JP4767196B2 - Channel reaction method and channel reactor - Google Patents
Channel reaction method and channel reactor Download PDFInfo
- Publication number
- JP4767196B2 JP4767196B2 JP2007041462A JP2007041462A JP4767196B2 JP 4767196 B2 JP4767196 B2 JP 4767196B2 JP 2007041462 A JP2007041462 A JP 2007041462A JP 2007041462 A JP2007041462 A JP 2007041462A JP 4767196 B2 JP4767196 B2 JP 4767196B2
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- channel
- fluid
- flow
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N35/08—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0093—Microreactors, e.g. miniaturised or microfabricated reactors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00891—Feeding or evacuation
Landscapes
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Description
本発明は、微小流路を有する微小流路構造体を用いた反応方法及びこの方法を適用する流路反応装置に関する。 The present invention relates to a reaction method using a microchannel structure having a microchannel and a channel reaction apparatus to which this method is applied.
免疫分析法は、医療分野、生化学分野、アレルゲンなどの測定分野等において、重要な分析・計測方法として知られている。しかし、従来の免疫分析法には、操作が煩雑である上に、分析に数時間以上の時間を要するといった問題があった。 The immunoassay is known as an important analysis / measurement method in the medical field, biochemical field, measurement field such as allergen and the like. However, the conventional immunoassay has a problem that the operation is complicated and the analysis takes several hours or more.
このような中、基板上に微小流路を形成し、当該流路内に反応物質を固定した流路デバイスを用いた免疫分析方法等が提案されているが、微小流路内の反応効率や反応速度は、特定分子と流路内に固定された反応物質との距離の大きさ、すなわち特定分子が反応するのに必要な拡散距離の大きさに大きく影響されることが知られている。上記拡散距離が大きいと、特定分子が反応物質と会合するまでに時間がかかるとともに、反応物質と会合できない分子が増え、反応効率や反応速度が低下し、反応再現性や反応の感度が低下するとともに長時間の測定時間が必要になる。 Under such circumstances, an immunoassay method using a flow channel device in which a micro flow channel is formed on a substrate and a reactant is fixed in the flow channel has been proposed. It is known that the reaction rate is greatly influenced by the magnitude of the distance between the specific molecule and the reactant fixed in the channel, that is, the diffusion distance necessary for the specific molecule to react. When the diffusion distance is large, it takes time until the specific molecule associates with the reactant, and the number of molecules that cannot associate with the reactant increases, the reaction efficiency and reaction rate decrease, and the reaction reproducibility and reaction sensitivity decrease. In addition, a long measurement time is required.
よって、反応効率を高めたり、反応速度を速めたりするには、上記拡散距離を小さくする必要がある。反応に必要な拡散距離を小さくする手段としては、例えば、流路幅を狭くし、流路深さを浅く形成する技術が提案されている(非特許文献1)。 Therefore, in order to increase the reaction efficiency or increase the reaction rate, it is necessary to reduce the diffusion distance. As a means for reducing the diffusion distance necessary for the reaction, for example, a technique of narrowing the channel width and forming the channel depth shallow has been proposed (Non-Patent Document 1).
しかし、流路幅を狭くし、流路深さを浅くする方法は、精緻な加工技術や煩雑な製造プロセスを必要とするため、格段に技術的困難性が増すとともに製造コストの大幅な上昇を招くという問題がある。 However, the method of narrowing the flow path width and reducing the flow path depth requires elaborate processing techniques and complicated manufacturing processes, which greatly increases technical difficulty and significantly increases manufacturing costs. There is a problem of inviting.
他方、図10に示すように、特定分子と反応する反応物質をビーズ101に固定し、このビーズ101を流路103内に充填した流路デバイスを用いる方法が提案されている(非特許文献2、3、特許文献1)。図10に示す技術によると、特定分子を含む試料流体がビーズ101とビーズ101との間の空隙を沿うように流れるので、反応に必要な拡散距離が小さくなる。 On the other hand, as shown in FIG. 10, a method using a flow channel device in which a reactive substance that reacts with a specific molecule is fixed to a bead 101 and the bead 101 is filled in a flow channel 103 has been proposed (Non-Patent Document 2). 3, Patent Document 1). According to the technique shown in FIG. 10, since the sample fluid containing the specific molecule flows along the gap between the beads 101, the diffusion distance required for the reaction is reduced.
しかし、流路にビーズを充填する方法は、反応に必要な拡散距離を小さくすることができるものの、流体の多くは流れ抵抗の小さい流路壁面とビーズ101群との間を流れる(図10の矢印参照)。このため、反応に関与し得ないビーズ101が存在することになり、この結果として十分な反応効率が得られない。また、ビースの状態や流速等によって反応効率が大きく変動するため反応再現性が悪いという問題がある。また流路内の圧力が上昇するため、高圧力用ポンプが必要になる問題と流体の流れが不安定になるという問題がある。 However, although the method of filling the flow path with beads can reduce the diffusion distance required for the reaction, most of the fluid flows between the flow path wall surface with a low flow resistance and the beads 101 group (see FIG. 10). See arrow). For this reason, beads 101 that cannot participate in the reaction exist, and as a result, sufficient reaction efficiency cannot be obtained. In addition, there is a problem in that the reproducibility of the reaction is poor because the reaction efficiency varies greatly depending on the state of the beads and the flow rate. Further, since the pressure in the flow path rises, there are a problem that a high pressure pump is required and a problem that the flow of fluid becomes unstable.
流路デバイスを用いた免疫分析方法等としては、例えば特定分子の量に応じて流路内で電気化学活性物質を生じさせ、この電気化学活性物質量を電気化学的に検出する方法が提案されているが、この方法においても、電気化学活性物質の検出電極までの拡散距離の大きさが検出精度に大きく影響する。すなわち、電気化学活性物質の必要な拡散距離が大きいと、電極に会合しないで流去してしまう電気化学活性物質の量が増えるので、検出精度が悪くなるという問題がある。なお、流速を遅くすれば、電極に対する会合確率が高まるが、このようにしても検出精度は向上しない。また電気化学活性物質を電極表面で酸化還元をさせ、測定するレドックスシステムの場合、流速を早くし、電極表面に電気化学活性物質を供給することが有効である。 As an immunoassay method using a flow channel device, for example, a method is proposed in which an electrochemically active substance is generated in a flow path according to the amount of a specific molecule, and the amount of this electrochemically active substance is detected electrochemically. However, also in this method, the size of the diffusion distance of the electrochemically active substance to the detection electrode greatly affects the detection accuracy. That is, if the required diffusion distance of the electrochemically active substance is large, the amount of the electrochemically active substance that flows away without associating with the electrode increases, so that there is a problem that detection accuracy deteriorates. Note that if the flow rate is slowed down, the probability of association with the electrode increases, but this does not improve the detection accuracy. In the case of a redox system in which an electrochemically active substance is oxidized and reduced on the electrode surface and measured, it is effective to increase the flow rate and supply the electrochemically active substance to the electrode surface.
本発明は、以上に鑑みなされたものであって、本発明の第1の目的は、流路幅や流路深さの更なる微小化を行うことなく、特定分子の必要な拡散距離を小さくし、特定分子と反応物質との会合確率を高めることにより、反応効率を高め、反応の感度や再現性を高めることと測定時間を短縮することである。 The present invention has been made in view of the above, and the first object of the present invention is to reduce the required diffusion distance of a specific molecule without further miniaturizing the channel width and channel depth. Then, by increasing the association probability between the specific molecule and the reactant, the reaction efficiency is increased, the sensitivity and reproducibility of the reaction are increased, and the measurement time is shortened.
本発明の第2の目的は、電気化学活性物質を検出対象とする場合において、電気化学活性物質が電極と会合するために必要な拡散距離を小さくし、検出感度、検出精度並びに検出再現性に優れた流路反応方法を提供することである。 The second object of the present invention is to reduce the diffusion distance required for the electrochemically active substance to associate with the electrode in the case where the electrochemically active substance is a detection target, thereby improving detection sensitivity, detection accuracy, and detection reproducibility. It is to provide an excellent flow path reaction method.
本発明の第3の目的は、これらの流路反応方法を適用した検出精度等に優れた流路反応装置を提供することである。 A third object of the present invention is to provide a flow channel reaction apparatus excellent in detection accuracy and the like to which these flow channel reaction methods are applied.
上記課題を解決するための第1の本発明は、反応物質が固定された反応流路と、前記反応流路内に試料流体を導く試料注入路と、前記反応流路内に流体を導く他の注入路と、を少なくとも備えた反応流路構造体を用いて、前記試料流体中の特定分子を前記反応流路内に固定された反応物質に反応させる流路反応方法であって、前記試料注入路より導入した試料流体を前記反応流路内の反応物質に接触可能に流すとともに、前記反応流路内に他の注入路より導入した流体を同時並行的に流すことを特徴とする。 First invention for solving the above problems, leads a reactant immobilized reaction channel, a sample injection path for guiding the sample fluid to the reaction flow path, the fluid to the reaction channel other And a flow channel reaction method for reacting a specific molecule in the sample fluid with a reactant fixed in the reaction flow channel, using a reaction flow channel structure including at least The sample fluid introduced from the injection channel is allowed to contact the reactant in the reaction channel, and the fluid introduced from the other injection channel is allowed to flow in the reaction channel simultaneously.
この構成によると、試料流体は反応流路内の反応物質に接触可能に流れ、流体が試料流体と同時並行的に反応流路内を流れているので、この流れの状態を流れ方向に直交する断面で見た時、断面の一部が試料流体であり、その余が他の注入路より導入した流体で占められ、且つ試料流体が反応物質と接触する側に位置した状態が形成されている。つまり、断面全体が試料流体である場合に比較し、試料流体中の特定分子と反応物質との距離(拡散距離)が小さくなっている。よって、特定分子と反応物質との会合確率が高まり、反応効率が向上する。また、これにより測定時間が短縮されるとともに、測定感度や測定の再現性が高まる。 According to this configuration, the sample fluid flows so as to come into contact with the reactant in the reaction channel, and the fluid flows in the reaction channel in parallel with the sample fluid. Therefore, the flow state is orthogonal to the flow direction. When viewed in cross section, a part of the cross section is the sample fluid, and the remainder is occupied by the fluid introduced from the other injection path, and the sample fluid is located on the side in contact with the reactant. . That is, the distance (diffusion distance) between the specific molecule and the reactive substance in the sample fluid is smaller than when the entire cross section is the sample fluid. Therefore, the association probability between the specific molecule and the reactive substance is increased, and the reaction efficiency is improved. This shortens the measurement time and increases the measurement sensitivity and measurement reproducibility.
上記第1の発明においては、前記反応物質が前記反応流路の壁面に固定され、前記試料注入路により、試料流体が前記反応物質の固定された反応流路壁面に沿って流れるように導くとともに、前記他の注入路からも流体を導入して、当該流体により前記試料流体が前記壁面側に押しやられるように反応流路内の流れを制御する、構成とすることができる。 In the first aspect of the invention, the reactant is fixed to the wall surface of the reaction channel, by the sample injection path, together with the sample fluid leads to flow along the fixed reaction channel wall of the reactants In addition, it is possible to adopt a configuration in which a fluid is also introduced from the other injection channel, and the flow in the reaction channel is controlled so that the sample fluid is pushed toward the wall surface by the fluid.
この構成によると、試料流体が反応物質の固定された反応流路壁面に沿って流れるように導かれ、且つ反応流路内を同時並行的に流れる他の注入路より導入した流体が試料流体を反応流路壁面側に押しやるので、試料流体と反応物質との最大距離が縮小する。よって、特定分子と反応物質との会合確率が高まり、反応効率が向上するとともに、測定感度や測定の再現性が高まる。また測定時間が短縮される。 According to this configuration, the sample fluid is guided so as to flow along the reaction channel wall surface on which the reactant is fixed, and the fluid introduced from the other injection channels that flow in the reaction channel at the same time becomes the sample fluid. Since it is pushed to the reaction channel wall surface side, the maximum distance between the sample fluid and the reactant is reduced. Therefore, the probability of association between the specific molecule and the reactant increases, the reaction efficiency improves, and the measurement sensitivity and measurement reproducibility increase. Also, the measurement time is shortened.
上記第1の発明においては、前記他の注入路より前記試料流体以外の流体を流す構成とすることができる。 In the first aspect of the invention, it may be configured to than the other injection path flowing a fluid other than the sample fluid.
この構成によると、他の注入路より導入した流体が、前記試料流体と異なるため、試料流体に含まれる特定分子のみを確実に反応させることができる。 According to this configuration, the fluid introduced from the other injection path, to become the sample fluid and different, can be reliably react only specific molecules contained in the sample fluid.
上記第1の発明において、前記反応流路構造体は、試料注入路が2つ配置され、2つある試料注入路の間に前記他の注入路が1つ配置された構造である構成とすることができる。 In the first invention, the reaction channel structures, sample injection path is arranged two, the other injection path between the two is the sample injection path is configured is one arranged structure be able to.
この構成では、試料流体以外の流体を導く他の注入路が、2つある試料注入路の中間に配置されているので、断面形状が[試料流体/試料流体以外の流体/試料流体]の3つの部分を持った1つの流れを形成できる。この流れは、試料流体が反応流路の壁面側に沿って流れ、壁面側から遠いところを他の流体が流れるものとなる。よって、試料流体の反応物質までの拡散距離を縮小するのに好都合な流れを形成することができる。 In this configuration, since another injection path for guiding a fluid other than the sample fluid is disposed in the middle of the two sample injection paths, the cross-sectional shape is 3 of [sample fluid / fluid other than sample fluid / sample fluid]. One flow with one part can be formed. In this flow, the sample fluid flows along the wall surface side of the reaction channel, and other fluid flows in a place far from the wall surface side. Therefore, a flow that is convenient for reducing the diffusion distance of the sample fluid to the reactant can be formed.
上記第1の発明において、前記反応流路構造体として、基板に作り込まれたチップ状反応流路構造体を用いる構成とすることができる。 In the first invention, a chip-like reaction channel structure built in a substrate can be used as the reaction channel structure.
微小な流路構造を有するチップ状反応流路構造体において、本発明作用効果が顕著に発揮される。また、基板に作り込まれたチップ状反応流路構造体であると、取り扱い性、簡便性に優れる。 The effect of the present invention is remarkably exhibited in a chip-like reaction channel structure having a minute channel structure. In addition, the chip-like reaction channel structure formed on the substrate is excellent in handleability and simplicity.
上記第1の発明において、前記他の注入路より導入した流体は、前記試料流体以外の液体であり、前記試料流体と当該液体との流れが層流である構成とすることができる。 In the first aspect, the fluid introduced from said other injection path is a liquid other than the sample fluid, the flow of the sample fluid and the liquid may be configured to be laminar flow.
また、上記第1の発明において、前記他の注入路より導入した流体は、前記試料流体以外の気体であり、前記試料流体と当該気体との流れが層流である構成とすることができる。 Further, in the first aspect, the fluid introduced from said other injection path is a gas other than the sample fluid, the flow of the sample fluid and the gas can be configured to be laminar flow.
試料流体と他の流体との流れを層流とすると、両流体の混ざり合いを抑制することができる。よって、試料流体とともに、試料流体以外の他の流体を同時並行的に流す作用効果が一層確実に発揮される。 If the flow of the sample fluid and the other fluid is a laminar flow, mixing of both fluids can be suppressed. Therefore, the effect of flowing the fluid other than the sample fluid in parallel with the sample fluid is more reliably exhibited.
上記第1の発明において、前記試料流体は液体であり、前記他の注入路より導入した流体は、前記試料流体以外の気体であり、前記試料流体を前記気体からなる気泡を散在させた状態で前記反応流路内を流す構成とすることができる。 In the first invention, the sample fluid is a liquid, the fluid introduced from the other injection path is a gas other than the sample fluid , and the sample fluid is in a state in which bubbles made of the gas are scattered. It can be set as the structure which flows through the said reaction flow path.
試料流体に気泡を散在させると、反応流路内を流れる流体の単位体積中に占める試料流体自体の体積が縮小するので、試料流体中に含まれる特定分子の反応物質までの平均的拡散距離を小さくすることが可能になる。なお、この構成においては、好ましくは反応物質からより遠いところに気泡を位置させる。 When bubbles are scattered in the sample fluid, the volume of the sample fluid itself in the unit volume of the fluid flowing in the reaction channel is reduced, so the average diffusion distance to the reactant of a specific molecule contained in the sample fluid is reduced. It becomes possible to make it smaller. In this configuration, the bubbles are preferably located farther from the reactant.
上記第1の発明において、前記試料注入路より導入した試料流体と、前記他の注入路より導入した流体との合計流量を100としたとき、前記試料流体の流量が50以下である構成とすることができる。 In the first invention, the sample fluid introduced from the sample injection path, is 100 the total flow rate of the fluid introduced from said other injection path, the flow rate of the sample fluid is configured 50 or less be able to.
前記試料流体に対し他の流体の割合が大きいほど、反応流路内における特定分子の拡散距離を小さくできるので、試料流体と、他の流体との合計流量を100としたとき、好ましくは試料流体の流量を50以下とし、より好ましくは30以下とし、さらに好ましくは1以上10以下とする。 The larger the ratio of the other fluid to the sample fluid, the smaller the diffusion distance of the specific molecule in the reaction channel. Therefore, when the total flow rate of the sample fluid and the other fluid is 100, the sample fluid is preferable. The flow rate is 50 or less, more preferably 30 or less, and even more preferably 1 or more and 10 or less.
上記各発明における特定分子と反応物質の反応としては、抗原抗体反応や酵素基質反応を採用することができる。 As the reaction between the specific molecule and the reactant in each of the above inventions, an antigen-antibody reaction or an enzyme substrate reaction can be employed.
次に上記課題を解決するための第2の発明について説明する。
上記課題を解決するための第2の発明は、反応物質が固定された反応流路と、前記反応流路内に試料流体を導く試料注入路と、前記反応流路内に流体を導く他の注入路と、
を少なくとも有する反応流路構造体を備え、更に、前記試料注入路から、前記反応流路内に試料流体を導入するとともに、前記他の注入路から反応流路内に流体を導入して前記試料流体と前記他の注入路から導入した流体(これを他の流体という。以下同様)とを並行的に流し、前記試料流体が前記反応流路の壁面側に押しやられるように制御する流体制御手段を、備える流路反応装置である。
Next, a second invention for solving the above problem will be described.
The second invention for solving the above problems, a reaction channel of the reaction material is fixed, and the sample injection path for guiding the sample fluid to the reaction flow path, the other directing fluid to the reaction channel An injection path;
Comprising at least a reaction channel structure, and further, from the sample injection passage, as well as introducing a sample fluid to the reaction channel, the sample and introducing a fluid into the reaction flow path from said another injection path Fluid control means for controlling the sample fluid to be pushed toward the wall surface of the reaction channel by flowing a fluid and a fluid introduced from the other injection channel (this is referred to as other fluid; hereinafter the same). Is a flow channel reaction device.
この構成によると、反応流路内を並行的に流れる他の流体が試料流体を反応流路壁面側に押しやるように規制するので、試料流体が反応物質の固定された反応流路壁面に沿って流れる。よって、この構成であると、同一サイズの反応流路構造体であっても、特定分子と反応物質との会合確率が高まる結果、反応時間の短縮とともに、反応効率や反応再現性に優れた流路反応装置が提供できる。また、この構成であると、流路を極端に微細化しなくとも、反応時間の短縮と反応効率や反応再現性を高めることができるので、信頼性の高い流路反応装置を従来に比較し低コストでもって提供することができる。 According to this configuration, other fluids flowing in parallel in the reaction channel regulate the sample fluid to push the sample fluid to the reaction channel wall surface side, so that the sample fluid moves along the reaction channel wall surface to which the reactant is fixed. Flowing. Therefore, with this configuration, even with reaction channel structures of the same size, the probability of association between a specific molecule and a reactant increases, resulting in a reduction in reaction time and an excellent flow efficiency and reaction reproducibility. A road reactor can be provided. Also, with this configuration, the reaction time can be shortened and the reaction efficiency and reaction reproducibility can be improved without extremely miniaturizing the flow path. Can be provided at a cost.
また、上記課題を解決するための第3の発明は、試料流体に含まれる電気化学活性物質を酸化還元反応させる電極が設けられた電流検出流路と、前記電流検出流路内に試料流体を導く試料注入路と、前記電流検出流路内に流体を導く他の注入路と、を少なくとも有する反応流路構造体を備え、更に、前記試料注入路より試料流体を前記電極に接触可能に導入するとともに、前記他の注入路より流体を導入し、前記電流検出流路内に両流体を並行的に流すことにより、前記試料流体が前記電極に接触しつつ流れるよう制御する流体制御手段を、備える流路反応装置である。 According to a third aspect of the present invention for solving the above problems, a current detection channel provided with an electrode for causing an oxidation-reduction reaction of an electrochemically active substance contained in a sample fluid, and the sample fluid is provided in the current detection channel. A reaction channel structure having at least a sample injection channel for guiding and another injection channel for guiding a fluid into the current detection channel, and further introducing a sample fluid so as to be in contact with the electrode from the sample injection channel And fluid control means for controlling the sample fluid to flow while in contact with the electrodes by introducing fluid from the other injection channel and flowing both fluids in parallel in the current detection channel, It is a channel reaction device provided.
この構成によると、流体制御手段が、前記電流検出流路内に試料流体とこれ以外の流体の流れを制御して、試料流体が電極面側に押しやられるような流れを形成するので、試料流体に含まれる電気化学活性物質が電極と会合する確率が顕著に高まる。よって、この構成によると、検出時間が短く、検出精度と検出再現性に優れた流路反応装置が提供できる。 According to this configuration, the fluid control means controls the flow of the sample fluid and the other fluid in the current detection flow path so as to form a flow in which the sample fluid is pushed to the electrode surface side. The probability that the electrochemically active substance contained in the electrode is associated with the electrode is significantly increased. Therefore, according to this configuration, it is possible to provide a flow channel reaction apparatus having a short detection time and excellent detection accuracy and detection reproducibility.
また、上記課題を解決するための第4の発明は、反応流路内に試料流体を導く試料注入路と、前記反応流路内に流体を導く他の注入路と、前記試料流体に含まれる特定分子と反応する反応物質が固定された反応流路と、前記反応流路の下流側に位置し、前記特定分子が前記反応物質と反応して生じた電気化学活性物質を酸化還元反応させる電極が設けられた電流検出流路と、を少なくとも有する反応流路構造体を備え、更に、前記試料注入路より試料流体を前記電極に接触可能に導入するとともに、前記他の注入路より流体を導入し、前記反応流路内及び前記電流検出流路内に両流体を並行的に流すことにより、前記試料流体が前記反応物質と前記電極の双方に接触しつつ流れるよう制御する流体制御手段を、備える流路反応装置である。 Further, a fourth invention for solving the above problems is included in the sample fluid, a sample injection channel for introducing the sample fluid into the reaction channel, another injection channel for guiding the fluid into the reaction channel, and the sample fluid. A reaction channel in which a reactive substance that reacts with a specific molecule is fixed, and an electrode that is located on the downstream side of the reaction channel and that performs an oxidation-reduction reaction on an electrochemically active substance generated by the reaction of the specific molecule with the reactive substance A reaction flow path structure having at least a current detection flow path provided with a sample fluid introduced from the sample injection path so as to be in contact with the electrode, and a fluid introduced from the other injection path. A fluid control means for controlling the sample fluid to flow while contacting both the reactant and the electrode by flowing both fluids in parallel in the reaction channel and the current detection channel; It is a channel reaction device provided.
上記構成にかかる流路反応装置は、反応流路内で特定分子を反応物質と反応させ、電気化学活性物質を生成させ、次いでこの電気化学活性物質を電極が設けられた電流検出流路内で酸化又は還元し、このときの電流を検出して、特定物質の存在または特定物質の定量を行う装置である。この装置においては、流体制御手段が、反応流路内及び電流検出流路内に試料流体とこれ以外の流体とを並行的に流すことにより、試料流体が反応物質と電極の双方に接触しつつ流れるよう制御するので、確実かつ効率よく2つの反応が進行する。よって、上記構成によると、検出時間が短く、検出精度と検出再現性に優れた信頼性の高い流路反応装置を提供することができる。 The flow path reaction apparatus according to the above configuration causes a specific molecule to react with a reactive substance in the reaction flow path to generate an electrochemically active substance, and then this electrochemically active substance is passed through the current detection flow path provided with electrodes. It is an apparatus that oxidizes or reduces and detects the current at this time to determine the presence of the specific substance or the specific substance. In this apparatus, the fluid control means causes the sample fluid and other fluid to flow in parallel in the reaction channel and the current detection channel, so that the sample fluid is in contact with both the reactant and the electrode. Since it controls so that it may flow, two reaction advances reliably and efficiently. Therefore, according to the above configuration, it is possible to provide a highly reliable flow path reaction apparatus with a short detection time and excellent detection accuracy and detection reproducibility.
以上説明したように、本発明方法を流路反応に適用することにより、反応流路の更なる微小化を行わなくとも、反応流路内における反応効率を顕著に高めることができる。また、流路反応装置にかかる本発明によると、検出時間が短く、検出精度と検出再現性に優れた信頼性の高い流路反応装置を提供することができる。 As described above, by applying the method of the present invention to the channel reaction, the reaction efficiency in the reaction channel can be significantly increased without further miniaturization of the reaction channel. Further, according to the present invention relating to the flow path reaction apparatus, it is possible to provide a highly reliable flow path reaction apparatus with a short detection time and excellent detection accuracy and detection reproducibility.
以下に、本発明を実施するための最良の形態を、図面を用いて詳細に説明する。 The best mode for carrying out the present invention will be described below in detail with reference to the drawings.
[実施の形態1]
本実施の形態を、図1を参照に説明する。図1に示すように、本実施の形態にかかる流路内反応方法に用いる流路反応装置は、抗原抗体反応または、酵素基質反応を行わせる反応流路構造体11と、酵素基質反応後、生成される物質を電気化学手段を用いて測定する検出流路構造体12と、を備えており、反応流路構造体11と電流検出流路構造体12とが、直径1/16インチのテフロン(登録商標)製のチューブ18により連結されている。また、チューブ18には、気体を抜くパージ181が設けられている。
[Embodiment 1]
The present embodiment will be described with reference to FIG. As shown in FIG. 1, the flow channel reaction apparatus used in the flow channel reaction method according to the present embodiment includes a reaction flow channel structure 11 that performs an antigen-antibody reaction or an enzyme substrate reaction, and after the enzyme substrate reaction, A detection channel structure 12 for measuring the generated substance using an electrochemical means, and the reaction channel structure 11 and the current detection channel structure 12 are 1/16 inch diameter Teflon. They are connected by a tube 18 made of (registered trademark). Further, the tube 18 is provided with a purge 181 for extracting gas.
また、特定分子を含む試料流体や、他の流体を反応流路構造体11に送液ためのシリンジポンプ(図示せず)と、試料流体及び他の流体の送液量を制御する流体制御手段(図示せず)と、が設けられている。 In addition, a sample fluid containing a specific molecule, a syringe pump (not shown) for feeding other fluid to the reaction channel structure 11, and fluid control means for controlling the amount of the sample fluid and other fluid fed (Not shown).
反応流路構造体11には、特定分子を含む試料流体が流れる試料注入路16と、試料流体以外の流体(他の流体、これに特定分子が含まれていてもよい)が流れる他の注入路17と、特定分子を認識する材料が固定化されている層が設けられた反応流路15とが、平面視Y字状に連結された状態で形成されている。また、試料注入路16の上流には試料注入孔13が設けられ、他の注入路17の上流には他の流体注入孔14が設けられ、反応流路15の下流には、チューブ18と接続するための排出孔19が設けられている。 In the reaction channel structure 11, a sample injection channel 16 through which a sample fluid containing a specific molecule flows and other injection through which a fluid other than the sample fluid (other fluid, which may contain a specific molecule) flows. The channel 17 and the reaction channel 15 provided with a layer on which a material recognizing a specific molecule is fixed are formed in a state of being connected in a Y shape in plan view. A sample injection hole 13 is provided upstream of the sample injection path 16, another fluid injection hole 14 is provided upstream of the other injection path 17, and a tube 18 is connected downstream of the reaction flow path 15. A discharge hole 19 is provided.
電流検出流路構造体12の電流検出流路123の底面には、酵素基質反応により形成された電気化学活性物質を酸化還元反応させる電極128が設けられており、電極の表面での酸化又は還元による電流を検出するポテンショスタット(図示せず)と、電極128とが、配線(図示せず)により接続されている。検出流路123の上流には、チューブ18と接続するための注入孔121が設けられ、検出流路123の下流には、検出流路123内の液を排出するための排出孔122が設けられている。 On the bottom surface of the current detection flow path 123 of the current detection flow path structure 12, an electrode 128 that causes an oxidation-reduction reaction of the electrochemically active substance formed by the enzyme substrate reaction is provided, and oxidation or reduction on the surface of the electrode is performed. A potentiostat (not shown) for detecting a current caused by the above and an electrode 128 are connected by a wiring (not shown). An injection hole 121 for connecting to the tube 18 is provided upstream of the detection flow path 123, and a discharge hole 122 for discharging the liquid in the detection flow path 123 is provided downstream of the detection flow path 123. ing.
反応流路構造体11、電流検出流路構造体12の各流路の幅は100μm、流路の深さは50μm、注入孔から排出孔19までの長さ(L1+L2)は40mmであり、試料注入孔13から試料流体が注入される試料注入路16と、反応流路15とが交わる地点までの距離L1は10mmである。なお、流路の幅、流路の深さ、流路の長さ等は、上記に限定されるものではない。 The width of each flow path of the reaction flow path structure 11 and the current detection flow path structure 12 is 100 μm, the depth of the flow path is 50 μm, and the length from the injection hole to the discharge hole 19 (L1 + L2) is 40 mm. The distance L1 from the injection hole 13 to the point where the sample injection channel 16 into which the sample fluid is injected and the reaction channel 15 intersect is 10 mm. Note that the width of the flow path, the depth of the flow path, the length of the flow path, and the like are not limited to the above.
次に、流路反応装置の作製法について説明する。
まず、反応流路構造体11の作成方法について説明する。
3インチシリコン基板に、フォトリソグラフィーを用いて流路パターンを設け、ドライエッチングにより、試料注入路16と、他の注入路17と、反応流路15とを形成する。また、流路形成基板としては、シリコン基板以外に、ガラス、石英基板、高分子樹脂基板等を用いることができる。また、フォトリソグラフィーとドライエッチングにより形成された流路構造体の金型を用いて、ホットエンボス法を用いてプラスティック流路構造体を作製してもよい。
Next, a method for producing a flow channel reaction apparatus will be described.
First, a method for creating the reaction channel structure 11 will be described.
A flow path pattern is provided on a 3-inch silicon substrate using photolithography, and a sample injection path 16, another injection path 17, and a reaction flow path 15 are formed by dry etching. In addition to the silicon substrate, a glass, a quartz substrate, a polymer resin substrate, or the like can be used as the flow path forming substrate. Alternatively, a plastic flow path structure may be manufactured by using a hot embossing method using a flow path structure mold formed by photolithography and dry etching.
次に、シリコン基板上に形成された反応流路に、スパッタ装置を用いて金属薄膜を形成する。金属薄膜はチタンと金で構成され、その厚さはチタン:金=500Å:500Åである。なお、この値には限定されない。 Next, a metal thin film is formed in the reaction channel formed on the silicon substrate using a sputtering apparatus. The metal thin film is composed of titanium and gold, and the thickness is titanium: gold = 500 mm: 500 mm. The value is not limited to this value.
末端がカルボキシル基(COOH)で修飾されているチオールと、末端が水酸基(OH)で修飾されているチオールとを、1:9の割合で混合した溶液中に、金属薄膜が形成されたシリコン基板を10分間浸し、純水で洗浄する。これにより、金属薄膜表面にチオール基の自己組織膜が形成される。この後、抗体のアミノ基とチオールのカルボキシル基とを反応させて、反応流路内に反応物質(抗体)を固定化する。 A silicon substrate in which a metal thin film is formed in a solution in which a thiol whose end is modified with a carboxyl group (COOH) and a thiol whose end is modified with a hydroxyl group (OH) are mixed in a ratio of 1: 9 Is soaked for 10 minutes and washed with pure water. Thereby, a self-organized film of thiol groups is formed on the surface of the metal thin film. Thereafter, the amino group of the antibody is reacted with the carboxyl group of the thiol to immobilize the reactant (antibody) in the reaction channel.
この後、40mm×60mm×2mm(厚さ)のPDMS(Polydimethylsiloxane)基板に、試料注入孔13、他の流体注入孔14と、排出孔19と、に相当する位置に、直径1mmの貫通した穴を形成する。 After that, a 1 mm diameter through hole is formed in a position corresponding to the sample injection hole 13, another fluid injection hole 14, and the discharge hole 19 on a PDMS (Polydimethylsiloxane) substrate of 40 mm × 60 mm × 2 mm (thickness). Form.
上記シリコン基板と、上記PDMS基板と、を張り合わせ、チップ状の反応流路構造体11が完成する。 The silicon substrate and the PDMS substrate are bonded together to complete the chip-like reaction channel structure 11.
次に、電流検出流路構造体12の作製法を説明する。
幅1mm、長さ8mm、深さ50μmの流路を、フォトリソグラフィーを用いてPDMS基板に形成し、直径1mmの注入孔121と排出孔122用の貫通穴を流路の両側末端に形成する。
Next, a method for producing the current detection flow path structure 12 will be described.
A channel having a width of 1 mm, a length of 8 mm, and a depth of 50 μm is formed in the PDMS substrate using photolithography, and through holes for the injection hole 121 and the discharge hole 122 having a diameter of 1 mm are formed at both ends of the channel.
また、電極の形成は、シリコン基板上にフォトリソグラフィーを用いて作用電極(Pt)と、参照電極(Ag/AgCl)と、対象電極(Pt)と、これにつながる配線と、を形成する。 In addition, the electrodes are formed by forming a working electrode (Pt), a reference electrode (Ag / AgCl), a target electrode (Pt), and a wiring connected thereto using photolithography on a silicon substrate.
上記PDMS基板と、上記シリコン基板と、を張り合わせ、チップ状の電流検出流路構造体12が完成する。 The PDMS substrate and the silicon substrate are bonded together to complete the chip-like current detection channel structure 12.
この後、パージ181が設けられたチューブ18を、反応流路構造体11の排出孔19と、電流検出流路構造体12の注入孔121とにつなぐ。 Thereafter, the tube 18 provided with the purge 181 is connected to the discharge hole 19 of the reaction flow path structure 11 and the injection hole 121 of the current detection flow path structure 12.
この後、シリンジポンプ、流体制御手段を設け、本実施の形態にかかる流路反応装置が完成する。 Thereafter, a syringe pump and fluid control means are provided, and the flow channel reaction apparatus according to the present embodiment is completed.
ここで、特定分子を認識する材料(反応物質)としては、抗体、アミノ酸複合体(ペプチド、タンパク質等)、核酸複合体(DNA、RNA等)、細胞、微生物、レセプター、分子インプリントポリマー(Molecular imprinted polymers)等を用いることができる。 Here, as materials (reactants) for recognizing specific molecules, antibodies, amino acid complexes (peptides, proteins, etc.), nucleic acid complexes (DNA, RNA, etc.), cells, microorganisms, receptors, molecular imprint polymers (Molecular imprinted polymers).
次に、この流路反応装置を用いた流路内反応方法について説明する。
まず、反応流路構造体11、12を液で満たすため、試料注入孔13と他の流体注入孔14から10mMTris緩衝液(pH9.0、137mM NaCl、1mM MgCl2、0.05%Tween20を含む)を、シリンジポンプを用いて0.1μl/分〜10μl/分の流量で送液する。
Next, an in-channel reaction method using this channel reaction apparatus will be described.
First, in order to fill the reaction channel structures 11 and 12 with a liquid, a 10 mM Tris buffer solution (including pH 9.0, 137 mM NaCl, 1 mM MgCl 2 and 0.05% Tween 20) is supplied from the sample injection hole 13 and the other fluid injection holes 14. At a flow rate of 0.1 μl / min to 10 μl / min using a syringe pump.
次に、反応流路構造体の試料注入孔13から試料注入路16に、シリンジポンプを用いて、特定分子(例えば、抗原)を含む試料流体を0.1μl/分〜5μl/分の流速で注入する。また、これと同時に、他の流体注入孔14から他の注入路17に、気体若しくは特定分子を含んでない液体(他の流体)を注入する。 Next, a sample fluid containing a specific molecule (for example, antigen) is flowed from the sample injection hole 13 of the reaction channel structure to the sample injection channel 16 at a flow rate of 0.1 μl / min to 5 μl / min using a syringe pump. inject. At the same time, a liquid (other fluid) containing no gas or a specific molecule is injected from another fluid injection hole 14 into another injection path 17.
ここで、他の流体注入孔14から気体を注入する場合には、気体を断続的に注入し、反応流路内で、試料流体中に気泡が散在した気泡流を形成してもよい(図2参照。)。また、気体を連続的に注入し、反応流路内で、試料流体と気体との層流を形成してもよい(図3参照。)。また、他の流体注入孔14から液体を注入する場合には、液体と試料流体とが撹拌されないように、液体を連続的に注入し、反応流路内で、試料流体と液体との層流を形成するように流すことが好ましい。このような他の流体の注入制御は、流体制御手段がシリンジポンプの動作を制御することによって行われる。 Here, in the case of injecting gas from the other fluid injection holes 14, the gas may be intermittently injected to form a bubble flow in which bubbles are scattered in the sample fluid in the reaction channel (FIG. 2). Alternatively, a gas may be continuously injected to form a laminar flow of the sample fluid and the gas in the reaction channel (see FIG. 3). In addition, when injecting a liquid from another fluid injection hole 14, the liquid is continuously injected so that the liquid and the sample fluid are not agitated, and the laminar flow of the sample fluid and the liquid is performed in the reaction channel. It is preferable to flow so as to form. Such other fluid injection control is performed by the fluid control means controlling the operation of the syringe pump.
他の流体注入口14から注入される他の流体と、試料流体注入孔13から注入される試料流体との相互作用により、反応流路15内の試料流体が気泡を含む溶液となった状態(図2参照)、または気相/液相、液相/液相の層流が形成された状態(図3参照)で、反応流路15に固定されている反応物質(抗体)と試料流体中の特定分子(抗原)と反応させる。 A state in which the sample fluid in the reaction channel 15 becomes a solution containing bubbles due to the interaction between the other fluid injected from the other fluid inlet 14 and the sample fluid injected from the sample fluid inlet 13 ( 2), or in a state in which a laminar flow of gas phase / liquid phase or liquid phase / liquid phase is formed (see FIG. 3), the reactant (antibody) fixed in the reaction channel 15 and the sample fluid It reacts with a specific molecule (antigen).
これにより、試料流体に含まれる特定分子と反応物質(抗体)との拡散距離が小さくなり、特定分子と反応物質との会合度が高まるので、反応効率が飛躍的に高まるとともに、測定感度の向上や測定時間の短縮と測定の再現性が飛躍的に高まる。 As a result, the diffusion distance between the specific molecule and the reactant (antibody) contained in the sample fluid is reduced, and the degree of association between the specific molecule and the reactant is increased, thereby dramatically increasing the reaction efficiency and improving the measurement sensitivity. And measurement time and measurement reproducibility are dramatically improved.
試料注入孔13から試料流体を注入する際、拡散距離をより小さくするため、好ましくは、試料流体の流量が他の流体注入孔14から注入される流体の流量の50%以下となるように、試料流体及び他の流体の流量を制御する。また、試料流体の流量が他の流体の流量の10%以下になる場合には、試料注入路16と他の注入路17とが交わる地点で、両者の流れが渦巻き、渦巻状の流れが生じて、試料流体と他の流体とが撹拌されるおそれがある。このため、図4に示すように、試料注入路16と他の注入路17とが交わる地点に、仕切り体41を設けて、この渦巻状の流れの発生を防止することが好ましい。この流路内の仕切り体41は、試料注入路16と他の注入路17が交流する支点から、反応流路15内まで伸ばす形態で形成することが好ましい。また、反応流路15内で層流が形成されるためには、流体のレイノルズ数が2000を超えないようにすることが好ましく、また、流路の幅を1000μm以下にすることが好ましい。 In order to reduce the diffusion distance when injecting the sample fluid from the sample injection hole 13, preferably, the flow rate of the sample fluid is 50% or less of the flow rate of the fluid injected from the other fluid injection holes 14. Control the flow rate of sample fluid and other fluids. Further, when the flow rate of the sample fluid is 10% or less of the flow rate of the other fluids, the flow of both is swirled at the point where the sample injection path 16 and the other injection path 17 intersect, and a spiral flow is generated. Thus, the sample fluid and other fluids may be agitated. For this reason, as shown in FIG. 4, it is preferable to provide a partition body 41 at a point where the sample injection path 16 and the other injection path 17 intersect to prevent the generation of this spiral flow. The partition body 41 in this flow path is preferably formed in a form extending from the fulcrum where the sample injection path 16 and the other injection path 17 exchange to the reaction flow path 15. In order to form a laminar flow in the reaction channel 15, it is preferable that the Reynolds number of the fluid does not exceed 2000, and the width of the channel is preferably 1000 μm or less.
特定分子と反応物質と反応させ後、試料注入孔13から、洗浄用の緩衝液を流して、流路内を洗浄する。 After reacting the specific molecule with the reactant, a washing buffer solution is flowed from the sample injection hole 13 to wash the inside of the flow path.
この後、酵素(ALP:alkaline phosphatase; アルカリホスファターゼ)が修飾されている2次反応物質(抗体)を含む溶液を注入し、流体注入孔14から、気体若しくは特定分子を含んでない液(他の流体)を注入する。 Thereafter, a solution containing a secondary reactant (antibody) modified with an enzyme (ALP: alkaline phosphatase) is injected, and a liquid not containing a gas or a specific molecule (other fluid) is injected from the fluid injection hole 14. ).
注入口14から導入される気体若しくは液体により、反応流路15内の2次反応物質を含む溶液(試料流体)が気泡を含む溶液(図2)、または気相/液相、液相/液相の層流が形成された状態で(図3)、反応流路15に固定されている反応物質(抗体−抗原複合体)と試料流体中の特定分子(2次反応物質)と反応させる。 Due to the gas or liquid introduced from the inlet 14, the solution containing the secondary reactant in the reaction channel 15 (sample fluid) contains bubbles (FIG. 2), gas phase / liquid phase, liquid phase / liquid In a state where the laminar flow of the phase is formed (FIG. 3), the reactant (antibody-antigen complex) immobilized in the reaction channel 15 is reacted with a specific molecule (secondary reactant) in the sample fluid.
これにより、試料流体に含まれる特定分子(2次反応物質)と反応物質(抗体−抗原複合体)との拡散距離が短くなり、特定分子と反応物質との会合度が高まるので、反応効率が飛躍的に高まるとともに、測定感度の向上や測定時間の短縮と測定の再現性が飛躍的に高まる。 As a result, the diffusion distance between the specific molecule (secondary reactant) and the reactant (antibody-antigen complex) contained in the sample fluid is shortened, and the degree of association between the specific molecule and the reactant is increased. Along with the dramatic increase, the measurement sensitivity is improved, the measurement time is shortened, and the reproducibility of the measurement is dramatically increased.
ここで、2次抗体の濃度は、非特異的な反応によるバックグラウンドの上昇などに影響を与え、センシングシステムの感度を低下させることがある。このため、2次抗体濃度は0.01ng/ml−50ng/mlであることが好ましい。 Here, the concentration of the secondary antibody may affect the background increase due to a non-specific reaction, and may decrease the sensitivity of the sensing system. Therefore, the secondary antibody concentration is preferably 0.01 ng / ml-50 ng / ml.
この後、試料注入孔13から、洗浄用の緩衝液を流して、流路内を洗浄する。 Thereafter, a washing buffer solution is flowed from the sample injection hole 13 to wash the inside of the flow path.
この後、基質(pAPP; p-Aminophenyl phosphate)を含む溶液を試料注入孔13から導入し、基質と2次抗体に修飾されている酵素とを反応させ、電気化学活性物質pAP(p-Aminophenol)を生成させる。 Thereafter, a solution containing a substrate (pAPP; p-Aminophenyl phosphate) is introduced from the sample injection hole 13, and the substrate is reacted with the enzyme modified with the secondary antibody to thereby react with the electrochemically active substance pAP (p-Aminophenol). Is generated.
この電気化学活性物質を含む溶液が、チューブ18を経由して電流検出流路構造体12内部に注入される。検出流路123に設けられた作用電極と参照電極との間に400mV〜600mVの電位をかけ、作用電極の表面でのpAPの酸化による酸化電流を、ポテンショスタートを用いて測定することにより、pAPの検量ができる。このpAPの量は、特定分子の量に比例するため、この電流値から、特定分子の量を求めることができる。ここで、他の流体が気体である場合、反応流路構造体11で反応を終えた溶液が、電流検出流路構造体12に移動する間に、気体を抜くパージ181を設け、電流検出流路構造体12には液体だけが導入されるようにする。 The solution containing the electrochemically active substance is injected into the current detection flow path structure 12 via the tube 18. By applying a potential of 400 mV to 600 mV between the working electrode provided in the detection flow path 123 and the reference electrode, and measuring the oxidation current due to the oxidation of pAP on the surface of the working electrode using a potentio start, pAP Can be calibrated. Since the amount of pAP is proportional to the amount of the specific molecule, the amount of the specific molecule can be determined from this current value. Here, when the other fluid is a gas, a purge 181 for removing the gas is provided while the solution that has finished the reaction in the reaction channel structure 11 moves to the current detection channel structure 12, and the current detection flow is provided. Only the liquid is introduced into the path structure 12.
なお、上記実施の形態では、検出手段として電気化学測定法を用いたが、この方法以外に、蛍光標識を用いた蛍光測定法、化学発光測定法、表面プラズモン共鳴法等も使用可能である。 In the above embodiment, the electrochemical measurement method is used as the detection means. However, in addition to this method, a fluorescence measurement method using a fluorescent label, a chemiluminescence measurement method, a surface plasmon resonance method, or the like can be used.
[実施の形態2]
本実施の形態を、図5を参照に説明する。図5に示すように、本実施の形態にかかる流路内反応方法に用いる流路反応装置は、抗原抗体反応または、酵素基質反応を行わせる反応流路構造体51と、酵素基質反応後、生成される物質を電気化学手段を用いて測定する電流検出流路構造体52と、を備えており、反応流路構造体51と電流検出流路構造体52とは、直径1/16インチのテフロン(登録商標)製のチューブ58により連結されている。この実施の形態は、試料注入路が2つ配置され、2つある試料注入路の間に、試料流体以外の流体を導く他の注入路が1つ配置された点以外は、上記実施の形態1と同様である。このため、反応流路構造体の作製方法は、流路構造を変化させること以外は、上記実施の形態1と同様でよい。
[Embodiment 2]
This embodiment will be described with reference to FIG. As shown in FIG. 5, the flow channel reaction apparatus used in the in-flow channel reaction method according to the present embodiment includes a reaction flow channel structure 51 that performs an antigen-antibody reaction or an enzyme substrate reaction, and after the enzyme substrate reaction, A current detection flow path structure 52 that measures the generated substance using electrochemical means, and the reaction flow path structure 51 and the current detection flow path structure 52 have a diameter of 1/16 inch. They are connected by a tube 58 made of Teflon (registered trademark). This embodiment is the same as the above embodiment except that two sample injection paths are arranged and one other injection path for guiding a fluid other than the sample fluid is arranged between the two sample injection paths. Same as 1. For this reason, the method for producing the reaction channel structure may be the same as that in the first embodiment except that the channel structure is changed.
また、特定分子を含む試料流体や、他の流体を反応流路構造体51に送液ためのシリンジポンプ(図示せず)と、試料流体及び他の流体の送液量を制御する流体制御手段(図示せず)と、が設けられている。 In addition, a sample fluid containing a specific molecule, a syringe pump (not shown) for feeding other fluid to the reaction channel structure 51, and fluid control means for controlling the amount of the sample fluid and other fluid fed (Not shown).
特定分子を含む試料流体を注入する2つの流路56a、56b及び特定分子を含んでない他の流体を導入する他の注入路57は、いずれも、幅100μm、深さ50μm、長さ10mmである。反応流路55は、幅300μm、深さ50μm、長さ30mmである。試料注入孔53a、53bから特定分子を含む試料流体が注入され、他の流体注入孔から他の流体(気体又は液体)が注入され、これらにより、図6に示すように、層流が形成される。なお、流路の幅、流路の深さは、上記に限定されるものではない。
The two flow paths 56a and 56b for injecting a sample fluid containing specific molecules and the other injection paths 57 for introducing other fluids not containing specific molecules have a width of 100 μm, a depth of 50 μm, and a length of 10 mm. . The reaction channel 55 has a width of 300 μm, a depth of 50 μm, and a length of 30 mm. A sample fluid containing a specific molecule is injected from the sample injection holes 53a and 53b, and another fluid (gas or liquid) is injected from the other fluid injection holes, thereby forming a laminar flow as shown in FIG. The The width of the channel and the depth of the channel are not limited to the above.
試料注入孔53a、53bから注入される各溶液の流量は、他の流体注入孔54から注入される他の流体の流量の25%以下とすることが好ましい。他の流体が液体の場合、流量は0.1μl/分〜100μl/分とする。他の流体が気体の場合、流量は0.1μl/分〜10000μl/分でも良い。このような他の流体の注入制御は、流体制御手段がシリンジポンプの動作を制御することによって行われる。 The flow rate of each solution injected from the sample injection holes 53a and 53b is preferably 25% or less of the flow rate of other fluids injected from the other fluid injection holes 54. When the other fluid is a liquid, the flow rate is 0.1 μl / min to 100 μl / min. When the other fluid is a gas, the flow rate may be 0.1 μl / min to 10000 μl / min. Such other fluid injection control is performed by the fluid control means controlling the operation of the syringe pump.
(検出方法)
試料注入路56a,56bの流量が0.1μl/分になるように試料注入孔53a、53bから試料流体を反応流路55に流す。試料流体が反応流路55の全体を満たした後、他の流体注入孔から、他の流体(例えば、特定分子を含まない緩衝液)を流量5μl/分〜100μl/分となるように流す。試料流体に含まれている特定分子は、反応流路55の内面に固定化されている反応物質(抗体)と反応し結合する。
(Detection method)
A sample fluid is flowed from the sample injection holes 53a and 53b to the reaction flow channel 55 so that the flow rates of the sample injection channels 56a and 56b are 0.1 μl / min. After the sample fluid fills the entire reaction channel 55, another fluid (for example, a buffer solution that does not contain a specific molecule) is flowed from another fluid injection hole so that the flow rate is 5 μl / min to 100 μl / min. The specific molecule contained in the sample fluid reacts with and binds to a reactant (antibody) immobilized on the inner surface of the reaction channel 55.
特定分子と反応物質と反応させた後、試料注入孔53a、53bから、洗浄用の緩衝液を流して、流路内を洗浄する。 After reacting the specific molecule with the reactant, the inside of the flow path is washed by flowing a buffer solution for washing from the sample injection holes 53a and 53b.
この後、試料流体(アルカリホスファターゼ酵素修飾の2次抗体溶液)を、試料注入孔53a、53bから反応流路55に流す。これにより、反応流路内面に形成された反応物質−抗原複合体と、酵素標識2次抗体とが反応し、結合する。 Thereafter, a sample fluid (secondary antibody solution modified with alkaline phosphatase enzyme) is flowed into the reaction channel 55 from the sample injection holes 53a and 53b. As a result, the reactant-antigen complex formed on the inner surface of the reaction channel reacts with and binds to the enzyme-labeled secondary antibody.
この後、試料注入孔53a,53bから、洗浄用の緩衝液を流して、流路内を洗浄する。 Thereafter, a cleaning buffer solution is passed through the sample injection holes 53a and 53b to clean the inside of the flow path.
この後、試料注入孔53a,53bから基質(pAPP; p-Aminophenyl phosphate)を含む溶液を反応流路に流し、2次抗体に修飾されている酵素と反応させる。 Thereafter, a solution containing a substrate (pAPP; p-Aminophenyl phosphate) is flowed through the reaction channel from the sample injection holes 53a and 53b, and reacted with an enzyme modified with the secondary antibody.
酵素基質反応後、酵素基質反応により生成されるpAP(p-Aminophenol)を含む溶液が、電極の形成された電流検出流路構造体52に入り、このpAP量を電気化学的に検出する。 After the enzyme substrate reaction, a solution containing pAP (p-Aminophenol) generated by the enzyme substrate reaction enters the current detection channel structure 52 in which the electrode is formed, and this amount of pAP is detected electrochemically.
ここで、他の流体が気体である場合、反応流路構造体51で反応を終えた溶液が、電流検出流路構造体52に移動する間に、気体を抜くパージ581を設け、電流検出流路構造体52には液体だけが導入されるようにする。 Here, when the other fluid is a gas, a purge 581 for venting the gas is provided while the solution that has finished the reaction in the reaction channel structure 51 moves to the current detection channel structure 52, and the current detection flow is provided. Only the liquid is introduced into the path structure 52.
本実施の形態によっても、試料流体に含まれる特定分子と反応物質(抗体)との拡散距離が短くなり、特定分子と反応物質との会合度が高まるので、反応効率が飛躍的に高まるとともに、測定感度の向上や測定時間の短縮と測定の再現性が飛躍的に高まる。 Also according to the present embodiment, the diffusion distance between the specific molecule and the reactive substance (antibody) contained in the sample fluid is shortened, and the degree of association between the specific molecule and the reactive substance is increased, so that the reaction efficiency is dramatically increased, Improvement of measurement sensitivity, shortening of measurement time, and reproducibility of measurement are dramatically improved.
[実施の形態3]
本実施の形態を、図7を参照に説明する。図7に示すように、本実施の形態にかかる流路内反応方法に用いる流路反応装置は、電気化学的反応を行わせる検出反応流路構造体71を備えている。
[Embodiment 3]
This embodiment will be described with reference to FIG. As shown in FIG. 7, the flow channel reaction device used in the in-flow channel reaction method according to the present embodiment includes a detection reaction flow channel structure 71 that performs an electrochemical reaction.
また、特定分子を含む試料流体や、他の流体を電流検出流路構造体71に送液ためのシリンジポンプ(図示せず)と、試料流体及び他の流体の送液量を制御する流体制御手段(図示せず)と、が設けられている。 In addition, a sample fluid containing a specific molecule or a syringe pump (not shown) for feeding another fluid to the current detection channel structure 71, and a fluid control for controlling the amount of the sample fluid and other fluid fed Means (not shown) are provided.
電流検出流路構造体71には、電気化学活性物質を含む試料流体が流れる試料注入路76と、電気化学活性物質を含まない流体が流れる他の注入路77と、電極が設けられた検出流路72とが、平面視Y字状に連結された状態で形成されている。また、試料注入路76の上流には試料注入孔73が設けられ、他の注入路77の上流には他の流体注入孔74が設けられ、検出流路72の下流には、排出孔79が設けられている。 In the current detection channel structure 71, a sample injection path 76 through which a sample fluid containing an electrochemically active substance flows, another injection path 77 through which a fluid not containing an electrochemically active substance flows, and a detection flow provided with electrodes The path 72 is formed in a state of being connected in a Y shape in plan view. A sample injection hole 73 is provided upstream of the sample injection path 76, another fluid injection hole 74 is provided upstream of the other injection path 77, and a discharge hole 79 is provided downstream of the detection flow path 72. Is provided.
電流検出流路構造体71の各流路の幅は100μm、流路の深さは50μmである。なお、流路の幅、流路の深さは、上記に限定されるものではない。 The width of each flow path of the current detection flow path structure 71 is 100 μm, and the depth of the flow path is 50 μm. The width of the channel and the depth of the channel are not limited to the above.
なお、流路や孔、電極部78(作用電極781、参照電極782、対象電極783)の形成は、上記実施の形態1と同様でよい。 The formation of the flow path, the hole, and the electrode part 78 (the working electrode 781, the reference electrode 782, and the target electrode 783) may be the same as in the first embodiment.
次に、この流路反応装置を用いた流路内反応方法について説明する。
流体制御手段がシリンジポンプを制御して、電流検出流路構造体71の試料注入孔73から、試料注入路76に、電気化学活性物質(例えばpAP)を含む試料流体を注入する。また、他の流体注入孔74から、他の注入路77に、気体若しくは特定分子を含んでない液(他の流体)を注入する。
Next, an in-channel reaction method using this channel reaction apparatus will be described.
The fluid control means controls the syringe pump to inject a sample fluid containing an electrochemically active substance (for example, pAP) from the sample injection hole 73 of the current detection channel structure 71 into the sample injection path 76. Further, a liquid (other fluid) that does not contain a gas or a specific molecule is injected into another injection path 77 from another fluid injection hole 74.
ここで、他の流体注入孔74から気体を注入する場合には、気体を断続的に注入し、反応流路内で、試料流体中に気泡が散在した気泡流を形成してもよい。また、気体を連続的に注入し、電流検出流路72内で、試料流体と気体との層流を形成してもよい。また、他の流体注入孔74から液体を注入する場合には、他の液体と試料流体とが撹拌されないように、液体を連続的に注入し、電流検出流路72内で、試料流体と液体との層流を形成するように流すことが好ましい。このような他の流体の注入制御は、流体制御手段がシリンジポンプの動作を制御することによって行われる。 Here, when gas is injected from the other fluid injection holes 74, the gas may be injected intermittently to form a bubble flow in which bubbles are scattered in the sample fluid in the reaction channel. Alternatively, a gas may be continuously injected to form a laminar flow between the sample fluid and the gas in the current detection flow path 72. In addition, when liquid is injected from another fluid injection hole 74, the liquid is continuously injected so that the other liquid and the sample fluid are not stirred, and the sample fluid and the liquid are supplied in the current detection flow path 72. It is preferable to flow so as to form a laminar flow. Such other fluid injection control is performed by the fluid control means controlling the operation of the syringe pump.
他の流体注入口74から注入される他の流体と、試料流体注入孔73から注入される試料流体との相互作用により、電流検出流路72内の試料流体が気泡を含む溶液となった状態(図2参照)、または気相/液相、液相/液相の層流が形成された状態(図3参照)で、電流検出流路72に設けられている電極と試料流体中の電気化学活性物質とを反応させる。電流検出流路72に設けられた作用電極781と参照電極782との間に400mV〜600mVの電位をかけ、作用電極781の表面での酸化による酸化電流を、ポテンショスタートを用いて測定することにより、pAPの検量ができる。 A state in which the sample fluid in the current detection flow path 72 becomes a solution containing bubbles due to the interaction between the other fluid injected from the other fluid injection port 74 and the sample fluid injected from the sample fluid injection hole 73. (See FIG. 2), or in a state where a laminar flow of gas phase / liquid phase or liquid phase / liquid phase is formed (see FIG. 3), the electrode provided in the current detection flow path 72 and the electricity in the sample fluid React with chemically active substances. By applying a potential of 400 mV to 600 mV between the working electrode 781 provided in the current detection flow path 72 and the reference electrode 782, and measuring the oxidation current due to oxidation on the surface of the working electrode 781 using a potentio start. PAP can be calibrated.
本実施の形態によると、試料流体に含まれる電気化学活性物質と電極との拡散距離が短くなり、電気化学活性物質と電極との会合度が高まるので、検出時間が短く、検出感度が飛躍的に高まるとともに、検出の再現性が飛躍的に高まる。 According to the present embodiment, the diffusion distance between the electrochemically active substance and the electrode contained in the sample fluid is shortened, and the degree of association between the electrochemically active substance and the electrode is increased, so that the detection time is short and the detection sensitivity is drastically increased. The reproducibility of detection increases dramatically.
なお、本実施の形態では、電気化学活性物質を含む試料流体を流すが、この試料流体を得る方法は、どのような方法であってもよく、ビーズを用いた従来の技術や、本発明の実施の形態1、2等を適用可能である。 In this embodiment, a sample fluid containing an electrochemically active substance is flowed. Any method may be used to obtain this sample fluid, and conventional techniques using beads or the present invention may be used. Embodiments 1 and 2 can be applied.
[実施の形態4]
本実施の形態を、図8を参照に説明する。図8に示すように、本実施の形態にかかる流路内反応方法に用いる流路反応装置は、抗原抗体反応、酵素基質反応、電気化学的反応を行わせる反応流路構造体81を備えている。
[Embodiment 4]
This embodiment will be described with reference to FIG. As shown in FIG. 8, the flow channel reaction apparatus used in the in-channel reaction method according to the present embodiment includes a reaction flow channel structure 81 that performs an antigen-antibody reaction, an enzyme substrate reaction, and an electrochemical reaction. Yes.
また、特定分子を含む試料流体や、他の流体を反応流路構造体81に送液ためのシリンジポンプ(図示せず)と、試料流体及び他の流体の送液量を制御する流体制御手段(図示せず)と、が設けられている。 In addition, a sample fluid containing a specific molecule or a syringe pump (not shown) for feeding another fluid to the reaction channel structure 81, and a fluid control means for controlling the amount of the sample fluid and other fluid fed (Not shown).
反応流路構造体81には、特定分子を含む試料流体が流れる試料注入路86と、特定分子を含まない流体が流れる他の注入路87と、特定分子を認識する材料が固定化されている層を設けられた反応流路85と、反応流路の下流に位置し電極が設けられた電流検出流路82と、が、平面視Y字状に連結されている。また、試料注入路86の上流には試料注入孔83が設けられ、他の注入路87の上流には他の流体注入孔84が設けられ、検出流路82の下流には、排出孔89が設けられている。 In the reaction channel structure 81, a sample injection path 86 through which a sample fluid containing specific molecules flows, another injection path 87 through which a fluid not containing specific molecules flows, and a material that recognizes the specific molecules are fixed. A reaction flow path 85 provided with a layer and a current detection flow path 82 located downstream of the reaction flow path and provided with electrodes are connected in a Y shape in plan view. A sample injection hole 83 is provided upstream of the sample injection path 86, another fluid injection hole 84 is provided upstream of the other injection path 87, and a discharge hole 89 is provided downstream of the detection flow path 82. Is provided.
3インチシリコン基板上に、試料注入孔83、他の流体注入孔84、排出孔89、試料注入路86、他の注入路87、反応流路85、検出流路82を、フォトリソグラフィーとドライエッチングにより形成する。他の注入路87、試料注入路86、反応流路85、検出流路82の幅は100μm、深さは50μmである。ただし、この値には限定されない。 On the 3 inch silicon substrate, the sample injection hole 83, the other fluid injection hole 84, the discharge hole 89, the sample injection path 86, the other injection path 87, the reaction flow path 85, and the detection flow path 82 are formed by photolithography and dry etching. To form. The other injection channel 87, sample injection channel 86, reaction channel 85, and detection channel 82 have a width of 100 μm and a depth of 50 μm. However, it is not limited to this value.
電流検出流路82に、フォトリソグラフィーを用いて電極部88を形成する。電極部88は、流路内の流体の流れに沿って作用電極(Pt)881、参照電極(Ag/AgCl)882、対象電極(Pt)883の順に形成される。作用電極881と対象電極883の厚さは、Pt:Ti=500Å:500Åである。ここで、反応流路85の試料流体が流れる側に、電極部88を形成する。 An electrode portion 88 is formed in the current detection flow channel 82 using photolithography. The electrode portion 88 is formed in the order of a working electrode (Pt) 881, a reference electrode (Ag / AgCl) 882, and a target electrode (Pt) 883 along the flow of fluid in the flow path. The thicknesses of the working electrode 881 and the target electrode 883 are Pt: Ti = 500Å: 500Å. Here, the electrode portion 88 is formed on the side of the reaction channel 85 where the sample fluid flows.
また、上記実施の形態1と同様に、特定分子を認識する反応物質を反応流路に固定するため、反応流路の先端部位から電極部位の直前までスパッタを用いて金薄膜を形成する。この後、チオール自己組織化膜を形成し、反応物質(抗体)を反応流路85内に固定化させる。 Similarly to the first embodiment, in order to fix a reactive substance that recognizes a specific molecule to the reaction channel, a gold thin film is formed by sputtering from the tip portion of the reaction channel to immediately before the electrode portion. Thereafter, a thiol self-assembled film is formed, and the reactant (antibody) is immobilized in the reaction channel 85.
シリコン基板上の試料注入孔83、他の流体注入孔84、排出孔89に相当する位置に、PDMS基板に直径1mmの貫通穴を設ける。流路と電極を形成したシリコン基板と、PDMS基板とを張り合わせることにより、本実施の形態にかかる反応流路構造体81が得られる。 A through hole having a diameter of 1 mm is provided in the PDMS substrate at a position corresponding to the sample injection hole 83, the other fluid injection hole 84, and the discharge hole 89 on the silicon substrate. The reaction channel structure 81 according to the present embodiment is obtained by bonding the silicon substrate on which the channel and the electrode are formed and the PDMS substrate.
次に、この流路反応装置を用いた流路内反応方法について説明する。
試料注入孔83から特定分子を含む試料流体を0.1μl/分の流量流し、反応流路85に試料流体を満たす。この後、他の流体注入孔84から他の流体(トリス緩衝液)を1μl/分の流量で流し、サンプル溶液層が反応流路内の右側に形成されるのを観察しながら緩衝液の流量を9.9μl/分まで上昇させる。サンプル溶液層が流路幅の20%以下になるように他の流体の流量(Tris緩衝液)を調整する。このような他の流体の注入制御は、流体制御手段がシリンジポンプの動作を制御することによって行われる。
Next, an in-channel reaction method using this channel reaction apparatus will be described.
A sample fluid containing a specific molecule is flowed from the sample injection hole 83 at a flow rate of 0.1 μl / min, and the reaction fluid 85 is filled with the sample fluid. Thereafter, another fluid (Tris buffer) is flowed from the other fluid injection hole 84 at a flow rate of 1 μl / min, and the flow rate of the buffer solution is observed while observing that the sample solution layer is formed on the right side in the reaction channel. Is increased to 9.9 μl / min. The flow rate of other fluid (Tris buffer) is adjusted so that the sample solution layer is 20% or less of the channel width. Such other fluid injection control is performed by the fluid control means controlling the operation of the syringe pump.
他の流体注入口84から注入される他の流体と、試料流体注入孔83から注入される試料流体との相互作用により、液相/液相の層流が形成された状態で、反応流路85に固定されている反応物質(抗体)と試料流体中の特定分子(抗原)と反応させる。 In the state where a liquid phase / liquid phase laminar flow is formed by the interaction between the other fluid injected from the other fluid inlet 84 and the sample fluid injected from the sample fluid inlet 83, the reaction channel The reaction substance (antibody) fixed to 85 is reacted with a specific molecule (antigen) in the sample fluid.
これにより、試料流体に含まれる特定分子と反応物質(抗体)との拡散距離が短くなり、特定分子と反応物質との会合度が高まるので、反応効率が飛躍的に高まるとともに、測定感度の向上や測定時間の短縮と測定の再現性が飛躍的に高まる。 This shortens the diffusion distance between the specific molecule and the reactive substance (antibody) contained in the sample fluid, and increases the degree of association between the specific molecule and the reactive substance, thereby dramatically increasing the reaction efficiency and improving the measurement sensitivity. And measurement time and measurement reproducibility are dramatically improved.
特定分子と反応物質と反応させ後、試料注入孔83から、洗浄用の緩衝液を流して、流路内を洗浄する。 After reacting the specific molecule with the reactant, a washing buffer solution is flowed from the sample injection hole 83 to wash the inside of the flow path.
特定分子と抗体と反応させた後、試料注入孔83から、酵素(ALP:alkaline phosphatase; アルカリホスファターゼ)が修飾されている2次特定分子(抗体)を含む溶液を注入し、流体注入孔14から、気体若しくは特定分子を含んでない液(他の流体)を注入する。 After reacting the specific molecule with the antibody, a solution containing a secondary specific molecule (antibody) modified with an enzyme (ALP: alkaline phosphatase) is injected from the sample injection hole 83, and from the fluid injection hole 14. Inject liquid (other fluids) that does not contain gas or specific molecules.
注入口84から導入される気体若しくは液体により、反応流路85内の2次特定分子を含む溶液(試料流体)が液相/液相の層流が形成された状態で、反応流路85に固定されている反応物質(抗体−抗原複合体)と試料流体中の2次特定分子(抗体)と反応させる。 In a state where a solution (sample fluid) containing secondary specific molecules in the reaction channel 85 is formed into a liquid phase / liquid phase laminar flow by the gas or liquid introduced from the injection port 84, The reaction material (antibody-antigen complex) immobilized is reacted with the secondary specific molecule (antibody) in the sample fluid.
これにより、試料流体に含まれる2次特定分子(抗体)と反応物質(抗体−抗原複合体)との拡散距離が短くなり、特定分子と反応物質との会合度が高まるので、反応効率が飛躍的に高まる。 This shortens the diffusion distance between the secondary specific molecule (antibody) and the reactive substance (antibody-antigen complex) contained in the sample fluid and increases the degree of association between the specific molecule and the reactive substance. Increase.
この後、試料注入孔83から、洗浄用の緩衝液を流して、流路内を洗浄する。 Thereafter, a washing buffer solution is flowed from the sample injection hole 83 to wash the inside of the flow path.
この後、基質(pAPP; p-Aminophenyl phosphate)を含む溶液を試料注入孔83から導入し、基質と2次抗体に修飾されている酵素とを反応させ、電気化学活性物質pAP(p-Aminophenol)を生成させる。 Thereafter, a solution containing a substrate (pAPP; p-Aminophenyl phosphate) is introduced from the sample injection hole 83, the substrate is reacted with the enzyme modified with the secondary antibody, and the electrochemically active substance pAP (p-Aminophenol) is reacted. Is generated.
この電気化学活性物質を含む溶液が、層流状態で電極に接触する。作用電極881と参照電極882間に400mV〜600mVの電位をかけ、作用電極881の表面での酸化による酸化電流をポテンショスタートを用いて測定することによりpAPの検量ができる。このpAPの量は、特定分子の量に比例するため、この電流値から、特定分子の量を求めることができる。 The solution containing the electrochemically active substance contacts the electrode in a laminar flow state. The pAP can be calibrated by applying a potential of 400 mV to 600 mV between the working electrode 881 and the reference electrode 882 and measuring the oxidation current due to oxidation on the surface of the working electrode 881 using a potentiostart. Since the amount of pAP is proportional to the amount of the specific molecule, the amount of the specific molecule can be determined from this current value.
このように流体を流すことにより、試料流体に含まれる電気化学活性物質と電極との拡散距離が短くなり、電気化学活性物質と電極との会合度が高まるので、検出時間が短く、検出の感度が飛躍的に高まるとともに、検出の再現性が飛躍的に高まる。 By flowing the fluid in this manner, the diffusion distance between the electrochemically active substance and the electrode contained in the sample fluid is shortened, and the degree of association between the electrochemically active substance and the electrode is increased, so that the detection time is short and the detection sensitivity is short. And the reproducibility of detection is dramatically increased.
[実施の形態5]
本実施の形態を、図9を参照に説明する。図9に示すように、本実施の形態にかかる流路内反応方法に用いる流路反応装置は、抗原抗体反応、酵素基質反応、電気化学的反応を行わせる反応流路構造体91を備えている。
[Embodiment 5]
This embodiment will be described with reference to FIG. As shown in FIG. 9, the flow channel reaction device used in the in-channel reaction method according to the present embodiment includes a reaction flow channel structure 91 that performs an antigen-antibody reaction, an enzyme substrate reaction, and an electrochemical reaction. Yes.
また、特定分子を含む試料流体や、他の流体を反応流路構造体91に送液ためのシリンジポンプ(図示せず)と、試料流体及び他の流体の送液量を制御する流体制御手段(図示せず)と、が設けられている。 In addition, a sample fluid containing a specific molecule or a syringe pump (not shown) for sending another fluid to the reaction channel structure 91, and a fluid control means for controlling the amount of the sample fluid and other fluid sent (Not shown).
シリコン基板に、フォトリソグラフィーを用いて電極部98を形成する。電極部98は、流路内の流体の流れに沿って作用電極(Pt)、参照電極(Ag/AgCl)、対象電極(Pt)の順に形成される。作用電極と対象電極の厚さは、Pt:Ti=500Å:500Åである。電極部98はPDMS流路の幅の内側に相当する位置の底面に全体的に占有するように設ける。(図9b参照) An electrode portion 98 is formed on the silicon substrate using photolithography. The electrode portion 98 is formed in the order of the working electrode (Pt), the reference electrode (Ag / AgCl), and the target electrode (Pt) along the fluid flow in the flow path. The thickness of the working electrode and the target electrode is Pt: Ti = 500Å: 500Å. The electrode part 98 is provided so as to occupy the entire bottom surface at a position corresponding to the inside of the width of the PDMS channel. (See Figure 9b)
また、このシリコン基板92に、上記実施の形態1と同様に、特定分子を認識する反応物質(抗体)を反応流路に固定するため、反応流路の先端部位から電極部位の直前までスパッタを用いて金薄膜を形成する。この後、チオール自己組織化膜を形成し、チオールと抗体(反応物質)とを結合させ、反応物質固定部951を形成する。 Further, in order to fix a reactive substance (antibody) that recognizes a specific molecule to the reaction channel on the silicon substrate 92 as in the first embodiment, sputtering is performed from the tip portion of the reaction channel to immediately before the electrode portion. Use to form a gold thin film. Thereafter, a thiol self-assembled film is formed, and the thiol and the antibody (reactive substance) are combined to form the reactive substance fixing portion 951.
この後、ドライエッチングによりシリコン基板92に試料注入路96を設ける。 Thereafter, a sample injection path 96 is provided in the silicon substrate 92 by dry etching.
PDMS基板に、反応流路95を、フォトリソグラフィーを用いて形成する。この後、他の流体注入孔93と排出孔99を形成する。 A reaction channel 95 is formed on the PDMS substrate using photolithography. Thereafter, another fluid injection hole 93 and a discharge hole 99 are formed.
また、その上流側側面の中央に、試料注入孔93及び他の流体注入孔94より注入された流体が当たる平板状の仕切り体を、PDMSを用いて設ける。この仕切り体41は、試料流体と他の流体との流れを下流方向に向かう層流とするためのものである。 In addition, a plate-like partition body to which the fluid injected from the sample injection hole 93 and other fluid injection holes 94 hits is provided at the center of the upstream side surface using PDMS. This partition 41 is for making the flow of a sample fluid and another fluid into the laminar flow which goes to a downstream direction.
PDMS基板と、シリコン基板とを張り合わせることにより、本実施の形態にかかる流路反応装置91が完成する。 By bonding the PDMS substrate and the silicon substrate, the flow channel reaction device 91 according to the present embodiment is completed.
この流路反応装置の使用方法は、上記実施の形態4と同様でよい。但し特定分子を含む試料流体はシリコン基板上に設けられる試料注入孔93(流路構造体の下)から、他の溶液はPDMS上に設けられる注入孔94(流路構造体の上)から注入することにより反応流路95内に層流が上下に形成される。ここで、試料注入孔93と反応流路95との間にある通路が試料注入路となり、他の流体注入孔94と反応流路95との間にある通路が他の注入路となる。 The method of using this flow channel reaction apparatus may be the same as that in the fourth embodiment. However, the sample fluid containing specific molecules is injected from the sample injection hole 93 (under the channel structure) provided on the silicon substrate, and the other solution is injected from the injection hole 94 (above the channel structure) provided on the PDMS. As a result, a laminar flow is formed in the reaction channel 95 vertically. Here, a passage between the sample injection hole 93 and the reaction flow path 95 is a sample injection path, and a passage between another fluid injection hole 94 and the reaction flow path 95 is another injection path.
本実施の形態によっても、特定分子と反応物質との拡散距離及び電気化学活性物質と電極との拡散距離を小さくできるので、反応効率、検出感度が飛躍的に上昇し、測定感度の向上や測定時間の短縮と測定の再現性飛躍的に向上する。 Also according to the present embodiment, the diffusion distance between the specific molecule and the reactant and the diffusion distance between the electrochemically active substance and the electrode can be reduced, so that the reaction efficiency and the detection sensitivity are dramatically increased, and the measurement sensitivity is improved and the measurement is performed. Time reduction and measurement reproducibility are improved dramatically.
以上説明したように、本発明によると、微小流路内での拡散距離を小さくすることができ、これにより反応効率を高め、反応速度を速め、反応の再現性を高めることができ、検出感度の上昇及び測定時間の短縮が実現できる。よって、産業上の意義は大きい。 As described above, according to the present invention, it is possible to reduce the diffusion distance in the microchannel, thereby increasing the reaction efficiency, increasing the reaction speed, improving the reproducibility of the reaction, and detecting sensitivity. Can be increased and the measurement time can be shortened. Therefore, the industrial significance is great.
11 反応流路構造体
12 電流検出流路構造体
121 注入孔
122 排出孔
123 電流検出流路
128 電極
13 試料注入孔
14 他の流体注入孔
15 反応流路
16 試料注入路
17 他の注入路
18 チューブ
181 パージ
19 排出孔
41 仕切り体
51 反応流路構造体
52 電流検出流路構造体
521 注入孔
522 排出孔
523 電流検出流路
528 電極
53a 試料注入孔
53b 試料注入孔
54 他の流体注入孔
55 反応流路
56a 試料注入路
56b 試料注入路
57 他の注入路
58 チューブ
581 パージ
59 排出孔
71 電流検出流路構造体
72 検出流路
73 試料注入孔
74 他の流体注入孔
76 試料注入路
77 他の注入路
78 電極部
781 作用電極
782 参照電極
783 対象電極
79 排出孔
81 反応流路構造体
82 電流検出流路
83 試料注入孔
84 他の流体注入孔
85 反応流路
86 試料注入路
87 他の注入路
88 電極部
881 作用電極
882 参照電極
883 対象電極
89 排出孔
91 反応流路構造体
92 シリコン基板
93 試料注入孔
94 他の流体注入孔
95 反応流路
951 反応物質固定部
98 電極
99 排出孔
101 ビーズ
102 せき止め部
103 流路
11 reaction channel structure 12 current detection channel structure 121 injection hole 122 discharge hole 123 current detection channel 128 electrode 13 sample injection hole 14 other fluid injection hole 15 reaction channel 16 sample injection channel 17 other injection channel 18 Tube 181 Purge 19 Discharge hole 41 Partition 51 Reaction flow path structure 52 Current detection flow path structure 521 Injection hole 522 Discharge hole 523 Current detection flow path 528 Electrode 53a Sample injection hole 53b Sample injection hole 54 Other fluid injection holes 55 Reaction channel 56a Sample injection channel 56b Sample injection channel 57 Other injection channel 58 Tube 581 Purge 59 Discharge hole 71 Current detection channel structure 72 Detection channel 73 Sample injection hole 74 Other fluid injection hole 76 Sample injection channel 77 Other Injecting path 78 Electrode portion 781 Working electrode 782 Reference electrode 783 Target electrode 79 Discharge hole 81 Reaction channel structure 82 Current detection channel 8 Sample injection hole 84 Other fluid injection hole 85 Reaction channel 86 Sample injection channel 87 Other injection channel 88 Electrode part 881 Working electrode 882 Reference electrode 883 Target electrode 89 Discharge hole 91 Reaction channel structure 92 Silicon substrate 93 Sample injection hole 94 Other fluid injection hole 95 Reaction flow path 951 Reactive substance fixing part 98 Electrode 99 Discharge hole 101 Bead 102 Damping part 103 Flow path
Claims (16)
前記反応流路内に試料流体を導く試料注入路と、
前記反応流路内に流体を導く他の注入路と、
を少なくとも備えた反応流路構造体を用いて、前記試料流体中の特定分子を前記反応流路側面に固定された反応物質に反応させる流路反応方法であって、
前記反応流路構造体は、試料注入路が2つ配置され、2つある試料注入路の間に前記他の注入路が1つ配置され、且つ前記反応路の対向する一対の側面にそれぞれ反応物質が固定されてなる構造であり、
前記反応流路に前記2つの注入路の各々から試料流体を導入して、各々の試料流体を前記反応流路の各々の側面に沿って流し、且つ、前記試料流体が2つの流れに分離されるように、前記各々の試料流体の流れの間に前記他の注入路から導入した流体を流すことにより、前記各々の試料流体の流れのそれぞれを前記反応物質が固定された反応流路側面側にそれぞれ押しつける、
ことを特徴とする流路反応方法。 A reaction channel with a reactant fixed on the side surface;
A sample injection path for introducing a sample fluid into the reaction channel;
Another injection path for guiding fluid into the reaction flow path;
A reaction method for reacting a specific molecule in the sample fluid with a reactant fixed to a side surface of the reaction channel using a reaction channel structure comprising at least
In the reaction channel structure, two sample injection channels are arranged, one other injection channel is arranged between two sample injection channels, and the reaction is performed on a pair of side surfaces facing each other. It is a structure where substances are fixed,
Sample fluid is introduced into the reaction channel from each of the two injection channels, each sample fluid is caused to flow along each side of the reaction channel, and the sample fluid is separated into two flows. As described above, by flowing the fluid introduced from the other injection channel between the flow of each sample fluid, the flow of each sample fluid is changed to the side of the reaction channel on which the reactant is fixed. Press against each
A flow path reaction method characterized by the above.
前記他の注入路より前記試料流体以外の流体を流す、
ことを特徴とする流路反応方法。 In the flow path reaction method according to claim 1,
A fluid other than the sample fluid is allowed to flow from the other injection path.
A flow path reaction method characterized by the above.
前記反応流路構造体として、基板に作り込まれたチップ状反応流路構造体を用いる、
ことを特徴とする流路反応方法。 In the flow path reaction method according to claim 1 or 2,
As the reaction channel structure, a chip-like reaction channel structure built in a substrate is used.
A flow path reaction method characterized by the above.
前記他の注入路より導入した流体は、前記試料流体以外の液体であり、前記試料流体と当該液体との流れが層流である、
ことを特徴とする流路反応方法。 In the flow path reaction method according to any one of claims 1 to 3,
The fluid introduced from the other injection path is a liquid other than the sample fluid, and the flow of the sample fluid and the liquid is a laminar flow.
A flow path reaction method characterized by the above.
前記他の注入路より導入した流体は、前記試料流体以外の気体であり、前記試料流体と当該気体との流れが層流である、
ことを特徴とする流路反応方法。 In the flow path reaction method according to any one of claims 1 to 3,
The fluid introduced from the other injection path is a gas other than the sample fluid, and the flow of the sample fluid and the gas is a laminar flow.
A flow path reaction method characterized by the above.
前記試料注入路より導入した試料流体と、前記他の注入路より導入した流体との合計流量を100としたとき、前記試料流体の流量が50以下である、
ことを特徴とする流路反応方法。 In the flow path reaction method according to any one of claims 1 to 5,
When the total flow rate of the sample fluid introduced from the sample injection channel and the fluid introduced from the other injection channel is 100, the flow rate of the sample fluid is 50 or less.
A flow path reaction method characterized by the above.
前記特定分子と反応物質の反応が、抗原抗体反応である、
ことを特徴とする流路反応方法。 In the flow path reaction method according to any one of claims 1 to 6,
The reaction between the specific molecule and the reactant is an antigen-antibody reaction,
A flow path reaction method characterized by the above.
前記特定分子と反応物質の反応が、酵素基質反応である、
ことを特徴とする流路反応方法。 In the flow path reaction method according to any one of claims 1 to 6,
The reaction between the specific molecule and the reactant is an enzyme substrate reaction,
A flow path reaction method characterized by the above.
前記反応流路内に試料流体を導く2つの試料注入路と、 Two sample injection channels for introducing a sample fluid into the reaction channel;
前記2つの試料注入路の間に配置された、前記反応流路内に流体を導く他の注入路と、 Another injection path disposed between the two sample injection paths for guiding fluid into the reaction flow path;
を少なくとも有する反応流路構造体を備え、 A reaction channel structure having at least
更に、前記2つの試料注入路から前記反応流路内に試料流体を導入しながら、前記2つの試料注入路の間に配置された他の注入路より、前記2つの試料注入路から導入された試料流体の間に流体を導入して、前記試料流体が前記反応流路の反応物質の固定された側面側に押しつけるように前記各流体の流れを制御する流体制御手段を備える流路反応装置。 Further, while introducing the sample fluid into the reaction flow path from the two sample injection paths, the sample fluid was introduced from the two sample injection paths from other injection paths arranged between the two sample injection paths. A flow channel reaction apparatus comprising fluid control means for introducing a fluid between sample fluids and controlling the flow of each fluid such that the sample fluid is pressed against a side surface of the reaction flow channel on which the reactant is fixed.
前記反応流路構造体は、基板に作り込まれたチップ状反応流路構造体である、 The reaction channel structure is a chip-like reaction channel structure built in a substrate.
ことを特徴とする流路反応装置。 A flow channel reaction apparatus characterized by the above.
前記他の注入路より導入した流体は、前記試料流体以外の流体である、 The fluid introduced from the other injection path is a fluid other than the sample fluid.
ことを特徴とする流路反応装置。 A flow channel reaction apparatus characterized by the above.
前記試料注入路より導入した試料流体と、前記他の注入路より導入した流体がともに液体であり、 The sample fluid introduced from the sample injection path and the fluid introduced from the other injection path are both liquids,
前記流体制御手段が、両流体の流れを層流に制御する、The fluid control means controls the flow of both fluids into a laminar flow;
ことを特徴とする流路反応装置。 A flow channel reaction apparatus characterized by the above.
前記試料注入路より導入した試料流体が液体であり、前記他の注入路より導入した流体が気体であり、 The sample fluid introduced from the sample injection path is a liquid, and the fluid introduced from the other injection path is a gas,
前記流体制御手段が、前記液体と前記気体の流れを層流に制御する、 The fluid control means controls the flow of the liquid and the gas into a laminar flow;
ことを特徴とする流路反応装置。 A flow channel reaction apparatus characterized by the above.
前記試料注入路より導入した試料流体と、前記他の注入路より導入した流体との合計流量を100としたとき、前記流体制御手段が、前記試料流体の流量が50以下となるよう制御する、 When the total flow rate of the sample fluid introduced from the sample injection channel and the fluid introduced from the other injection channel is 100, the fluid control unit controls the flow rate of the sample fluid to be 50 or less.
ことを特徴とする流路反応装置。 A flow channel reaction apparatus characterized by the above.
特定分子と反応物質の反応が、抗原抗体反応であり、前記反応物質が抗体物質である、 The reaction between the specific molecule and the reactive substance is an antigen-antibody reaction, and the reactive substance is an antibody substance.
ことを特徴とする流路反応装置。 A flow channel reaction apparatus characterized by the above.
特定分子と反応物質の反応が、酵素基質反応であり、前記反応物質が抗原抗体複合体である、 The reaction between the specific molecule and the reactant is an enzyme substrate reaction, and the reactant is an antigen-antibody complex.
ことを特徴とする流路反応装置。 A flow channel reaction apparatus characterized by the above.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007041462A JP4767196B2 (en) | 2007-02-21 | 2007-02-21 | Channel reaction method and channel reactor |
PCT/JP2008/052868 WO2008102810A1 (en) | 2007-02-21 | 2008-02-20 | Channel reaction method and channel reaction apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007041462A JP4767196B2 (en) | 2007-02-21 | 2007-02-21 | Channel reaction method and channel reactor |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011101613A Division JP5283729B2 (en) | 2011-04-28 | 2011-04-28 | Channel reaction method and channel reactor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008203158A JP2008203158A (en) | 2008-09-04 |
JP4767196B2 true JP4767196B2 (en) | 2011-09-07 |
Family
ID=39710084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007041462A Expired - Fee Related JP4767196B2 (en) | 2007-02-21 | 2007-02-21 | Channel reaction method and channel reactor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4767196B2 (en) |
WO (1) | WO2008102810A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102122313B1 (en) * | 2013-08-12 | 2020-06-12 | 엘지전자 주식회사 | Biosensor capable of recognizing location of fluid and method of recognizing location of fluid using the same |
CN108786677B (en) * | 2018-05-31 | 2019-11-05 | 浙江大学 | A kind of microreactor of Click labelled synthesis PET imaging agent and its preparation and reaction method |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6200814B1 (en) * | 1998-01-20 | 2001-03-13 | Biacore Ab | Method and device for laminar flow on a sensing surface |
AU3431400A (en) * | 1999-03-24 | 2000-10-09 | Torsana Biosensor A/S | Spatially directed interaction on a solid surface |
US7112444B2 (en) * | 2002-04-24 | 2006-09-26 | Wisconsin Alumni Research Foundation | Method of performing gradient-based assays in a microfluidic device |
JP3985953B2 (en) * | 2002-08-15 | 2007-10-03 | 独立行政法人産業技術総合研究所 | High-sensitivity electrochemical detection method for chemical substances and high-sensitivity detection apparatus for chemical substances |
JP2005024483A (en) * | 2003-07-01 | 2005-01-27 | Nippon Telegr & Teleph Corp <Ntt> | Biosensor |
JP2005066382A (en) * | 2003-08-22 | 2005-03-17 | National Institute Of Advanced Industrial & Technology | Microreactor and its using method |
JP3787578B2 (en) * | 2003-10-29 | 2006-06-21 | アイダエンジニアリング株式会社 | Liquid feeding method in micro channel of microchip |
EP1816187A4 (en) * | 2004-11-22 | 2011-08-03 | Nissui Seiyaku Co | Microchip |
JP4543986B2 (en) * | 2005-03-24 | 2010-09-15 | コニカミノルタエムジー株式会社 | Micro total analysis system |
JP4687238B2 (en) * | 2005-05-18 | 2011-05-25 | 東ソー株式会社 | Micro channel structure |
JP4581128B2 (en) * | 2005-07-20 | 2010-11-17 | 独立行政法人産業技術総合研究所 | Enzyme immunoassay method and enzyme immunosensor therefor |
-
2007
- 2007-02-21 JP JP2007041462A patent/JP4767196B2/en not_active Expired - Fee Related
-
2008
- 2008-02-20 WO PCT/JP2008/052868 patent/WO2008102810A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
JP2008203158A (en) | 2008-09-04 |
WO2008102810A1 (en) | 2008-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ko et al. | A polymer-based microfluidic device for immunosensing biochips | |
Rackus et al. | Electrochemistry, biosensors and microfluidics: a convergence of fields | |
JP6013519B2 (en) | Microfluidic device based on integrated electrochemical immunoassay and its substrate | |
US10684201B2 (en) | Mixing of fluids in fluidic systems | |
US20040258571A1 (en) | Fluidic arrays and method of using | |
JP2006516721A (en) | Multi-layered electrochemical microfluidic sensor containing reagent on porous layer | |
JP2011517769A (en) | Method for electrically detecting physiologically active substance and biochip for the same | |
US20090155125A1 (en) | Microchip | |
JP5429774B2 (en) | Liquid feeding structure, micro-analysis chip and analyzer using the same | |
JP5902426B2 (en) | Liquid feeding device and liquid feeding method | |
JP2007024742A (en) | Enzyme immunoassay method and enzyme immunosensor for the same | |
WO2009107608A1 (en) | Liquid supply structure and micro-analysis chip using the same | |
EP3735319A1 (en) | Single-channel multianalyte biosensor | |
JP5283729B2 (en) | Channel reaction method and channel reactor | |
CN104792845A (en) | Sensing device | |
KR20100004262A (en) | Method for mixing micro-fluids and micro-fluidic mixing device | |
JP4657867B2 (en) | Microreactor and microreactor system | |
JP4767196B2 (en) | Channel reaction method and channel reactor | |
Park et al. | Fabrication and testing of a PDMS multi-stacked hand-operated LOC for use in portable immunosensing systems | |
KR101821410B1 (en) | Microfluidic device, method for controlling the same and method for controlling bubble | |
Kumar et al. | Metal oxides and their composites as flow-through biosensors for biomonitoring | |
CN217156393U (en) | Adjustable micro-fluidic chip applicable to electrochemical amperometry | |
Caetano et al. | Microfluidic Devices with Electrochemical Detection Towards Covid-19 Detection | |
KR102591001B1 (en) | Biosensor Using Multiphase Flow And Method for Sensing Target Molecules | |
KR20190121978A (en) | Electrochemical aptasensor having microfluidic circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101214 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110209 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110301 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110428 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110524 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110614 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4767196 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140624 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |