part of the reaction flow path; And a recess that communicates with the recess of the plate and becomes a part of the reaction channel.
[0016]
The configuration of the present invention is the simplest configuration with two plate members. However, since the flow of the reaction channel can be rapidly changed, a stirring effect can be obtained. According to a fourth aspect of the present invention, in the first aspect of the present invention, the plurality of plate members include a lid plate, an intermediate plate, and a bottom plate. A plurality of through-holes for communicating with the concave portion of the bottom plate are provided, and the lid plate has the same number of through-holes serving as the plurality of supply ports, and communicates with the concave portion of the bottom plate to form a part of the reaction channel. A concave portion, a through hole communicating with the concave end of the lid plate or the final end of the bottom plate serving as a reaction channel, and a through hole serving as the outlet, wherein the bottom plate has a plurality of through holes of the lid plate serving as a supply port. A concave portion that becomes a supply flow channel that communicates with each of the first and second portions of the lid plate and becomes a part of the reaction channel, and a concave portion that communicates with the concave portion of the cover plate and becomes a part of the reaction channel, Is provided.
[0017]
According to the configuration of the present invention, the flow of the reaction channel is changed more rapidly by using the intermediate plate, and a larger stirring effect can be obtained. It should be noted that the use of the intermediate plate only slightly increases the thickness, and does not obstruct the demand for miniaturization.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
A feature of the microchannel chip according to the present invention is that a plurality of source fluids supplied from a plurality of supply ports on the same side are efficiently mixed even when the width of the reaction channel is larger than the depth thereof. The reason is that the path is constituted by a combination of a portion parallel to the main surface of the plate and a portion perpendicular to the main surface of the plate material to rapidly change the flow of the fluid and generate a turbulent state to obtain a stirring effect.
Hereinafter, embodiments of the present invention will be described in more detail using examples. The parts having the same functions as those of the prior art are denoted by the same reference numerals.
[0019]
[First embodiment]
FIGS. 1A and 1B show the configuration of a first embodiment of a microchannel chip according to the present invention, wherein FIG. 1A is a perspective view showing an external appearance, and FIG. 1B is a sectional view taken along a reaction channel 33b. This corresponds to FIG. 2A and 2B show components of this embodiment. FIG. 2A is a plan view of the cover plate 1a, FIG. 2B is a plan view of the intermediate plate 4, and FIG. 2C is a plan view of the bottom plate 5.
In this embodiment, the cover plate 1a, the intermediate plate 4, and the bottom plate 5 are integrated by electrostatic bonding. A borosilicate glass plate was used for the cover plate 1a and the bottom plate 5, and a silicon wafer was used for the intermediate plate 4. The lid plate 1a and the bottom plate 5 may be silicon wafers, and the intermediate plate 4 may be a borosilicate glass plate.
[0020]
Two supply ports (a first supply port 11 and a second supply port 12) for supplying various kinds of raw material fluids for performing reactions such as mixing and chemical reaction are supplied to the cover plate 1a, and are sent out as a result of mixing. An outlet 13 for taking out a reaction result fluid that comes in is formed as a through hole, and a lower surface joined to the intermediate plate 4 has a first branch portion 332 on the side of the lid plate 1a, which is a part of the reaction channel, on the lower surface. In addition, two concave portions serving as the second branch portion 334, that is, the first concave portion 14 and the second concave portion 15 are formed.
The bottom plate 5 is provided with a first branch part 332 and a second branch part 334 on the bottom plate 5 side, which is a part of the reaction channel, at positions facing the first concave part 14 and the second concave part 15 of the lid plate 1a. Two concave portions, that is, a first concave portion 51 and a second concave portion 52 are formed.
[0021]
The intermediate plate 4 communicates the first supply channel 31b, the second supply channel (not shown), and the first penetration portion 41 serving as the first junction 331, and the first branch portion 332 and the second branch portion 334. A second penetration portion 42 serving as a second junction portion 333 and a third penetration portion 43 serving as a third junction portion 335 connecting the second branch portion 334 and the outlet 13 are formed.
For reference, an example of the thickness and processing shape of the plate material of this embodiment is as follows. The thickness of the cover plate 1a and the bottom plate 5 is 0.5 mm, the diameters of the supply ports 11 and 12 are 0.3 mm, and the diameter of the extraction port 13 is The thickness of the intermediate plate 4 is 0.5 mm, and the depth of the concave portion such as the first concave portion 14 is 0.1 mm. Sand blasting and wet etching with a mixed solution of hydrofluoric acid and nitric acid were used in combination for the processing of the through-holes, recesses and through-holes.
[0022]
The lid plate 1a and the bottom plate 5 are respectively joined to the upper and lower portions of the intermediate plate 4 by electrostatic bonding to form a flow path including a first supply flow path 31b, a second supply flow path (not shown), and a reaction flow path 33b. . The reaction channel 33b includes a first junction 331, a first junction 332 split into two upper and lower portions, a second junction 333, a second junction 334 split into two upper and lower portions, and a third junction 335 again.
For reference, an example of the condition of electrostatic bonding is shown below.The bottom plate 5, the intermediate plate 4, and the cover plate 1a are laminated in this order on a heater set at 500 ° C., and when these members reach 500 ° C., 450V is applied. Is applied between the glass member and the silicon member. Under these conditions, the components were completely integrated, and no leakage of liquid from the joint was observed.
[0023]
The raw material fluids respectively supplied from the first supply port 11 and the second supply port 12 are guided to the reaction flow path 33b through the first supply flow path 31b and the second supply flow path, respectively, where mixing and chemical reaction are performed. It reacts, etc., and is taken out of the outlet 13 as a reaction result fluid.
The source fluid flowing in the reaction channel 33b collides from the front at the junction of the first supply channel 31b and the second supply channel and merges, flows through the first junction 331, and flows through the first branch 332. At the inlet, the direction of the flow is suddenly changed, and the air flows into the upper and lower two flows while flowing through the first branch portion 332 with a turbulent state. The two flows of the first branching section 332 collide with each other from the front at the entrance of the second branching section 333, merge again, and flow through the second branching section 333. The flow in the second junction 333 changes into two upper and lower flows at the inlet of the second branch 334, as in the inlet of the first branch 332, while rapidly changing the direction of the flow and causing a turbulent state. It is split and flows through the second branch part 334. The two flows of the second branch part 334 collide with each other at the entrance of the third merge part 335 and collide with each other from the front, flow through the third merge part 335 and reach the outlet 13. In this way, the raw material fluids fed from the two supply ports 11 and 12 are sufficiently mixed in the reaction flow channel 33b by the merge and the turbulent split flow that collide from the front.
[0024]
Although this embodiment has two branching sections, the number of branching sections is not limited to two. Furthermore, by selecting not only the number of the flow dividing portions, but also the arrangement position, length, and the like, it is possible to realize an optimum mixing state that matches the cross-sectional shape of the reaction channel, the required mixing conditions, and the like.
[Second embodiment]
FIG. 3 is a cross-sectional view along the reaction channel 33c showing the configuration of the second embodiment.
In this embodiment, a cover plate 1b and a substrate 2c each having a recess serving as a reaction channel 33c are joined by electrostatic joining. A borosilicate glass plate was used for the lid plate 1b, and a silicon wafer was used for the substrate 2c. Note that the cover plate 1b may be a silicon wafer and the substrate 2c may be a borosilicate glass plate.
[0025]
The cover plate 1b has a first supply port 11 serving as a supply port for the raw material fluid, a through-hole serving as a second supply port (not shown), a through-hole serving as an outlet 13 for taking out a reaction result fluid, and a substrate 2c. Three concave portions that become the lid plate side reaction channel 336 are formed by joining, and the first supply channel 31c and the second supply channel (not shown) and the first stage substrate are joined to the substrate 2c by joining with the lid plate 1b. The side reaction channel 337 and three concave portions serving as the second-stage and third-stage substrate-side reaction channels 337 are formed. The recess on the cover plate side and the recess on the substrate side have a positional relationship such that when the cover plate 1b and the substrate 2c are joined, both ends communicate with each other to form one flow path. The through hole serving as the outlet 13 communicates with the final end of the concave portion serving as the lid-side reaction channel 336.
[0026]
When the lid plate 1b and the substrate 2c are joined to each other, as shown in FIG. 3, the substrate-side reaction channels 337 and the lid-plate-side reaction channels 336 are alternately communicated at the ends, and A reaction channel 33c is formed in a zigzag shape. The shapes of the supply flow path 31d and the like are the same as in the first embodiment.
Since the flow of the fluid in the reaction channel 33c of this embodiment generates a turbulent state each time it bends in a zigzag manner, the raw material fluid flowing inside is efficiently mixed by the stirring effect of the turbulent state.
[Third embodiment]
FIG. 4 is a cross-sectional view along the reaction channel showing the configuration of the third embodiment.
[0027]
In this embodiment, the bending of the reaction channel of the second embodiment is further increased, and an intermediate plate 4a is added for that purpose. In this embodiment, a member corresponding to the substrate 2c of the second embodiment is called a bottom plate 5a. A borosilicate glass plate was used for the lid plate 1c and the bottom plate 5a, and a silicon wafer was used for the intermediate plate 4a. Note that the lid plate 1c and the bottom plate 5a may be silicon wafers, and the intermediate plate 4a may be a borosilicate glass plate.
Since the lid plate 1c and the bottom plate 5a in this embodiment are the same as the lid plate 1b and the substrate 2c in the second embodiment, detailed description will be omitted, and only different points will be described.
There are two concave portions in the lid plate 1c that becomes the lid plate side reaction channel 338, and the positional relationship is such that the final end of the concave portion that becomes the bottom plate side reaction channel 340 in the bottom plate 5a communicates with the through hole that becomes the outlet 13. ing.
[0028]
In the intermediate plate 4a, a through hole 44 for a first supply port, a second supply port (not shown) for completing the reaction channel 33d by communicating the through hole and the concave portion of the lid plate 1c with the concave portion of the bottom plate 4a. And a through-hole 46 for take-out port, and four through-hole reaction channels 339 for communicating the end of the recess of the cover plate 1c with the end of the recess of the bottom plate 4a.
A lid plate 1c and a bottom plate 5a are joined above and below the intermediate plate 4a to form a first supply channel 31d, a second supply channel (not shown), and a reaction channel 33d having a large zigzag bend. To form
The flow of the fluid in the reaction channel 33d of this embodiment generates a more intense turbulent state due to the zigzag bend made larger in the intermediate plate 4a, so that the raw material fluid flowing inside is more efficiently mixed. You.
[0029]
In each of the three embodiments described above, the number of supply channels is two, but the number of supply channels is not limited to two.
[0030]
【The invention's effect】
According to the first aspect of the present invention, the reaction channel is constituted by a combination of a portion parallel to the main surface of the plate and a portion perpendicular to the main surface. If the reaction channel is parallel to the main surface of the plate, as described in the section of the related art, the flow of the fluid in the reaction channel is dominated by laminar flow, and the time required to mix a plurality of fluids is long. Become. However, when the reaction flow path is combined with a part perpendicular to the main surface of the plate, the fluid flow is sharply bent at this point, disturbing the laminar flow dominant state, and creating a turbulent flow state over the entire width of the reaction flow path. appear. As a result, the effect of stirring the raw material fluid in the reaction channel increases.
[0031]
Therefore, according to the present invention, it is possible to provide a microchannel chip capable of efficiently mixing a plurality of supplied raw material fluids while ensuring the required miniaturization while maintaining a high reaction channel shape accuracy.
In the invention according to claim 2, the plurality of plate members include a lid plate, an intermediate plate, and a bottom plate, and the lid plate has a plurality of through-holes serving as a plurality of supply ports and a discharge port, and a plurality of reaction holes. A concave portion that becomes a part of the flow path, and the bottom plate has a concave portion that is a part of the reaction channel in the same shape as the concave portion at a position facing the concave portion of the lid plate, and the intermediate plate has A supply hole communicating with each of the plurality of through-holes of the cover plate serving as a supply port and serving as a part of the reaction channel, and a through-hole serving as a part of the reaction channel and a recess of the cover plate and a recess of the bottom plate. And a through hole communicating with both. This configuration forms two symmetrical upper and lower branch flow paths in the middle of the reaction flow path.In addition to sharply bending the flow of the fluid at the branch part, the fluids diverted at the merge part are also connected. Because they collide, the stirring effect is further enhanced.
[0032]
Therefore, according to the present invention, it is possible to reliably provide a microchannel chip capable of efficiently mixing a plurality of supplied raw material fluids while ensuring the required miniaturization while ensuring high accuracy in the shape of the reaction channel. it can.
According to the third aspect of the present invention, two plate members, a lid plate and a substrate, are used as the plurality of plate members, and a concave portion that is a part of a reaction channel formed in the lid plate and one of the reaction channel formed in the substrate are provided. And the concave portion, which is a part, is communicated at each end to constitute a reaction channel, so that the end of the communicated concave portion functions as a reaction channel portion perpendicular to the main surface of the plate material. That is, the flow of the reaction channel is rapidly changed, and a turbulent state is generated over the entire width of the reaction channel. Since the present invention is composed of two plate members, the configuration is simple and the cost is low.
[0033]
According to the fourth aspect of the present invention, three plate members, a cover plate, an intermediate plate and a bottom plate, are used as the plurality of plate members, and a concave portion which is a part of a reaction channel formed in the cover plate, and a reaction flow formed in the bottom plate. The recess, which becomes a part of the passage, is communicated with a through hole formed in the intermediate plate to form a reaction channel, so that a portion perpendicular to the main surface of the plate material has a depth corresponding to the depth of the recess. The thickness is added to the thickness, and the flow of the reaction channel is changed more rapidly, and a more intense turbulent state is generated over the entire width of the reaction channel.
In the second and fourth aspects of the present invention, the intermediate plate is used. However, the use of the intermediate plate only slightly increases the thickness, and does not hinder the demand for miniaturization.
[Brief description of the drawings]
FIGS. 1A and 1B show the configuration of a first embodiment of a microchannel chip according to the present invention, wherein FIG. 1A is a perspective view showing an external appearance, and FIG. 1B is a sectional view taken along a reaction channel. FIG. 3A is a plan view of a cover plate, FIG. 3B is a plan view of an intermediate plate, and FIG. 3C is a plan view of a bottom plate. FIG. 3 is a reaction flow showing a configuration of a second embodiment. FIG. 4 is a cross-sectional view along a reaction channel showing the configuration of a third embodiment. FIG. 5 shows an example of a component of a microchannel chip according to a conventional technique. FIG. 6B is a perspective view of the substrate. FIG. 6 is a cross-sectional view of a conventional example using the components of FIG. 5. FIG. 7 is a plan view showing the shape of another example of the substrate of the micro-channel chip according to the prior art. Description】
1, 1a cover plate
11 1st supply port 12 2nd supply port
13 Outlet 14 First recess
15 Second recess 2, 2a, 2c Substrate 2b Piezoelectric substrate
21 First supply channel groove 22 Second supply channel groove
23 Reaction channel groove 23b Reaction channel recess
24 Inside common electrode 25 Outside electrode 3 Flow path
31, 31a, 31b, 31c, 31d First supply channel
32a Second supply channel
33, 33b, 33c, 33d Reaction channel 33a Multi channel
331 1st junction 332 1st junction
333 2nd junction 334 2nd junction
335 Third junction 336, 338 Lid plate side reaction channel
337 Substrate-side reaction channel 339 Through-hole reaction channel
340 Bottom plate side reaction channel 4, 4a Intermediate plate
41 1st penetration section 42 2nd penetration section
43 3rd penetration 44 through-hole for 1st supply port
46 Through hole 5, 5a for outlet bottom plate
51 1st recess 52 2nd recess

Claims (4)

原料流体を供給する複数の供給口と、供給された複数の原料流体が混合された結果として送り出されてくる反応結果流体を取り出す取出し口と、それぞれの供給口から合流部までへのそれぞれの供給流路および合流部から取出し口までへの反応流路からなる流路と、を備え、この流路を形成するための凹部や貫通孔を有する複数の板材が一体化されてなるマイクロチャンネルチップであって、
前記反応流路が、板材の主面に平行な部分と垂直な部分との組み合わせで構成されている、
ことを特徴とするマイクロチャンネルチップ。
A plurality of supply ports for supplying the raw material fluid, an outlet for taking out a reaction result fluid sent out as a result of mixing the supplied plurality of raw material fluids, and a respective supply from each supply port to the junction. A flow channel consisting of a flow channel and a reaction flow channel from the junction to the outlet, and a microchannel chip in which a plurality of plate members having concave portions and through holes for forming the flow channel are integrated. So,
The reaction channel is constituted by a combination of a portion parallel to the main surface of the plate and a portion perpendicular to the main surface,
A microchannel chip, characterized in that:
前記の複数の板材として、蓋板、中間板および底板の3枚の板材を有し、
蓋板には、前記の複数の供給口および前記取出し口となる複数の貫通孔と、反応流路の一部となる凹部と、を備え、
底板には、蓋板の凹部に対向する位置に、その凹部と同じ形状で反応流路の一部となる凹部を備え、
中間板には、供給口となる蓋板の複数の貫通孔にそれぞれに連通する供給流路となり且つ蓋板の凹部および底板の凹部の入口に連通して反応流路の一部となる貫通孔と、蓋板の凹部および底板の凹部がそれぞれ複数である場合に、前段の両凹部の出口および後段の両凹部の入口に連通して反応流路の一部となる貫通孔と、最終段の両凹部の出口に連通し且つ取出し口となる蓋板の貫通孔に連通して反応流路の一部となる貫通孔と、を備える、
ことを特徴とする請求項1に記載のマイクロチャンネルチップ。
As the plurality of plate members, a lid plate, an intermediate plate, and a bottom plate having three plate members,
The cover plate includes a plurality of through-holes serving as the plurality of supply ports and the outlet, and a recess serving as a part of a reaction channel,
The bottom plate is provided with a concave portion which is a part of the reaction channel in the same shape as the concave portion at a position facing the concave portion of the lid plate,
The intermediate plate has a supply passage communicating with the plurality of through-holes of the lid plate serving as a supply port, and a through-hole communicating with the inlets of the concave portion of the lid plate and the concave portion of the bottom plate to be a part of the reaction channel. And a plurality of recesses in the lid plate and the bottom plate, each having a plurality of recesses, and a through-hole that becomes a part of the reaction channel by communicating with an outlet of both recesses of the preceding stage and an inlet of both recesses of the subsequent stage. A through hole that communicates with the outlets of both recesses and communicates with a through hole of the lid plate that serves as an outlet and becomes a part of the reaction channel.
2. The microchannel chip according to claim 1, wherein:
前記の複数の板材として、蓋板および基板の2枚の板材を有し、
蓋板には、前記の複数の供給口となる同数の貫通孔と、基板の凹部と連通して反応流路の一部となる凹部と、反応流路となる蓋板の凹部または基板の凹部の最終端と連通して前記取出し口となる貫通孔と、を備え、
基板には、供給口となる蓋板の複数の貫通孔にそれぞれに連通する供給流路となり且つ蓋板の初段の凹部と連通して反応流路の一部となる凹部と、蓋板の凹部と連通して反応流路の一部となる凹部と、を備える、
ことを特徴とする請求項1に記載のマイクロチャンネルチップ。
As the plurality of plate members, a lid plate and a substrate have two plate members,
The cover plate has the same number of through holes serving as the plurality of supply ports, a recess serving as a part of the reaction channel in communication with the recess of the substrate, and a recess of the lid plate or a recess of the substrate serving as the reaction channel. A through hole that communicates with the final end of
The substrate has a supply channel that communicates with the plurality of through holes of the cover plate that is a supply port, and a recess that communicates with the first-stage recess of the cover plate and becomes a part of the reaction channel, and a recess of the cover plate. And a recess that becomes part of the reaction channel in communication with the
2. The microchannel chip according to claim 1, wherein:
前記の複数の板材として、蓋板、中間板および底板の3枚の板材を有し、
中間板には、蓋板の貫通孔および凹部と底板の凹部とを連通させるための複数の貫通孔を備え、
蓋板には、前記の複数の供給口となる同数の貫通孔と、底板の凹部と連通して反応流路の一部となる凹部と、反応流路となる蓋板の凹部または底板の凹部の最終端と連通して前記取出し口となる貫通孔と、を備え、
底板には、供給口となる蓋板の複数の貫通孔にそれぞれに連通する供給流路となり且つ蓋板の初段の凹部と連通して反応流路の一部となる凹部と、蓋板の凹部と連通して反応流路の一部となる凹部と、を備える、
ことを特徴とする請求項1に記載のマイクロチャンネルチップ。
As the plurality of plate members, a lid plate, an intermediate plate, and a bottom plate having three plate members,
The intermediate plate has a plurality of through holes for communicating the through hole and the concave portion of the lid plate with the concave portion of the bottom plate,
The cover plate has the same number of through holes serving as the plurality of supply ports, a recess serving as a part of the reaction channel in communication with the recess in the bottom plate, and a recess in the cover plate or a recess in the bottom plate serving as the reaction channel. A through hole that communicates with the final end of
The bottom plate has a supply passage communicating with the plurality of through-holes of the cover plate serving as a supply port, and a concave portion serving as a part of the reaction flow passage communicating with the recess at the first stage of the cover plate, and a concave portion of the cover plate. And a recess that becomes part of the reaction channel in communication with the
2. The microchannel chip according to claim 1, wherein:
JP2002373371A 2002-12-25 2002-12-25 Microchannel chip Pending JP2004202613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002373371A JP2004202613A (en) 2002-12-25 2002-12-25 Microchannel chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002373371A JP2004202613A (en) 2002-12-25 2002-12-25 Microchannel chip

Publications (1)

Publication Number Publication Date
JP2004202613A true JP2004202613A (en) 2004-07-22

Family

ID=32811665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002373371A Pending JP2004202613A (en) 2002-12-25 2002-12-25 Microchannel chip

Country Status (1)

Country Link
JP (1) JP2004202613A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007252979A (en) * 2006-03-20 2007-10-04 National Institute Of Advanced Industrial & Technology Method for manufacturing compound by micro-reactor, its micro-reactor and distributor for micro-reactor
WO2008050562A1 (en) * 2006-10-26 2008-05-02 Konica Minolta Medical & Graphic, Inc. Microchip and method of producing microchip
KR20160007934A (en) * 2014-07-10 2016-01-21 나노바이오시스 주식회사 Microfludic chip, manufacturing method thereof and analyzing apparatus using the same
JP2016047529A (en) * 2008-09-29 2016-04-07 コーニング インコーポレイテッド Multiple flow path microreactor device
WO2023124437A1 (en) * 2021-12-27 2023-07-06 Tcl科技集团股份有限公司 Microfluidic chip, micro-reaction system, and quantum dot preparation method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007252979A (en) * 2006-03-20 2007-10-04 National Institute Of Advanced Industrial & Technology Method for manufacturing compound by micro-reactor, its micro-reactor and distributor for micro-reactor
WO2008050562A1 (en) * 2006-10-26 2008-05-02 Konica Minolta Medical & Graphic, Inc. Microchip and method of producing microchip
JP2016047529A (en) * 2008-09-29 2016-04-07 コーニング インコーポレイテッド Multiple flow path microreactor device
EP2172261B1 (en) * 2008-09-29 2020-02-12 Corning Incorporated Multiple flow path microfluidic devices
KR20160007934A (en) * 2014-07-10 2016-01-21 나노바이오시스 주식회사 Microfludic chip, manufacturing method thereof and analyzing apparatus using the same
CN106470937A (en) * 2014-07-10 2017-03-01 纳米生物系统株式会社 Micro-fluidic chip and preparation method thereof and utilize its analytical equipment
JP2017519996A (en) * 2014-07-10 2017-07-20 ナノバイオシス インコーポレーテッドNanobiosys Inc. Microfluidic chip, method for manufacturing the same, and analyzer using the same
US10189021B2 (en) 2014-07-10 2019-01-29 Nanobiosys Inc. Microfluidic chip, manufacturing method therefor and analysis device using same
KR102195769B1 (en) 2014-07-10 2020-12-30 주식회사 미코바이오메드 Microfludic chip, manufacturing method thereof and analyzing apparatus using the same
WO2023124437A1 (en) * 2021-12-27 2023-07-06 Tcl科技集团股份有限公司 Microfluidic chip, micro-reaction system, and quantum dot preparation method

Similar Documents

Publication Publication Date Title
US20070047388A1 (en) Fluidic mixing structure, method for fabricating same, and mixing method
EP1997553B1 (en) Fluid mixer and method for forming mixed fluid
EP1908514B1 (en) Microreactor
KR20050085326A (en) Static lamination micro-mixer
JP2006346671A (en) Liquid-liquid interface reactor
WO2004054696A1 (en) A mixing apparatus and method
CN102802779A (en) Microreactors
JP2003220322A (en) Liquid mixing mechanism
JP2013040776A (en) Fluidic channel device, and method for mixing fluids
JP2004016870A (en) Micro-reactor and chemical reaction method using the same
JP2006043617A (en) Microfluidic chip
JP2005326392A (en) Sample inlet microdevice
JP2004202613A (en) Microchannel chip
JP3888275B2 (en) Micro mixer
JP5651787B2 (en) Fluid control device and fluid mixer
JP2006255583A (en) Micro reactor
JP2006255584A (en) Micro reactor
JP2006142210A (en) Microchip and fluid mixing method using the same
JP2004113967A (en) Micromixer
JP2004184315A (en) Microchannel chip
KR100485317B1 (en) Micro mixer and method of manufacturing the same
JP4454431B2 (en) plate
JP2006208188A (en) Microchemical chip
JP2001259392A (en) Liquid mixer
JP2006075680A (en) Multistage extraction chip