JP2004200501A - Wiring board - Google Patents

Wiring board Download PDF

Info

Publication number
JP2004200501A
JP2004200501A JP2002368655A JP2002368655A JP2004200501A JP 2004200501 A JP2004200501 A JP 2004200501A JP 2002368655 A JP2002368655 A JP 2002368655A JP 2002368655 A JP2002368655 A JP 2002368655A JP 2004200501 A JP2004200501 A JP 2004200501A
Authority
JP
Japan
Prior art keywords
wiring
conductor
layer
insulating
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002368655A
Other languages
Japanese (ja)
Inventor
Masaru Shimonosono
賢 下之薗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002368655A priority Critical patent/JP2004200501A/en
Publication of JP2004200501A publication Critical patent/JP2004200501A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring board that is superior in connection reliability, without discontinuity between a wiring conductor and a wiring conductor layer, even if long-term thermal history is repeatedly applied over a long time. <P>SOLUTION: The wiring board is formed, by stacking alternately an insulation layer 1 that a heat resistance fiber substrate is impregnated with a thermosetting resin and a wiring conductor 2 and further stacking alternately an insulating resin layer 6 and a wiring conductor layer 7 on a core substrate 5 that is formed by electrically connecting the wiring conductors 2 located vertically with the insulation layer in-between, through a through-conductor 4 with a through-hole 3 formed in the insulation layer 1 is filled with a conductor material. The through-hole 3 that is formed in the insulation layer 1 on the outermost side of the core substrate 5 is made smaller in diameter from its internal side toward its surface side. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子等の電子部品を搭載するための配線基板に関し、特にコア基板表面に配線導体を高密度に形成することが可能な配線基板に関する。
【0002】
【従来の技術】
一般に、現在の電子機器は、移動体通信機器に代表されるように小型・薄型・軽量・高性能・高機能・高品質・高信頼性が要求されてきており、このような電子機器に搭載される電子装置も小型・高密度化が要求されるようになってきている。そのため、電子装置を構成する配線基板にも小型・薄型・多端子化が求められてきており、それを実現するために信号導体等を含む配線導体の幅を細くするとともにその間隔を狭くし、さらに配線導体の多層化により高密度配線化が図られている。
【0003】
このような高密度配線が可能な配線基板として、ビルドアップ法を採用して製作された配線基板が知られている。このビルドアップ配線基板は、例えば、次に述べる方法により製作される。
【0004】
まず、ガラスクロスやアラミド不布織等の補強材に耐熱性や耐薬品性を有するアリル変性ポリフェニレンエーテル樹脂に代表される熱硬化性樹脂を含浸させた絶縁シートに、レーザ光を照射してレーザ光の入射側の直径が100〜200μm、出射側の直径が50〜150μmの貫通孔を穿孔し、さらにこの貫通孔に、例えば錫を含有する導電性材料を充填して貫通導体を形成する。次に、貫通導体を形成した絶縁シートに、例えば銅箔から成る配線導体を貫通導体を覆うように、かつ配線導体の表面が絶縁シートの表面と同一面となるように埋入し、しかる後これを加熱硬化して、配線導体と貫通導体とが電気的に接続するとともに絶縁基板に配線導体が埋入して成るコア基板を得る。
【0005】
なお、配線導体を貫通導体を覆うように絶縁基板に埋入するのは、後述する、コア基板表面を物理的あるいは化学的に粗化する際に、貫通導体がコア基板表面に露出していると貫通導体も除去されてしまい、貫通導体と配線導体との接続信頼性が低下してしまうためである。このため、配線導体の幅は貫通孔の直径よりも大きくなるように設計されている。
【0006】
次に、コア基板の表面を物理的あるいは化学的に粗化し、さらに、コア基板にエポキシ樹脂等の熱硬化性樹脂から成る樹脂フィルムを貼着した後加熱硬化して、厚みが20〜200μmの絶縁樹脂層を形成する。その後、配線導体の上に位置する絶縁樹脂層に直径が50〜200μmのビア孔をレーザ光の照射により穿設し、さらに絶縁樹脂層の表面およびビア孔の内面を過マンガン酸カリウム溶液等の粗化液で化学粗化し、次にセミアディティブ法を用いて絶縁樹脂層の表面およびビア孔の内面に銅めっきから成る導体膜を被着して配線導体層およびビア導体を形成する。そして、この上に絶縁樹脂層やビア導体・配線導体層の形成を複数回繰り返すことによって、ビルドアップ配線基板が製作される。
【0007】
なお、絶縁層や絶縁樹脂層にレーザ光を照射して貫通孔やビア孔を形成した場合、貫通孔やビア孔は、それらの直径がレーザ光の入射側がレーザ光の出射側に較べて大きく、すなわち貫通孔やビア孔における絶縁層や絶縁樹脂層の厚み方向の断面がレーザ光の入射側の底辺が出射側の底辺より長い台形状となる。また、絶縁層の貫通孔への導電性材料の充填は、スクリーン印刷法を用いて直径が大きい開口側から、すなわちレーザ光の入射側の開口からすることにより高密度に行なうことができ、その結果、貫通導体の導通抵抗を小さなものとすることができる。さらに、貫通導体を形成した絶縁層は、通常は加工の一連の流れから、レーザ光の入射側の表面あるいは出射側の表面がそれぞれ同じ向きを向くように積層されている。
【0008】
また、昨今の電子部品における小型化の流れの中で、配線基板の高密度化のために配線導体にも微細化が要求されているが、特にコア基板の表面には、コア基板の内部に形成された配線導体と、コア基板に積層された絶縁層上に形成された配線導体層との接続用の配線導体が密に形成されるため、コア基板の表面では配線導体のより微細化が要求されている。
【0009】
【特許文献1】
特開2002−141630号公報
【0010】
【発明が解決しようとする課題】
しかしながら、従来の配線基板では、コア基板の最も外側に位置する絶縁層の少なくともいずれか一方に形成された貫通孔は、その直径の大きな方の開口がコア基板の表面に露出するように形成されていることから、配線導体の幅を貫通孔の直径の大きな方の開口径より小さくすることができず、配線導体の微細化および高密度化には限界があるという問題点を有していた。
【0011】
本発明は、かかる従来技術の問題点に鑑み完成されたものであり、その目的は、コア基板の表面に配線導体を高密度に形成することが可能な配線基板を提供することにある。
【0012】
【課題を解決するための手段】
本発明の配線基板は、耐熱性繊維基材に熱硬化性樹脂を含浸させて成る絶縁層と金属箔から成る配線導体とを交互に複数層積層するとともに、前記絶縁層を挟んで上下に位置する前記配線導体同士を、前記絶縁層に形成された貫通孔を導電性材料で充填して成る貫通導体により電気的に接続して成るコア基板に、絶縁樹脂層と配線導体層とを交互に複数層積層して成る配線基板おいて、前記コア基板の最も外側に位置する前記絶縁層に形成された前記貫通孔は、その直径が前記コア基板の内部側から表面側にかけて小さくなっていることを特徴とするものである。
【0013】
本発明の配線基板によれば、コア基板の最も外側に位置する絶縁層に形成された貫通孔は、その直径がコア基板の内部から表面側にかけて小さくなっていることから、コア基板表面に形成される配線導体の幅をより微細なものとすることができ、高密度配線が可能な配線基板とすることができる。また、貫通孔の内部に導電性材料を直径が大きい方の開口から充填することにより貫通導体の充填密度を高めることができ、その結果、貫通導体の導通抵抗を小さなものとすることができる。
【0014】
【発明の実施の形態】
次に、本発明の配線基板を添付の図面に基づいて詳細に説明する。
【0015】
図1は、本発明の配線基板の実施の形態の一例を示す断面図であり、図2はその要部拡大断面図である。これらの図において、1は絶縁層、2は配線導体、3は貫通孔、4は貫通導体、5はコア基板、6は絶縁樹脂層、7は配線導体層であり、主にこれらで本発明の配線基板が構成される。なお、本例では、絶縁層1を4層積層して成るコア基板5の上下に3層の絶縁樹脂層6を被着して配線基板を製作した場合の例を示している。
【0016】
コア基板5は、厚みが0.15〜1.5mmの略四角形状の基板であり、絶縁樹脂層6および配線導体層7の支持体としての機能を有するとともに配線基板に強度を付与する機能を有する。コア基板5は、その厚みが0.15mm未満であると配線基板の剛性が低下し、反りが発生し易くなる傾向があり、1.5mmを超えると配線基板が不要に厚いものとなり配線基板を軽量化することが困難となる傾向がある。従って、コア基板5の厚みは0.15〜1.5mmの範囲が好ましい。
【0017】
コア基板5を構成する絶縁層1は、その厚みが50〜150μmであり、配線導体2を支持するとともに上下に位置する配線導体2間の絶縁性を確保する機能を有し、ガラスクロスやアラミド繊維・全芳香族エステル繊維等の耐熱性繊維基材にエポキシ樹脂やビスマレイミドトリアジン樹脂・アリル変性ポリフェニレンエーテル樹脂等の熱硬化性樹脂を含浸させて成る。なお、絶縁層1の厚みが50μm未満であると取扱いが困難となる傾向があり、150μmを超えると絶縁層1の厚みが不要に厚いものとなり、配線導体2の高密度化が困難となる傾向がある。従って、絶縁層1は、その厚みを50〜150μmとすることが好ましい。
【0018】
このような絶縁層1は、例えばガラスクロスやアラミド繊維等の耐熱性繊維基材にエポキシ樹脂やアリル変性ポリフェニレンエーテル樹脂等から成る熱硬化樹脂前駆体を含浸させて半硬化することにより絶縁シートを製作し、これを加熱硬化することにより形成される。
【0019】
さらに、各絶縁層1には、その上面から下面にかけて貫通導体4が複数個配設されている。これらの貫通導体4は、絶縁層1の上下に位置する配線導体2間を電気的に接続する機能を有し、絶縁層1にレーザ光を照射することにより形成した貫通孔3に錫を主成分とする金属粉末と熱硬化性樹脂とから成る導電性材料を埋め込み熱硬化することにより形成されている。
【0020】
なお、貫通孔3は、これをレーザ光の照射により穿孔することにより、そのレーザ光の入射側の開口径が出射側の開口径より大きなものとなる。これは、レーザ光の一部が絶縁層1内部の耐熱繊維基材で反射されて、この反射したレーザ光により絶縁層1のレーザ光の入射側の部分が余分に穿孔されるとともに、レーザ光のエネルギーが絶縁層1の内部で消費され、出射側のエネルギーが入射側のエネルギーに較べて小さくなることによるものである。
【0021】
また、このように貫通孔3のレーザ光の入射側の開口径が出射側の開口径より大きい、すなわち貫通孔3おける絶縁層1の厚み方向の断面がレーザ光の入射側の底辺が出射側の底辺より長い台形状であることから、スクリーン印刷法を用いて貫通孔3へ導電性材料を直径が大きい方の開口から、すなわちレーザ光の入射側の開口から充填することにより、貫通導体4の充填密度を高めることができ、その結果、貫通導体の導通抵抗を小さなものとすることができる。
【0022】
なお、貫通孔3のレーザ光の入射側の直径は30〜200μmが好ましい。貫通孔3のレーザ光の入射側の直径が30μm未満になると導電性材料を貫通孔3に良好に充填することが困難となる傾向があり、200μmを超えると高密度配線が形成できなくなる傾向がある。従って、貫通孔3のレーザ孔入射側の直径を30〜200μmとすることが好ましい。
【0023】
また、貫通孔3のレーザ光出射側の直径は20〜160μmが好ましい。貫通孔3のレーザ光の出射側の直径が20μm未満になると貫通孔3を導電性材料で充填することが困難となる傾向があり、160μmを超えると配線導体2の微細化が困難となる傾向がある。従って、貫通孔3のレーザ孔出射側の直径を30〜200μmとすることが好ましい。
【0024】
なお、コア基板5に直径の小さなドリルを用いて微細な貫通孔3を穿孔することも可能であるが、ドリルを用いて微細な貫通孔3を穿孔した場合には、貫通孔3の直径が上から下にかけて同一となり、貫通孔3への導電性材料の充填が困難となり、貫通導体4の充填密度を高めることが困難となる傾向がある。
【0025】
また、導電性材料の金属粉末の含有量は80〜95質量%が好ましい。金属粉末の含有量が80質量%より少ないと、熱硬化性樹脂により金属粉末同士の接続が妨げられ導通抵抗が上昇してしまう傾向があり、95質量%を超えると導電性材料の粘度が上がり過ぎて良好に埋め込みできない傾向がある。従って、導電性材料の金属粉末の含有量は80〜95質量%が好ましい。
【0026】
このような金属粉末は、錫・銀・ビスマス・銅の合金から成り、特に後述する配線導体2が銅箔からなる場合は、30〜80質量%の錫を含有していることが好ましい。錫の含有率が30〜80質量%であると、配線導体2を構成する銅箔と良好に銅−錫合金を形成し、貫通導体4と配線導体2との接続抵抗を低いものとすることができる。
【0027】
また、金属粉末の平均粒径は4〜6μmであることが好ましい。平均粒径が4μmより小さいと導電性材料の粘度が上がり過ぎて良好に埋め込みできなくなる傾向があり、6μmより大きいと金属粉末が高充填できず金属粉末同士の接触点が減少し貫通導体4の電気抵抗が高くなってしまう傾向がある。従って、金属粉末の平均粒径は4〜6μmが好ましい。
【0028】
なお、熱硬化性樹脂は、トリアリルシアヌレートやトリアリルイソシアヌレート・トリスエポキシプロピルイソシアヌレート・トリス(2−ヒドロキシエチル)イソシアヌレート等のトリアジン系熱硬化性樹脂が好ましい。
【0029】
このような貫通孔3は、絶縁シートの所定の位置に炭酸ガスレーザやYAGレーザ等の従来周知の方法を採用することにより形成される。そして、貫通孔3の直径の大きい方の開口から、錫を主成分とする金属粉末およびトリアジン系樹脂等の熱硬化性樹脂前駆体を含む導電性材料をスクリーン印刷法(圧入)で充填することによって貫通導体4が形成される。
【0030】
また、各絶縁層1の表面には配線導体2が埋入されている。配線導体2は、その幅が20〜200μm、厚みが5〜50μmで、銅やアルミニウム・ニッケル・銀・金等の金属箔から成り、特に加工性および安価という観点からは銅箔から成ることが好ましい。配線導体2の幅が20μm未満となると配線導体2の変形や断線が発生しやすくなる傾向があり、200μmを超えると高密度配線が形成できなくなる傾向がある。また、配線導体2の厚みが5μm未満になると配線導体2の強度が低下し変形や断線が発生しやすくなる傾向があり、50μmを超えると絶縁層1への埋入が困難となる傾向がある。従って、配線導体2は、その幅を20〜200μm、厚みを5〜50μmとすることが好ましい。
【0031】
このような配線導体2は、ポリエチレンテレフタレート(PET)樹脂等の耐熱性樹脂から成る転写シートの全面に接着材を介して被着した銅箔を所定のパターンにエッチングすることにより形成され、転写シートを絶縁層2と成る未硬化の絶縁シートに、所定の貫通導体4と配線導体2とが接続するように、かつ配線導体2が貫通導体4を覆うように位置合わせして重ね、これを熱プレス機を用いて100〜150℃の温度で数分間プレスすることにより配線導体2が絶縁シートに転写埋入される。さらに、転写シートを絶縁シートから剥離するとともに転写シートを剥離した絶縁シートを複数枚上下に重ね合わせ、熱プレス機を用いて150〜240℃の温度および3〜5×10Paの圧力で数時間加熱プレスすることにより、コア基板5が製作される。
【0032】
なお、配線導体2を貫通導体4を覆うように絶縁層2に埋入するのは、後述する、コア基板5表面を物理的あるいは化学的に粗化する際に、貫通導体4がコア基板5表面に露出していると貫通導体4も除去されてしまい、貫通導体4と配線導体2との接続信頼性が低下してしまうためである。従って、配線導体2の幅を貫通導体4の直径より大きくし、配線導体2を貫通導体4を覆うように絶縁層2に埋入することが重要である。
【0033】
そして本発明の配線基板おいては、コア基板5の最も外側に位置する絶縁層1に形成された貫通孔3は、その直径がコア基板5の内部側から表面側にかけて小さくなっている。また、このことが重要である。
【0034】
本発明の配線基板によれば、コア基板5の最も外側に位置する絶縁層1に形成された貫通孔3は、その直径がコア基板5の内部側から表面側にかけて小さくなっていることから、配線導体2に接続される貫通孔3の開口径を小さくできるので配線導体2の幅を狭くすることができ、その結果、配線導体2を微細化でき、高密度配線の可能な配線基板とすることができる。
【0035】
さらに、コア基板5の表面には、絶縁樹脂層6と配線導体層7とが交互に複数層積層されている。絶縁樹脂層6は、配線導体層7の支持体としての機能を有し、その厚みが10〜80μmであり、エポキシ樹脂と平均粒径が0.01〜2μmで含有量が10〜50質量%のシリカやアルミナ・窒化アルミニウム等の無機絶縁フィラーとから成る。
【0036】
無機絶縁フィラーは、絶縁樹脂層6の熱膨張係数を調整し配線導体層7の熱膨張係数と整合させるとともに、絶縁樹脂層6の表面に適度な凹凸を形成し、配線導体層7と絶縁樹脂層6との密着性を良好となす機能を有する。なお、無機絶縁フィラーは、その平均粒径が0.01μm未満であると、無機絶縁フィラー同士が凝集して均一な厚みの絶縁樹脂層6を形成することが困難となる傾向があり、2μmを超えると絶縁樹脂層6の表面の凹凸が大きなものとなり過ぎて配線導体層7の微細な配線が形成できず高密度配線が困難となる傾向がある。従って、無機絶縁フィラーの平均粒径は、0.01〜2μmの範囲が好ましい。
【0037】
また、無機絶縁フィラーの含有量が10質量%未満であると、絶縁樹脂層6の熱膨張係数を調整する作用が小さくなり、コア基板5と絶縁樹脂層6とが剥離し易くなる傾向があり、50質量%を超えると絶縁樹脂層6の樹脂量が減少し無機絶縁フィラー間に水分が滞留し易く吸湿後の絶縁樹脂層6の絶縁性が低下する傾向がある。従って、無機絶縁フィラーの含有量は、10〜50質量%の範囲が好ましい。
【0038】
また、絶縁樹脂層6には、レーザ加工によりビア孔8が形成されており、このビア孔8の内部に銅めっきから成る配線導体層7の一部を被着させることによりビア導体9を形成し、絶縁樹脂層6を挟んで上下に位置する配線導体2と配線導体層7、および配線導体層7同士が電気的に接続されている。
【0039】
なお、配線導体層7は、その幅が20〜200μmであり、その厚みが1〜2μmの無電解銅めっき層と厚みが10〜30μmの電解銅めっき層とから成り、配線基板に搭載される半導体素子等の電子部品(図示せず)の各電極を外部電気回路基板(図示せず)に電気的に接続する導電路としての機能を有する。
【0040】
配線導体層7は、その幅が20μm未満となると配線導体層7の変形や断線が発生しやすくなる傾向があり、200μmを超えると高密度配線が形成できなくなる傾向がある。また、配線導体層7の厚みが11μm未満になると配線導体層7の強度が低下し変形や断線が発生しやすくなる傾向があり、32μmを超えると配線導体層7の形成に長時間を要してしまう傾向がある。従って、配線導体層7は、その幅を20〜200μm、厚みを11〜32μmの範囲とすることが好ましい。
【0041】
また、絶縁樹脂層6の一方の最外層表面に形成された配線導体層7の一部は、電子部品の各電極に導体バンプ11aを介して接合される電子部品接続用の実装用電極10aを形成し、絶縁樹脂層6の他方の最外層表面に形成された配線導体層7の一部は、外部電気回路基板の各電極に導体バンプ11bを介して接続される外部接続用の実装用電極10bを形成している。
【0042】
なお、実装用電極10a・10bの表面には、その酸化腐蝕を防止するとともに導体バンプ11a・11bとの接続を良好とするために、半田との濡れ性が良好で耐腐蝕性に優れたニッケル−金等のめっき層が被着されている。
【0043】
また、最外層の絶縁層1および実装用電極10a・10bには、必要に応じて実装用電極10a・10bの中央部を露出させる開口を有する耐半田樹脂層12が被着されている。耐半田樹脂層12は、その厚みが10〜50μmであり、例えばアクリル変性エポキシ樹脂等の感光性樹脂と光開始剤等とから成る混合物に30〜70質量%のシリカやタルク等の無機粉末フィラーを含有させた絶縁材料から成り、隣接する実装用電極10a・10b同士が導体バンプ11a・11bにより電気的に短絡することを防止するとともに、実装用電極10a・10bと絶縁樹脂層6との接合強度を向上させる機能を有する。
【0044】
このような耐半田樹脂層12は、感光性樹脂と光開始剤と無機粉末フィラーとから成る未硬化樹脂フィルムを最外層の絶縁樹脂層6表面に被着させる、あるいは、熱硬化性樹脂と無機粉末フィラーとから成る未硬化樹脂ワニスを最外層の絶縁樹脂層6表面に塗布するとともに乾燥し、しかる後、露光・現像により開口部を形成し、これをUV硬化および熱硬化させることにより形成される。
【0045】
かくして、本発明の配線基板は、この表面に半導体素子等の電子部品を搭載し、この各電極と電子部品接続用の実装用電極10aとを導体バンプ11aを介して接続することにより電子装置となり、実装用電極10bを導体バンプ11bを介して外部電気回路基板に接続することにより、搭載される電子部品が外部電気回路基板と電気的に接続されることとなる。
【0046】
なお、本発明は上述の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能である。
【0047】
【発明の効果】
本発明の配線基板によれば、コア基板の最も外側に位置する絶縁層に形成された貫通孔は、その直径がコア基板の内部から表面側にかけて小さくなっていることから、コア基板表面に形成される配線導体の幅をより微細なものとすることができ、高密度配線が可能な配線基板とすることができる。また、貫通孔の内部に導電性材料を直径が大きい方の開口から充填することにより貫通導体の充填密度を高めることができ、その結果、貫通導体の導通抵抗を小さなものとすることができる。
【図面の簡単な説明】
【図1】本発明の配線基板の実施の形態の一例を示す断面図である。
【図2】図1の要部拡大断面図である。
【符号の説明】
1・・・・・・絶縁層
2・・・・・・配線導体
3・・・・・・貫通孔
4・・・・・・貫通導体
5・・・・・・コア基板
6・・・・・・絶縁樹脂層
7・・・・・・配線導体層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wiring board on which electronic components such as semiconductor elements are mounted, and more particularly to a wiring board capable of forming wiring conductors on a core substrate surface at high density.
[0002]
[Prior art]
In general, modern electronic devices are required to be small, thin, lightweight, high-performance, high-performance, high-quality, and high-reliable, as represented by mobile communication devices. Electronic devices to be used are also required to be smaller and higher in density. For this reason, there is a demand for smaller, thinner, and more terminals for the wiring boards that make up the electronic device, and in order to realize this, the width of the wiring conductors including the signal conductors and the like have been reduced and the intervals thereof have been reduced. Further, high-density wiring has been achieved by increasing the number of wiring conductors.
[0003]
As a wiring board capable of such high-density wiring, a wiring board manufactured by employing a build-up method is known. This build-up wiring board is manufactured, for example, by the method described below.
[0004]
First, a laser beam is applied to an insulating sheet in which a reinforcing material such as glass cloth or non-woven aramid is impregnated with a thermosetting resin represented by an allyl-modified polyphenylene ether resin having heat resistance and chemical resistance. A through hole having a diameter of 100 to 200 μm on the light incident side and a diameter of 50 to 150 μm on the emission side is formed, and the through hole is filled with a conductive material containing tin, for example, to form a through conductor. Next, a wiring conductor made of, for example, copper foil is embedded in the insulating sheet on which the through conductor is formed so as to cover the through conductor and that the surface of the wiring conductor is flush with the surface of the insulating sheet. This is heat-cured to obtain a core substrate in which the wiring conductor is electrically connected to the through conductor and the wiring conductor is embedded in the insulating substrate.
[0005]
The wiring conductor is embedded in the insulating substrate so as to cover the through conductor, as described later, when the core substrate surface is physically or chemically roughened, the through conductor is exposed on the core substrate surface. This is because the through conductor is also removed, and the connection reliability between the through conductor and the wiring conductor is reduced. For this reason, the width of the wiring conductor is designed to be larger than the diameter of the through hole.
[0006]
Next, the surface of the core substrate is physically or chemically roughened, and further, a resin film made of a thermosetting resin such as an epoxy resin is adhered to the core substrate and then heat-cured to have a thickness of 20 to 200 μm. An insulating resin layer is formed. Thereafter, a via hole having a diameter of 50 to 200 μm is formed in the insulating resin layer located above the wiring conductor by irradiating a laser beam, and the surface of the insulating resin layer and the inner surface of the via hole are further exposed to a potassium permanganate solution or the like. The surface of the insulating resin layer and the inner surface of the via hole are coated with a conductor film made of copper plating using a semi-additive method to form a wiring conductor layer and a via conductor. Then, the build-up wiring board is manufactured by repeating the formation of the insulating resin layer and the via conductor / wiring conductor layer a plurality of times thereon.
[0007]
Note that when a laser beam is applied to the insulating layer or the insulating resin layer to form a through hole or a via hole, the diameter of the through hole or the via hole is larger on the laser light incident side than on the laser light emitting side. That is, the cross section in the thickness direction of the insulating layer or the insulating resin layer in the through hole or the via hole has a trapezoidal shape in which the bottom side on the laser light incident side is longer than the bottom side on the emission side. In addition, the conductive material can be filled into the through holes of the insulating layer at a high density by using a screen printing method from the opening side having a large diameter, that is, from the opening on the laser light incident side. As a result, the conduction resistance of the through conductor can be reduced. Further, the insulating layer on which the through conductor is formed is usually laminated such that the surface on the incident side or the surface on the emission side of the laser beam faces in the same direction from a series of processing flows.
[0008]
Also, in the trend of miniaturization of electronic components in recent years, miniaturization of wiring conductors is required in order to increase the density of wiring boards. Since the wiring conductors for connection between the formed wiring conductor and the wiring conductor layer formed on the insulating layer laminated on the core substrate are densely formed, the wiring conductor is further miniaturized on the surface of the core substrate. Is required.
[0009]
[Patent Document 1]
JP 2002-141630 A
[Problems to be solved by the invention]
However, in the conventional wiring board, the through-hole formed in at least one of the insulating layers located on the outermost side of the core substrate is formed such that the opening having the larger diameter is exposed on the surface of the core substrate. Therefore, the width of the wiring conductor cannot be made smaller than the opening diameter of the larger diameter of the through-hole, and there is a problem that the miniaturization and the high density of the wiring conductor are limited. .
[0011]
The present invention has been completed in view of the problems of the related art, and an object of the present invention is to provide a wiring board capable of forming wiring conductors at a high density on the surface of a core substrate.
[0012]
[Means for Solving the Problems]
The wiring board according to the present invention is configured such that an insulating layer formed by impregnating a heat-resistant fiber base material with a thermosetting resin and a wiring conductor formed of a metal foil are alternately laminated in a plurality of layers, and positioned vertically above and below the insulating layer. An insulating resin layer and a wiring conductor layer are alternately formed on a core substrate formed by electrically connecting the wiring conductors to each other by a through conductor formed by filling a through hole formed in the insulating layer with a conductive material. In a wiring board formed by laminating a plurality of layers, the diameter of the through hole formed in the insulating layer located on the outermost side of the core substrate is reduced from the inner side to the front side of the core substrate. It is characterized by the following.
[0013]
According to the wiring board of the present invention, the diameter of the through-hole formed in the insulating layer located on the outermost side of the core substrate is reduced from the inside of the core substrate to the surface side. The width of the wiring conductor to be formed can be made finer, and a wiring board capable of high-density wiring can be obtained. Also, by filling the inside of the through hole with the conductive material from the opening having the larger diameter, the filling density of the through conductor can be increased, and as a result, the conduction resistance of the through conductor can be reduced.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the wiring board of the present invention will be described in detail with reference to the accompanying drawings.
[0015]
FIG. 1 is a cross-sectional view showing an example of an embodiment of a wiring board of the present invention, and FIG. 2 is an enlarged cross-sectional view of a main part thereof. In these figures, 1 is an insulating layer, 2 is a wiring conductor, 3 is a through hole, 4 is a through conductor, 5 is a core substrate, 6 is an insulating resin layer, and 7 is a wiring conductor layer. Is configured. In this example, an example is shown in which a wiring board is manufactured by applying three insulating resin layers 6 above and below a core substrate 5 formed by laminating four insulating layers 1.
[0016]
The core substrate 5 is a substantially rectangular substrate having a thickness of 0.15 to 1.5 mm, and has a function as a support for the insulating resin layer 6 and the wiring conductor layer 7 and a function to impart strength to the wiring substrate. When the thickness of the core substrate 5 is less than 0.15 mm, the rigidity of the wiring substrate is reduced, and the warpage tends to occur. When the thickness exceeds 1.5 mm, the wiring substrate is unnecessarily thick and the wiring substrate is reduced in weight. Tends to be difficult. Therefore, the thickness of the core substrate 5 is preferably in the range of 0.15 to 1.5 mm.
[0017]
The insulating layer 1 constituting the core substrate 5 has a thickness of 50 to 150 μm and has a function of supporting the wiring conductors 2 and ensuring insulation between the wiring conductors 2 positioned above and below, and is made of glass cloth or aramid. A heat-resistant fiber base material such as fiber or wholly aromatic ester fiber is impregnated with a thermosetting resin such as epoxy resin, bismaleimide triazine resin, or allyl-modified polyphenylene ether resin. If the thickness of the insulating layer 1 is less than 50 μm, handling tends to be difficult, and if it exceeds 150 μm, the thickness of the insulating layer 1 becomes unnecessarily thick, and it becomes difficult to increase the density of the wiring conductor 2. There is. Therefore, the insulating layer 1 preferably has a thickness of 50 to 150 μm.
[0018]
Such an insulating layer 1 is formed by impregnating a thermosetting resin precursor such as an epoxy resin or an allyl-modified polyphenylene ether resin into a heat-resistant fiber base material such as a glass cloth or an aramid fiber and semi-curing the insulating sheet. It is formed by manufacturing and heat-curing it.
[0019]
Further, in each of the insulating layers 1, a plurality of through conductors 4 are provided from the upper surface to the lower surface. These through conductors 4 have a function of electrically connecting the wiring conductors 2 located above and below the insulating layer 1, and mainly include tin in the through holes 3 formed by irradiating the insulating layer 1 with laser light. It is formed by embedding and thermosetting a conductive material composed of a metal powder as a component and a thermosetting resin.
[0020]
The through-hole 3 is pierced by irradiating a laser beam, so that the opening diameter of the laser beam on the incident side is larger than the opening diameter on the emission side. This is because a part of the laser light is reflected by the heat-resistant fiber base material inside the insulating layer 1, and the reflected laser light causes the laser light incident side portion of the insulating layer 1 to be excessively perforated. Is consumed inside the insulating layer 1, and the energy on the emission side becomes smaller than the energy on the incident side.
[0021]
Further, as described above, the opening diameter of the through hole 3 on the laser light incident side is larger than the opening diameter of the emission side. Since the conductive material is filled into the through hole 3 from the opening having the larger diameter, that is, from the opening on the laser light incident side, by using a screen printing method, the through conductor 4 Can be increased, and as a result, the conduction resistance of the through conductor can be reduced.
[0022]
The diameter of the through-hole 3 on the laser light incident side is preferably 30 to 200 μm. If the diameter of the laser beam incident side of the through-hole 3 is less than 30 μm, it tends to be difficult to fill the through-hole 3 with a conductive material satisfactorily. is there. Therefore, it is preferable that the diameter of the through hole 3 on the laser hole incident side be 30 to 200 μm.
[0023]
Further, the diameter of the through hole 3 on the laser beam emission side is preferably 20 to 160 μm. If the diameter of the through hole 3 on the laser light emission side is less than 20 μm, it tends to be difficult to fill the through hole 3 with a conductive material, and if it exceeds 160 μm, it becomes difficult to miniaturize the wiring conductor 2. There is. Therefore, it is preferable that the diameter of the through hole 3 on the laser hole emission side be 30 to 200 μm.
[0024]
Although it is possible to drill a small through hole 3 in the core substrate 5 using a small diameter drill, when the fine through hole 3 is drilled using a drill, the diameter of the through hole 3 is reduced. It becomes the same from top to bottom, and it becomes difficult to fill the through hole 3 with the conductive material, and it tends to be difficult to increase the filling density of the through conductor 4.
[0025]
Further, the content of the metal powder of the conductive material is preferably 80 to 95% by mass. When the content of the metal powder is less than 80% by mass, the thermosetting resin tends to hinder the connection between the metal powders and increase the conduction resistance. When the content exceeds 95% by mass, the viscosity of the conductive material increases. Tend to be too good to be embedded. Therefore, the content of the metal powder of the conductive material is preferably 80 to 95% by mass.
[0026]
Such a metal powder is preferably made of an alloy of tin, silver, bismuth, and copper, and particularly preferably contains 30 to 80% by mass of tin when the wiring conductor 2 described later is made of copper foil. When the tin content is 30 to 80% by mass, a copper-tin alloy is favorably formed with the copper foil forming the wiring conductor 2, and the connection resistance between the through conductor 4 and the wiring conductor 2 is reduced. Can be.
[0027]
The average particle size of the metal powder is preferably 4 to 6 μm. If the average particle size is smaller than 4 μm, the viscosity of the conductive material tends to be too high to be satisfactorily embedded. Electric resistance tends to increase. Therefore, the average particle size of the metal powder is preferably 4 to 6 μm.
[0028]
The thermosetting resin is preferably a triazine-based thermosetting resin such as triallyl cyanurate or triallyl isocyanurate / tris epoxypropyl isocyanurate / tris (2-hydroxyethyl) isocyanurate.
[0029]
Such through holes 3 are formed at predetermined positions of the insulating sheet by employing a conventionally known method such as a carbon dioxide gas laser or a YAG laser. Then, a conductive material containing a metal powder containing tin as a main component and a thermosetting resin precursor such as a triazine-based resin is filled by a screen printing method (press-fitting) from an opening having a larger diameter of the through hole 3. Thereby, the through conductor 4 is formed.
[0030]
A wiring conductor 2 is embedded in the surface of each insulating layer 1. The wiring conductor 2 has a width of 20 to 200 μm and a thickness of 5 to 50 μm, and is made of metal foil such as copper, aluminum, nickel, silver, and gold, and may be made of copper foil from the viewpoint of workability and low cost. preferable. If the width of the wiring conductor 2 is less than 20 μm, deformation and disconnection of the wiring conductor 2 tend to occur easily, and if it exceeds 200 μm, high-density wiring tends not to be formed. Further, when the thickness of the wiring conductor 2 is less than 5 μm, the strength of the wiring conductor 2 tends to decrease and deformation or disconnection tends to occur, and when it exceeds 50 μm, it tends to be difficult to embed the insulating layer 1. . Therefore, the wiring conductor 2 preferably has a width of 20 to 200 μm and a thickness of 5 to 50 μm.
[0031]
Such a wiring conductor 2 is formed by etching a copper foil applied over the entire surface of a transfer sheet made of a heat-resistant resin such as polyethylene terephthalate (PET) resin via an adhesive into a predetermined pattern, and the transfer sheet is formed. Is placed on an uncured insulating sheet serving as the insulating layer 2 such that the predetermined through conductors 4 and the wiring conductors 2 are connected and the wiring conductors 2 cover the through conductors 4, and this is heated. The wiring conductor 2 is transferred and embedded in the insulating sheet by pressing for several minutes at a temperature of 100 to 150 ° C. using a press machine. Furthermore, the number of pressure of the transfer sheet was superimposed insulating sheet was peeled off the transfer sheet with peeling of an insulating sheet on a plurality vertically temperature of 150 to 240 ° C. using a hot press and 3 to 5 × 10 6 Pa The core substrate 5 is manufactured by heating and pressing for a time.
[0032]
The reason why the wiring conductor 2 is embedded in the insulating layer 2 so as to cover the through conductor 4 is that when the surface of the core substrate 5 is physically or chemically roughened, the If exposed on the surface, the penetrating conductor 4 is also removed, and the connection reliability between the penetrating conductor 4 and the wiring conductor 2 is reduced. Therefore, it is important to make the width of the wiring conductor 2 larger than the diameter of the through conductor 4 and embed the wiring conductor 2 in the insulating layer 2 so as to cover the through conductor 4.
[0033]
In the wiring board of the present invention, the diameter of the through hole 3 formed in the insulating layer 1 located on the outermost side of the core substrate 5 decreases from the inner side to the front side of the core substrate 5. This is also important.
[0034]
According to the wiring board of the present invention, since the diameter of the through hole 3 formed in the insulating layer 1 located on the outermost side of the core substrate 5 decreases from the inner side to the front side of the core substrate 5, Since the opening diameter of the through hole 3 connected to the wiring conductor 2 can be reduced, the width of the wiring conductor 2 can be reduced, and as a result, the wiring conductor 2 can be miniaturized and a wiring board capable of high-density wiring can be obtained. be able to.
[0035]
Further, a plurality of insulating resin layers 6 and wiring conductor layers 7 are alternately laminated on the surface of the core substrate 5. The insulating resin layer 6 has a function as a support of the wiring conductor layer 7, has a thickness of 10 to 80 μm, and has an epoxy resin and silica having an average particle size of 0.01 to 2 μm and a content of 10 to 50 mass%. And inorganic insulating fillers such as alumina and aluminum nitride.
[0036]
The inorganic insulating filler adjusts the coefficient of thermal expansion of the insulating resin layer 6 so as to match the coefficient of thermal expansion of the wiring conductor layer 7, and forms moderate irregularities on the surface of the insulating resin layer 6, thereby forming the wiring conductor layer 7 and the insulating resin. It has a function of improving adhesion to the layer 6. If the average particle size of the inorganic insulating filler is less than 0.01 μm, it tends to be difficult to form the insulating resin layer 6 having a uniform thickness by agglomeration of the inorganic insulating fillers, and more than 2 μm. In addition, the irregularities on the surface of the insulating resin layer 6 become too large, so that fine wiring of the wiring conductor layer 7 cannot be formed, and high-density wiring tends to be difficult. Therefore, the average particle size of the inorganic insulating filler is preferably in the range of 0.01 to 2 μm.
[0037]
When the content of the inorganic insulating filler is less than 10% by mass, the effect of adjusting the thermal expansion coefficient of the insulating resin layer 6 is reduced, and the core substrate 5 and the insulating resin layer 6 tend to be easily separated. If the content exceeds 50% by mass, the amount of resin in the insulating resin layer 6 decreases, and water tends to stay between the inorganic insulating fillers, and the insulating property of the insulating resin layer 6 after absorbing moisture tends to decrease. Therefore, the content of the inorganic insulating filler is preferably in the range of 10 to 50% by mass.
[0038]
Via holes 8 are formed in the insulating resin layer 6 by laser processing. Via conductors 9 are formed by applying a part of a wiring conductor layer 7 made of copper plating to the inside of the via holes 8. In addition, the wiring conductors 2 and the wiring conductor layers 7 located above and below the insulating resin layer 6 are electrically connected to each other.
[0039]
The wiring conductor layer 7 has a width of 20 to 200 μm, a thickness of 1 to 2 μm, and an electroless copper plating layer of 10 to 30 μm in thickness, and is mounted on a wiring board. It has a function as a conductive path for electrically connecting each electrode of an electronic component (not shown) such as a semiconductor element to an external electric circuit board (not shown).
[0040]
When the width of the wiring conductor layer 7 is less than 20 μm, deformation and disconnection of the wiring conductor layer 7 tend to occur easily, and when it exceeds 200 μm, high-density wiring tends not to be formed. Further, if the thickness of the wiring conductor layer 7 is less than 11 μm, the strength of the wiring conductor layer 7 tends to decrease and deformation or disconnection tends to occur, and if it exceeds 32 μm, it takes a long time to form the wiring conductor layer 7. Tend to be. Therefore, it is preferable that the wiring conductor layer 7 has a width in the range of 20 to 200 μm and a thickness in the range of 11 to 32 μm.
[0041]
A part of the wiring conductor layer 7 formed on one outermost layer surface of the insulating resin layer 6 has a mounting electrode 10a for connecting an electronic component, which is joined to each electrode of the electronic component via a conductor bump 11a. A part of the wiring conductor layer 7 formed and formed on the other outermost layer surface of the insulating resin layer 6 is connected to each electrode of the external electric circuit board via the conductor bump 11b, and is used as an external connection mounting electrode. 10b.
[0042]
The surface of the mounting electrodes 10a and 10b is coated with nickel having good wettability with solder and excellent corrosion resistance in order to prevent the oxidative corrosion and to make the connection with the conductor bumps 11a and 11b good. A plating layer of gold or the like is applied;
[0043]
The outermost insulating layer 1 and the mounting electrodes 10a and 10b are coated with a solder-resistant resin layer 12 having an opening for exposing the central portion of the mounting electrodes 10a and 10b as necessary. The solder-resistant resin layer 12 has a thickness of 10 to 50 μm. For example, 30 to 70% by mass of an inorganic powder filler such as silica or talc is added to a mixture of a photosensitive resin such as an acrylic-modified epoxy resin and a photoinitiator. To prevent the adjacent mounting electrodes 10a and 10b from being electrically short-circuited by the conductive bumps 11a and 11b, and to join the mounting electrodes 10a and 10b to the insulating resin layer 6. Has the function of improving strength.
[0044]
Such a solder-resistant resin layer 12 is formed by applying an uncured resin film composed of a photosensitive resin, a photoinitiator, and an inorganic powder filler on the surface of the outermost insulating resin layer 6 or by forming a thermosetting resin and an inorganic resin. An uncured resin varnish comprising a powder filler is applied to the surface of the outermost insulating resin layer 6 and dried, and thereafter, an opening is formed by exposure and development, and this is formed by UV curing and heat curing. You.
[0045]
Thus, the wiring board of the present invention has an electronic device by mounting electronic components such as semiconductor elements on this surface and connecting each electrode to the mounting electrode 10a for connecting the electronic component via the conductive bump 11a. By connecting the mounting electrodes 10b to the external electric circuit board via the conductor bumps 11b, the mounted electronic components are electrically connected to the external electric circuit board.
[0046]
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention.
[0047]
【The invention's effect】
According to the wiring board of the present invention, the diameter of the through hole formed in the insulating layer located on the outermost side of the core substrate is reduced from the inside of the core substrate to the surface side. The width of the wiring conductor to be formed can be made finer, and a wiring substrate capable of high-density wiring can be obtained. Further, by filling the inside of the through hole with the conductive material from the opening having the larger diameter, the filling density of the through conductor can be increased, and as a result, the conduction resistance of the through conductor can be reduced.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an example of an embodiment of a wiring board of the present invention.
FIG. 2 is an enlarged sectional view of a main part of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Insulating layer 2 ... Wiring conductor 3 ... Through hole 4 ... Through conductor 5 ... Core substrate 6 ... ..Insulating resin layer 7 ... Wiring conductor layer

Claims (1)

耐熱性繊維基材に熱硬化性樹脂を含浸させて成る絶縁層と金属箔から成る配線導体とを交互に複数層積層するとともに、前記絶縁層を挟んで上下に位置する前記配線導体同士を、前記絶縁層に形成された貫通孔を導電性材料で充填して成る貫通導体により電気的に接続して成るコア基板に、絶縁樹脂層と配線導体層とを交互に複数層積層して成る配線基板において、前記コア基板の最も外側に位置する前記絶縁層に形成された前記貫通孔は、その直径が前記コア基板の内部側から表面側にかけて小さくなっていることを特徴とする配線基板。While alternately laminating a plurality of wiring layers made of a metal foil and an insulating layer formed by impregnating a heat-resistant fiber base material with a thermosetting resin, the wiring conductors located vertically above and below the insulating layer, Wiring formed by alternately stacking a plurality of insulating resin layers and wiring conductor layers on a core substrate formed by electrically connecting through-holes formed in the insulating layer with a through-hole conductor filled with a conductive material. A wiring board, wherein the diameter of the through hole formed in the insulating layer located on the outermost side of the core board in the board decreases from the inside to the surface of the core board.
JP2002368655A 2002-12-19 2002-12-19 Wiring board Pending JP2004200501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002368655A JP2004200501A (en) 2002-12-19 2002-12-19 Wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002368655A JP2004200501A (en) 2002-12-19 2002-12-19 Wiring board

Publications (1)

Publication Number Publication Date
JP2004200501A true JP2004200501A (en) 2004-07-15

Family

ID=32765168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002368655A Pending JP2004200501A (en) 2002-12-19 2002-12-19 Wiring board

Country Status (1)

Country Link
JP (1) JP2004200501A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053833A1 (en) * 2006-11-03 2008-05-08 Ibiden Co., Ltd. Multilayer printed wiring board
JP2009111358A (en) * 2007-10-12 2009-05-21 Shinko Electric Ind Co Ltd Wiring board
JP2011254098A (en) * 2011-08-11 2011-12-15 Kyocer Slc Technologies Corp Wiring board
JP2014093332A (en) * 2012-10-31 2014-05-19 Ibiden Co Ltd Printed-wiring board and method for manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008053833A1 (en) * 2006-11-03 2008-05-08 Ibiden Co., Ltd. Multilayer printed wiring board
JPWO2008053833A1 (en) * 2006-11-03 2010-02-25 イビデン株式会社 Multilayer printed wiring board
US8242379B2 (en) 2006-11-03 2012-08-14 Ibiden Co., Ltd. Multilayered printed wiring board with a multilayered core substrate
US8966750B2 (en) 2006-11-03 2015-03-03 Ibiden Co., Ltd. Method of manufacturing a multilayered printed wiring board
JP2009111358A (en) * 2007-10-12 2009-05-21 Shinko Electric Ind Co Ltd Wiring board
JP2011254098A (en) * 2011-08-11 2011-12-15 Kyocer Slc Technologies Corp Wiring board
JP2014093332A (en) * 2012-10-31 2014-05-19 Ibiden Co Ltd Printed-wiring board and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US8400776B2 (en) Multilayered printed wiring board
JP3619395B2 (en) Semiconductor device built-in wiring board and manufacturing method thereof
WO1998040914A1 (en) Printed wiring board and method for manufacturing the same
KR100747022B1 (en) Imbedded circuit board and fabricating method therefore
WO2010103695A1 (en) Method for manufacturing module with built-in component and module with built-in component
JP2004152904A (en) Electrolytic copper foil, film and multilayer wiring substrate therewith, and method of manufacturing the same
JPH1093242A (en) Printed wiring board
TW201444440A (en) Printed circuit board and fabricating method thereof
JP2004179545A (en) Wiring board
KR100704922B1 (en) Pcb using paste bump and method of manufacturing thereof
JP2004200501A (en) Wiring board
CN114342574B (en) Circuit board, method for manufacturing circuit board, and electronic device
JP2004207338A (en) Wiring board
JP4070193B2 (en) Wiring board and electronic component mounting structure
JP2004327743A (en) Wiring board with solder bump and its producing process
JP2004179362A (en) Wiring board and electronic device using the same
JP3924453B2 (en) WIRING BOARD AND ELECTRONIC DEVICE USING THE SAME
JP7411354B2 (en) Printed wiring board and its manufacturing method
JP6367902B2 (en) Wiring board
KR100797693B1 (en) Fabricating Method of Embedded Chip Printed Circuit Board
JP2003188483A (en) Insulating resin layer for wiring board and wiring board using it
JP2004031814A (en) Wiring board and electronic device using the same
JP2004165328A (en) Wiring board having solder bump and its manufacturing method
JP6075789B2 (en) Wiring board manufacturing method
JP2003078247A (en) Wiring substrate and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Effective date: 20071004

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080507

A02 Decision of refusal

Effective date: 20080930

Free format text: JAPANESE INTERMEDIATE CODE: A02