JP2004193562A - Electric double layer capacitor - Google Patents

Electric double layer capacitor Download PDF

Info

Publication number
JP2004193562A
JP2004193562A JP2003343835A JP2003343835A JP2004193562A JP 2004193562 A JP2004193562 A JP 2004193562A JP 2003343835 A JP2003343835 A JP 2003343835A JP 2003343835 A JP2003343835 A JP 2003343835A JP 2004193562 A JP2004193562 A JP 2004193562A
Authority
JP
Japan
Prior art keywords
electric double
double layer
foil
less
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003343835A
Other languages
Japanese (ja)
Other versions
JP4018614B2 (en
Inventor
Shigeki Koyama
茂樹 小山
Manabu Iwaida
学 岩井田
Kenichi Murakami
顕一 村上
Koichi Yoshida
光一 吉田
Hiroyuki Saito
弘幸 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Nippon Chemi Con Corp
Original Assignee
Honda Motor Co Ltd
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Nippon Chemi Con Corp filed Critical Honda Motor Co Ltd
Priority to JP2003343835A priority Critical patent/JP4018614B2/en
Priority to US10/724,352 priority patent/US6845003B2/en
Publication of JP2004193562A publication Critical patent/JP2004193562A/en
Application granted granted Critical
Publication of JP4018614B2 publication Critical patent/JP4018614B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology capable of reducing the material cost of an electric double layer capacitor. <P>SOLUTION: At steps ST04 and ST05 in Fig., it is confirmed that the contents of Cu, Ni, Zn and Sn in an aluminum foil are all 10 ppm or less and the content of Fe is 300 ppm or less. Consequently, an aluminium foil having an ordinary purity of 99.8% or less can be used. When an aluminium foil having an ordinary purity can be used, the material cost of an electric double layer capacitor can be lowered. Since a three-phase electrolytic process for attaining high purity by consuming a large amount of electric energy is not required, precious earth energy resources can be saved. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は電気二重層コンデンサに用いる集電箔に関する。   The present invention relates to a current collector foil used for an electric double layer capacitor.

従来、電気二重層コンデンサに相当する電気二重層キャパシタ、特にそれの集電箔(アルミニウム箔)のアルミニウム純度に注目した発明が知られている(例えば、特許文献1。)。
特開2001−176757公報(第2頁)
2. Description of the Related Art Conventionally, there has been known an invention which pays attention to the aluminum purity of an electric double layer capacitor corresponding to an electric double layer capacitor, particularly, a current collector foil (aluminum foil) thereof (for example, Patent Document 1).
JP 2001-176775 A (page 2)

特許文献1の請求項1第4行〜第5行に「・・・前記アルミニウム箔の純度が、99.99%以上であり・・・」と記載され、同請求項2第1行〜第2行に「前記アルミニウム箔は、銅の含有量が150ppm以下である・・・」と記載されている。   Claims 1 to 4 to 5 of Patent Document 1 state that "... the purity of the aluminum foil is 99.99% or more ...". The second line states that "the aluminum foil has a copper content of 150 ppm or less ...".

周知の通り、アルミニウムの製造では、ボーキサイトを出発原料とし、先ずアルミナを造り、このアルミナを電解炉により普通純度(アルミニウム純度90.0〜99.85)のアルミニウム地金に精錬する。
されに必要なら三相電解法や偏析法により、普通純度地金を高純度(アルミニウム純度99.99%以上)に二次精錬する。
As is well known, in the production of aluminum, bauxite is used as a starting material, alumina is first produced, and this alumina is refined by an electrolytic furnace into aluminum ingot of normal purity (aluminum purity 90.0 to 99.85).
If necessary, the secondary metal is refined to a high purity (aluminum purity of 99.99% or more) by three-phase electrolysis or segregation.

特許文献1でのアルミニウム箔は99.99%であるから高純度アルミニウムである。純度を上げるには精錬を繰り返すため、高純度であればあるほど製造コストが嵩む。そのため、普通純度アルミニウムに比べ高純度アルミニウムは高価になる。
電気二重層コンデンサの主要部材であるアルミニウム箔が高価であれば、電気二重層コンデンサは必然的に高価になる。
Since the aluminum foil in Patent Document 1 has 99.99%, it is high-purity aluminum. Since refining is repeated to increase the purity, the higher the purity, the higher the production cost. Therefore, high-purity aluminum is more expensive than normal-purity aluminum.
If the aluminum foil, which is the main component of the electric double layer capacitor, is expensive, the electric double layer capacitor is necessarily expensive.

本発明は、電気二重層コンデンサにおいて、材料費を低減することができる技術を提供することを課題とする。   An object of the present invention is to provide a technique capable of reducing material costs in an electric double layer capacitor.

本発明者らは、電気二重層コンデンサの価格を下げるべく研究を進めるなかで、今まで常識とされてきた高純度アルミニウム箔を見直すことにした。多数の試作と評価を重ねた結果、Cuなどアルミニウム以外の合金の含有量を管理することにより、普通純度のアルミニウム箔が使用可能であることを見出した。   The present inventors have decided to review high-purity aluminum foil, which has been regarded as common knowledge until now, while conducting research to reduce the price of the electric double layer capacitor. As a result of repeated trials and evaluations of a large number of prototypes, it was found that by controlling the content of alloys other than aluminum such as Cu, aluminum foil of normal purity can be used.

すなわち、請求項1は、一対の集電箔に各々活性炭を主体とした電極物質を貼り付けることで正極電極及び負極電極を造り、これらの正負極電極間にセパレータを介在させると共に電解液を介在させ、前記一対の集電箔を通じて充電及び放電を行うことのできる電気二重層コンデンサにおいて、
電極物質を貼り付ける段階での前記集電箔は、以下の条件を満足するものを用いたことを特徴とする電気二重層コンデンサ。
・集電箔は、Cu、Ni、Zn、Sn、Feの少なくとも1種を含み、アルミニウムが99.8%以下の普通純度のアルミニウム箔を素材として、これにエッチング処理を施してあること。
・電極物質を貼り付ける直前に計測したCu、Ni、Zn、Snの含有量が、いずれも10ppm以下であること。
・電極物質を貼り付ける直前に計測したFeの含有量が、300ppm以下であること。
That is, claim 1 forms a positive electrode and a negative electrode by attaching an electrode material mainly composed of activated carbon to a pair of current collecting foils, and a separator is interposed between the positive and negative electrodes and an electrolytic solution is interposed. In the electric double layer capacitor capable of performing charging and discharging through the pair of current collector foils,
An electric double layer capacitor, wherein the current collector foil used in the step of attaching an electrode material satisfies the following conditions.
-The current collector foil contains at least one of Cu, Ni, Zn, Sn, and Fe, and has been subjected to an etching treatment using a normal-purity aluminum foil containing 99.8% or less of aluminum.
-The content of Cu, Ni, Zn, and Sn measured immediately before the electrode material is attached is 10 ppm or less in all cases.
The Fe content measured immediately before the electrode material is attached is 300 ppm or less.

Cu、Ni、Zn、Snの含有量がいずれも10ppm以下であり、Feの含有量が300ppm以下であれば、99.8%以下の普通純度のアルミニウム箔の使用が可能となる。   When the contents of Cu, Ni, Zn, and Sn are all 10 ppm or less and the content of Fe is 300 ppm or less, it is possible to use aluminum foil having a normal purity of 99.8% or less.

普通純度のアルミニウム箔が使用できれば、電気二重層コンデンサの材料費を下げることができる。あわせて、高純度化するために三相電解法では莫大な電気エネルギーを消費するが、請求項1によればそれが不要となり、貴重な地球エネルギー資源の節約を達成することができる。   If ordinary purity aluminum foil can be used, the material cost of the electric double layer capacitor can be reduced. At the same time, the three-phase electrolysis method consumes enormous amount of electric energy to achieve high purity. However, according to the first aspect, it is unnecessary, and valuable earth energy resources can be saved.

請求項1によれば、Cu、Ni、Zn、Snの含有量がいずれも10ppm以下であり、Feの含有量が300ppm以下であれば、99.8%以下の普通純度のアルミニウム箔の使用が可能となる。   According to claim 1, if the content of Cu, Ni, Zn, and Sn is 10 ppm or less, and the content of Fe is 300 ppm or less, use of aluminum foil of normal purity of 99.8% or less can be used. It becomes possible.

普通純度のアルミニウム箔が使用できれば、電気二重層コンデンサの材料費を下げることができる。あわせて、高純度化するために三相電解法では莫大な電気エネルギーを消費するが、請求項1によればそれが不要となり、貴重な地球エネルギー資源の節約を達成することができる。   If ordinary purity aluminum foil can be used, the material cost of the electric double layer capacitor can be reduced. At the same time, the three-phase electrolysis method consumes enormous amount of electric energy to achieve high purity. However, according to the first aspect, it is unnecessary, and valuable earth energy resources can be saved.

発明を実施するための最良の形態を添付図に基づいて以下に説明する。
図1は本発明に係る電気二重層コンデンサの斜視図であり、電気二重層コンデンサ10は、帯状の正極電極11と帯状の負極電極12とをセパレータ13を介して積層し、密に巻き、容器14に収納してなる円筒型電気二重層コンデンサである。
15は封止板、16は正極端子、17は負極端子、18は電解液を注入するための注液口である。
The best mode for carrying out the invention will be described below with reference to the accompanying drawings.
FIG. 1 is a perspective view of an electric double-layer capacitor according to the present invention. An electric double-layer capacitor 10 has a band-shaped positive electrode 11 and a band-shaped negative electrode 12 laminated via a separator 13 and tightly wound into a container. 14 is a cylindrical electric double layer capacitor.
Reference numeral 15 denotes a sealing plate, 16 denotes a positive electrode terminal, 17 denotes a negative electrode terminal, and 18 denotes a liquid injection port for injecting an electrolytic solution.

図2は電気二重層コンデンサの断面拡大図であり、正極電極11は、アルミニウム箔などの集電箔21と、この集電箔21にシート状に貼り付けた活性炭素を主体とした電極物質22とからなる。負極電極12も、アルミニウム箔などの集電箔21と、この集電箔21にシート状に貼り付けた活性炭素を主体とした電極物質22とからなる。なお、集電箔21、21の裏面にも電極物質22、22を貼り付けるが、説明を簡単にするために図示を省略した。   FIG. 2 is an enlarged cross-sectional view of the electric double layer capacitor. A positive electrode 11 includes a current collector foil 21 such as an aluminum foil and an electrode material 22 mainly composed of activated carbon adhered to the current collector foil 21 in a sheet shape. Consists of The negative electrode 12 also includes a current collecting foil 21 such as an aluminum foil and an electrode substance 22 mainly composed of activated carbon adhered to the current collecting foil 21 in a sheet shape. The electrode materials 22, 22 are also adhered to the back surfaces of the current collector foils 21, 21, but are not shown for simplicity.

そして、電極物質22、22に適量の電解液を含浸させる。
正極端子16と負極端子17に直流を印加すると、電極物質22、22内部及び集電箔21、21の表面に正負イオンが吸着し、一方は正極、他方は負極を形成する。放電時においては、この吸着イオンが脱着することに伴う電子の移動により正・負極端子16、17を通じて電流を取出すことができる。
Then, the electrode materials 22 and 22 are impregnated with an appropriate amount of an electrolytic solution.
When a direct current is applied to the positive electrode terminal 16 and the negative electrode terminal 17, positive and negative ions are adsorbed inside the electrode materials 22, 22 and on the surfaces of the current collecting foils 21, 21, and one forms a positive electrode and the other forms a negative electrode. At the time of discharge, a current can be extracted through the positive and negative terminals 16 and 17 due to the movement of electrons accompanying the desorption of the adsorbed ions.

図3は本発明に係る電気二重層コンデンサの製造フロー、特に集電箔の製造を詳しく説明するフロー図である。ST××はステップ番号を示す。
ST01:集電箔として、普通純度のアルミニウム箔を準備する。このアルミニウム箔の表面は実質的に平坦である。
FIG. 3 is a flowchart for explaining in detail the manufacturing flow of the electric double layer capacitor according to the present invention, particularly the manufacturing of the current collector foil. STxx indicates a step number.
ST01: A normal-purity aluminum foil is prepared as a current collector foil. The surface of the aluminum foil is substantially flat.

ST02:前記アルミニウム箔を、塩酸を含むエッチング液中でエッチングを施す。このエッチングにより、箔の表面に微細な粗面が形成される。微細な粗面は後に貼り付ける電極物質を繋ぎ止めるくさびとなる。   ST02: The aluminum foil is etched in an etching solution containing hydrochloric acid. By this etching, a fine rough surface is formed on the surface of the foil. The fine rough surface serves as a wedge for retaining the electrode material to be applied later.

粗面の形成が終了したら、箔を中和処理し、所定の洗浄する。所定の洗浄とは残留塩素濃度が管理基準(1.0mg/m以下)を満足する程度に実施することを意味する。これにより、過剰な洗浄作業を行わぬ様にする。 After the formation of the rough surface is completed, the foil is subjected to a neutralization treatment and is subjected to predetermined cleaning. The predetermined cleaning means that the cleaning is performed to such an extent that the residual chlorine concentration satisfies the control standard (1.0 mg / m 2 or less). This prevents excessive cleaning work.

ST03:箔の成分を分析する。具体的には箔から1g分の箔を切り取り、この箔片をリン酸にて完全に溶解させ、この溶解液を誘導プラズマ発光分光分析装置(例えばセイコー電子工業性SPS−4000)により定量成分分析を行う。   ST03: Analyze the components of the foil. Specifically, a foil of 1 g is cut from the foil, the foil piece is completely dissolved with phosphoric acid, and the solution is analyzed by an inductive plasma emission spectrophotometer (for example, SPS-4000 manufactured by Seiko Denshi Kogyo) for quantitative component analysis. I do.

ST04:Cu、Ni、Zn、Snの含有量がいずれも10ppm以下であるか否かを調べる。この根拠は後述する。YESであれば次に進むが、NOであれば、不合格品扱いとする。   ST04: It is checked whether or not the contents of Cu, Ni, Zn, and Sn are all 10 ppm or less. The basis for this will be described later. If YES, proceed to the next step, but if NO, treat it as a rejected product.

ST05:Feの含有量が300ppm以下であるか否かを調べる。この根拠は後述する。YESであれば次に進むが、NOであれば、不合格品扱いとする。   ST05: Check whether the Fe content is 300 ppm or less. The basis for this will be described later. If YES, proceed to the next step, but if NO, treat it as a rejected product.

ST06:以上の検査をクリアーした箔についてのみ、電極物質をシート状にして接着などにより貼り付ける。
ST07:セパレータと共に捲回する。
ST08:容器に収納する。
ST09:封止板を取付ける。
ST10:電解液を注入する。
以上で、図1に示す円筒型電気二重層コンデンサを得ることができる。
ST06: The electrode material is formed into a sheet and attached by bonding or the like only for the foil that has passed the above inspection.
ST07: Wound with the separator.
ST08: Store in container.
ST09: Attach the sealing plate.
ST10: Inject electrolyte.
Thus, the cylindrical electric double layer capacitor shown in FIG. 1 can be obtained.

なお、ST04〜ST05は、順序を入れ替えることは差し支えない。   Note that the order of ST04 to ST05 may be changed.

本発明に係る実施例を次に説明する。比較実験のために20個のサンプルを造る。
1.サンプルの材料:
1−1.集電箔:
1−1−1.アルミニウム箔(原料箔)
99.8%以下の普通純度のアルミニウム箔として、表1に示す成分の原料箔を準備した。
An embodiment according to the present invention will be described below. Make 20 samples for comparative experiments.
1. Sample material:
1-1. Current collector foil:
1-1-1. Aluminum foil (raw material foil)
Raw material foils having the components shown in Table 1 were prepared as aluminum foil having a normal purity of 99.8% or less.

Figure 2004193562
Figure 2004193562

すなわち原料箔は、数ppm〜数十ppmのCu、Ni、Zn又はSnを含み、300〜500ppmのFeを含み、アルミニウムの純度が99.5〜99.7%の箔である。   That is, the raw material foil is a foil containing several ppm to several tens ppm of Cu, Ni, Zn or Sn, containing 300 to 500 ppm of Fe, and having an aluminum purity of 99.5 to 99.7%.

1−1−1.実施例1〜10及び比較例1〜10に共通する前処理:
50℃に加熱された5%塩酸に原料アルミニウム箔を、浸漬し、電解電流密度0.25A/cm、電気量35A・min/dmとした50Hz交流電流により表面をエッチングした。
エッチング槽から取出した箔を、50℃に加温されたpH1の酸性水溶液で1分間洗浄処理を行い、さらに180℃の温風で乾燥した。
1-1-1. Pretreatment common to Examples 1 to 10 and Comparative Examples 1 to 10:
The raw aluminum foil was immersed in 5% hydrochloric acid heated to 50 ° C., and the surface was etched with a 50 Hz alternating current having an electrolytic current density of 0.25 A / cm 2 and an electric quantity of 35 A · min / dm 2 .
The foil taken out of the etching tank was washed for 1 minute with an acidic aqueous solution of pH 1 heated to 50 ° C., and further dried with hot air at 180 ° C.

1−1−2.後処理及び測定:
実施例1〜10並びに比較例1〜10は、前記乾燥が終了した直後に、上述した要領で箔の成分を分析した。その結果を表2に示す。
1-1-2. Post-treatment and measurement:
In Examples 1 to 10 and Comparative Examples 1 to 10, immediately after the drying was completed, the components of the foil were analyzed in the manner described above. Table 2 shows the results.

Figure 2004193562
Figure 2004193562

表1に比較して、この表2では、Cu、Ni、Zn、Feの全てにおいて含有量が減少した。この理由は、箔の表面からエッチング液中に合金元素が溶解するときに、母材のアルミニウムに比較して、Cu、Ni、Zn、Feがより多く溶解し、結果として母材に対してCu、Ni、Zn、Feが目減りしたと考えられる。   In Table 2, as compared with Table 1, the contents of Cu, Ni, Zn, and Fe all decreased. The reason is that when the alloy element is dissolved in the etching solution from the surface of the foil, Cu, Ni, Zn, and Fe are dissolved more than the aluminum of the base material, and as a result, Cu is dissolved in the base material. , Ni, Zn, and Fe are considered to have decreased.

1−2.電極物質:
活性炭90重量部、黒鉛粉末5重量部及び四フッ化エチレン5重量部を混合し、混練し、成形し、圧延することで、厚さ145μm×幅100mm×長さ1200mmのシート状電極物質を造る。
1−3.接着剤:
PVA(ポリビニルアルコール)、黒鉛及び不定形炭素からなる導電性接着剤
1-2. Electrode material:
90 parts by weight of activated carbon, 5 parts by weight of graphite powder and 5 parts by weight of ethylene tetrafluoride are mixed, kneaded, molded, and rolled to produce a sheet-like electrode material having a thickness of 145 μm, a width of 100 mm, and a length of 1200 mm. .
1-3. adhesive:
Conductive adhesive composed of PVA (polyvinyl alcohol), graphite and amorphous carbon

1−4.セパレータ:
人造絹糸セパレータ。厚さ75μm×幅105mmの多孔性フィルム。
1−5.容器:
径が40mmで高さが130mmの容器
1−6.電解液:
有機系電解液としてのTEMA・BF/PC。なお、TEMA・BFはトリエチルメチルアンモニウムテトラフルオロボーレート、PCはプロピレンカーボネートである。
1-4. Separator:
Artificial silk separator. A porous film having a thickness of 75 μm and a width of 105 mm.
1-5. container:
Container having a diameter of 40 mm and a height of 130 mm 1-6. Electrolyte:
TEMA.BF 4 / PC as an organic electrolyte. TEMA.BF 4 is triethylmethylammonium tetrafluoroborate, and PC is propylene carbonate.

2.サンプルの造り方:
上記集電箔の両面に、上記接着剤を用いて電極物質を貼り付ける。上記セパレータとともに捲回して、容器に収め、電解液を注入することで、円筒型電気二重層コンデンサを造る。比較実験に供するために20種類のサンプルを造る。
2. How to make a sample:
An electrode material is attached to both sides of the current collector foil using the adhesive. It is wound together with the separator, placed in a container, and injected with an electrolytic solution to produce a cylindrical electric double layer capacitor. Twenty types of samples are prepared for comparison experiments.

3.追加測定
前記成分分析の他に、以下の測定を行う。
3−1.電圧維持率の測定:
図1の正負極端子16、17に2.5Vを印加して、6hrの定圧充電を行う。6hr経過したら正負極端子16、17から給電ケーブルを外し、直ちに電圧V1を測定する。25℃の雰囲気中で72hr放置して自然放電をさせる。72hr経過したら残存電圧V2を測定する。
そして、100×(V1−V2)/V1の計算式により「電圧維持率」を求める。それを表3に示す。
3. Additional measurement In addition to the component analysis, the following measurement is performed.
3-1. Measurement of voltage maintenance rate:
A voltage of 2.5 V is applied to the positive and negative terminals 16 and 17 of FIG. After 6 hours, the power supply cable is disconnected from the positive and negative terminals 16 and 17, and the voltage V1 is measured immediately. It is left for 72 hours in an atmosphere of 25 ° C. to cause spontaneous discharge. After 72 hours, the residual voltage V2 is measured.
Then, the “voltage maintenance ratio” is calculated by the formula of 100 × (V1−V2) / V1. It is shown in Table 3.

Figure 2004193562
Figure 2004193562

表3は、比較検討が容易になる様に、表2の右に電圧維持率の欄を加えた。
実施例1〜10は、電圧維持率が全て92%以上であり、結果は良好であった。これに対して、比較例1〜10は電圧維持率が70%又はそれ以下である。これは比較例1〜10ではコンデンサの内部でショート現象が発生し、そのために蓄電エネルギーが消耗したと考えられる。
In Table 3, a column for the voltage maintenance ratio is added to the right of Table 2 to facilitate comparison.
In Examples 1 to 10, the voltage maintenance ratios were all 92% or more, and the results were good. In contrast, Comparative Examples 1 to 10 have a voltage maintenance ratio of 70% or less. This is presumably because in Comparative Examples 1 to 10, a short-circuit phenomenon occurred inside the capacitor, and thus the stored energy was consumed.

そこで、表3を詳細に検討すると、比較例1、2はCuが15ppm以上であり、実施例及び他の比較例が10ppm以下であることから、Cuが過剰であり、これが電圧維持率を低下させた要因であると考えられる。   Therefore, when Table 3 is examined in detail, Cu is excessive in Comparative Examples 1 and 2 because Cu is 15 ppm or more, and Examples and other comparative examples are 10 ppm or less, which lowers the voltage maintenance ratio. It is considered to be the factor that caused the change.

同様に、比較例3、4はNiが18ppm以上であり、実施例3、4が10ppm以下であることから、Niが過剰であり、これが電圧維持率を低下させた要因であると考えられる。   Similarly, since Comparative Examples 3 and 4 contain 18 ppm or more of Ni and Examples 3 and 4 contain 10 ppm or less, it is considered that Ni is excessive, and this is a factor that lowers the voltage maintenance ratio.

比較例5、6はZnが12ppm以上であり、実施例及び他の比較例が10ppm以下であることから、Znが過剰であり、これが電圧維持率を低下させた要因であると考えられる。   In Comparative Examples 5 and 6, Zn was 12 ppm or more, and in Examples and other comparative examples were 10 ppm or less. Therefore, it is considered that Zn was excessive, and this was a factor that lowered the voltage maintenance ratio.

比較例7、8はSnが16ppm以上であり、実施例7、8が10ppm以下であることから、Snが過剰であり、これが電圧維持率を低下させた要因であると考えられる。   In Comparative Examples 7 and 8, Sn was 16 ppm or more, and Examples 7 and 8 were 10 ppm or less. Therefore, it is considered that Sn was excessive, and this was a factor that lowered the voltage maintenance ratio.

比較例9、10はFeが350ppm以上であり、実施例及び他の比較例が300ppm以下であることから、Feが過剰であり、これが電圧維持率を低下させた要因であると考えられる。   In Comparative Examples 9 and 10, Fe is 350 ppm or more, and Examples and other Comparative Examples are 300 ppm or less. Therefore, it is considered that Fe is excessive, and this is a factor that lowers the voltage maintenance ratio.

以上のことから、電極物質を貼り付ける直前に計測したCu、Ni、Zn、Snの含有量が、いずれも10ppm以下であり、且つ電極物質を貼り付ける直前に計測したFeの含有量が、300ppm以下であれは、ショートの発生を抑えることができ、高い電圧維持率が得られると言える。   From the above, the contents of Cu, Ni, Zn, and Sn measured immediately before attaching the electrode material were all 10 ppm or less, and the Fe content measured immediately before attaching the electrode material was 300 ppm. Below, it can be said that the occurrence of short circuit can be suppressed and a high voltage maintenance ratio can be obtained.

尚、本発明は円筒型コンデンサの他、平板型コンデンサにも適用できるため、コンデンサの外観的形状は任意である。   In addition, since the present invention can be applied to a flat plate type capacitor in addition to a cylindrical type capacitor, the external shape of the capacitor is arbitrary.

本発明に係る電気二重層コンデンサは、車載バッテリに好適である。   The electric double layer capacitor according to the present invention is suitable for a vehicle-mounted battery.

本発明に係る電気二重層コンデンサの斜視図FIG. 1 is a perspective view of an electric double layer capacitor according to the present invention. 電気二重層コンデンサの断面拡大図Cross-sectional enlarged view of electric double layer capacitor 本発明に係る電気二重層コンデンサの製造フロー、特に集電箔の製造を詳しく説明するフロー図Flow chart for explaining in detail the production flow of the electric double layer capacitor according to the present invention, particularly the production of the current collector foil

符号の説明Explanation of reference numerals

10…電気二重層コンデンサ、11…正極電極、12…負極電極、13…セパレータ、21…集電箔(箔)、22…電極物質。   DESCRIPTION OF SYMBOLS 10 ... Electric double layer capacitor, 11 ... Positive electrode, 12 ... Negative electrode, 13 ... Separator, 21 ... Current collecting foil (foil), 22 ... Electrode material.

Claims (1)

一対の集電箔に各々活性炭を主体とした電極物質を貼り付けることで正極電極及び負極電極を造り、これらの正負極電極間にセパレータを介在させると共に電解液を介在させ、前記一対の集電箔を通じて充電及び放電を行うことのできる電気二重層コンデンサにおいて、
電極物質を貼り付ける段階での前記集電箔は、以下の条件を満足するものを用いたことを特徴とする電気二重層コンデンサ。
・集電箔は、Cu、Ni、Zn、Sn、Feの少なくとも1種を含み、アルミニウムが99.8%以下の普通純度のアルミニウム箔を素材として、これにエッチング処理を施してあること。
・電極物質を貼り付ける直前に計測したCu、Ni、Zn、Snの含有量が、いずれも10ppm以下であること。
・電極物質を貼り付ける直前に計測したFeの含有量が、300ppm以下であること。
A positive electrode and a negative electrode are produced by attaching an electrode material mainly composed of activated carbon to a pair of current collecting foils, and a separator is interposed between the positive and negative electrodes and an electrolytic solution is interposed therebetween. In electric double layer capacitors that can be charged and discharged through foil,
An electric double layer capacitor, wherein the current collector foil used in the step of attaching an electrode material satisfies the following conditions.
-The current collector foil contains at least one of Cu, Ni, Zn, Sn, and Fe, and has been subjected to an etching treatment using a normal-purity aluminum foil containing 99.8% or less of aluminum.
-The content of Cu, Ni, Zn, and Sn measured immediately before the electrode material is attached is 10 ppm or less in all cases.
The Fe content measured immediately before the electrode material is attached is 300 ppm or less.
JP2003343835A 2002-11-29 2003-10-01 Electric double layer capacitor Expired - Fee Related JP4018614B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003343835A JP4018614B2 (en) 2002-11-29 2003-10-01 Electric double layer capacitor
US10/724,352 US6845003B2 (en) 2002-11-29 2003-12-01 Metal collector foil for electric double layer capacitor, method of producing the metal collector foil, and electric double layer capacitor using the metal collector foil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002348951 2002-11-29
JP2003343835A JP4018614B2 (en) 2002-11-29 2003-10-01 Electric double layer capacitor

Publications (2)

Publication Number Publication Date
JP2004193562A true JP2004193562A (en) 2004-07-08
JP4018614B2 JP4018614B2 (en) 2007-12-05

Family

ID=32774953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003343835A Expired - Fee Related JP4018614B2 (en) 2002-11-29 2003-10-01 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP4018614B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017380A1 (en) * 2014-07-31 2016-02-04 富士フイルム株式会社 Aluminum plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017380A1 (en) * 2014-07-31 2016-02-04 富士フイルム株式会社 Aluminum plate

Also Published As

Publication number Publication date
JP4018614B2 (en) 2007-12-05

Similar Documents

Publication Publication Date Title
Han et al. A corrosion‐resistant and dendrite‐free zinc metal anode in aqueous systems
KR101413774B1 (en) Coated electrode and organic electrolyte capacitor
JP2007250376A (en) Aluminum foil for current collector of lithium ion battery, and lithium ion battery using same
JP2007227886A (en) High capacity electrode active material, its manufacturing method, electrode provided therewith, and energy storage device
JP2004203715A (en) Alkali activated carbon, its producing method, polarizable electrode for electric double-layer capacitor containing it and electric double-layer capacitor containing the electrode
CN104037468A (en) Method for recycling manganese and copper resources from waste lithium ion batteries
US6845003B2 (en) Metal collector foil for electric double layer capacitor, method of producing the metal collector foil, and electric double layer capacitor using the metal collector foil
CN102426930A (en) Corrosion method of high-voltage low-specific-volume anode foil
EP2866238B1 (en) Capacitor production method
JP5246697B2 (en) Method for manufacturing electrode for electric double layer capacitor
CN108962606A (en) A kind of high-voltage solid-state aluminum capacitor is anodizing to electrolyte and its chemical synthesizing method
JP5142254B2 (en) Positive electrode plate of lithium ion battery, method for producing the same, and lithium ion battery using the same
JP4018614B2 (en) Electric double layer capacitor
CN112047330A (en) Synchronous stripping and collecting method for producing graphene by electrochemical method
CN203589159U (en) External formation groove of lithium ion battery
CN106024393A (en) Preparation method for aluminium electrolytic capacitor based on coupling corrosion of positive electrode aluminium foil electrode reaction
CN1805088A (en) Preparation method of dielectric film of aluminum electrolytic capacitor
CN113745005B (en) Method for manufacturing cast anode capacitor cell
CN108754594A (en) A kind of method that mesohigh electric aluminum foil hair engaging aperture corrodes later half V cathodes power-up protection
JP4018613B2 (en) Electric double layer capacitor
CN113436907A (en) Geopolymer-based supercapacitor and preparation method thereof
CN202898591U (en) Graphite electrode reverse power-up impurity removing device for electronic aluminum foil etching
CN102646517A (en) Supercapacitor and electrode thereof
Peng et al. Achieving low voltage half electrolysis with a supercapacitor electrode
CN102995100A (en) Graphite electrode reverse electrification impurity removal device for electronic aluminum foil corrosion and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070920

R150 Certificate of patent or registration of utility model

Ref document number: 4018614

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees