JP4454431B2 - plate - Google Patents

plate Download PDF

Info

Publication number
JP4454431B2
JP4454431B2 JP2004236060A JP2004236060A JP4454431B2 JP 4454431 B2 JP4454431 B2 JP 4454431B2 JP 2004236060 A JP2004236060 A JP 2004236060A JP 2004236060 A JP2004236060 A JP 2004236060A JP 4454431 B2 JP4454431 B2 JP 4454431B2
Authority
JP
Japan
Prior art keywords
flow path
plate
main flow
liquids
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004236060A
Other languages
Japanese (ja)
Other versions
JP2006053091A (en
Inventor
龍麿 山下
嘉久 澁谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2004236060A priority Critical patent/JP4454431B2/en
Publication of JP2006053091A publication Critical patent/JP2006053091A/en
Application granted granted Critical
Publication of JP4454431B2 publication Critical patent/JP4454431B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

本発明は、例えば血液検査、尿検査、あるいはDNA検査を医療機関や個人などで行なうことが可能な簡易なプレートに係わり、特に、複数の液体が合流する主流路において複数の液体を適切に混合させることが可能なプレートに関する。   The present invention relates to a simple plate capable of performing, for example, a blood test, a urine test, or a DNA test in a medical institution or an individual, and in particular, appropriately mixes a plurality of liquids in a main flow path where a plurality of liquids merge. It is related with the plate which can be made to do.

近年、血液や尿など、人体からの採取物に対する検査用のチップの開発が盛んになっている。例えば、DNAチップは、ガラスなどの基板上に多種類のDNA断片(プローブ)を貼り付けた物で、人から採取した遺伝子(検体,あるいはターゲット)の働き具合(発現)等を一度に測定することが出来る。   2. Description of the Related Art In recent years, development of chips for testing specimens collected from the human body, such as blood and urine, has become active. For example, a DNA chip is a product in which various types of DNA fragments (probes) are attached to a substrate such as glass, and measures the working condition (expression) of a gene (specimen or target) collected from a human at once. I can do it.

従来、試験管とスポイト、あるいは攪拌機等で行なわれていた生化学反応を前記チップ上で行なうことで、高速度で検査することができ、また検査工程の簡略化を測ることが可能であると考えられ、注目を浴びている。   Conventionally, the biochemical reaction that has been performed with a test tube and a dropper, a stirrer, or the like can be performed at a high speed on the chip, and the inspection process can be simplified. It is considered and attracts attention.

ところで検査チップは、現在、研究用チップとして大学や研究機関向けに開発されているのが主流であるが、将来的には、医療機関や個人向けへの簡易な検査チップが商品化されることが期待される。   By the way, test chips are currently mainly developed as research chips for universities and research institutions, but in the future, simple test chips for medical institutions and individuals will be commercialized. There is expected.

図10は、従来の検査用プレートの部分斜視図であり、図10に示すように前記検査用プレート1には流路2が凹状に形成されている。   FIG. 10 is a partial perspective view of a conventional inspection plate. As shown in FIG. 10, the inspection plate 1 has a channel 2 formed in a concave shape.

前記流路2内において液体が流れる方向はY1方向からY2方向である。前記流路2は、主流路2aと前記主流路2aの液体が流れる上流側(Y1側)に連結された2本の副流路2bとで構成される。   The direction in which the liquid flows in the flow path 2 is from the Y1 direction to the Y2 direction. The flow path 2 includes a main flow path 2a and two sub flow paths 2b connected to the upstream side (Y1 side) through which the liquid of the main flow path 2a flows.

前記副流路2b,2bのY1側にはそれぞれ試薬等の液体A,Bを収納するための収納室3,3が連結され、また前記主流路2aのY2側には検体を収納するための収納室(反応室)4が連結されている。   Storage chambers 3 and 3 for storing liquids A and B such as reagents are connected to the Y1 side of the sub-channels 2b and 2b, respectively, and a sample chamber is stored on the Y2 side of the main channel 2a. A storage chamber (reaction chamber) 4 is connected.

前記収納室3,3に収納された液体A,Bは、それぞれ副流路2b,2bを通って前記主流路2aへ導かれる。   The liquids A and B stored in the storage chambers 3 and 3 are guided to the main flow path 2a through the sub flow paths 2b and 2b, respectively.

しかしながら、図10に示された流路2はマイクロオーダーで形成された溝であり、このように微小領域では、前記液体A,Bは層状の流れを成し適切に混合しない。   However, the flow path 2 shown in FIG. 10 is a groove formed in the micro order, and in such a minute region, the liquids A and B form a laminar flow and do not mix properly.

よって前記液体A,Bは主流路2a内で適切に混合しない状態で収納室4まで導かれてしまい、前記収納室4で液体A,Bと検体とが適切に反応しない恐れがあった。   Therefore, the liquids A and B are guided to the storage chamber 4 in a state where the liquids A and B are not properly mixed in the main flow path 2a, and there is a possibility that the liquids A and B and the specimen do not react properly in the storage chamber 4.

下記の特許文献1には、複数の液体を効率良く混合するための化学分析方法及び装置に関する発明が開示されている。
特開2004−53370号公報
The following Patent Document 1 discloses an invention relating to a chemical analysis method and apparatus for efficiently mixing a plurality of liquids.
JP 2004-53370 A

特許文献1では、例えばこの文献の図1に示されるように、基板101上に、複数の試薬注入槽102と、流路104,105と、混合槽103とを有し、前記混合槽103には発熱体素子106が設けられている。   In Patent Document 1, for example, as shown in FIG. 1 of this document, a plurality of reagent injection tanks 102, flow paths 104 and 105, and a mixing tank 103 are provided on a substrate 101. Is provided with a heating element 106.

そして前記発熱体素子106から発生する気泡を、温度変化によって膨張させたりあるいは収縮させたりすることで、混合槽103内の液体を攪拌し、従来技術と比較して効率良く混合することが可能になるとしている(特許文献1の明細書[0016]欄等)。   The bubbles generated from the heating element 106 are expanded or contracted by a temperature change, so that the liquid in the mixing tank 103 can be stirred and mixed more efficiently than in the prior art. (Description [0016] column of Patent Document 1).

しかしながら特許文献1の技術は、試薬注入槽102から流路104を通って前記混合槽103にまで流れた各試薬を流路104,105の幅よりも広い幅寸法を有する前記混合槽103に一旦集約し、この注入槽102内で各試薬を攪拌するものである。   However, in the technique of Patent Document 1, each reagent that has flowed from the reagent injection tank 102 through the flow path 104 to the mixing tank 103 is temporarily transferred to the mixing tank 103 having a width that is wider than the width of the flow paths 104 and 105. Collectively, each reagent is stirred in the injection tank 102.

すなわち特許文献1の技術では、各試薬を集約するための前記混合槽103が必要となり、前記基板101に複雑な溝形状を形成しなければならなくなる。   That is, in the technique of Patent Document 1, the mixing tank 103 for collecting each reagent is required, and a complicated groove shape must be formed in the substrate 101.

またマイクロ流路のように非常に微細な領域に前記発熱体素子106を設けることは非常に煩雑な作業となる。   Also, providing the heating element 106 in a very fine region such as a micro flow path is a very complicated operation.

このため、特許文献1に比べて簡単な手法で且つ、複数の液体が合流して流れる流路内で各液体を混合できる構成であることが好ましい。   For this reason, it is preferable that it is a simple method compared with patent document 1, and it is the structure which can mix each liquid within the flow path which a some liquid merges and flows.

そこで本発明は上記課題を解決するためのものであり、特に、複数の液体が合流して流れる流路内で前記液体を適切に混合させることが可能なプレートを提供することを目的としている。   Therefore, the present invention is for solving the above-described problems, and in particular, an object of the present invention is to provide a plate capable of appropriately mixing the liquid in a flow path in which a plurality of liquids merge and flow.

本発明におけるプレートは、主流路と、前記主流路に連結する複数本の副流路と、を有し、
前記主流路には、各副流路から流れてきた液体の混合を促進させる混合促進手段が設けられ、前記混合促進手段は、前記主流路を構成する面の少なくとも一部に、上流側から下流側に向けて交互に形成された撥水面と親水面とで構成され、前記主流路を構成する空間内を前記撥水面と前記親水面とが互いにスパイラル状に配置されることを特徴とするものである。
The plate in the present invention has a main channel and a plurality of sub channels connected to the main channel,
Wherein the main channel, the mixing acceleration means for promoting mixing of the liquid flowing from the secondary flow channel is provided, et al is, the mixing acceleration means, at least a portion of the surface constituting the main passage, from the upstream side The water-repellent surface and the hydrophilic surface are alternately formed toward the downstream side, and the water-repellent surface and the hydrophilic surface are arranged in a spiral shape in the space constituting the main flow path. Is.

本発明では、主流路に前記混合促進手段が設けられ、前記主流路において適切に複数の液体を混合することが可能である。   In the present invention, the mixing promotion means is provided in the main channel, and a plurality of liquids can be appropriately mixed in the main channel.

本発明では、前記混合促進手段は、前記主流路を構成する面の少なくとも一部に、上流側から下流側に向けて交互に形成された撥水面と親水面とで構成される。 In the present invention, the mixing acceleration means, at least a portion of the surface constituting the main passage, Ru is composed from an upstream side and water-repellent surface and the hydrophilic surface formed alternately toward the downstream side.

前記副流路から前記主流路へ導かれた各液体は、撥水面上では摩擦が小さくなり、親水面上では摩擦が大きくなることから流速に変化が生じ、前記主流路内を流れる液体が混合しやすくなる。   Each liquid guided from the sub-flow path to the main flow path has a small friction on the water-repellent surface and a large friction on the hydrophilic surface, so that the flow velocity changes, and the liquid flowing in the main flow path is mixed. It becomes easy to do.

具体的には、前記主流路を構成する空間内を前記撥水面と前記親水面とが互いにスパイラル状に配置される構成である。 Specifically, Ru configuration der the space constituting the front Symbol main channel and the water-repellent surface and the hydrophilic surface is arranged in a spiral shape from one another.

本発明では、複数の液体が合流して流れる主流路に混合促進手段が設けられているため、前記主流路において適切に複数の液体を混合することが可能である。   In the present invention, since the mixing facilitating means is provided in the main flow path where a plurality of liquids merge and flow, it is possible to appropriately mix the plurality of liquids in the main flow path.

具体的には前記主流路内に、上流側から下流側に向って撥水面と親水面とを交互に配置するか、あるいは前記主流路内に突起部を設けるなどすれば、複数の液体を適切に前記主流路内で混合させることが出来る。   Specifically, if a water-repellent surface and a hydrophilic surface are alternately arranged from the upstream side to the downstream side in the main channel, or a protrusion is provided in the main channel, a plurality of liquids can be appropriately used. Can be mixed in the main flow path.

図1は本発明の第1実施形態のプレートの外観部分斜視図、図2は図1に示すプレートを真上から見たときの部分拡大平面図、図3は本発明の第2実施形態の前記プレートの部分拡大平面図、図4は本発明の第3実施形態の前記プレートの部分拡大斜視図、図5は、本発明の第4実施形態のプレートの外観部分斜視図、図6は図5に示すプレートを真上から見たときの部分拡大平面図、図7は本発明の第5実施形態のプレートの部分拡大平面図、図8は本発明の第6実施形態のプレートの部分拡大平面図、図9aは本発明の第7実施形態のプレートの部分拡大断面図、図9bは図9aの部分拡大平面図、図9cは本発明の第8実施形態のプレートの部分拡大平面図、である。   FIG. 1 is a partial perspective view of an outer appearance of a plate according to a first embodiment of the present invention, FIG. 2 is a partially enlarged plan view of the plate shown in FIG. 1 viewed from directly above, and FIG. 3 is a second embodiment of the present invention. 4 is a partially enlarged plan view of the plate, FIG. 4 is a partially enlarged perspective view of the plate of the third embodiment of the present invention, FIG. 5 is an external partial perspective view of the plate of the fourth embodiment of the present invention, and FIG. FIG. 7 is a partially enlarged plan view of the plate according to the fifth embodiment of the present invention, and FIG. 8 is a partially enlarged view of the plate of the sixth embodiment of the present invention. 9a is a partially enlarged sectional view of a plate according to a seventh embodiment of the present invention, FIG. 9b is a partially enlarged plan view of FIG. 9a, and FIG. 9c is a partially enlarged plan view of a plate according to an eighth embodiment of the present invention; It is.

図1に示す符号10は、検査用プレートである。図1に示す検査用プレート10は、例えば人体から血液や尿などを採取し、これら採取物(検体)を、所定の試薬などと反応させて所定の検査を行なうためのものである。前記検査用プレートを例えばDNAチップとして用いる場合には、採取した前記血液に所定の処理を施して使用する。   Reference numeral 10 shown in FIG. 1 is an inspection plate. A test plate 10 shown in FIG. 1 is for collecting blood, urine, and the like from a human body, for example, and performing a predetermined test by reacting the collected material (specimen) with a predetermined reagent or the like. When the test plate is used as, for example, a DNA chip, the collected blood is used after being subjected to a predetermined treatment.

前記検査用プレート10は、幅方向(図示X1−X2方向)の両端から直角に長さ方向(図示Y1−Y2方向)に延びる所定の厚みを有した略直方形状であるが、前記略直方形状以外の形状であってもかまわない。   The inspection plate 10 has a substantially rectangular shape having a predetermined thickness extending in the length direction (Y1-Y2 direction) perpendicularly from both ends in the width direction (X1-X2 direction). Other shapes may be used.

前記検査用プレート10は、プレート基板12と蓋体13とで構成される。前記プレート基板12及び蓋体13は、ガラスや樹脂などで形成されたものである。前記プレート基板12及び蓋体13は所定の蛍光強度を有する材質で形成される。特に前記検査用プレート10をDNAチップやプロテインチップ等として用いる場合には、前記検査用プレート10は低蛍光性で、耐薬品性に優れた材質であることが好ましく、例えば石英ガラス、ポリジメチルシロキサン(PDMS)、ポリメタクリル酸メチル(PMMA)などで形成される。   The inspection plate 10 includes a plate substrate 12 and a lid 13. The plate substrate 12 and the lid 13 are made of glass or resin. The plate substrate 12 and the lid 13 are made of a material having a predetermined fluorescence intensity. In particular, when the test plate 10 is used as a DNA chip or protein chip, the test plate 10 is preferably made of a material having low fluorescence and excellent chemical resistance, such as quartz glass, polydimethylsiloxane, and the like. (PDMS), polymethyl methacrylate (PMMA) or the like.

前記検査用プレート10が樹脂で形成されるときは、射出成形によって前記検査用プレート10を成形することが好ましく、場合によっては熱プレスを施して、前記検査用プレート10のプレート基板12の上面12aに形成される溝を高アスペクト比のものとして成形する。また前記検査用プレート10がガラスで形成されるときは、熱プレスにより成形する。   When the inspection plate 10 is formed of a resin, it is preferable to form the inspection plate 10 by injection molding. In some cases, the inspection plate 10 is subjected to hot pressing, and the upper surface 12a of the plate substrate 12 of the inspection plate 10 is formed. The groove to be formed is formed with a high aspect ratio. When the inspection plate 10 is made of glass, it is molded by hot pressing.

なお前記プレート基板12と蓋体13は同じ材質で形成されなくてもよいが、同じ材質で形成された方が、前記プレート基板12と蓋体13とを接着剤無しに接合させやすい等の利点があって好ましい。   The plate substrate 12 and the lid 13 do not have to be formed of the same material, but the advantage that the plate substrate 12 and the lid 13 can be easily joined without using an adhesive is formed by using the same material. Is preferable.

図1に示すプレート基板12の上面12aには、1本の主流路14が溝形状で形成されている。前記主流路14のY1側は試薬等の液体が前記主流路14内を流れる上流側に位置し、Y2側は試薬等の液体が前記主流路14内を流れる下流側に位置する。   One main flow path 14 is formed in a groove shape on the upper surface 12a of the plate substrate 12 shown in FIG. The Y1 side of the main channel 14 is located on the upstream side where a liquid such as a reagent flows in the main channel 14, and the Y2 side is located on the downstream side where a liquid such as a reagent flows in the main channel 14.

図1に示すように前記主流路14の上流側(図示Y1側)には前記主流路14と連結する2本の副流路15,15が溝形状で形成されている。図1に示すように各副流路15,15の上流側(図示Y1側)には、試薬等の液体C,Dを収納するための収納室16,16が溝形状で形成され、前記副流路15と連結されている。   As shown in FIG. 1, on the upstream side (Y1 side in the drawing) of the main flow path 14, two sub flow paths 15 and 15 connected to the main flow path 14 are formed in a groove shape. As shown in FIG. 1, storage chambers 16 and 16 for storing liquids C and D such as reagents are formed in a groove shape on the upstream side (Y1 side in the drawing) of each of the sub flow paths 15 and 15. The flow path 15 is connected.

図1に示すように、前記主流路14の下流側(図示Y2側)には、検体等の物質Eが収納され、前記物質Eと液体C,Dとを反応等させるための収納室19が溝形状で形成され前記主流路14と連結されている。   As shown in FIG. 1, a substance E such as a specimen is accommodated on the downstream side (Y2 side in the figure) of the main channel 14, and a storage chamber 19 for reacting the substance E with the liquids C and D is provided. It is formed in a groove shape and is connected to the main flow path 14.

いずれの前記収納室16,19も前記主流路14及び副流路15の幅寸法より広い幅寸法を有して形成されている。前記収納室16,19はいずれも平面形状が略円形状であるが略円形状以外の形状であってもかまわない。   Each of the storage chambers 16 and 19 is formed to have a width dimension wider than the width dimension of the main flow path 14 and the sub flow path 15. Each of the storage chambers 16 and 19 has a substantially circular planar shape, but may have a shape other than a substantially circular shape.

本発明では、前記主流路14には各副流路15,15から流れる液体C,Dの混合を促進させるための混合促進手段が設けられている。   In the present invention, the main flow path 14 is provided with mixing promoting means for promoting mixing of the liquids C and D flowing from the sub flow paths 15 and 15.

以下、前記混合促進手段について具体的に説明する。
図1,図2に示す第1実施形態では、前記主流路14を構成する底面14aを、幅方向(図示X1−X2方向)に前記上流側(図示Y1側)から下流側(図示Y2側)へ向う複数の領域F,Gに分けたとき、各領域F,Gには前記上流側(図示Y1側)から下流側(図示Y2側)に向けて撥水面17と親水面18とが交互に形成されていると共に、前記幅方向(図示X1−X2方向)には領域Fに形成された撥水面17(親水面18)と領域Gに形成された親水面18(撥水面17)とが隣り合うように配置されている。なお図1,図2に示す図面上、撥水面17と親水面18とを明確に区別するために前記撥水面17は斜線で示されている。
Hereinafter, the mixing promoting means will be specifically described.
In the first embodiment shown in FIGS. 1 and 2, the bottom surface 14a constituting the main flow path 14 is changed from the upstream side (Y1 side in the drawing) to the downstream side (Y2 side in the drawing) in the width direction (X1-X2 direction in the drawing). When divided into a plurality of regions F and G facing the water, each region F and G has a water repellent surface 17 and a hydrophilic surface 18 alternately from the upstream side (Y1 side in the drawing) to the downstream side (Y2 side in the drawing). The water repellent surface 17 (hydrophilic surface 18) formed in the region F and the hydrophilic surface 18 (water repellent surface 17) formed in the region G are adjacent to each other in the width direction (X1-X2 direction in the drawing). It is arranged to fit. In the drawings shown in FIGS. 1 and 2, the water repellent surface 17 is indicated by hatching in order to clearly distinguish the water repellent surface 17 and the hydrophilic surface 18.

今、図1に示す収納室16,16に収納された液体C,Dが、図2に示すように前記副流路15,15を通って前記主流路14と副流路15との付け根部分まで流れ着き、合流して前記主流路14内に侵入したとき、前記液体C,Dは、撥水面17上と親水面18上で摩擦が異なるため流速に変化が生じる。   Now, the liquids C and D stored in the storage chambers 16 and 16 shown in FIG. 1 pass through the sub-channels 15 and 15 as shown in FIG. The liquids C and D have different friction on the water-repellent surface 17 and the hydrophilic surface 18, so that the flow velocity changes.

前記撥水面17は前記親水面18に比べて摩擦が小さいので、前記撥水面17上を流れる際の前記液体C,Dの流速は速まり、一方、摩擦が大きい親水面18上での流速は低下する。   Since the water repellent surface 17 has a smaller friction than the hydrophilic surface 18, the flow rate of the liquids C and D when flowing on the water repellent surface 17 is increased, while the flow rate on the hydrophilic surface 18 having a large friction is descend.

図1,図2に示す実施形態では、各領域F,Gには前記撥水面17と親水面18とが前記主流路14の上流側(図示Y1側)から下流側(図示Y2側)に向けて交互に配置されている。この結果、前記上流側(図示Y1側)から下流側(図示Y2側)に向けて流れる液体C,Dは前記撥水面17上を流れるときと、親水面18上を流れるときとで流速が変化する。   In the embodiment shown in FIGS. 1 and 2, in each of the regions F and G, the water repellent surface 17 and the hydrophilic surface 18 are directed from the upstream side (Y1 side in the drawing) to the downstream side (Y2 side in the drawing) of the main channel 14. Are alternately arranged. As a result, the flow rates of the liquids C and D flowing from the upstream side (Y1 side in the drawing) to the downstream side (Y2 side in the drawing) change when flowing on the water repellent surface 17 and when flowing on the hydrophilic surface 18. To do.

さらに図1,図2の実施形態では、前記領域F,Gに形成された撥水面17と親水面18とが幅方向(図示X1−X2方向)にて互い違いになるように配置されている。すなわち図1,図2に示す実施形態では、上流側(図示Y1側)から下流側(図示Y2側)の方向のみならず、幅方向においても撥水面17と親水面18とが交互に配置されているため、幅方向(図示X1−X2方向)から見たときの液体C,Dの流速も変化する。具体的には、幅方向から見たときの撥水面17上を流れる際の液体C,Dの流速μ1、親水面18上を流れる際の液体C,Dの流速μ3、及び撥水面17と親水面18との界面H付近を流れる際の液体C,Dの流速μ2は異なる大きさとなる。   Further, in the embodiment of FIGS. 1 and 2, the water repellent surface 17 and the hydrophilic surface 18 formed in the regions F and G are arranged so as to alternate in the width direction (the X1-X2 direction in the drawing). That is, in the embodiment shown in FIGS. 1 and 2, the water repellent surface 17 and the hydrophilic surface 18 are alternately arranged not only in the direction from the upstream side (Y1 side in the drawing) to the downstream side (Y2 side in the drawing) but also in the width direction. Therefore, the flow velocities of the liquids C and D when viewed from the width direction (X1-X2 direction in the drawing) also change. Specifically, the flow rate μ1 of the liquids C and D when flowing on the water repellent surface 17 when viewed from the width direction, the flow rate μ3 of the liquids C and D when flowing on the hydrophilic surface 18, and the water repellent surface 17 and the parent The flow rates μ2 of the liquids C and D when flowing near the interface H with the water surface 18 have different sizes.

このように、主流路14内を流れる前記液体C,Dの流速は上流側(図示Y1側)から下流側(図示Y2側)に向けて変化するため攪拌効果が高まり、前記液体C,Dは前記主流路14を流れる間に適切に混合されて、前記収納室19に到達する。   In this way, the flow velocity of the liquids C and D flowing in the main flow path 14 changes from the upstream side (Y1 side in the drawing) to the downstream side (Y2 side in the drawing), so that the stirring effect is enhanced. The mixture is appropriately mixed while flowing through the main flow path 14 and reaches the storage chamber 19.

図1及び図2に示す実施形態では前記撥水面17と親水面18からなる混合促進面は前記主流路14の底面14aの全面に設けられているが、前記混合促進面は、少なくとも前記底面14aの一部に設けられていればよい。   In the embodiment shown in FIG. 1 and FIG. 2, the mixing promoting surface composed of the water repellent surface 17 and the hydrophilic surface 18 is provided on the entire bottom surface 14a of the main channel 14, but the mixing promoting surface is at least the bottom surface 14a. It should just be provided in a part of.

また、前記主流路14を構成する側面14b,14b(図1を参照)や、前記主流路14を構成する上面(図1に示す実施形態では蓋体13の下面に相当する)の少なくとも一部に前記混合促進面が設けられていてもよい。当然、前記主流路14を構成する複数の面に前記混合促進面が設けられていてもよい。   Further, at least a part of the side surfaces 14b and 14b (see FIG. 1) constituting the main flow path 14 and the upper surface (corresponding to the lower surface of the lid 13 in the embodiment shown in FIG. 1) constituting the main flow path 14. The mixing promoting surface may be provided. Naturally, the mixing promotion surface may be provided on a plurality of surfaces constituting the main flow path 14.

また、図1,図2に示す実施形態では、底面14aを幅方向(図示X1−X2方向)に前記上流側(図示Y1側)から下流側(図示Y2側)に向う2つの領域F,Gに分けていたが、前記領域は3つ以上あってもよい。このとき各領域には前記上流側(図示Y1側)から下流側(図示Y2側)に向けて撥水面17と親水面18とが交互に形成されているとともに、幅方向(図示X1−X2方向)にて各領域に形成された撥水面17と親水面18とが互い違いになるように配置されることが好ましい。   Further, in the embodiment shown in FIGS. 1 and 2, the bottom surface 14a is divided into two regions F and G extending in the width direction (X1-X2 direction) from the upstream side (Y1 side) to the downstream side (Y2 side). However, there may be three or more areas. At this time, water repellent surfaces 17 and hydrophilic surfaces 18 are alternately formed in each region from the upstream side (Y1 side in the drawing) to the downstream side (Y2 side in the drawing), and in the width direction (X1-X2 direction in the drawing). It is preferable that the water repellent surface 17 and the hydrophilic surface 18 formed in each region are alternately arranged.

図3に示す第2実施形態では、前記主流路14を構成する底面14aに略菱形形状の撥水面17が上流側(図示Y1側)から下流側(図示Y2側)に複数個、連なって配置されている。前記略菱形形状は2つの相対向する頂点が両側側面14b,14bに当接する大きさで形成されている。そして前記撥水面17以外の部分が親水面18である。このため前記親水面18は前記底面14aの幅方向(図示X1−X2方向)の両側に略三角形状にて、複数個、前記上流側(図示Y1側)から下流側(図示Y2側)に向けて配置されている。前記上流側(図示Y1側)から下流側(図示Y2側)に向けて隣り合う前記親水面18同士、及び幅方向(図示X1−X2方向)で隣り合う前記親水面18同士は隣接して配置されている。   In the second embodiment shown in FIG. 3, a plurality of substantially rhombic water-repellent surfaces 17 are arranged on the bottom surface 14a constituting the main flow path 14 from the upstream side (Y1 side in the drawing) to the downstream side (Y2 side in the drawing). Has been. The substantially rhombic shape is formed in such a size that two opposite vertices abut against both side surfaces 14b, 14b. A portion other than the water repellent surface 17 is a hydrophilic surface 18. For this reason, the hydrophilic surface 18 has a substantially triangular shape on both sides in the width direction (X1-X2 direction) of the bottom surface 14a, and a plurality of the hydrophilic surfaces 18 are directed from the upstream side (Y1 side) to the downstream side (Y2 side). Are arranged. The hydrophilic surfaces 18 adjacent to each other from the upstream side (Y1 side in the drawing) to the downstream side (Y2 side in the drawing) and the hydrophilic surfaces 18 adjacent in the width direction (X1-X2 direction) are arranged adjacent to each other. Has been.

図3に示す実施形態でも、主流路14の幅方向の中心に、上流側から下流側に沿って延びる仮想中心線(O−O線)を引いてみると、前記仮想中心線の両側の領域では、前記撥水面17と親水面18とが上流側(図示Y1側)から下流側(図示Y2側)に向けて交互に配置されていることがわかる。   Also in the embodiment shown in FIG. 3, when a virtual center line (OO line) extending from the upstream side to the downstream side is drawn at the center in the width direction of the main flow path 14, regions on both sides of the virtual center line are drawn. Then, it turns out that the said water-repellent surface 17 and the hydrophilic surface 18 are alternately arrange | positioned toward the downstream (illustration Y2 side) from the upstream (illustration Y1 side).

なお図3に示す実施形態では、前記撥水面18は略菱形形状であったが、楕円形状等、上流側(図示Y1側)から下流側(図示Y2側)に向って徐々に幅方向(図示X1−X2方向)への寸法が大きくなるとともに途中から徐々に幅方向への寸法が小さくなる形状(領域)であればよい。また前記略菱形形状の部分が親水面で、その他の部分が撥水面でもよい。   In the embodiment shown in FIG. 3, the water repellent surface 18 has a substantially rhombus shape. However, the water repellent surface 18 has an elliptical shape or the like, and gradually increases in the width direction (illustrated) from the upstream side (illustrated Y1 side) toward the downstream side (illustrated Y2 side). Any shape (region) may be used as long as the dimension in the (X1-X2 direction) increases and the dimension in the width direction gradually decreases from the middle. The substantially rhombus-shaped part may be a hydrophilic surface and the other part may be a water-repellent surface.

図4に示す第3実施形態では、前記主流路14を構成する空間内を撥水面17と親水面18とが互いにスパイラル状に配置されている。   In the third embodiment shown in FIG. 4, the water repellent surface 17 and the hydrophilic surface 18 are spirally arranged in the space constituting the main flow path 14.

図4に示すように、前記主流路14を構成する底面14a、両側側面14b,14b及び上面14c(図4の実施形態では蓋体13の下面に相当)に撥水面17及び親水面18が互いにスパイラル状になるように配置される。   As shown in FIG. 4, a water repellent surface 17 and a hydrophilic surface 18 are formed on the bottom surface 14a, the side surfaces 14b and 14b, and the top surface 14c (corresponding to the bottom surface of the lid 13 in the embodiment of FIG. 4) constituting the main flow path 14. Arranged to be spiral.

このため、図4に示す実施形態では、主流路14の底面14a、両側側面14b,14b及び上面14cの各面において、前記撥水面17と親水面18とが上流側(図示Y1側)から下流側(図示Y2側)に向けて交互に配置されている。   For this reason, in the embodiment shown in FIG. 4, the water repellent surface 17 and the hydrophilic surface 18 are downstream from the upstream side (Y1 side in the drawing) on each of the bottom surface 14a, the side surfaces 14b and 14b, and the top surface 14c of the main flow path 14. They are alternately arranged toward the side (Y2 side in the drawing).

図3及び図4に示す実施形態でも、主流路14内を流れる前記液体C,Dの流速は上流側(図示Y1側)から下流側(図示Y2側)に向けて変化するため、前記主流路14を流れる間に適切に混合されて、前記収納室19に到達する。   In the embodiment shown in FIGS. 3 and 4, the flow rates of the liquids C and D flowing in the main channel 14 change from the upstream side (Y1 side in the drawing) toward the downstream side (Y2 side in the drawing). 14 is mixed appropriately while flowing through 14 and reaches the storage chamber 19.

図1ないし図4に示す実施形態では、撥水面17となるべき面に撥水処理がされるか、あるいは親水面18となるべき面に親水処理がされるかすればよい。または撥水面17となるべき面に撥水処理がされるとともに、親水面18となるべき面に親水処理がされてもよい。   In the embodiment shown in FIGS. 1 to 4, the surface to be the water repellent surface 17 may be subjected to water repellent treatment, or the surface to be the hydrophilic surface 18 may be subjected to hydrophilic treatment. Alternatively, the surface to be the water repellent surface 17 may be subjected to water repellent treatment, and the surface to be the hydrophilic surface 18 may be subjected to hydrophilic treatment.

親水面18は例えばアルコール系親水処理剤を用いた薄膜によって形成される。また前記撥水面17は、例えばフッ素原子を含む分子を有するトリアジンの薄膜によって形成される。なお前記プレート基板12が樹脂またはセラミックから形成されている場合、前記トリアジンには少なくとも1つのアルコキシシラン系の分子を含むことが好ましい。また前記プレート基板12が金属で形成される場合、前記フッ素原子を含む分子はモノチオールまたはジチオールであるであることが好ましい。前記トリアジンはカップリング剤であり、前記プレート基板12との接合力を強めることが出来、膜剥がれ等の不具合を適切に回避できる。   The hydrophilic surface 18 is formed by a thin film using, for example, an alcohol-based hydrophilic treatment agent. The water repellent surface 17 is formed of a triazine thin film having molecules containing fluorine atoms, for example. When the plate substrate 12 is made of resin or ceramic, the triazine preferably contains at least one alkoxysilane-based molecule. When the plate substrate 12 is made of metal, the molecule containing fluorine atoms is preferably monothiol or dithiol. The triazine is a coupling agent, can increase the bonding force with the plate substrate 12, and can appropriately avoid problems such as film peeling.

図5に示す本発明の第4実施形態では、図1に示す第1実施形態と同様に、前記検査用プレート10が、プレート基板12と蓋体13とで構成される。   In the fourth embodiment of the present invention shown in FIG. 5, the inspection plate 10 is composed of a plate substrate 12 and a lid body 13 as in the first embodiment shown in FIG. 1.

図5に示すように前記プレート基板12の上面12aには、主流路14、前記主流路14に連結する2本の副流路15,15、それぞれの副流路15に連結する収納室16,16、及び前記主流路14に連結する収納室19とが溝形状で形成されている。   As shown in FIG. 5, the upper surface 12 a of the plate substrate 12 has a main channel 14, two sub-channels 15, 15 connected to the main channel 14, a storage chamber 16 connected to each sub-channel 15, 16 and a storage chamber 19 connected to the main flow path 14 are formed in a groove shape.

図5の第4実施形態では、前記主流路14に設けられる混合促進手段として前記主流路14を構成する少なくとも一つの面から突起部が突出形成されている。   In the fourth embodiment shown in FIG. 5, protrusions are formed so as to protrude from at least one surface constituting the main flow path 14 as the mixing promoting means provided in the main flow path 14.

図5及び図6に示すように、前記主流路14を構成する側面14b,14bから前記主流路14の幅方向(図X1−X2方向)に向けて突起部20が突出形成されている。図5に示すように前記突起部20は前記主流路14の底面14aからプレート基板12の上面12aまで形成されているため、前記突起部20の上面は前記プレート基板12の上面12aと同一面を成しているが、前記突起部20の上面が前記プレート基板12の上面12aより低く形成されていてもよい。   As shown in FIGS. 5 and 6, a protrusion 20 is formed to project from the side surfaces 14 b, 14 b constituting the main flow path 14 in the width direction of the main flow path 14 (the X1-X2 direction). As shown in FIG. 5, the protrusion 20 is formed from the bottom surface 14 a of the main channel 14 to the upper surface 12 a of the plate substrate 12, so that the upper surface of the protrusion 20 is flush with the upper surface 12 a of the plate substrate 12. However, the upper surface of the protrusion 20 may be formed lower than the upper surface 12 a of the plate substrate 12.

図5,図6に示すように前記突起部20は、前記側面14b,14bに複数個形成され、一方の側面14bに形成された突起部20と、他方の側面14bに形成された突起部20は、上流側(図示Y1側)から下流側(図示Y2側)に向けて互い違いに前記主流路14の幅方向に突出するように配置される。また前記突起部20の主流路14の幅方向(図示X1−X2方向)への最大長さ寸法L1は、前記主流路14の幅寸法L2に比べて短く形成される。なお図6の実施形態では、一方の側面14bから突出する突起部20に対し、上流側(図示Y1側)から下流側(図示Y2側)の方向に所定の間隔を置いて、他方の側面14bから突起部20が突出形成され、すなわち幅方向から見たとき、前記突起部20が形成されていない領域Iが設けられている。この方が後述する液体C,Dの流速がより変動しやくなり好ましいと考えられる。   As shown in FIGS. 5 and 6, a plurality of the protrusions 20 are formed on the side surfaces 14b and 14b, and the protrusions 20 formed on one side surface 14b and the protrusions 20 formed on the other side surface 14b. Are arranged so as to alternately protrude in the width direction of the main flow path 14 from the upstream side (Y1 side in the figure) to the downstream side (Y2 side in the figure). Further, the maximum length dimension L1 of the protrusion 20 in the width direction (X1-X2 direction in the figure) of the main flow path 14 is formed shorter than the width dimension L2 of the main flow path 14. In the embodiment of FIG. 6, with respect to the protruding portion 20 protruding from one side surface 14b, the other side surface 14b is spaced a predetermined distance from the upstream side (Y1 side in the drawing) to the downstream side (Y2 side in the drawing). The protrusions 20 are formed so as to protrude, that is, when viewed from the width direction, a region I where the protrusions 20 are not formed is provided. This is considered preferable because the flow rates of the liquids C and D described later tend to fluctuate more easily.

図5,図6に示す実施形態では、前記突起部20の上流側(図示Y1側)に向く側面20aは、前記幅方向(図示X1−X2方向)と平行な方向に形成されるが、前記突起部20の下流側(図示Y2側)に向く側面20bは、前記幅方向に対し斜め方向に傾いている。   In the embodiment shown in FIGS. 5 and 6, the side surface 20a facing the upstream side (Y1 side in the drawing) of the protrusion 20 is formed in a direction parallel to the width direction (X1-X2 direction in the drawing). A side surface 20b facing the downstream side (Y2 side in the drawing) of the protrusion 20 is inclined in an oblique direction with respect to the width direction.

図5,図6に示す実施形態では、前記副流路15から流れる液体C,Dが前記主流路14内に侵入すると、前記突起部20の上流側(図示Y1側)に向く側面20aに衝突する液体C,Dはそこで圧力が高くなり、いわゆるベルヌーイの式により流速μ5が減速する。   In the embodiment shown in FIGS. 5 and 6, when the liquids C and D flowing from the sub flow channel 15 enter the main flow channel 14, they collide with the side surface 20 a facing the upstream side (Y1 side in the drawing) of the protrusion 20. The pressures of the liquids C and D are increased, and the flow velocity μ5 is reduced by the so-called Bernoulli equation.

一方、前記突起部20をすり抜けて前記突起部20の下流側(図示Y2側)に向く側面20bに沿って流れる液体C,Dは圧力が開放されるため前記圧力が徐々に低下し、いわゆるベルヌーイの式により流速μ4が加速する。   On the other hand, the pressures of the liquids C and D flowing along the side surface 20b passing through the protrusion 20 and facing the downstream side (Y2 side in the drawing) of the protrusion 20 are released, so that the pressure gradually decreases, so-called Bernoulli. The flow rate μ4 is accelerated by the following formula.

このように前記主流路14内に突起部20を設けることで前記液体C,Dの流速に変化を与えることが出来るから攪拌効果が高まり前記液体C,Dが適切に混合されながら前記収納室19に到達する。   Thus, by providing the protrusion 20 in the main channel 14, the flow rate of the liquids C and D can be changed, so that the stirring effect is enhanced and the storage chamber 19 is mixed while the liquids C and D are appropriately mixed. To reach.

図7に示す第5実施形態では、前記主流路14を構成する側面14b,14bから所定距離だけ前記主流路14の内方向に離れた位置に突起部21が突出形成されている。前記突起部21は前記主流路14の底面14aから突出形成され、前記突起部21の上面は前記プレート基板12の上面12aと同一面で形成されても、前記上面12aよりも低く形成されてもよい。   In the fifth embodiment shown in FIG. 7, a protruding portion 21 is formed so as to protrude at a position away from the side surfaces 14 b, 14 b constituting the main flow path 14 by an inward direction of the main flow path 14. The protrusion 21 protrudes from the bottom surface 14a of the main channel 14, and the upper surface of the protrusion 21 may be formed on the same surface as the upper surface 12a of the plate substrate 12 or lower than the upper surface 12a. Good.

図7に示す実施形態では前記突起部21は前記主流路14と副流路15,15との付け根付近に形成されている。図7に示す実施形態では前記突起部21は主流路14内に一つだけ設けられているが複数設けられていてもよい。   In the embodiment shown in FIG. 7, the protrusion 21 is formed near the root of the main flow path 14 and the sub flow paths 15 and 15. In the embodiment shown in FIG. 7, only one protrusion 21 is provided in the main flow path 14, but a plurality of protrusions 21 may be provided.

前記突起部21の平面形状は略三角形状であり、前記突起部21の上流側(図示Y1側)を向く側面21aは前記主流路14の幅方向(図示X1−X2方向)に対して斜め方向に傾いて形成されている。   The planar shape of the protruding portion 21 is substantially triangular, and the side surface 21a facing the upstream side (Y1 side in the drawing) of the protruding portion 21 is inclined with respect to the width direction (X1-X2 direction in the drawing) of the main channel 14. It is formed to tilt.

図7に示すように、前記副流路15を流れる液体Dは、前記突起部21の側面21aに衝突するためそこで圧力が高くなり流速μ6が減速する。一方、前記副流路15を流れる液体Cは、その流れ方向に前記突起部21の側面21aが向いるので、前記側面21aで圧力は低下し(あるいはさほど高くなることなく)、前記液体Cの流速μ7は前記流速μ6よりも速くなる。   As shown in FIG. 7, since the liquid D flowing through the sub-flow channel 15 collides with the side surface 21a of the protrusion 21, the pressure increases and the flow rate μ6 is reduced. On the other hand, since the side surface 21a of the projection 21 faces the flow direction of the liquid C flowing in the sub-channel 15, the pressure is reduced (or not increased so much) at the side surface 21a, and the liquid C The flow rate μ7 is faster than the flow rate μ6.

このように前記突起部21を設けることで前記液体C,Dの流速が変化するため攪拌効果が高まり前記液体C,Dは適切に混合されて前記収納室19まで到達する。   By providing the protrusion 21 in this manner, the flow rate of the liquids C and D changes, so that the stirring effect is enhanced and the liquids C and D are appropriately mixed and reach the storage chamber 19.

なお図7に示す実施形態では、前記突起部21よりも下流側(図示Y2側)に、前記主流路14を構成する側面14bから突起部22が複数、突出形成されている。この突起部22によっても前記液体C,Dの流速は変化しより混合されやすくなる。また前記突起部22の上流側(図示Y1側)に向く側面22aは、前記主流路14の幅方向(図示X1−X2方向)に対し斜め方向に傾いているため、図5,図6に示した突起部20と形状が異なるが、図7に示す突起部22の形状でも液体C,Dに与えられる圧力変化が生じるので流速が変化し混合が促進される。   In the embodiment shown in FIG. 7, a plurality of protrusions 22 protrude from the side surface 14 b constituting the main flow path 14 on the downstream side (Y2 side in the drawing) from the protrusion 21. The protrusions 22 also change the flow rates of the liquids C and D and are more easily mixed. Further, the side surface 22a facing the upstream side (Y1 side in the drawing) of the protruding portion 22 is inclined in the oblique direction with respect to the width direction (X1-X2 direction in the drawing) of the main flow path 14, and is shown in FIGS. Although the shape is different from that of the protruding portion 20, the shape of the protruding portion 22 shown in FIG.

図8に示す第6実施形態では、副流路15の側面と連続する連続面を成す前記主流路14の側面14bには、幅方向(図示X1−X2方向)に凹む凹み部23が形成されている。前記凹み部23は前記プレート基板12の上面12aから前記主流路14の底面14aにかけて形成され、前記凹み部23の底面は前記主流路14の底面14aと同一面を成しているが前記凹み部23の底面は前記主流路14の底面14aより高い位置に形成されてもよい。   In the sixth embodiment shown in FIG. 8, a recess 23 that is recessed in the width direction (X1-X2 direction in the drawing) is formed on the side surface 14 b of the main channel 14 that forms a continuous surface that is continuous with the side surface of the sub-channel 15. ing. The recess 23 is formed from the upper surface 12a of the plate substrate 12 to the bottom surface 14a of the main flow path 14, and the bottom surface of the recess 23 is flush with the bottom surface 14a of the main flow path 14, but the recess The bottom surface of 23 may be formed at a position higher than the bottom surface 14 a of the main channel 14.

図8に示す前記凹み部23は、前記側面14b,14bの双方に上流側(図示Y1側)から下流側(図示Y2側)に向けて複数個形成され、一方の側面14bに形成された凹み部23間に、他方の側面14bに形成された凹み部23が介在するように、上流側(図示Y1側)から下流側(図示Y2側)に向けて互い違いに配置される。   A plurality of the recessed portions 23 shown in FIG. 8 are formed on both the side surfaces 14b and 14b from the upstream side (Y1 side in the drawing) to the downstream side (Y2 side in the drawing), and are formed on one side surface 14b. Between the parts 23, they are alternately arranged from the upstream side (Y1 side in the figure) to the downstream side (Y2 side in the figure) so that the recessed part 23 formed on the other side surface 14b is interposed.

なお図8の実施形態では、一方の側面14bから凹む凹み部23に対し、上流側(図示Y1側)から下流側(図示Y2側)の方向に所定の間隔を置いて、他方の側面14bから凹み部23が形成され、すなわち幅方向(図示X1−X2方向)に見たときに、前記凹み部23が形成されていない領域Jが形成されている方がよい。   In the embodiment of FIG. 8, with respect to the dent 23 recessed from one side surface 14b, a predetermined interval is provided in the direction from the upstream side (Y1 side in the drawing) to the downstream side (Y2 side in the drawing) from the other side surface 14b. It is preferable that the recess portion 23 is formed, that is, the region J where the recess portion 23 is not formed is formed when viewed in the width direction (X1-X2 direction in the drawing).

図8に示す実施形態では、前記凹み部23の平面形状は略三角形状であり、前記凹み部23の上流側(図示Y1側)及び下流側(図示Y2側)に向く側面23a、23bはともに、主流路14の幅方向(図示X1−X2方向)に対し斜め方向に傾いている。   In the embodiment shown in FIG. 8, the planar shape of the recessed portion 23 is a substantially triangular shape, and both the side surfaces 23 a and 23 b facing the upstream side (Y1 side in the drawing) and the downstream side (Y2 side in the drawing) of the recessed portion 23 are both. The main channel 14 is inclined obliquely with respect to the width direction (X1-X2 direction in the drawing).

図8に示す実施形態では、副流路15,15から主流路14へ流れる液体C,Dは、前記主流路14内において、上流側(図示Y1側)から凹み部23の側面23aへ向けて圧力が徐々に低下し、前記凹み部23の側面23bから領域Jに向けて圧力が徐々に高くなるので、流速が変化し攪拌効果が高まり適切に混合されて収納室19へ到達する。   In the embodiment shown in FIG. 8, the liquids C and D flowing from the auxiliary flow paths 15 and 15 to the main flow path 14 are directed from the upstream side (Y1 side in the drawing) to the side surface 23 a of the recess 23 in the main flow path 14. Since the pressure gradually decreases and the pressure gradually increases from the side surface 23 b of the recess 23 toward the region J, the flow rate changes, the stirring effect increases, and the mixture is appropriately mixed and reaches the storage chamber 19.

図9aに示す第7実施形態では、前記副流路15の底面と連続する連続面を成す前記主流路14の底面14aに、上流側(図示Y1側)から下流側(図示Y2側)に向けて所定の間隔を置いて複数の凹み部24が形成さている。   In the seventh embodiment shown in FIG. 9a, from the upstream side (Y1 side in the drawing) to the downstream side (Y2 side in the drawing) from the upstream side (Y1 side in the drawing) to the bottom surface 14a of the main channel 14 that forms a continuous surface continuous with the bottom surface of the auxiliary channel 15. A plurality of recesses 24 are formed at predetermined intervals.

このように前記主流路14の底面14aに凹み部24を形成しても副流路15,15から主流路14へ流れる液体C,Dの流速は変化し攪拌効果が高まり、前記液体C,Dは適切に混合されて収納室19へ到達する。   Thus, even if the recess 24 is formed in the bottom surface 14a of the main flow path 14, the flow rates of the liquids C and D flowing from the sub flow paths 15 and 15 to the main flow path 14 are changed, and the stirring effect is enhanced. Are mixed properly and reach the storage chamber 19.

図9bに示すように各凹み部24は、前記主流路14の幅寸法L2と同じ幅寸法で形成されてもよいし、あるいは図9cに示すように各凹み部24は、前記主流路14の幅寸法L2より短い幅寸法L4で形成されてもよい。図9cのように前記凹み部24の幅寸法L4を前記主流路14の幅寸法L2よりも短い寸法で形成する場合、一方の側面14bに寄る(あるいは前記一方の側面14bに当接する)凹み部24と、他方の側面14bに寄る(あるいは前記他方の側面14bに当接する)凹み部24とに分け、一方の側面14b寄りに形成された凹み部24と、他方の側面14b寄りに形成された凹み部24とが上流側(図示Y1側)から下流側(図示Y2側)に向けて交互に配置されるようにすると、液体C,Dの攪拌効果がより高まり、混合が促進されるので好ましい。   As shown in FIG. 9b, each recess 24 may be formed with the same width dimension as the width dimension L2 of the main flow path 14, or as shown in FIG. You may form with the width dimension L4 shorter than the width dimension L2. When the width dimension L4 of the recess 24 is formed to be shorter than the width dimension L2 of the main flow path 14 as shown in FIG. 9c, the recess closes to one side surface 14b (or contacts the one side surface 14b). 24 and a recessed portion 24 that approaches the other side surface 14b (or abuts against the other side surface 14b), and is formed closer to the one side surface 14b and closer to the other side surface 14b. It is preferable that the recessed portions 24 are alternately arranged from the upstream side (Y1 side in the drawing) toward the downstream side (Y2 side in the drawing) because the stirring effect of the liquids C and D is further enhanced and mixing is promoted. .

なお本発明では図1ないし図9のいずれの実施形態においても、流路14,15の底面は上流側(図示Y1側)から下流側(図示Y2側)に向けて下方向に傾く傾斜面で形成されていることが、前記液体C,Dが前記副流路15から主流路14を通り収納室19まで導かれやすくなり好ましい。   In the present invention, in any of the embodiments shown in FIGS. 1 to 9, the bottom surfaces of the channels 14 and 15 are inclined surfaces inclined downward from the upstream side (Y1 side in the drawing) to the downstream side (Y2 side in the drawing). The formation of the liquids C and D is preferable because the liquids C and D are easily guided from the sub-flow path 15 through the main flow path 14 to the storage chamber 19.

あるいは収納室16に連結する送圧手段(図示しない)などを用い、前記送圧手段からの圧力供給により液体C,Dを収納室16,16から副流路15及び主流路14へ流す手法を用いてもよい。   Alternatively, a pressure feeding means (not shown) connected to the storage chamber 16 is used, and a method of flowing the liquids C and D from the storage chambers 16 and 16 to the sub-flow path 15 and the main flow path 14 by supplying pressure from the pressure feeding means. It may be used.

液体C,Dは試薬以外であってもよく、物質Eは検体以外であってもよい。使用態様によって液体C,D及び物質Eの種類を変えることが出来る。   The liquids C and D may be other than the reagent, and the substance E may be other than the specimen. The types of the liquids C and D and the substance E can be changed depending on the usage mode.

また図1ないし図9に示す実施形態では、副流路15がいずれも2本であったが、前記副流路15は3本以上あってもよい。また副流路15は、前記主流路14の上流側(図示Y1側)と下流側(図示Y2側)の間のどこかで前記主流路14に連結されていればよい。また図1ないし図9に示す実施形態では、副流路15から主流路14へ至る流路形状がY字形状であるが、それ以外の形状であってもよい。使用態様により、副流路15及び主流路14の形態を変えることが出来る。   Further, in the embodiment shown in FIGS. 1 to 9, there are two sub-channels 15, but there may be three or more sub-channels 15. Further, the sub flow path 15 may be connected to the main flow path 14 somewhere between the upstream side (Y1 side in the drawing) and the downstream side (Y2 side in the drawing) of the main flow path 14. In the embodiment shown in FIGS. 1 to 9, the shape of the flow path from the sub flow path 15 to the main flow path 14 is a Y-shape, but other shapes may be used. The forms of the sub-channel 15 and the main channel 14 can be changed depending on the usage mode.

本発明の検査用プレート10は、血液検査や尿検査、あるいは、DNAチップやプロテインチップの簡便な診断用として使用でき、また反応、分離、分析等を一つのプレート上で行なうことが出来るμ−TAS(micro-total analysis system)や、Lab−on−chip、あるいはマイクロファクトリー用のプレートの一部として用いることが可能である。   The test plate 10 of the present invention can be used for blood test, urine test, or simple diagnosis of DNA chip or protein chip, and can perform reaction, separation, analysis, etc. on a single plate. It can be used as part of a plate for micro-total analysis system (TAS), Lab-on-chip, or microfactories.

本発明の第1実施形態のプレートの外観部分斜視図、The external appearance partial perspective view of the plate of 1st Embodiment of this invention, 図1に示すプレートを真上から見たときの部分拡大平面図、FIG. 1 is a partially enlarged plan view of the plate shown in FIG. 本発明の第2実施形態の前記プレートの部分拡大平面図、The partial enlarged plan view of the said plate of 2nd Embodiment of this invention, 本発明の第3実施形態の前記プレートの部分拡大斜視図、The partial expansion perspective view of the said plate of 3rd Embodiment of this invention, 本発明の第4実施形態のプレートの外観部分斜視図、The external appearance partial perspective view of the plate of 4th Embodiment of this invention, 図5に示すプレートを真上から見たときの部分拡大平面図、FIG. 5 is a partially enlarged plan view of the plate shown in FIG. 本発明の第5実施形態のプレートの部分拡大平面図、The partial enlarged plan view of the plate of 5th Embodiment of this invention, 本発明の第6実施形態のプレートの部分拡大平面図、The partial expanded plan view of the plate of 6th Embodiment of this invention, 本発明の第7実施形態のプレートの部分拡大断面図、The partial expanded sectional view of the plate of 7th Embodiment of this invention, 図9aの部分拡大平面図、9a is a partially enlarged plan view of FIG. 本発明の第8実施形態のプレートの部分拡大平面図、The partial enlarged plan view of the plate of 8th Embodiment of this invention, 従来の検査用プレートの外観部分斜視図、External partial perspective view of a conventional inspection plate,

符号の説明Explanation of symbols

10 検査用プレート
12 プレート基板
13 蓋体
14 主流路
15 副流路
16、19 収納室
17 撥水面
18 親水面
20、21、22 突起部
23、24 凹み部
C、D 液体(試薬)
E 物質(検体)
DESCRIPTION OF SYMBOLS 10 Test | inspection plate 12 Plate board | substrate 13 Cover body 14 Main flow path 15 Sub flow path 16, 19 Storage chamber 17 Water repellent surface 18 Hydrophilic surface 20, 21, 22 Protrusion part 23, 24 Recessed part C, D Liquid (reagent)
E Substance (specimen)

Claims (1)

主流路と、前記主流路に連結する複数本の副流路と、を有し、
前記主流路には、各副流路から流れてきた液体の混合を促進させる混合促進手段が設けられ、前記混合促進手段は、前記主流路を構成する面の少なくとも一部に、上流側から下流側に向けて交互に形成された撥水面と親水面とで構成され、前記主流路を構成する空間内を前記撥水面と前記親水面とが互いにスパイラル状に配置されることを特徴とするプレート。
A main flow path, and a plurality of sub flow paths connected to the main flow path,
Wherein the main channel, the mixing acceleration means for promoting mixing of the liquid flowing from the secondary flow channel is provided, et al is, the mixing acceleration means, at least a portion of the surface constituting the main passage, from the upstream side The water-repellent surface and the hydrophilic surface are alternately formed toward the downstream side, and the water-repellent surface and the hydrophilic surface are arranged in a spiral shape in the space constituting the main flow path. plate.
JP2004236060A 2004-08-13 2004-08-13 plate Expired - Fee Related JP4454431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004236060A JP4454431B2 (en) 2004-08-13 2004-08-13 plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004236060A JP4454431B2 (en) 2004-08-13 2004-08-13 plate

Publications (2)

Publication Number Publication Date
JP2006053091A JP2006053091A (en) 2006-02-23
JP4454431B2 true JP4454431B2 (en) 2010-04-21

Family

ID=36030668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004236060A Expired - Fee Related JP4454431B2 (en) 2004-08-13 2004-08-13 plate

Country Status (1)

Country Link
JP (1) JP4454431B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107727577A (en) * 2016-08-10 2018-02-23 浜松光子学株式会社 Determine container

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008053693A1 (en) * 2006-10-31 2010-02-25 コニカミノルタオプト株式会社 Microchip, molding die and electroforming master
JP5103614B2 (en) * 2006-11-27 2012-12-19 国立大学法人九州工業大学 Trace liquid sorting device
WO2009008236A1 (en) * 2007-07-10 2009-01-15 Konica Minolta Medical & Graphic, Inc. Method of mixing liquids in micro-inspection chip and inspection instrument
JP5205922B2 (en) * 2007-11-07 2013-06-05 セイコーエプソン株式会社 Biological material detection chip and method for manufacturing biological material detection chip
JP5831566B2 (en) * 2014-02-06 2015-12-09 コニカミノルタ株式会社 Reaction device
KR102588588B1 (en) 2017-07-31 2023-10-12 코닝 인코포레이티드 Improved Process Enhanced Flow Reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107727577A (en) * 2016-08-10 2018-02-23 浜松光子学株式会社 Determine container

Also Published As

Publication number Publication date
JP2006053091A (en) 2006-02-23

Similar Documents

Publication Publication Date Title
JP4754394B2 (en) Microchip
US7686029B2 (en) Microfluidic device for trapping air bubbles
JP4252545B2 (en) Microchannel and microfluidic chip
KR100705361B1 (en) A Capillary Flow Control Module and Lab-on-a-chip Equipped with the Same
KR100941069B1 (en) Microfluidic dilution device
JP2009175138A (en) Microchip
KR101541458B1 (en) Method for Mixing Micro-fluids and Micro-fluidic Mixing Device
JP4454431B2 (en) plate
KR20150105856A (en) Micro Mixer Using Taylor Gortler Vortex and Manufacturing Method Thereof
JP3959436B2 (en) Flow fluctuation structure and micromixer
JP2006167600A (en) Micromixer, micromixer chip and micro sensor
JP5374446B2 (en) Microdroplet weighing structure, microfluidic device, and microdroplet weighing method
JP4322956B2 (en) Liquid feeding device and liquid feeding method
JP5137551B2 (en) Biochemical reaction cassette
KR101113727B1 (en) Vertical lamination micromixer
JP4637610B2 (en) Microchannel and microchip
KR101515403B1 (en) Microfluidic Channel Using Hook-Shaped Structures, Manufacturing Method Thereof, and Analysis System Having the Same
JP2006053090A (en) Inspection plate and inspection method using it
JP4699779B2 (en) Microchip
US20070199603A1 (en) Fluid handling apparatus
WO2008086809A1 (en) A microfluidic device and a kit for performing a test
TW200914831A (en) A multifunctional unsteady-flow microfluidic device for pumping, mixing, and particle separation
JP2006263695A (en) Minute amount of liquid balancing structure and method
JP2011145309A (en) Channel reaction method and channel reactor
JP4767196B2 (en) Channel reaction method and channel reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4454431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees