JP2004195763A - Method for manufacturing ceramic substrate - Google Patents

Method for manufacturing ceramic substrate Download PDF

Info

Publication number
JP2004195763A
JP2004195763A JP2002365934A JP2002365934A JP2004195763A JP 2004195763 A JP2004195763 A JP 2004195763A JP 2002365934 A JP2002365934 A JP 2002365934A JP 2002365934 A JP2002365934 A JP 2002365934A JP 2004195763 A JP2004195763 A JP 2004195763A
Authority
JP
Japan
Prior art keywords
ceramic substrate
substrate
acrylic resin
manufacturing
coating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002365934A
Other languages
Japanese (ja)
Other versions
JP4217063B2 (en
Inventor
Hiroyuki Shiromoto
浩之 城本
Yasuo Yabunaka
康雄 藪中
Yukio Shimada
幸雄 嶋田
Motoyuki Mizuno
素行 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KMEW Co Ltd
Original Assignee
Kubota Matsushitadenko Exterior Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Matsushitadenko Exterior Works Ltd filed Critical Kubota Matsushitadenko Exterior Works Ltd
Priority to JP2002365934A priority Critical patent/JP4217063B2/en
Publication of JP2004195763A publication Critical patent/JP2004195763A/en
Application granted granted Critical
Publication of JP4217063B2 publication Critical patent/JP4217063B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a ceramic substrate, capable of preventing the mutual adhesion of the substrates after molding or at the time of ageing to enable the stacking of the substrates and consequently enhancing productivity. <P>SOLUTION: In the method for manufacturing the ceramic substrate comprising stacking the substrates obtained by extruding a raw material slurry containing at least cement as a solid component and molding the extrudate and ages them, the rear surface of the substrate of which the contact angle with water is set 50-80° is coated with a water soluble acrylic resin coating material which contains a resin component with a molecular weight of 1,000-9,000 and of which the contact angle with the substrate is 10-40° and then, the coated substrates are stacked and aged. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この出願の発明は、窯業系基板の製造方法に関するものである。さらに、詳しくは、この出願の発明は、オートクレーブ養生時またはオートクレーブ養生後の基材同士が付着することを防ぎ、生産性を向上させることのできる窯業系基板の製造方法に関するものである。
【0002】
【従来の技術】
窯業系基板は、外壁材、屋根材等の外装材として広く用いられており、表面に柄、目地等の凹凸模様、着色、塗装等の施された多種多様の意匠を有するものが提供されている。
【0003】
従来の窯業系基板の製造方法では、窯業系基板は、通常、少なくともセメントを固形分成分として含有する原料スラリーを押出し、得られる湿潤板をプレス機によって成形して模様付けし、次いで成形された基材を積載して室温にて養生し、さらにオートクレーブ中で高温高圧下にて養生、硬化することによって得られている。また、上塗り塗装を施すことにより、化粧被膜を形成している。
【0004】
窯業系基板は、その用途上、乾湿、熱、紫外線、あるいは寒冷地での凍結融解など、環境変化によるストレスを受けるものである。そのため、経年によって、化粧被膜と基材の密着性の低下や基材の退色といった問題が発生しやすい。また、養生時や長期使用中に基材中に水が浸透することによりエフロレッセンスが発生し、化粧塗膜の剥離や窯業系基板の劣化も起こりやすい。
【0005】
そこで、窯業系基板の製造においては、アクリル系エマルジョン塗料等の樹脂分散液を養生前の基材に塗布して樹脂被膜を形成し、養生後、上塗り塗装を施して化粧被膜を形成していた。これにより、分散液中の樹脂成分が基材と化粧被膜との密着性を上げ、さらに基材板表面に形成された樹脂被膜により、水分が原板に浸透することを防ぎ、基板の退色やエフロレッセンスの発生を防止すると期待されていた。
【0006】
しかし、このような窯業系基板の製造方法では、養生の際に、積載された基板同士が付着してしまい、ブロッキングが起こり、良好な基板が得られないという問題があった。
【0007】
このような問題を解決するものとして、アクリル系エマルジョン塗料にパラフィン等のブロッキング防止剤を添加し、基板の裏面に塗装する方法が提案されている(例えば、特許文献1)。また、アクリル系エマルジョン塗料にフィラーを混合し、基板同士の接触面積を小さくする方法も提案されている。これらの方法では、塗料中の樹脂成分が基材に含浸され、かつ、基材表面にはピンホールのない良好な薄膜が形成されるため、薄膜がアンカリングされて高い塗膜密着性が得られ、十分な耐ブロッキング性と防水性が得られると考えられていた。
【0008】
【特許文献1】
特開昭57−38385
【0009】
【発明が解決しようとする課題】
しかし、提案されたこれらの方法においても、凹凸の多い基板では、積載時の荷重や高温高圧条件により、ブロッキング防止剤やフィラーの効果が十分に発揮されず、窯業系基板同士が密着してしまう場合があり、生産性の低下に繋がっていたのが実情である。また、押出成形により得られる基板は、表裏面が緻密であるため、ブロッキング防止剤やフィラーを含有する塗料が十分に含浸されず、密着性の高い塗膜が得られないという新たな問題も生じた。
【0010】
そこで、この出願の発明は、以上のとおりの事情に鑑みてなされたものであり、従来技術の問題点を解消し、成形後や養生時に基板同士が付着することを防ぐことにより積載を可能とし、それにより生産性を向上させることが可能な窯業系基板の製造方法を提供することを課題としている。
【0011】
【課題を解決するための手段】
この出願の発明は、上記の課題を解決するものとして、第1には、少なくともセメントを固形分成分として含有する原料スラリーを押出し、成形して得られる基材を積載、養生する窯業系基板の製造方法において、水との接触角を50〜80°とした基材裏面に、分子量が1000〜9000の樹脂成分を含有し基材との接触角が10〜40°である水溶性アクリル系樹脂塗料を塗布した後、積載、養生することを特徴とする窯業系基板の製造方法を提供する。
【0012】
この出願の発明は、第2には、水溶性アクリル系樹脂塗料のゲル分率を80%以上とする前記の窯業系基板の製造方法を提供する。
【0013】
そして、この出願の発明は、第3には、基材の表面に、樹脂成分のTgが20〜60℃であるアクリル系エマルジョン塗料を塗布する前記いずれかの窯業系基板の製造方法をも提供する。
【0014】
【発明の実施の形態】
この出願の発明の窯業系基板の製造方法は、少なくともセメントを固形分成分として含有する原料スラリーを押出し成形して得られる基材裏面に、分子量が1000〜9000である樹脂成分を含有し基板裏面との接触角が10〜40°である水溶性アクリル樹脂塗料を塗布した後、積載、養生するものである。また、このとき、基材裏面の水との接触角を50〜80°とするものである。
【0015】
この出願の発明の窯業系基板の製造方法においては、基材裏面に塗布されたアクリル系樹脂塗料中の樹脂成分は、基材に含浸された後硬化して、基材にアンカリングされたピンホールのない良好な塗膜を形成する。このように形成された塗膜は、基材裏面に高い防水性を付与するとともに、積載時やオートクレーブ養生時に基材のブロッキングを防止できるものである
このとき、原料スラリーの組成および押出しや成形の条件等はとくに限定されない。基材そのものの防水性が高いことが望ましいことから、基材裏面の水との接触角を50〜80°とする。このような接触角は、例えば、原料スラリー中に有機添加物を添加することにより実現してもよいし、押出し速度や成形温度を調整することにより実現してもよい。
【0016】
この出願の発明の窯業系基板の製造方法において使用される水溶性アクリル系樹脂塗料は、分子量が1000〜9000のアクリル系樹脂を含有し、基材との接触角が10〜40°であればよい。アクリル系樹脂の分子量が1000未満の場合には、水溶性アクリル系樹脂塗料の基材への含浸性が高くなりすぎるため、基材裏面に良好な塗膜が得られず、ブロッキング防止効果が発揮できなくなる場合がある。一方、アクリル系樹脂の分子量が9000より大きな場合には、良好な塗膜が形成されるものの、基材への樹脂成分の含浸性が低下するため、塗膜がアンカリングされず、塗膜剥離が生じやすくなる。そのため、窯業系基板の使用中にエフロレッセンスの発生や基材の退色、劣化等が生じやすくなる。
【0017】
この出願の発明の窯業系基板の製造方法では、このようなアクリル系樹脂塗料におけるアクリル系樹脂は、架橋性ものであることが望ましく、その架橋度は、ゲル分率で80%以上であることが望ましい。ゲル分率が80%以上のアクリル系樹脂塗料では、得られる塗膜が均一で強度の高いものとなるため、ブロッキングが生じにくくなるとともに、基板裏面付近が補強される。さらに、防水性も高まり、長期に渡りエフロレッセンスの発生や窯業系基板の劣化を防止することが可能となる。一方、アクリル系樹脂のゲル分率が80%よりも低い場合には、アクリル系樹脂塗料の基材への含浸性は高くなるが、塗膜そのものの強度が低下するため、十分なブロッキング防止効果が得られない場合がある。
【0018】
以上のとおりのアクリル系樹脂塗料は、樹脂成分のほかに、例えば、骨材を含有していてもよい。骨材は、窯業系基板裏面に形成される防水性塗膜上に微細な凹凸を付与するため、窯業系基板の積載時に裏面の接触面積が減少し、ブロッキング防止効果がより増大すると期待される。骨材の種類はとくに限定されず、例えば、砂、砕石、スラグ、パーライト、珪砂、珪藻土、シリカ等が例示される。あるいは、骨材以外にも、各種の添加剤や顔料、具体的には、酸化チタン、亜鉛華、酸化鉄、黄鉛等の着色無機顔料、フタロシアニンブルー、ベンジンイエロー等の着色有機顔料、石英粉、酸化アルミナ、沈降性硫酸バリウム等の体質顔料、ステンレス粉、亜鉛粉、アルミニウム粉、ブロンズ粉、雲母粉等の金属粉等を含有していてもよい。
【0019】
さらに、この出願の発明の窯業系基板の製造方法においては、基材表面に、樹脂成分のTgが20〜60℃であるアクリル系エマルジョン塗料を塗布することが望ましい。一般に、このような20〜60℃のTgを有する樹脂塗膜は、柔軟性を有し、高い防水性とともに優れた耐凍害性をも発揮する。樹脂成分のTgが20℃未満の場合には、基材への含浸性が高まるものの、良好な塗膜が得られ難くなり、十分な防水性が付与できない。一方、Tgが60℃よりも高い場合には得られる塗膜が硬くなるためクラックが発生しやすくなり、耐凍害性も低下するため、好ましくない。
【0020】
この出願の発明の窯業系基板の製造方法では、水溶性アクリル系樹脂塗料およびアクリル系エマルジョン塗料の塗布方法や塗布量はとくに限定されない。例えば、刷毛、ローラー、スプレー等の一般的な方法で基板裏面または表面に塗布することができる。
【0021】
以上のとおりの窯業系基板の製造方法では、裏面に塗布される水溶性アクリル系樹脂塗料は、一度硬化することにより、積載、養生工程においても高いブロッキング防止効果を付与できるものである。また、このような窯業系基板の製造方法では、水溶性アクリル系樹脂塗料中の樹脂成分が基材裏面に含浸され、その後硬化するため、形成される樹脂塗膜は基板裏面に強固にアンカリングされたものとなり、オートクレーブ養生におけるエフロレッセンスの発生を防ぐこともできる。したがって、窯業系基板の生産性の向上が期待できる。
【0022】
さらに、窯業系基板の使用時においては、降雨などによる水分の浸透が防止されるため、長期にわたり防水効果、退色防止効果、および意匠性が持続される。
【0023】
以下、実施例を示し、さらにこの出願の発明の窯業系基板の製造方法について説明する。もちろん、この出願の発明は以下の実施例に限定されるものではなく、細部については、様々な態様が可能であることは言うまでもない。
【0024】
【実施例】
<実施例1>
普通ポルトランドセメント40重量%、珪酸質原料55重量%、有機繊維4重量%、有機添加物1重量%を固形分とする原料スラリーを押出し、脱水プレスして基材を得た。
【0025】
得られた基材裏面に、分子量1000でゲル分率90%のアクリル系樹脂を含有し、表面調整剤を加えて基材裏面側に対する接触角を40°に調整した水溶性アクリル樹脂塗料を2g/m2(固)塗布した。さらに、基材表面には、アクリルスチレン系樹脂エマルジョン塗料を10g/m2(固)塗布し、300g/cm2の荷重を加えながら、オートクレーブ中170℃で4時間養生して窯業系基板を得た。
(a)得られた窯業系基板におけるブロッキングポイントを数えた(耐ブロッキング性評価)
(b)窯業系基板裏面の防水性塗膜に接着性をもつシートを付着させ、剥離試験を実施し、剥離度により塗膜密着性を評価した(塗膜密着性試験)。
【0026】
耐ブロッキング性評価および塗膜密着性試験の結果を表1に示した。
<実施例2>
アクリル系樹脂塗料における樹脂成分の分子量を5000とした以外は、実施例1と同様の方法により窯業系基板を製造した。
【0027】
得られた窯業系基板について、耐ブロッキング性評価および塗膜密着性試験を行い、結果を表1に示した。
<実施例3>
アクリル系樹脂塗料における樹脂成分の分子量を9000とした以外は、実施例1と同様の方法により窯業系基板を製造した。
【0028】
得られた窯業系基板について、耐ブロッキング性評価および塗膜密着性試験を行い、結果を表1に示した。
<実施例4>
アクリル系樹脂塗料の基材裏面に対する接触角を10°とした以外は、実施例2と同様の方法により窯業系基板を製造した。
【0029】
得られた窯業系基板について、耐ブロッキング性評価および塗膜密着性試験を行い、結果を表1に示した。
<実施例5>
アクリル系樹脂塗料における樹脂成分のゲル分率を80%とした以外は、実施例2と同様の方法により窯業系基板を製造した。
【0030】
得られた窯業系基板について、耐ブロッキング性評価および塗膜密着性試験を行い、結果を表1に示した。
<比較例1>
アクリル系樹脂塗料における樹脂成分の分子量を600とした以外は、実施例1と同様の方法により窯業系基板を製造した。
【0031】
得られた窯業系基板について、耐ブロッキング性評価および塗膜密着性試験を行い、結果を表1に示した。
<比較例2>
アクリル系樹脂塗料における樹脂成分の分子量を20000とした以外は、実施例1と同様の方法により窯業系基板を製造した。
【0032】
得られた窯業系基板について、耐ブロッキング性評価および塗膜密着性試験を行い、結果を表1に示した。
<比較例3>
アクリル系樹脂塗料の基材裏面に対する接触角を60°とした以外は、実施例2と同様の方法により窯業系基板を製造した。
【0033】
得られた窯業系基板について、耐ブロッキング性評価および塗膜密着性試験を行い、結果を表1に示した。
<比較例4>
アクリル系樹脂塗料における樹脂成分のゲル分率を70%とした以外は、実施例2と同様の方法により窯業系基板を製造した。
【0034】
得られた窯業系基板について、耐ブロッキング性評価および塗膜密着性試験を行い、結果を表1に示した。
【0035】
【表1】

Figure 2004195763
表1より、基材裏面に、分子量1000〜9000でゲル分率が80%以上の樹脂成分を含有し、基材裏面に対する接触角が10〜40°である水溶性アクリル系樹脂塗料を塗装した窯業系基板では、基材同士の密着が見られず、優れた耐ブロッキング性が発揮されることが確認された。(実施例1〜5)
一方、水溶性アクリル系樹脂塗料における樹脂成分の分子量が1000未満の場合には、ブロッキングポイントが多数見られ、十分な耐ブロッキング性が得られなかった。(比較例1)
また、水溶性アクリル系樹脂塗料における樹脂成分の分子量が9000より大きい場合には、部分的にブロッキングが見られた上、塗膜剥離が起こりやすかった。これは、水溶性アクリル系樹脂塗料中の樹脂成分が基材裏面に含浸されず、塗膜がアンカリングされなかったためと考えられる。(比較例2)
同様に、水溶性アクリル系樹脂塗料の基材裏面に対する接触角が40°より大きいときには、部分的にブロッキングが見られ、かつ塗膜剥離も起こりやすかった。(比較例3)
さらに、水溶性アクリル系樹脂塗料における樹脂成分のゲル分率が80%未満の場合には、部分的にブロッキングが発生し、塗膜の剥離も若干観察された。(比較例4)
<実施例6〜7、比較例5>
実施例2と同様の方法で基材裏面に水溶性アクリル系樹脂塗料を塗装し、基材表面に、Tgが20°、60℃、70℃のアクリルスチレン系樹脂を含有するアクリルスチレン系樹脂エマルジョン塗料を2g/m2(固)塗布した。
【0036】
得られた窯業系基板の耐ブロッキング性と塗膜密着性を評価し、結果を表2に示した。
【0037】
【表2】
Figure 2004195763
表2より、Tgが20〜60℃のアクリルスチレン系樹脂を含有する塗料を塗装することにより、ブロッキングが起こることなく、密着性の高い良好な塗膜が得られることが確認された。(実施例6〜7)
一方、Tgが60℃よりも高いアクリルスチレン系樹脂を含有する塗料では、ブロッキングは見られなかったものの、塗膜の密着性が低下することが明らかになった。(比較例5)
【0038】
【発明の効果】
以上詳しく説明したとおり、この出願の発明によって、窯業系基板の退色や、長期の使用による化粧被膜の剥離を防止できることが示された。また、このような方法を用いて窯業系基板を製造することにより、積載、養生工程における基板同士の付着、さらにはオートクレーブ養生時のエフロレッセンスの発生が防止でき、生産性が向上する。また、この出願の発明によって、窯業系基板の経年による劣化をも防止できる。[0001]
TECHNICAL FIELD OF THE INVENTION
The invention of this application relates to a method for manufacturing a ceramic substrate. More specifically, the invention of this application relates to a method for manufacturing a ceramic substrate that can prevent the substrates from being adhered to each other during or after autoclaving and improve productivity.
[0002]
[Prior art]
Ceramic substrates are widely used as exterior materials such as exterior wall materials and roofing materials, and are provided with a wide variety of designs on the surface, such as patterns, uneven patterns such as joints, coloring, and painting. I have.
[0003]
In the conventional method of manufacturing a ceramic substrate, the ceramic substrate is usually extruded a raw material slurry containing at least cement as a solid component, and the resulting wet plate is molded and patterned by a press machine, and then molded. It is obtained by mounting a substrate, curing at room temperature, and curing and curing under high temperature and high pressure in an autoclave. In addition, a decorative coating is formed by applying a top coat.
[0004]
Ceramic substrates are subject to stress due to environmental changes such as dry and wet, heat, ultraviolet light, or freezing and thawing in cold regions. Therefore, problems such as a decrease in adhesion between the decorative film and the substrate and fading of the substrate are likely to occur over time. In addition, water penetrates into the base material during curing or during long-term use, and efflorescence occurs, and peeling of the decorative coating film and deterioration of the ceramic substrate are likely to occur.
[0005]
Therefore, in the manufacture of ceramic substrates, a resin dispersion such as an acrylic emulsion paint was applied to a substrate before curing to form a resin film, and after curing, a top coat was applied to form a decorative film. . As a result, the resin component in the dispersion enhances the adhesion between the substrate and the decorative film, and the resin film formed on the surface of the substrate prevents moisture from penetrating into the original plate. It was expected to prevent the occurrence of redness.
[0006]
However, such a method for manufacturing a ceramic substrate has a problem in that, during curing, the stacked substrates adhere to each other, blocking occurs, and a good substrate cannot be obtained.
[0007]
In order to solve such a problem, a method has been proposed in which an antiblocking agent such as paraffin is added to an acrylic emulsion paint to coat the back surface of a substrate (for example, Patent Document 1). A method has also been proposed in which a filler is mixed with an acrylic emulsion paint to reduce the contact area between substrates. In these methods, the resin component in the coating material is impregnated into the base material, and a good thin film without pinholes is formed on the base material surface. It was thought that sufficient blocking resistance and waterproofness could be obtained.
[0008]
[Patent Document 1]
JP-A-57-38385
[0009]
[Problems to be solved by the invention]
However, even in these proposed methods, in the case of a substrate having many irregularities, due to the load at the time of loading and high-temperature and high-pressure conditions, the effects of the antiblocking agent and the filler are not sufficiently exerted, and the ceramic substrates adhere to each other. In some cases, this has led to a decline in productivity. In addition, since the substrate obtained by extrusion molding has dense front and back surfaces, a coating containing an antiblocking agent and a filler is not sufficiently impregnated, and a new problem that a coating film having high adhesion cannot be obtained also occurs. Was.
[0010]
Therefore, the invention of this application has been made in view of the circumstances described above, and solves the problems of the prior art, and enables stacking by preventing the substrates from adhering to each other after molding or curing. It is an object of the present invention to provide a method for manufacturing a ceramic substrate, which can improve productivity.
[0011]
[Means for Solving the Problems]
The invention of this application is to solve the above-mentioned problems. First, a raw material slurry containing at least cement as a solid component is extruded, a substrate obtained by molding is loaded, and a ceramic substrate is cured. In the production method, a water-soluble acrylic resin containing a resin component having a molecular weight of 1,000 to 9000 and having a contact angle with the substrate of 10 to 40 ° on the back surface of the substrate having a contact angle with water of 50 to 80 ° Provided is a method for manufacturing a ceramic substrate, which comprises loading and curing after applying a paint.
[0012]
Secondly, the invention of this application provides a method for producing the ceramic substrate described above, wherein the gel fraction of the water-soluble acrylic resin paint is 80% or more.
[0013]
Thirdly, the invention of this application also provides a method of manufacturing any of the ceramic substrates described above, wherein an acrylic emulsion paint having a Tg of a resin component of 20 to 60 ° C. is applied to the surface of the base material. I do.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
The method for producing a ceramic substrate according to the invention of the present application is directed to a method for manufacturing a ceramic substrate, which comprises: extruding a raw material slurry containing at least cement as a solid component; After applying a water-soluble acrylic resin paint having a contact angle of 10 to 40 ° with the paint, the material is loaded and cured. At this time, the contact angle of the back surface of the base material with water is set to 50 to 80 °.
[0015]
In the method for manufacturing a ceramic substrate according to the invention of the present application, the resin component in the acrylic resin coating applied to the back surface of the base material is cured after being impregnated into the base material, and the pin anchored to the base material. Form a good coating film without holes. The coating film formed in this manner imparts high waterproofness to the back surface of the base material and can prevent blocking of the base material during loading or autoclaving. Conditions and the like are not particularly limited. Since it is desirable that the base material itself has high waterproofness, the contact angle of the back surface of the base material with water is set to 50 to 80 °. Such a contact angle may be realized, for example, by adding an organic additive to the raw material slurry, or may be realized by adjusting the extrusion speed or the molding temperature.
[0016]
The water-soluble acrylic resin paint used in the method for manufacturing a ceramic substrate of the invention of the present application contains an acrylic resin having a molecular weight of 1,000 to 9000, and has a contact angle with the substrate of 10 to 40 °. Good. When the molecular weight of the acrylic resin is less than 1,000, the water-soluble acrylic resin coating material has too high a degree of impregnation into the base material, so that a good coating film cannot be obtained on the back surface of the base material, and the anti-blocking effect is exhibited. May not be possible. On the other hand, when the molecular weight of the acrylic resin is larger than 9000, although a good coating film is formed, the impregnating property of the resin component into the base material is reduced, so that the coating film is not anchored and the coating film is peeled off. Tends to occur. For this reason, during the use of the ceramic substrate, the occurrence of efflorescence and the fading or deterioration of the base material are liable to occur.
[0017]
In the method for manufacturing a ceramic substrate according to the invention of the present application, the acrylic resin in such an acrylic resin paint is desirably crosslinkable, and the degree of crosslinking is 80% or more in terms of a gel fraction. Is desirable. In the case of an acrylic resin paint having a gel fraction of 80% or more, the coating film obtained is uniform and high in strength, so that blocking is unlikely to occur and the vicinity of the back surface of the substrate is reinforced. Further, the waterproofness is improved, and it is possible to prevent the occurrence of efflorescence and the deterioration of the ceramic substrate for a long period of time. On the other hand, when the gel fraction of the acrylic resin is lower than 80%, the impregnating property of the acrylic resin paint into the base material is high, but the strength of the coating film itself is reduced, so that a sufficient antiblocking effect is obtained. May not be obtained.
[0018]
The acrylic resin paint as described above may contain, for example, an aggregate in addition to the resin component. Aggregate is expected to reduce the contact area of the back surface when loading the ceramic substrate, and to further increase the anti-blocking effect, because it gives fine irregularities on the waterproof coating formed on the back of the ceramic substrate . The type of aggregate is not particularly limited, and examples thereof include sand, crushed stone, slag, pearlite, quartz sand, diatomaceous earth, and silica. Alternatively, besides the aggregate, various additives and pigments, specifically, colored inorganic pigments such as titanium oxide, zinc white, iron oxide, and graphite; colored organic pigments such as phthalocyanine blue and benzine yellow; and quartz powder , An extender pigment such as alumina oxide and precipitated barium sulfate, and a metal powder such as stainless powder, zinc powder, aluminum powder, bronze powder and mica powder.
[0019]
Further, in the method for manufacturing a ceramic substrate according to the invention of the present application, it is desirable to apply an acrylic emulsion paint having a Tg of the resin component of 20 to 60 ° C. on the surface of the base material. Generally, such a resin coating film having a Tg of 20 to 60 ° C. has flexibility, and exhibits excellent waterproofing and excellent frost damage resistance. When the Tg of the resin component is less than 20 ° C., although the impregnating property to the base material is enhanced, it is difficult to obtain a good coating film, and sufficient waterproofness cannot be provided. On the other hand, when the Tg is higher than 60 ° C., the obtained coating film is hard, so that cracks are easily generated, and the frost damage resistance is undesirably reduced.
[0020]
In the method for producing a ceramic substrate according to the invention of the present application, the method and amount of application of the water-soluble acrylic resin paint and the acrylic emulsion paint are not particularly limited. For example, it can be applied to the back surface or the front surface of the substrate by a general method such as brush, roller, spray and the like.
[0021]
In the method for manufacturing a ceramic substrate as described above, the water-soluble acrylic resin coating applied to the back surface can provide a high anti-blocking effect even in the loading and curing steps by being cured once. In addition, in such a method for manufacturing a ceramic substrate, the resin component in the water-soluble acrylic resin paint is impregnated on the back surface of the base material and then cured, so that the resin coating film formed is firmly anchored on the back surface of the substrate. Thus, the occurrence of efflorescence in the autoclave curing can be prevented. Therefore, an improvement in productivity of ceramic substrates can be expected.
[0022]
Furthermore, when the ceramic substrate is used, the penetration of moisture due to rainfall or the like is prevented, so that the waterproof effect, the discoloration preventing effect, and the design property are maintained for a long time.
[0023]
Hereinafter, examples will be shown, and a method for manufacturing a ceramic substrate of the invention of the present application will be described. Of course, the invention of this application is not limited to the following examples, and it goes without saying that various aspects are possible in detail.
[0024]
【Example】
<Example 1>
A raw material slurry containing 40% by weight of ordinary Portland cement, 55% by weight of a siliceous raw material, 4% by weight of organic fibers, and 1% by weight of an organic additive was extruded and dewatered and pressed to obtain a substrate.
[0025]
2 g of a water-soluble acrylic resin paint containing an acrylic resin having a molecular weight of 1000 and a gel fraction of 90% on the back surface of the obtained base material, and adjusting the contact angle to the back surface side of the base material to 40 ° by adding a surface conditioner. / M 2 (hard). Further, an acrylic styrene resin emulsion paint was applied to the substrate surface at a rate of 10 g / m 2 (solid) and cured in an autoclave at 170 ° C. for 4 hours while applying a load of 300 g / cm 2 to obtain a ceramic substrate. Was.
(A) The blocking points in the obtained ceramic substrate were counted (evaluation of blocking resistance).
(B) A sheet having adhesiveness was adhered to the waterproof coating film on the back surface of the ceramic substrate, and a peeling test was performed, and the coating film adhesion was evaluated based on the degree of peeling (coating film adhesion test).
[0026]
Table 1 shows the results of the blocking resistance evaluation and the coating film adhesion test.
<Example 2>
A ceramic substrate was manufactured in the same manner as in Example 1 except that the molecular weight of the resin component in the acrylic resin coating material was changed to 5000.
[0027]
The obtained ceramic substrate was evaluated for blocking resistance and coating film adhesion test, and the results are shown in Table 1.
<Example 3>
A ceramic substrate was manufactured in the same manner as in Example 1 except that the molecular weight of the resin component in the acrylic resin paint was changed to 9000.
[0028]
The obtained ceramic substrate was evaluated for blocking resistance and coating film adhesion test, and the results are shown in Table 1.
<Example 4>
A ceramic substrate was manufactured in the same manner as in Example 2 except that the contact angle of the acrylic resin paint with the back surface of the substrate was set to 10 °.
[0029]
The obtained ceramic substrate was evaluated for blocking resistance and coating film adhesion test, and the results are shown in Table 1.
<Example 5>
A ceramic substrate was manufactured in the same manner as in Example 2 except that the gel fraction of the resin component in the acrylic resin paint was set to 80%.
[0030]
The obtained ceramic substrate was evaluated for blocking resistance and coating film adhesion test, and the results are shown in Table 1.
<Comparative Example 1>
A ceramic substrate was manufactured in the same manner as in Example 1 except that the molecular weight of the resin component in the acrylic resin paint was changed to 600.
[0031]
The obtained ceramic substrate was evaluated for blocking resistance and coating film adhesion test, and the results are shown in Table 1.
<Comparative Example 2>
A ceramic substrate was manufactured in the same manner as in Example 1, except that the molecular weight of the resin component in the acrylic resin paint was changed to 20,000.
[0032]
The obtained ceramic substrate was evaluated for blocking resistance and coating film adhesion test, and the results are shown in Table 1.
<Comparative Example 3>
A ceramic substrate was manufactured in the same manner as in Example 2 except that the contact angle of the acrylic resin paint with respect to the back surface of the substrate was set to 60 °.
[0033]
The obtained ceramic substrate was evaluated for blocking resistance and coating film adhesion test, and the results are shown in Table 1.
<Comparative Example 4>
A ceramic substrate was manufactured in the same manner as in Example 2, except that the gel fraction of the resin component in the acrylic resin paint was set to 70%.
[0034]
The obtained ceramic substrate was evaluated for blocking resistance and coating film adhesion test, and the results are shown in Table 1.
[0035]
[Table 1]
Figure 2004195763
From Table 1, on the back surface of the base material, a water-soluble acrylic resin paint containing a resin component having a molecular weight of 1,000 to 9000 and a gel fraction of 80% or more and having a contact angle of 10 to 40 ° with respect to the back surface of the base material was applied. In the ceramic substrate, it was confirmed that adhesion between the substrates was not observed, and that excellent blocking resistance was exhibited. (Examples 1 to 5)
On the other hand, when the molecular weight of the resin component in the water-soluble acrylic resin paint was less than 1,000, many blocking points were observed, and sufficient blocking resistance was not obtained. (Comparative Example 1)
When the molecular weight of the resin component in the water-soluble acrylic resin coating was greater than 9,000, blocking was partially observed, and peeling of the coating film was likely to occur. This is probably because the resin component in the water-soluble acrylic resin paint was not impregnated on the back surface of the base material, and the coating film was not anchored. (Comparative Example 2)
Similarly, when the contact angle of the water-soluble acrylic resin paint with respect to the back surface of the substrate was larger than 40 °, blocking was partially observed, and peeling of the coating film was easily caused. (Comparative Example 3)
Further, when the gel fraction of the resin component in the water-soluble acrylic resin paint was less than 80%, blocking occurred partially and peeling of the coating film was slightly observed. (Comparative Example 4)
<Examples 6 and 7, Comparative Example 5>
An acrylic styrene resin emulsion containing an acrylic styrene resin having a Tg of 20 °, 60 ° C., and 70 ° C. on the back surface of the base material by applying a water-soluble acrylic resin paint on the back surface of the base material in the same manner as in Example 2. The coating was applied at 2 g / m 2 (solid).
[0036]
The obtained ceramic substrate was evaluated for blocking resistance and coating film adhesion, and the results are shown in Table 2.
[0037]
[Table 2]
Figure 2004195763
From Table 2, it was confirmed that by applying a coating containing an acrylic styrene resin having a Tg of 20 to 60 ° C, a good coating film having high adhesion was obtained without blocking. (Examples 6 and 7)
On the other hand, it was clarified that the coating containing the acrylic styrene-based resin having a Tg higher than 60 ° C. did not show any blocking, but reduced the adhesion of the coating film. (Comparative Example 5)
[0038]
【The invention's effect】
As described in detail above, it was shown that the invention of this application can prevent fading of the ceramic substrate and peeling of the decorative film due to long-term use. Further, by manufacturing a ceramic substrate using such a method, it is possible to prevent the substrates from adhering to each other in the loading and curing steps, and further to prevent the occurrence of efflorescence during the autoclave curing, thereby improving the productivity. Further, according to the invention of this application, deterioration of the ceramic substrate due to aging can be prevented.

Claims (3)

少なくともセメントを固形分成分として含有する原料スラリーを押出し、成形して得られる基材を積載、養生する窯業系基板の製造方法において、水との接触角を50〜80°とした基材裏面に、分子量が1000〜9000の樹脂成分を含有し基材との接触角が10〜40°である水溶性アクリル系樹脂塗料を塗布した後、積載、養生することを特徴とする窯業系基板の製造方法。Extrusion of a raw material slurry containing at least cement as a solid component, loading of a substrate obtained by molding, in the method of manufacturing a ceramic substrate to be cured, the contact angle with water 50-80 ° on the back surface of the substrate Manufacturing a ceramic substrate, comprising applying a water-soluble acrylic resin paint containing a resin component having a molecular weight of 1,000 to 9000 and having a contact angle with a substrate of 10 to 40 °, and then loading and curing. Method. 水溶性アクリル系樹脂塗料のゲル分率を80%以上とする請求項1の窯業系基板の製造方法。The method for producing a ceramic substrate according to claim 1, wherein the gel fraction of the water-soluble acrylic resin paint is 80% or more. 基材の表面には、樹脂成分のTgが20〜60℃であるアクリル系エマルジョン塗料を塗布する請求項1または2のいずれかの窯業系基板の製造方法。3. The method for manufacturing a ceramic substrate according to claim 1, wherein an acrylic emulsion paint having a Tg of a resin component of 20 to 60 [deg.] C. is applied to a surface of the base material.
JP2002365934A 2002-12-17 2002-12-17 Manufacturing method for ceramic substrates Expired - Fee Related JP4217063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002365934A JP4217063B2 (en) 2002-12-17 2002-12-17 Manufacturing method for ceramic substrates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002365934A JP4217063B2 (en) 2002-12-17 2002-12-17 Manufacturing method for ceramic substrates

Publications (2)

Publication Number Publication Date
JP2004195763A true JP2004195763A (en) 2004-07-15
JP4217063B2 JP4217063B2 (en) 2009-01-28

Family

ID=32763300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002365934A Expired - Fee Related JP4217063B2 (en) 2002-12-17 2002-12-17 Manufacturing method for ceramic substrates

Country Status (1)

Country Link
JP (1) JP4217063B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006062256A (en) * 2004-08-27 2006-03-09 Kubota Matsushitadenko Exterior Works Ltd Manufacturing method of inorganic board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006062256A (en) * 2004-08-27 2006-03-09 Kubota Matsushitadenko Exterior Works Ltd Manufacturing method of inorganic board

Also Published As

Publication number Publication date
JP4217063B2 (en) 2009-01-28

Similar Documents

Publication Publication Date Title
JP2007530405A (en) Glass ceramic plate or glass plate reinforcement and reinforcement plate
KR100653118B1 (en) Thin-layer coating composition of scattering method
JP4877708B2 (en) Pattern formation method
JP4217063B2 (en) Manufacturing method for ceramic substrates
JP4350503B2 (en) Cosmetic method
JP4021635B2 (en) Manufacturing method of inorganic board
JP4877719B2 (en) Pattern formation method
JP2003127121A (en) Method for manufacturing inorganic panel
JP2005014238A (en) Manufacturing method of inorganic sheet
JP5015394B2 (en) Outer wall material with excellent weather resistance and manufacturing method thereof
CA2258067A1 (en) Precast concrete plates
CN110883907B (en) Production and surface treatment process of cement basin body
JP4299029B2 (en) Manufacturing method of inorganic board
JP4192006B2 (en) Manufacturing method of inorganic board
JP2001239514A (en) Method for manufacturing inorganic
JPH04130076A (en) Decorating method for inorganic building material
JP4895540B2 (en) Pressing tool and pattern forming method using the same
JP2001096521A (en) Production method of inorganic board
JPH10238072A (en) Stone-patterned decorative panel
JP2002337126A (en) Inorganic plate and its manufacturing method
JP3530869B2 (en) Coating method of inorganic substrate
JP2003342054A (en) Mineral board and method for manufacturing it
JP2003025317A (en) Method for manufacturing inorganic sheet
JP4398633B2 (en) Manufacturing method of inorganic board
JP2005153211A (en) Manufacturing method for inorganic panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081107

R150 Certificate of patent or registration of utility model

Ref document number: 4217063

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees