JP2004179362A - Wiring board and electronic device using the same - Google Patents

Wiring board and electronic device using the same Download PDF

Info

Publication number
JP2004179362A
JP2004179362A JP2002343337A JP2002343337A JP2004179362A JP 2004179362 A JP2004179362 A JP 2004179362A JP 2002343337 A JP2002343337 A JP 2002343337A JP 2002343337 A JP2002343337 A JP 2002343337A JP 2004179362 A JP2004179362 A JP 2004179362A
Authority
JP
Japan
Prior art keywords
conductor
wiring
wiring board
tin
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002343337A
Other languages
Japanese (ja)
Inventor
Takahiro Matsuoka
孝浩 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002343337A priority Critical patent/JP2004179362A/en
Publication of JP2004179362A publication Critical patent/JP2004179362A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring board that is superior in connection reliability between a wiring conductor and a penetrating conductor even if thermal load is repeatedly applied for a long time. <P>SOLUTION: The wiring board is formed by stacking plurally and alternately an insulation layer 1 that a heat resistance fiber base material is impregnated with a thermosetting resin, and a wiring conductor 2 made of copper foil and connecting electrically the wiring conductors 2 with each other that are located vertically with the insulation layer 1 in between, by means of a penetrating conductor 4 that a through hole 3 formed in the insulation layer 1 is filled with a metallic powder 5 made mainly of tin and a conductive material containing a thermosetting resin. The wiring conductor 2 is provided with a diffusion layer 6 containing Cu<SB>3</SB>Sn wherein tin is formed by diffusion on the surface connected with the penetrating conductor 4. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、絶縁層および配線導体が複数交互に積層され、上下の配線導体間を貫通導体により電気的に接続して成り、配線導体と貫通導体との接続信頼性に優れた配線基板およびこれを用いた電子装置に関する。
【0002】
【従来の技術】
従来、半導体素子や抵抗器等の電子部品を搭載するために用いられる配線基板として、ガラス基材および熱硬化性樹脂から成る絶縁層と銅箔等から成る配線導体とを交互に複数積層して成るプリント基板が知られている。このようなプリント基板は、表面に配線導体が形成された絶縁層を複数枚、積層圧着して多層化することにより製作されている。しかしながら、このプリント基板は、絶縁層表面の配線導体が形成された部分とその他の部分との段差により表面が凹凸状態となることから、絶縁層に若干の可塑性を持たせた絶縁シートを用い、絶縁シートを積層する際に絶縁シートの配線導体に当接する部位を配線導体の厚みに対応して塑性変形させることにより配線導体を絶縁シート中に埋入させ積層・硬化することにより、プリント基板表面に凹凸が形成されないようにしている。なお、プリント基板の上下に位置する配線導体は、絶縁層に形成された貫通導体を介して電気的に接続されている。
【0003】
このようなプリント基板は、耐熱性繊維基材に熱硬化性樹脂前駆体を含浸させた絶縁シートの配線基板領域にレーザで貫通孔を形成した後、この貫通孔内に銀等の金属粉末および熱硬化性樹脂前駆体から成る導体ペーストをスクリーン印刷(圧入)で埋め込み貫通導体を形成し、他方、耐熱性樹脂から成る転写シートの表面に銅箔を被着し、所定のパターンにエッチングして絶縁シートの各配線基板領域に対応する位置に配線導体を形成し、しかる後、貫通導体が形成された絶縁シートに配線導体が形成された転写シートを圧接して配線導体を絶縁シートに転写埋入するとともに貫通導体と電気的に接続させ、さらに、絶縁シートから転写シートを剥離した後、配線導体が埋入された絶縁シートを複数積層して180〜200℃の温度で数分〜数時間、熱プレスを用いて熱硬化性樹脂前駆体を硬化一体化させることにより製作される。
【0004】
なお、導体ペーストの充填によって貫通導体を形成する方法は、従来のめっき法により貫通導体を形成する方法に対して、貫通導体を任意の箇所に設けることができるために、特に高密度配線化に適した方法として注目されている。
【0005】
【特許文献1】
特開2001−44590号公報
【0006】
【発明が解決しようとする課題】
しかしながら、導体ペーストの充填によって貫通導体を形成した従来の配線基板は、貫通導体の金属粉末と配線導体の銅箔との接続が異種金属間の接続であることおよび単に接触することにより接続していることから、配線基板に長期の熱負荷を繰返して印加した場合、両者間の導通抵抗が高くなってしまい貫通導体と配線導体との接続部で断線してしまうという問題点を有していた。
【0007】
本発明は、かかる従来技術の問題点に鑑み完成されたものであり、その目的は、長期の熱負荷を繰返して印加しても、配線導体と貫通導体との接続信頼性に優れた配線基板を提供するものである。
【0008】
【課題を解決するための手段】
本発明の配線基板は、耐熱性繊維基材に熱硬化性樹脂を含浸させて成る絶縁層と銅箔から成る配線導体とを交互に複数層積層するとともに、前記絶縁層を挟んで上下に位置する前記配線導体同士を、前記絶縁層に設けた貫通孔を錫を主成分とする金属粉末および熱硬化性樹脂を含む導電性材料で充填して成る貫通導体により電気的に接続して成る配線基板において、前記配線導体は前記貫通導体と接続された表面に前記錫が拡散して形成されたCuSnを含有する拡散層が形成されていることを特徴とするものである。
【0009】
本発明の配線基板によれば、貫通導体と接続する銅箔の表面に錫が拡散して形成されたCuSnを含有する拡散層が形成されていることから、貫通導体の金属粉末と配線導体の銅箔とが異種金属でありながら、導電性の高いCuSnから成る銅錫化合物を含有した拡散層を介して接続されるので、両者の接合が強固なものとなり、その結果、配線基板に長期の熱負荷を繰返し印加した場合においても、両者間の導通抵抗が高くなることはなく、配線導体と貫通導体との間で断線することのない接続信頼性に優れた配線基板とすることができる。
【0010】
また、本発明の電子装置は、上記の配線基板の表面に電子部品を実装するとともに、この電子部品の電極を配線導体または貫通導体に電気的に接続して成ることを特徴とするものである。
【0011】
本発明の電子装置によれば、上記の配線基板の表面に電子部品を実装するとともに、この電子部品の電極を配線導体または貫通導体に電気的に接続したことから、銅箔に形成された導電性の高いCuSnから成る銅錫化合物を含有した拡散層を介して配線導体と貫通導体とが強固に接続され、その結果、電子装置に長期の熱負荷を繰返し印加しても配線導体と貫通導体との導通抵抗が高くなることはなく、配線導体と貫通導体との間で断線することのない接続信頼性に優れた電子装置とすることができる。
【0012】
【発明の実施の形態】
次に、本発明の配線基板および電子装置を添付の図面に基づいて詳細に説明する。図1は、本発明の配線基板に半導体素子等の電子部品を搭載した電子装置の実施の形態の一例を示す断面図であり、図2はその要部拡大断面図である。これらの図において、1は絶縁層、2は配線導体、3は貫通孔、4は貫通導体、5は金属粉末、6は拡散層、7は電子部品である。なお、図1の例では、絶縁層1を4層積層して配線基板を製作した場合の例を示している。
【0013】
本発明の配線基板は、耐熱性繊維基材に熱硬化性樹脂を含浸させて成る絶縁層1および銅箔から成る配線導体2を交互に複数層積層するとともに、絶縁層1を挟んで上下に位置する配線導体2同士を絶縁層1に設けた貫通孔3内に充填させた錫を主成分とする金属粉末5および熱硬化性樹脂を含む導電性材料から成る貫通導体4で接続することにより形成されている。また、絶縁層1の一方の最外層表面に形成された配線導体2の一部は、電子部品7の各電極に導体バンプ11を介して接合される電子部品7接続用の実装用電極を形成し、さらに絶縁層1の他方の最外層表面に形成された配線導体2の一部は、外部電気回路基板(図示せず)の各電極に導体バンプ11を介して接続される外部接続用の実装用電極を形成している。そして、最外層の絶縁層1および実装用電極には、必要に応じて実装用電極の中央部を露出させる開口を有する耐半田樹脂層12が被着されている。
【0014】
さらに、本発明の電子装置は、上記の配線基板の表面に電子部品7を実装するとともに、電子部品7の電極を配線導体2または貫通導体4に電気的に接続することにより形成されている。
【0015】
絶縁層1は、その厚みが50〜150μmであり、配線導体2を支持するとともに上下に位置する配線導体2間の絶縁を保持する機能を有し、ガラスクロスやアラミド繊維・全芳香族エステル繊維等の耐熱性繊維基材にエポキシ樹脂やビスマレイミドトリアジン樹脂・アリル変性ポリフェニレンエーテル樹脂等の熱硬化性樹脂を含浸させて成る。なお、絶縁層1の厚みが50μm未満であると配線基板の剛性が低下して、配線基板が撓みやすくなる傾向があり、150μmを超えると絶縁層1の厚みが不要に厚いものとなり配線基板の軽量化が困難となる傾向がある。従って、絶縁層1は、その厚みを50〜150μmとすることが好ましい。
【0016】
また、各絶縁層1の表面には配線導体2が埋入されている。配線導体2は、銅の金属箔から成り、配線基板に搭載される半導体素子等の電子部品7の各電極を外部電気回路基板に電気的に接続する導電路の一部としての機能を有し、幅が20〜200μm、厚みが5〜50μmである。配線導体2の幅が20μm未満となると配線導体2の変形や断線が発生しやすくなる傾向があり、200μmを超えると高密度配線が形成できなくなる傾向がある。また、配線導体2の厚みが5μm未満になると配線導体2の強度が低下し変形や断線が発生しやすくなる傾向があり、50μmを超えると絶縁層1への埋入が困難となる傾向がある。従って、配線導体2は、その幅を20〜200μm、厚みを5〜50μmとすることが好ましい。
【0017】
なお、配線導体2の表面は、後述する貫通導体4との密着性・接合性を高めるために、その表面に平均表面粗さ1〜3μmの凹凸を形成しておくことが好ましい。このような凹凸は、蟻酸および塩酸処理することにより形成される。なお、表面粗さが1μm未満であると絶縁層1との密着強度が低下し配線導体2が絶縁層1から剥がれ易くなってしまう傾向があり、3μmを超えると配線導体2と金属粉末5との接合点が少なくなるため、錫が充分に拡散せず拡散層6が良好に形成できなくなる傾向がある。従って、平均表面粗さは1〜3μmの範囲が好ましい。
【0018】
さらに、各絶縁層1には、その上面から下面にかけて貫通導体4が複数個配設されている。これらの貫通導体4は、絶縁層1の上下に位置する配線導体2間を電気的に接続する機能を有し、その直径が30〜200μmであり、絶縁層1に設けた貫通孔3に錫を主成分とする金属粉末とトリアジン系熱硬化性樹脂等とから成るペーストを埋め込み熱硬化することにより形成されている。なお、貫通導体4の直径が30μm未満になるとその加工が困難となる傾向があり、200μmを超えると高密度配線が形成できなくなる傾向がある。従って、貫通導体4は、その直径を30〜200μmとすることが好ましい。
【0019】
また、ペーストの金属粉末5の含有量は80〜95重量%が好ましい。金属粉末5の含有量が80重量%より少ないと、トリアジン系熱硬化性樹脂により金属粉末5同士の接続が妨げられ導通抵抗が上昇してしまう傾向があり、95重量%を超えるとペーストの粘度が上がり過ぎて良好に埋め込みできない傾向がある。従って、ペーストの金属粉末5の含有量は80〜95重量%が好ましい。
【0020】
このような金属粉末5は、錫や錫・ビスマス・銅等の合金から成り、錫を70〜90重量%含有している。錫の含有量が70重量%より少ないと、後述するように配線導体2を形成する銅箔に金属粉末5中の錫が拡散して形成されるCuSnを含有する拡散層6を良好に形成できなくなる傾向があり、90重量%を超えると銅箔への錫の拡散量が増加し、錫の含有量の多い拡散層6は銅箔よりも導通抵抗が大きいので、配線導体2と貫通導体4との導通抵抗が大きなものとなってしまう傾向がある。
【0021】
また、金属粉末5の平均粒径は5〜10μmが好ましい。平均粒径が5μmより小さいとペーストの粘度が上がり過ぎて良好に埋め込みできなくなる傾向があり、10μmより大きいと金属粉末5を高充填できず金属粉末5間の接触点が少なくなり、導通抵抗が高くなってしまう傾向がある。従って、金属粉末5の平均粒径は5〜10μmが好ましい。
【0022】
また、熱硬化性樹脂は、トリアリルシアヌレートやトリアリルイソシアヌレート・トリスエポキシプロピルイソシアヌレート・トリス(2−ヒドロキシエチル)イソシアヌレート等のトリアジン系熱硬化性樹脂が好ましい。
【0023】
そして本発明の配線基板においては、配線導体2は、貫通導体4と接続する銅箔の表面に錫が拡散して形成されたCuSnを含有する拡散層が形成されており、このことが重要である。
本発明の配線基板によれば、貫通導体4と接続する銅箔の表面に錫が拡散して形成されたCuSnを含有する拡散層が形成されていることから、貫通導体4の金属粉末5と配線導体2の銅箔とが異種金属でありながら、導電性の高いCuSnを含有した拡散層6を介して接続されるので、両者の接合が強固なものとなり、その結果、配線基板に長期の熱負荷を繰返し印加した場合においても、両者間の導通抵抗が高くなることはなく、配線導体と貫通導体との間で断線することのない接続信頼性に優れた配線基板とすることができる。さらに、拡散層6のCuSnから成る銅錫化合物は、導電性が高いため、貫通導体4と配線導体2との接合部を低抵抗化できる。
【0024】
なお、このようなCuSnを含有した拡散層6は、銅から成る配線導体2と錫を主成分とする金属粉末5および熱硬化性樹脂を含む導電性材料で充填して成る貫通導体4とを接合後、錫の融点(約232℃)以上の温度で数分〜数時間熱処理を施すことにより形成され、形成される銅錫化合物としてはCuSnおよびCuSnがある。CuSnは銅と錫とが3:1の比率からなる結晶性化合物であり、拡散層6がCuSnを含有することにより、貫通導体4の金属粉末5と配線導体2の銅箔との接合が強固なものとなり、その接合部を低抵抗化できる。なお、拡散層6には、CuSnがCuSnとともに存在しても良いが、その場合、CuSnの比率が5%以上であることが好ましい。また、充分な量のCuSnの拡散層6を形成するためには、配線基板を錫の融点(約232℃)以上の温度で1時間以上熱処理することが好ましい。
【0025】
このような拡散層6のCuSnやCuSn・Cu等の成分比率は、配線基板の断面の走査型電子顕微鏡写真(SEM写真)によって定量化できる。このSEM写真によれば、CuSnやCuSn・Cuはそれぞれの色の濃度によって判別でき、色の濃さはCuSnが一番濃く、次にCuSn、次にCuの順序で黒くなっている。
【0026】
なお、錫が拡散して形成された拡散層6の厚みが1μmより薄いと、導通抵抗が高くなってしまう傾向があり、5μmより厚いと、錫−銅合金の抵抗が銅箔の抵抗より高いため導通抵抗が高くなってしまう傾向がある。従って、貫通導体4と接続した配線導体2表面の錫が拡散して形成された拡散層6の厚みは、1〜5μmであることが好ましい。
【0027】
また、貫通導体4と接続した配線導体2表面の拡散層6の広がりは、貫通導体4の開口に対して、1〜30%であることが好ましい。拡散層6の広がりが1%未満の場合、金属粉末5と配線導体2との結合が弱いものとなり、配線基板に長期の熱負荷を繰返し印加した場合において両者間の導通抵抗が高くなる傾向があり、30%を超えると、後述する金属粉末5を高温で溶融する際に、熱硬化性樹脂が熱劣化を起こし絶縁層1の絶縁性が低下してしまう傾向がある。従って、貫通導体4と接続した配線導体2表面の拡散層6の広がりは、貫通導体4の開口に対して、1〜30%であることが好ましい。
【0028】
かくして、本発明の配線基板によれば、貫通導体4と接続する銅箔の表面に錫が拡散して形成されたCuSnから成る銅錫化合物を含有する拡散層が形成されていることから、貫通導体4の金属粉末5と配線導体2の銅箔とが異種金属でありながら、導電性の高いCuSnから成る銅錫化合物を含有した拡散層6を介して接続されるので、両者の接合が強固なものとなり、その結果、配線基板に長期の熱負荷を繰返し印加した場合においても、両者間の導通抵抗が高くなることはなく、配線導体と貫通導体との間で断線することのない接続信頼性に優れた配線基板とすることができる。
【0029】
このような配線基板は、以下に述べる方法により製作される。まず、例えばガラスクロスやアラミド繊維等の耐熱性繊維基材にエポキシ樹脂や変性ポリフェニレン樹脂等から成る熱硬化樹脂前駆体を含浸させて半硬化することにより絶縁シートを製作し、次に、絶縁シートの所定の位置に炭酸ガスレーザやYAGレーザ等の従来周知の方法を採用して直径が30〜200μmの貫通孔3を穿設する。
【0030】
そして、貫通孔3に従来周知のスクリーン印刷法を採用して、錫を主成分とする金属粉末およびトリアジン系樹脂等の熱硬化性樹脂前駆体を含むペーストをスクリーン印刷法(圧入)で充填することによって貫通導体4を形成する。その後、別途準備した、表面に銅箔から成る配線導体2を絶縁シート上に所定のパターンに被着形成した、ポリエチレンテレフタレート(PET)樹脂等の耐熱性樹脂から成るる転写シートを絶縁シートに、所定の貫通導体4と配線導体2とが接続するように位置合わせして重ね合わせ、これらを熱プレス機を用いて100〜150℃の温度で数分間プレスすることにより転写シートを絶縁シートに圧接して、配線導体2を絶縁シートに転写埋入させる。
【0031】
しかる後、転写シートを絶縁シートから剥離するとともに転写シートを剥離した絶縁シートを複数枚上下に重ね合わせ、熱プレス機を用いて錫の軟化点以上の温度で1時間以上加熱プレスすることにより、金属粉末5の錫が貫通導体4と接触した配線導体2表面に拡散し、CuSnから成る銅錫化合物を含有する拡散層6が形成された配線基板となる。
【0032】
なお、絶縁層1の一方の最外層表面に形成された配線導体2の一部は、前述したように電子部品7の各電極に導体バンプ11を介して接合される電子部品7接続用の実装用電極を形成し、絶縁層1の他方の最外層表面に形成された配線導体2の一部は、外部電気回路基板(図示せず)の各電極に導体バンプを介して接続される外部接続用の実装用電極を形成している。そして、実装用電極の表面には、その酸化腐蝕を防止するとともに導体バンプとの接続を良好とするために、半田との濡れ性が良好で耐腐蝕性に優れたニッケル−金等のめっき層が被着されている。
【0033】
また、最外層の絶縁層1および実装用電極には、前述したように必要に応じて実装用電極の中央部を露出させる開口を有する耐半田樹脂層12が被着されており、このような耐半田樹脂層12は、感光性樹脂と光開始剤と無機粉末フィラーとから成る未硬化樹脂フィルムを最外層の絶縁層1表面に被着させる、あるいは、熱硬化性樹脂と無機粉末フィラーとから成る未硬化樹脂ワニスを最外層の絶縁層1表面に塗布するとともに乾燥し、しかる後、露光・現像により開口部を形成し、これをUV硬化および熱硬化させることにより形成される。
【0034】
また、本発明の電子装置は、上述の配線基板の表面に電子部品7を実装するとともに、導体バンプ11を介して電子部品7の各電極と配線基板の実装用電極とを電気的に接続することにより製作される。なお、本発明の電子装置においては電子部品7と貫通導体4とを導体バンプ11を介して直接接続してもよい。
【0035】
かくして、本発明の電子装置によれば、上記の配線基板の表面に電子部品7を実装するとともに、この電子部品7の電極を配線導体2または貫通導体4に電気的に接続したことから、銅箔に形成されたCuSnから成る銅錫化合物を含有する拡散層6を介して配線導体2と貫通導体4とが強固に接続され、その結果、電子装置に長期の熱負荷を繰返し印加しても配線導体2と貫通導体4との導通抵抗が高くなることはなく、配線導体2と貫通導体4との間で断線することのない接続信頼性に優れた電子装置とすることができる。
【0036】
なお、本発明は上述の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能であり、例えば上述の実施例では絶縁層を4層積層した場合を例示したが、5層以上であってもかまわない。
【0037】
【発明の効果】
本発明の配線基板によれば、貫通導体と接続する銅箔の表面に錫が拡散して形成されたCuSnを含有する拡散層が形成されていることから、貫通導体の金属粉末と配線導体の銅箔とが異種金属でありながら、導電性の高いCuSnを含有した拡散層を介して接続されるので、両者の接合が強固なものとなり、その結果、配線基板に長期の熱負荷を繰返し印加した場合においても、両者間の導通抵抗が高くなることはなく、配線導体と貫通導体との間で断線することのない接続信頼性に優れた配線基板とすることができる。
【0038】
また、本発明の電子装置によれば、上記の配線基板の表面に電子部品を実装するとともに、この電子部品の電極を配線導体または貫通導体に電気的に接続したことから、銅箔に形成された導電性の高いCuSnを含有した拡散層を介して配線導体と貫通導体とが強固に接続され、その結果、電子装置に長期の熱負荷を繰返し印加しても配線導体と貫通導体との導通抵抗が高くなることはなく、配線導体と貫通導体との間で断線することのない接続信頼性に優れた電子装置とすることができる。
【図面の簡単な説明】
【図1】本発明の配線基板に半導体素子等の電子部品を搭載して成る電子装置の実施の形態の一例の断面図である。
【図2】図1の要部拡大断面図である。
【符号の説明】
1・・・・・・絶縁層
2・・・・・・配線導体
3・・・・・・貫通孔
4・・・・・・貫通導体
5・・・・・・金属粉末
6・・・・・・拡散層
7・・・・・・電子部品
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wiring board having a plurality of insulating layers and wiring conductors alternately stacked, electrically connecting upper and lower wiring conductors with through conductors, and having excellent connection reliability between the wiring conductors and the through conductors. And an electronic device using the same.
[0002]
[Prior art]
Conventionally, as a wiring substrate used for mounting electronic components such as semiconductor elements and resistors, an insulating layer made of a glass base material and a thermosetting resin and a wiring conductor made of a copper foil or the like are alternately laminated in plural numbers. Printed circuit boards are known. Such a printed circuit board is manufactured by laminating and bonding a plurality of insulating layers each having a wiring conductor formed on the surface to form a multilayer. However, this printed circuit board uses an insulating sheet in which the insulating layer has some plasticity because the surface becomes uneven due to a step between the portion where the wiring conductor on the surface of the insulating layer is formed and the other portion, When the insulating sheet is laminated, the portion of the insulating sheet that comes into contact with the wiring conductor is plastically deformed in accordance with the thickness of the wiring conductor, so that the wiring conductor is embedded in the insulating sheet, laminated and hardened, so that the printed circuit board surface is formed. No irregularities are formed on the surface. The wiring conductors located above and below the printed circuit board are electrically connected via through conductors formed in the insulating layer.
[0003]
Such a printed circuit board is formed by forming a through hole with a laser in a wiring board region of an insulating sheet in which a thermosetting resin precursor is impregnated into a heat-resistant fiber base material, and a metal powder such as silver and the like in the through hole. A conductor paste made of a thermosetting resin precursor is embedded by screen printing (press-fitting) to form a through conductor, while a copper foil is applied to the surface of a transfer sheet made of a heat-resistant resin and etched into a predetermined pattern. Wiring conductors are formed at positions corresponding to the respective wiring board areas on the insulating sheet, and thereafter, the transfer sheet having the wiring conductors formed thereon is pressed against the insulating sheet having the through conductors formed thereon, and the wiring conductors are transferred and embedded in the insulating sheet. After the transfer sheet is separated from the insulating sheet, a plurality of insulating sheets in which the wiring conductors are embedded are laminated, and several minutes at a temperature of 180 to 200 ° C. A few hours, is fabricated by curing integrated thermosetting resin precursor using a hot press.
[0004]
In addition, the method of forming the through conductor by filling the conductor paste is different from the method of forming the through conductor by the conventional plating method, because the through conductor can be provided at an arbitrary position. It is attracting attention as a suitable method.
[0005]
[Patent Document 1]
JP 2001-44590 A
[Problems to be solved by the invention]
However, in the conventional wiring board in which the through conductor is formed by filling the conductor paste, the connection between the metal powder of the through conductor and the copper foil of the wiring conductor is a connection between dissimilar metals, and the connection is made by simply contacting. Therefore, when a long-term thermal load is repeatedly applied to the wiring board, there is a problem that the conduction resistance between the two becomes high and the connection between the through conductor and the wiring conductor is disconnected. .
[0007]
The present invention has been completed in view of the problems of the related art, and an object of the present invention is to provide a wiring board having excellent connection reliability between a wiring conductor and a through conductor even when a long-term heat load is repeatedly applied. Is provided.
[0008]
[Means for Solving the Problems]
The wiring board according to the present invention has an insulating layer formed by impregnating a heat-resistant fiber base material with a thermosetting resin and a wiring conductor made of copper foil, which are alternately laminated in a plurality of layers, and is vertically positioned with the insulating layer interposed therebetween. The wiring conductors are electrically connected to each other by a through conductor formed by filling a through hole provided in the insulating layer with a conductive material containing a metal powder containing tin as a main component and a thermosetting resin. In the substrate, the wiring conductor is characterized in that a diffusion layer containing Cu 3 Sn formed by diffusion of the tin is formed on a surface connected to the through conductor.
[0009]
According to the wiring board of the present invention, since the diffusion layer containing Cu 3 Sn formed by diffusion of tin is formed on the surface of the copper foil connected to the through conductor, the metal powder of the through conductor and the wiring Although the copper foil of the conductor is a dissimilar metal, it is connected via a diffusion layer containing a copper-tin compound made of Cu 3 Sn having high conductivity, so that the bonding between the two becomes strong and, as a result, the wiring Even when a long-term thermal load is repeatedly applied to the substrate, the conduction resistance between them does not increase, and the wiring substrate has excellent connection reliability without disconnection between the wiring conductor and the through conductor. be able to.
[0010]
Further, an electronic device according to the present invention is characterized in that an electronic component is mounted on the surface of the wiring board, and electrodes of the electronic component are electrically connected to a wiring conductor or a through conductor. .
[0011]
According to the electronic device of the present invention, the electronic component is mounted on the surface of the wiring board, and the electrodes of the electronic component are electrically connected to the wiring conductor or the through conductor. The wiring conductor and the penetrating conductor are firmly connected via the diffusion layer containing the copper-tin compound made of Cu 3 Sn, which is highly conductive. As a result, even if the long-term heat load is repeatedly applied to the electronic device, the wiring conductor and the through conductor are connected. It is possible to provide an electronic device having excellent connection reliability without a breakage between the wiring conductor and the through conductor without increasing the conduction resistance with the through conductor.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, a wiring board and an electronic device according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a cross-sectional view showing an example of an embodiment of an electronic device in which electronic components such as semiconductor elements are mounted on a wiring board of the present invention, and FIG. 2 is an enlarged cross-sectional view of a main part thereof. In these figures, 1 is an insulating layer, 2 is a wiring conductor, 3 is a through hole, 4 is a through conductor, 5 is a metal powder, 6 is a diffusion layer, and 7 is an electronic component. FIG. 1 shows an example in which a wiring board is manufactured by laminating four insulating layers 1.
[0013]
The wiring board of the present invention has a plurality of insulating layers 1 formed by impregnating a heat-resistant fiber base material with a thermosetting resin and a plurality of wiring conductors 2 made of copper foil, and the insulating layers 1 are vertically stacked with the insulating layer 1 interposed therebetween. The wiring conductors 2 located are connected to each other by a through conductor 4 made of a conductive material containing a metal powder 5 containing tin as a main component and a thermosetting resin filled in a through hole 3 provided in the insulating layer 1. Is formed. A part of the wiring conductor 2 formed on one outermost surface of the insulating layer 1 forms a mounting electrode for connecting the electronic component 7 to each electrode of the electronic component 7 via the conductor bump 11. Further, a part of the wiring conductor 2 formed on the other outermost layer surface of the insulating layer 1 is connected to each electrode of an external electric circuit board (not shown) via the conductor bump 11 for external connection. A mounting electrode is formed. The outermost insulating layer 1 and the mounting electrode are covered with a solder-resistant resin layer 12 having an opening for exposing a central portion of the mounting electrode as necessary.
[0014]
Further, the electronic device of the present invention is formed by mounting the electronic component 7 on the surface of the wiring board and electrically connecting the electrodes of the electronic component 7 to the wiring conductor 2 or the through conductor 4.
[0015]
The insulating layer 1 has a thickness of 50 to 150 μm, has a function of supporting the wiring conductors 2 and maintaining insulation between the wiring conductors 2 located above and below, and includes a glass cloth, an aramid fiber, and a wholly aromatic ester fiber. And a thermosetting resin such as a bismaleimide triazine resin or an allyl-modified polyphenylene ether resin. If the thickness of the insulating layer 1 is less than 50 μm, the rigidity of the wiring board decreases, and the wiring board tends to bend. If the thickness exceeds 150 μm, the thickness of the insulating layer 1 becomes unnecessarily thick, and Lightening tends to be difficult. Therefore, the insulating layer 1 preferably has a thickness of 50 to 150 μm.
[0016]
A wiring conductor 2 is embedded in the surface of each insulating layer 1. The wiring conductor 2 is made of copper metal foil, and has a function as a part of a conductive path that electrically connects each electrode of the electronic component 7 such as a semiconductor element mounted on the wiring board to an external electric circuit board. , A width of 20 to 200 μm and a thickness of 5 to 50 μm. If the width of the wiring conductor 2 is less than 20 μm, deformation and disconnection of the wiring conductor 2 tend to occur easily, and if it exceeds 200 μm, high-density wiring tends not to be formed. Further, when the thickness of the wiring conductor 2 is less than 5 μm, the strength of the wiring conductor 2 tends to decrease and deformation or disconnection tends to occur, and when it exceeds 50 μm, it tends to be difficult to embed the insulating layer 1. . Therefore, the wiring conductor 2 preferably has a width of 20 to 200 μm and a thickness of 5 to 50 μm.
[0017]
The surface of the wiring conductor 2 is preferably formed with irregularities having an average surface roughness of 1 to 3 μm on the surface thereof in order to enhance adhesion and bonding with the through conductor 4 described later. Such irregularities are formed by treating with formic acid and hydrochloric acid. If the surface roughness is less than 1 μm, the adhesion strength to the insulating layer 1 is reduced, and the wiring conductor 2 tends to be easily separated from the insulating layer 1. If the surface roughness exceeds 3 μm, the wiring conductor 2 and the metal powder 5 , There is a tendency that tin does not diffuse sufficiently and the diffusion layer 6 cannot be formed satisfactorily. Therefore, the average surface roughness is preferably in the range of 1 to 3 μm.
[0018]
Further, in each of the insulating layers 1, a plurality of through conductors 4 are provided from the upper surface to the lower surface. These through conductors 4 have a function of electrically connecting the wiring conductors 2 located above and below the insulating layer 1, have a diameter of 30 to 200 μm, and have a through hole 3 formed in the insulating layer 1. Is formed by embedding and thermosetting a paste composed of a metal powder mainly composed of, for example, and a triazine-based thermosetting resin. If the diameter of the through conductor 4 is less than 30 μm, the processing tends to be difficult, and if it exceeds 200 μm, high-density wiring tends not to be formed. Therefore, it is preferable that the diameter of the through conductor 4 be 30 to 200 μm.
[0019]
Further, the content of the metal powder 5 in the paste is preferably 80 to 95% by weight. When the content of the metal powder 5 is less than 80% by weight, the connection between the metal powders 5 is hindered by the triazine-based thermosetting resin, and the conduction resistance tends to increase. Tends to be too high to be satisfactorily embedded. Therefore, the content of the metal powder 5 in the paste is preferably 80 to 95% by weight.
[0020]
Such a metal powder 5 is made of an alloy such as tin or tin / bismuth / copper, and contains 70 to 90% by weight of tin. When the content of tin is less than 70% by weight, the diffusion layer 6 containing Cu 3 Sn formed by diffusion of tin in the metal powder 5 into the copper foil forming the wiring conductor 2 as described later is favorably formed. When the content exceeds 90% by weight, the amount of tin diffused into the copper foil increases, and the diffusion layer 6 having a high tin content has a higher conduction resistance than the copper foil. There is a tendency that the conduction resistance with the conductor 4 becomes large.
[0021]
The average particle size of the metal powder 5 is preferably 5 to 10 μm. If the average particle size is smaller than 5 μm, the viscosity of the paste tends to be too high to be satisfactorily embedded. It tends to be high. Therefore, the average particle size of the metal powder 5 is preferably 5 to 10 μm.
[0022]
The thermosetting resin is preferably a triazine-based thermosetting resin such as triallyl cyanurate or triallyl isocyanurate / tris epoxypropyl isocyanurate / tris (2-hydroxyethyl) isocyanurate.
[0023]
In the wiring board of the present invention, the wiring conductor 2 has a diffusion layer containing Cu 3 Sn formed by diffusing tin on the surface of the copper foil connected to the through conductor 4. is important.
According to the wiring board of the present invention, since the diffusion layer containing Cu 3 Sn formed by diffusion of tin is formed on the surface of the copper foil connected to the through conductor 4, the metal powder of the through conductor 4 is formed. 5 and the copper foil of the wiring conductor 2 are connected through the diffusion layer 6 containing Cu 3 Sn having high conductivity while being a dissimilar metal, so that the bonding between the two becomes strong and, as a result, the wiring Even when a long-term thermal load is repeatedly applied to the substrate, the conduction resistance between them does not increase, and the wiring substrate has excellent connection reliability without disconnection between the wiring conductor and the through conductor. be able to. Furthermore, since the copper-tin compound made of Cu 3 Sn of the diffusion layer 6 has high conductivity, the junction between the through conductor 4 and the wiring conductor 2 can have low resistance.
[0024]
The diffusion layer 6 containing Cu 3 Sn is formed of a wiring conductor 2 made of copper, a metal powder 5 containing tin as a main component, and a penetrating conductor 4 filled with a conductive material containing a thermosetting resin. Are formed by performing a heat treatment at a temperature equal to or higher than the melting point of tin (about 232 ° C.) for several minutes to several hours. Examples of the formed copper tin compound include Cu 3 Sn and Cu 6 Sn 5 . Cu 3 Sn is a crystalline compound in which copper and tin have a ratio of 3: 1. Since the diffusion layer 6 contains Cu 3 Sn, the metal powder 5 of the through conductor 4 and the copper foil of the wiring conductor 2 Becomes strong, and the resistance of the joint can be reduced. Note that Cu 6 Sn 5 may be present in the diffusion layer 6 together with Cu 3 Sn, but in that case, the Cu 3 Sn ratio is preferably 5% or more. In order to form a sufficient amount of the Cu 3 Sn diffusion layer 6, it is preferable to heat-treat the wiring board at a temperature equal to or higher than the melting point of tin (about 232 ° C.) for 1 hour or more.
[0025]
Such a component ratio of Cu 3 Sn and Cu 6 Sn 5 .Cu in the diffusion layer 6 can be quantified by a scanning electron micrograph (SEM photograph) of a cross section of the wiring substrate. According to this SEM photograph, Cu 3 Sn and Cu 6 Sn 5 .Cu can be distinguished by their respective color densities, and the color depth of Cu 3 Sn is the highest, then Cu 6 Sn 5 , and then Cu The order is black.
[0026]
If the thickness of the diffusion layer 6 formed by diffusion of tin is smaller than 1 μm, the conduction resistance tends to increase. If the thickness is larger than 5 μm, the resistance of the tin-copper alloy is higher than the resistance of the copper foil. Therefore, the conduction resistance tends to increase. Therefore, the thickness of the diffusion layer 6 formed by diffusion of tin on the surface of the wiring conductor 2 connected to the through conductor 4 is preferably 1 to 5 μm.
[0027]
Further, the spread of the diffusion layer 6 on the surface of the wiring conductor 2 connected to the through conductor 4 is preferably 1 to 30% with respect to the opening of the through conductor 4. If the spread of the diffusion layer 6 is less than 1%, the bond between the metal powder 5 and the wiring conductor 2 becomes weak, and the conduction resistance between the two tends to increase when a long-term heat load is repeatedly applied to the wiring board. If it exceeds 30%, when the metal powder 5 described later is melted at a high temperature, the thermosetting resin tends to be thermally degraded and the insulating property of the insulating layer 1 tends to be reduced. Therefore, the spread of the diffusion layer 6 on the surface of the wiring conductor 2 connected to the through conductor 4 is preferably 1% to 30% of the opening of the through conductor 4.
[0028]
Thus, according to the wiring board of the present invention, since the diffusion layer containing the copper tin compound composed of Cu 3 Sn formed by diffusion of tin is formed on the surface of the copper foil connected to the through conductor 4. Since the metal powder 5 of the through conductor 4 and the copper foil of the wiring conductor 2 are different metals, they are connected via the diffusion layer 6 containing a copper-tin compound made of Cu 3 Sn having high conductivity. The result is that even when a long-term thermal load is repeatedly applied to the wiring board, the conduction resistance between them does not increase and the wiring conductor breaks between the wiring conductor and the through conductor. It is possible to obtain a wiring board having no connection reliability and excellent in connection reliability.
[0029]
Such a wiring board is manufactured by the method described below. First, an insulating sheet is manufactured by impregnating a thermosetting resin precursor made of an epoxy resin or a modified polyphenylene resin or the like into a heat-resistant fiber base material such as a glass cloth or an aramid fiber, and semi-curing the impregnated sheet. A through hole 3 having a diameter of 30 to 200 μm is formed at a predetermined position by using a conventionally known method such as a carbon dioxide laser or a YAG laser.
[0030]
Then, a paste containing a metal powder containing tin as a main component and a thermosetting resin precursor such as a triazine-based resin is filled into the through-holes 3 by a screen printing method (press-fitting). Thus, the through conductor 4 is formed. Then, a separately prepared transfer sheet made of a heat-resistant resin such as polyethylene terephthalate (PET) resin in which a wiring conductor 2 made of copper foil on the surface is formed in a predetermined pattern on the insulating sheet, A predetermined through conductor 4 and a wiring conductor 2 are aligned so as to be connected and overlapped, and these are pressed with a hot press at a temperature of 100 to 150 ° C. for several minutes to press the transfer sheet against the insulating sheet. Then, the wiring conductor 2 is transferred and embedded in the insulating sheet.
[0031]
Thereafter, the transfer sheet is peeled off from the insulating sheet, and a plurality of insulating sheets from which the transfer sheet has been peeled are stacked one on top of the other, and hot-pressed at a temperature equal to or higher than the softening point of tin for 1 hour or more using a hot press machine. The tin of the metal powder 5 diffuses into the surface of the wiring conductor 2 in contact with the through conductor 4, resulting in a wiring substrate on which a diffusion layer 6 containing a copper tin compound made of Cu 3 Sn is formed.
[0032]
A part of the wiring conductor 2 formed on one outermost layer surface of the insulating layer 1 is connected to each electrode of the electronic component 7 via the conductor bump 11 as described above, for mounting the electronic component 7. Of the wiring conductor 2 formed on the surface of the other outermost layer of the insulating layer 1 is connected to each electrode of an external electric circuit board (not shown) via a conductor bump. Mounting electrodes are formed. Then, on the surface of the mounting electrode, a plating layer made of nickel-gold or the like having good wettability with solder and excellent corrosion resistance is provided in order to prevent the oxidation corrosion and improve the connection with the conductor bumps. Is attached.
[0033]
Further, the outermost insulating layer 1 and the mounting electrode are covered with the solder-resistant resin layer 12 having an opening for exposing the central portion of the mounting electrode as necessary, as described above. The solder-resistant resin layer 12 is formed by applying an uncured resin film composed of a photosensitive resin, a photoinitiator, and an inorganic powder filler to the surface of the outermost insulating layer 1 or by using a thermosetting resin and an inorganic powder filler. The uncured resin varnish is applied to the surface of the outermost insulating layer 1 and dried, and thereafter, an opening is formed by exposure and development, and the opening is formed by UV curing and heat curing.
[0034]
In the electronic device of the present invention, the electronic component 7 is mounted on the surface of the above-described wiring board, and each electrode of the electronic component 7 is electrically connected to the mounting electrode of the wiring board via the conductive bump 11. Produced by In the electronic device of the present invention, the electronic component 7 and the through conductor 4 may be directly connected via the conductor bump 11.
[0035]
Thus, according to the electronic device of the present invention, the electronic component 7 is mounted on the surface of the wiring board, and the electrodes of the electronic component 7 are electrically connected to the wiring conductor 2 or the through conductor 4. The wiring conductor 2 and the through conductor 4 are firmly connected via the diffusion layer 6 containing a copper tin compound made of Cu 3 Sn formed on the foil. As a result, a long-term heat load is repeatedly applied to the electronic device. Even so, the conduction resistance between the wiring conductor 2 and the through conductor 4 does not increase, and an electronic device with excellent connection reliability without disconnection between the wiring conductor 2 and the through conductor 4 can be provided.
[0036]
It should be noted that the present invention is not limited to the above-described embodiment, and various changes can be made without departing from the gist of the present invention. For example, in the above-described embodiment, when four insulating layers are laminated. However, five or more layers may be used.
[0037]
【The invention's effect】
According to the wiring board of the present invention, since the diffusion layer containing Cu 3 Sn formed by diffusion of tin is formed on the surface of the copper foil connected to the through conductor, the metal powder of the through conductor and the wiring Since the copper foil of the conductor is a dissimilar metal and is connected through a diffusion layer containing Cu 3 Sn having high conductivity, the bonding between the two becomes strong, and as a result, long-term heat is applied to the wiring board. Even when a load is repeatedly applied, the conduction resistance between the two does not increase, and a wiring board having excellent connection reliability without disconnection between the wiring conductor and the through conductor can be provided.
[0038]
Further, according to the electronic device of the present invention, the electronic component is mounted on the surface of the wiring board, and the electrodes of the electronic component are electrically connected to the wiring conductor or the through conductor. The wiring conductor and the through conductor are firmly connected via the diffusion layer containing Cu 3 Sn having high conductivity. As a result, even when a long-term thermal load is repeatedly applied to the electronic device, the wiring conductor and the through conductor are not connected to each other. Thus, an electronic device having excellent connection reliability without disconnection between the wiring conductor and the through conductor without increasing the conduction resistance of the wiring conductor can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an example of an embodiment of an electronic device in which an electronic component such as a semiconductor element is mounted on a wiring board of the present invention.
FIG. 2 is an enlarged sectional view of a main part of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Insulating layer 2 ... Wiring conductor 3 ... Through hole 4 ... Through conductor 5 ... Metal powder 6 ... ..Diffusion layer 7 ... Electronic components

Claims (2)

耐熱性繊維基材に熱硬化性樹脂を含浸させて成る絶縁層と銅箔から成る配線導体とを交互に複数層積層するとともに、前記絶縁層を挟んで上下に位置する前記配線導体同士を、前記絶縁層に設けた貫通孔を錫を主成分とする金属粉末および熱硬化性樹脂を含む導電性材料で充填して成る貫通導体により電気的に接続して成る配線基板において、前記配線導体は前記貫通導体と接続された表面に前記錫が拡散して形成されたCuSnを含有する拡散層が形成されていることを特徴とする配線基板。While alternately laminating a plurality of wiring layers made of a copper foil and an insulating layer formed by impregnating a thermosetting resin into a heat-resistant fiber base material, the wiring conductors positioned vertically above and below the insulating layer, In a wiring board, the through holes provided in the insulating layer are electrically connected by through conductors filled with a conductive material containing a metal powder containing tin as a main component and a thermosetting resin, wherein the wiring conductors are A wiring board, wherein a diffusion layer containing Cu 3 Sn formed by diffusion of tin is formed on a surface connected to the through conductor. 請求項1記載の配線基板の表面に電子部品を実装するとともに、該電子部品の電極を前記配線導体または前記貫通導体に電気的に接続して成ることを特徴とする電子装置。An electronic device comprising: an electronic component mounted on a surface of the wiring board according to claim 1; and an electrode of the electronic component electrically connected to the wiring conductor or the through conductor.
JP2002343337A 2002-11-27 2002-11-27 Wiring board and electronic device using the same Pending JP2004179362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002343337A JP2004179362A (en) 2002-11-27 2002-11-27 Wiring board and electronic device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002343337A JP2004179362A (en) 2002-11-27 2002-11-27 Wiring board and electronic device using the same

Publications (1)

Publication Number Publication Date
JP2004179362A true JP2004179362A (en) 2004-06-24

Family

ID=32705134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002343337A Pending JP2004179362A (en) 2002-11-27 2002-11-27 Wiring board and electronic device using the same

Country Status (1)

Country Link
JP (1) JP2004179362A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143099A1 (en) * 2007-05-17 2008-11-27 Fujikura Ltd. Laminated wiring board and method for manufacturing the same
JP2009111331A (en) * 2007-10-26 2009-05-21 Samsung Electro Mech Co Ltd Printed-circuit substrate and manufacturing method therefor
US8587116B2 (en) 2010-09-30 2013-11-19 Infineon Technologies Ag Semiconductor module comprising an insert
US9214442B2 (en) * 2007-03-19 2015-12-15 Infineon Technologies Ag Power semiconductor module, method for producing a power semiconductor module, and semiconductor chip
WO2023248658A1 (en) * 2022-06-23 2023-12-28 株式会社村田製作所 Circuit module and method for manufacturing circuit module

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9214442B2 (en) * 2007-03-19 2015-12-15 Infineon Technologies Ag Power semiconductor module, method for producing a power semiconductor module, and semiconductor chip
WO2008143099A1 (en) * 2007-05-17 2008-11-27 Fujikura Ltd. Laminated wiring board and method for manufacturing the same
JPWO2008143099A1 (en) * 2007-05-17 2010-08-05 株式会社フジクラ Multilayer wiring board and manufacturing method thereof
CN101683007B (en) * 2007-05-17 2011-12-28 株式会社藤仓 Laminated wiring board and method for manufacturing the same
KR101116712B1 (en) * 2007-05-17 2012-03-13 가부시키가이샤후지쿠라 Laminated wiring board and method for manufacturing the same
JP4955763B2 (en) * 2007-05-17 2012-06-20 株式会社フジクラ Multilayer wiring board and manufacturing method thereof
US8502086B2 (en) 2007-05-17 2013-08-06 Fujikura Ltd. Laminated wiring board and method for manufacturing the same
JP2009111331A (en) * 2007-10-26 2009-05-21 Samsung Electro Mech Co Ltd Printed-circuit substrate and manufacturing method therefor
US8587116B2 (en) 2010-09-30 2013-11-19 Infineon Technologies Ag Semiconductor module comprising an insert
WO2023248658A1 (en) * 2022-06-23 2023-12-28 株式会社村田製作所 Circuit module and method for manufacturing circuit module

Similar Documents

Publication Publication Date Title
JP3619395B2 (en) Semiconductor device built-in wiring board and manufacturing method thereof
EP0647090A1 (en) Printed wiring board and a method of manufacturing such printed wiring boards
EP1220589A2 (en) Printed wiring board and method for manufacturing printed wiring board
CN104869753A (en) Printed Circuit Board And Method Of Manufacturing The Same
JP4917271B2 (en) Wiring board manufacturing method
JP2009290135A (en) Manufacturing method of printed wiring board, and conductive cement
US20060168803A1 (en) Layered board and manufacturing method of the same, electronic apparatus having the layered board
JPWO2010103695A1 (en) Manufacturing method of component built-in module and component built-in module
JPH1093242A (en) Printed wiring board
JP2002094242A (en) Material for connecting layers of printed multi-layer board and method for manufacturing printed multi-layer board using the material
JP5397012B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
JP2014179430A (en) Multilayer printed wiring board for mounting semiconductor element
JP3930222B2 (en) Manufacturing method of semiconductor device
JP2004179362A (en) Wiring board and electronic device using the same
US20090288293A1 (en) Metal core package substrate and method for manufacturing the same
JP2005026573A (en) Manufacturing method of module with built-in component
JP5369875B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
JP2008166456A (en) Wiring board and its manufacturing method
US20120122278A1 (en) Method Of Manufacturing Semiconductor Package Board
JP2004179171A (en) Wiring board
JP3924453B2 (en) WIRING BOARD AND ELECTRONIC DEVICE USING THE SAME
JP2004200501A (en) Wiring board
JP5311656B2 (en) Wiring board
JP5766387B2 (en) Electronic component built-in type two-layer wiring board and electronic component built-in type two-layer wiring board
JP2004031814A (en) Wiring board and electronic device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080415