WO2016017380A1 - Aluminum plate - Google Patents

Aluminum plate Download PDF

Info

Publication number
WO2016017380A1
WO2016017380A1 PCT/JP2015/069619 JP2015069619W WO2016017380A1 WO 2016017380 A1 WO2016017380 A1 WO 2016017380A1 JP 2015069619 W JP2015069619 W JP 2015069619W WO 2016017380 A1 WO2016017380 A1 WO 2016017380A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
aluminum plate
oxide film
treatment
holes
Prior art date
Application number
PCT/JP2015/069619
Other languages
French (fr)
Japanese (ja)
Inventor
順二 川口
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2016017380A1 publication Critical patent/WO2016017380A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • C25F3/14Etching locally
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an aluminum plate used for a current collector for an electricity storage device.
  • an aluminum plate is used as an electrode current collector (hereinafter simply referred to as “current collector”) used for the positive electrode or the negative electrode of such an electricity storage device. It is also known that an active material such as activated carbon is applied to the surface of a current collector made of an aluminum plate and used as a positive electrode or a negative electrode.
  • Patent Document 1 describes using a metal foil having a plurality of through-holes as a current collector, and describes aluminum, copper, and the like as its material.
  • a metal foil having a plurality of through-holes As a current collector, and describes aluminum, copper, and the like as its material.
  • Patent Document 2 describes that a current collector in the form of a film having through holes is used as the current collector, and aluminum, stainless steel, or the like is used as the positive electrode current collector.
  • an electrode having the current collector and the active material is described ([claim 1] [0053]).
  • Patent Document 3 describes a metal foil in which a large number of through holes are formed at locations where an active material is attached as a positive and negative electrode plate, and an aluminum foil as a positive electrode current collector.
  • Patent Document 4 describes that an aluminum through foil is used as the current collector, and describes that an active material is applied to the aluminum through foil ([Claim 1] [Claim 1] 0036]).
  • the through hole is formed to facilitate the movement of lithium ions, but it is also known that having a large number of through holes improves the adhesion to the active material. It has been. If this through-hole is too large, the coating property of the active material is lowered, the surface of the coated active material is dented, the uniformity is impaired, or the strength of the current collector is lowered. Therefore, through-holes are formed finely, and the aperture ratio is controlled so that the adhesion between the current collector and the active material, the coating properties of the active material, the uniformity of the active material surface, the strength of the current collector, etc. It is known to improve.
  • Patent Document 1 by setting the minimum hole diameter of the through hole in the range of 0.01 to 0.19 mm, the adhesive strength with the active material layer is increased, and the pattern of the through hole is that of the active material layer. It is described that the surface roughness of the active material layer is reduced by suppressing reflection on the surface ([0022]).
  • Patent Document 2 describes that the strength of the current collector is prevented from being reduced by setting the aperture ratio to 5 to 79% ([0066]).
  • Patent Document 3 discloses that an active material mixture is applied to a metal foil by setting each area of the through-hole to 8 ⁇ 10 ⁇ 7 m 2 or less and an opening ratio in a range of 5% to 55%. ([0081]).
  • Patent Document 4 describes that the adhesion between the current collector and the active material is improved by setting the surface area enlargement ratio to a value of 0.15 ⁇ foil thickness t ( ⁇ m) or more. ([0037]).
  • Such fine through holes are formed by electrolytic etching as described in, for example, Patent Document 4 ([0052]).
  • Patent Document 4 high-purity aluminum is used in order to form fine through holes by electrolytic etching ([Claim 1]).
  • [Claim 1] electrolytic etching
  • an object of the present invention is to provide an aluminum plate having a large number of fine through holes and having a high tensile strength.
  • the present inventors have found that the average thickness is 50 ⁇ m or less, the purity of aluminum is 85% to 99.90%, the average opening diameter of the through holes is 1 ⁇ m to 100 ⁇ m, and the average opening It was found that by using an aluminum plate with a rate of 1% to 40%, it was possible to have a large number of fine through holes and a high tensile strength, and the present invention was completed. That is, it has been found that the above object can be achieved by the following configuration.
  • an aluminum plate having a large number of fine through holes and having a high tensile strength can be provided.
  • FIG. 1A is a top view conceptually showing an example of the aluminum plate of the present invention
  • FIG. 1B is a cross-sectional view taken along the line BB of FIG. 1A.
  • FIG. 2 is a schematic cross-sectional view showing another example of the aluminum plate of the present invention.
  • 3 (A) to 3 (E) are schematic cross-sectional views for explaining an example of a preferred method for producing the aluminum plate of the present invention
  • FIG. 3 (A) is a schematic view of an aluminum substrate.
  • FIG. 3B is a schematic cross-sectional view showing a state in which the oxide film is formed on the surface of the aluminum base material, and FIG.
  • FIG. 3C is a schematic cross-sectional view of the oxide film formation.
  • FIG. 3D is a schematic cross-sectional view showing a state in which an electrochemical dissolution process is performed after the treatment and through holes are formed in the aluminum base material and the oxide film.
  • FIG. 3D is a diagram illustrating the oxide film after the electrochemical dissolution process.
  • FIG. 3E is a schematic cross-sectional view showing the state after the electrochemical roughening treatment is performed after removing the oxide film. is there.
  • 4 (A) to 4 (E) are schematic cross-sectional views for explaining another example of a preferred method for producing an aluminum plate of the present invention, and FIG. 4 (A) shows an aluminum substrate.
  • FIG. 4 (A) shows an aluminum substrate.
  • FIG. 4B is a schematic cross-sectional view showing a state in which an oxide film is formed on the aluminum base, and the oxide film is formed on the front and back surfaces.
  • FIG. FIG. 4 is a schematic cross-sectional view showing a state in which an electrochemical dissolution process is performed after the oxide film formation process and through holes are formed in the aluminum base material and the oxide film
  • FIG. 4E is a schematic cross-sectional view showing a state after the oxide film is removed later
  • FIG. 4E is a schematic view showing a state after the electrochemical roughening treatment is performed after the oxide film is removed.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the aluminum plate of the present invention has an average thickness of 50 ⁇ m or less, an aluminum purity of 85% to 99.90%, an average opening diameter of through holes of 1 ⁇ m to 100 ⁇ m, and an average opening ratio of 1% to 40%. It is a board. Next, the structure of the aluminum plate of the present invention will be described with reference to FIGS. 1 (A) to 1 (C).
  • FIG. 1 (A) is a schematic top view showing an example of a preferred embodiment of the aluminum plate of the present invention
  • FIG. 1 (B) is a cross-sectional view taken along the line BB of FIG. 1 (A).
  • FIG. 1C is a schematic cross-sectional view showing an example of an electrode using the aluminum plate 10 shown in FIG. 1A as a current collector of an electricity storage device.
  • the aluminum plate 10 is formed by forming a plurality of through holes 5 in an aluminum base 3.
  • An electrode 30 shown in FIG. 1C is formed by laminating an active material layer 32 on one surface of the aluminum plate 10 shown in FIG.
  • the plurality of through holes 5 formed in the aluminum base 3 have an average opening diameter of 1 ⁇ m to 100 ⁇ m and an average opening ratio of 1% to 40%.
  • the aluminum substrate 3 is aluminum having a purity of 85% to 99.90% and an average thickness of 50 ⁇ m or less.
  • the average opening diameter of the through-holes was obtained by photographing the surface of the aluminum plate at a magnification of 200 times from directly above using a high-resolution scanning electron microscope (SEM). At least 20 through-holes were extracted, and the diameter was read as the opening diameter, and the average value of these was calculated as the average opening diameter. In addition, the diameter measured the maximum value of the distance between the edge parts of a through-hole part.
  • the average aperture ratio of the through-holes was obtained by photographing the surface of the aluminum plate at a magnification of 200 times from directly above using a high resolution scanning electron microscope (SEM), and a 30 mm ⁇ 30 mm visual field (5 ), Binarize with image analysis software, etc., and observe the through-hole part and the non-through-hole part. From the total of the opening area of the through-hole and the area of the visual field (geometric area), Calculated from the geometric area), and the average value in each field of view (5 locations) was calculated as the average aperture ratio. Moreover, the purity of aluminum was measured based on the emission spectroscopic analysis method of JIS H 1305: 2005 aluminum and aluminum alloy.
  • the average opening diameter of the through-holes 5 is a fine diameter of 1 ⁇ m to 100 ⁇ m, the average opening ratio is 1% to 40%, and the purity of aluminum is in the range of 85.00% to 99.90%.
  • a thin base material having an average thickness of 50 ⁇ m or less can have a sufficient tensile strength even if it has a large number of through holes.
  • by setting the average opening diameter and the average opening ratio of the through holes 5 within this range it is possible to improve the coating property of the coating applied to the surface of the aluminum plate 10 and to improve the uniformity of the layer formed by coating. The adhesion with the formed layer can be improved.
  • the average opening diameter of the through holes 5 is set to 1 ⁇ m to 100 ⁇ m, and the average opening ratio is set to 1% to 40%.
  • Lithium can be pre-doped, and lithium can be more uniformly dispersed.
  • the active material layer 32 is formed on the surface of the aluminum plate 10 that is a current collector, like the electrode 30 shown in FIG. 1C, the active material coating property and the aluminum plate 10 and the active material layer 32 are formed. And the uniformity of the surface of the formed active material layer 32 can be improved, so that an electricity storage device having excellent cycle characteristics can be manufactured.
  • the tensile strength is 15 N / mm 2 or more, preferably 20 N / mm 2 or more, more preferably. Can realize a tensile strength of 60 N / mm 2 or more.
  • the tensile strength is a tensile strength in a tensile test based on JIS Z2241: 2011. Specifically, a sample having a width of 25 mm and a length of 150 mm was fixed so that the distance between chucks was 70 mm, measured 10 times at a tensile speed of 10 mm / min, and the average value was taken as the tensile strength.
  • the average opening diameter of the through holes is preferably 1 ⁇ m to 60 ⁇ m, more preferably 1 ⁇ m to 50 ⁇ m, particularly preferably 1 to 40 ⁇ m, and further preferably 10 to 40 ⁇ m, from the viewpoints of the above-described coating properties, adhesion, and tensile strength.
  • the average opening ratio of the through holes is preferably 5% to 30%, more preferably 5% to 25%, and particularly preferably more than 5% and 20% or less from the viewpoints of the above-described applicability, adhesion, and tensile strength. preferable.
  • the purity of aluminum is preferably in the range of 90% to 99.80%, more preferably in the range of 92% to 99.70%, still more preferably in the range of 95% to 99.50%, from the viewpoint of the tensile strength. % Or more and less than 98.50% is particularly preferable.
  • the average thickness of the aluminum plate is preferably 5 ⁇ m to 50 ⁇ m, more preferably 10 ⁇ m to 50 ⁇ m. By setting the thickness of the aluminum plate to 5 ⁇ m or more, it is possible to suppress breakage due to insufficient strength. Further, when the thickness is 50 ⁇ m or less, an increase in volume can be suppressed, space saving can be achieved, and a penetration process can be facilitated. In addition, the average thickness of the aluminum plate measured the thickness of five points within 100 mm x 100 mm, and made it the average value.
  • the plurality of through holes are regularly formed.
  • the plurality of through holes may be irregularly formed as long as the average opening diameter and the average opening ratio satisfy the above ranges.
  • the surface of the aluminum plate 10 may be roughened.
  • the roughening treatment method is not particularly limited, and a known roughening treatment method can be used as appropriate.
  • the surface is preferably roughened by an electrochemical surface roughening treatment described later.
  • FIG. 2 is a schematic cross-sectional view showing another example of the aluminum plate of the present invention.
  • An aluminum plate 10 shown in FIG. 2 includes first and second metal layers 6 and 2 made of a metal or alloy other than aluminum on the front and back surfaces of the aluminum base 3 having through holes and the inner surface (inner wall) of the through holes 5.
  • the metal layer 7 is provided.
  • the average opening diameter of the through hole can be suitably adjusted to a small range of about 1 ⁇ m to 20 ⁇ m.
  • a metal layer can be formed by a metal coating process described later.
  • the metal layer is formed on the front and back surfaces of the aluminum base 3 and the inner surface of the through hole 5.
  • the present invention is not limited to this, and at least a metal is formed on the inner surface of the through hole 5.
  • a layer may be formed.
  • the aluminum substrate is not particularly limited as long as it has a thickness of 50 ⁇ m or less and the purity of aluminum is 85% to 99.90%, and a known aluminum substrate can be used. That is, the aluminum substrate is an alloy plate containing aluminum as a main component and containing a trace amount of foreign elements.
  • JIS H-4160 alloy numbers: A1085H-H18, A1070H-H18, A1050H-H18, A1100H-H18, A1N30H-H18, A3003H-H18, A3004H-H18, A8021H-H18, A8079H-H18 Etc. can be used.
  • Active material layer There is no limitation in particular as an active material layer, The well-known active material layer used in the conventional electrical storage device can be utilized. Specifically, regarding an active material and a conductive material, a binder, a solvent, and the like that may be contained in the active material layer when an aluminum plate is used as a positive electrode current collector, JP 2012-216513 A The materials described in the paragraphs [0077] to [0088] can be adopted as appropriate, the contents of which are incorporated herein by reference. In addition, as an active material when an aluminum plate is used as a negative electrode current collector, the materials described in paragraph [0089] of JP2012-216513A can be appropriately employed, and the contents thereof are described in this specification. Incorporated into the book as a reference.
  • An electrode using the aluminum plate of the present invention as a current collector can be used as a positive electrode or a negative electrode of an electricity storage device.
  • the materials and applications described in paragraphs [0090] to [0123] of JP2012-216513A are appropriately used. Which is incorporated herein by reference.
  • the aluminum plate of the present invention can be used for other purposes.
  • it can be suitably used for heat resistant fine particle filters, sound absorbing materials, and the like.
  • the method for producing an aluminum plate is a method for producing an aluminum plate having an aluminum substrate having a plurality of through-holes in the thickness direction, wherein the surface of the aluminum substrate having an average thickness of 50 ⁇ m or less is subjected to an oxide film forming treatment and oxidized.
  • the coating property of the active material and the adhesion with the active material layer are good, and the uniformity of the active material layer surface is improved.
  • An aluminum plate that can be improved and can be suitably used for a current collector having sufficient tensile strength can be manufactured.
  • FIGS. 3 (A) to 3 (E) and FIGS. 4 (A) to 4 (E) are schematic cross-sectional views showing an example of a preferred embodiment of a method for producing an aluminum plate.
  • the manufacturing method of the aluminum plate is the surface of the aluminum substrate 1 (the surface in the embodiment shown in FIG. 4).
  • an oxide film formation process FIGGS. 3A and 3B, FIG. 4A and FIG.
  • Oxide film removing step (FIG. 3C) and FIG. D), is a manufacturing method having the FIG. 4 (C) and FIG. 4 (D)), a.
  • the aluminum plate manufacturing method is such that after the oxide film removal step, the aluminum substrate 3 having a through hole is subjected to an electrochemical surface roughening treatment to produce a roughened aluminum plate 10. It preferably has processing steps (FIG. 3D and FIG. 3E, FIG. 4D and FIG. 4E).
  • the oxide film forming step of the manufacturing method of the present invention is a step of forming an oxide film by performing an oxide film forming process on the surface of an aluminum substrate having an average thickness of 50 ⁇ m or less.
  • the oxide film forming process is not particularly limited, and for example, a process similar to a conventionally known anodizing process can be performed.
  • As the anodizing treatment for example, conditions and apparatuses described in paragraphs [0063] to [0073] of JP2012-216513A can be appropriately employed.
  • conditions for anodizing treatment vary depending on the electrolyte used, and thus cannot be determined unconditionally.
  • the electrolyte concentration is 1 to 80% by mass
  • the solution temperature is 5 to 70 ° C.
  • the current density is 0.5 to 60 A / dm 2
  • the voltage is 1 to 100 V
  • the electrolysis time is 1 second to 20 minutes, which are adjusted to obtain a desired amount of oxide film.
  • an anodizing treatment performed in a sulfuric acid solution is preferable.
  • direct current may be applied between the aluminum substrate and the counter electrode, or alternating current may be applied.
  • the current density is preferably 1 to 60 A / dm 2 , and more preferably 5 to 40 A / dm 2 .
  • the anodizing treatment is continuously performed, it is preferable that the anodization is performed by a liquid power feeding method in which power is supplied to the aluminum base material through the electrolytic solution.
  • the amount of the oxide film formed by the anodic oxidation treatment is preferably 0.05 to 50 g / m 2 , and more preferably 0.1 to 10 g / m 2 .
  • the through hole forming step is a step of forming a through hole by performing electrolytic dissolution treatment after the oxide film forming step.
  • the electrolytic dissolution treatment is not particularly limited, and direct current or alternating current can be used, and an acidic solution can be used as the electrolytic solution. Among these, it is preferable to use an electrolytic solution mainly composed of hydrochloric acid or nitric acid.
  • the acidic solution as the electrolytic solution includes, in addition to nitric acid and hydrochloric acid, U.S. Pat. Nos. 4,671,859, 4,661,219, 4,618,405, 4,600,482, 4,566,960, 4,566,958, 4,566,959, 4,416,972, 4,374, Electrolytic solutions described in the specifications of Nos. 710, 4,336,113, and 4,184,932 can also be used.
  • the concentration of the acidic solution is preferably 0.5 to 2.5% by mass, particularly preferably 0.7 to 2.0% by mass.
  • the liquid temperature of the acidic solution is preferably 20 to 80 ° C., more preferably 30 to 60 ° C.
  • An aqueous solution mainly composed of hydrochloric acid or nitric acid is an aqueous solution of hydrochloric acid or nitric acid having a concentration of 1 to 100 g / L, nitric acid compounds having nitrate ions such as aluminum nitrate, sodium nitrate, ammonium nitrate, aluminum chloride, sodium chloride, ammonium chloride. It is possible to add at least one hydrochloric acid compound having a hydrochloric acid ion such as 1 g / L to saturation.
  • the metal contained in aluminum alloys such as iron, copper, manganese, nickel, titanium, magnesium, a silica, may melt
  • a solution obtained by adding aluminum chloride, aluminum nitrate or the like to an aqueous solution of hydrochloric acid or nitric acid having a concentration of 0.5 to 2% by mass so that aluminum ions are 3 to 50 g / L is preferably used.
  • a direct current is mainly used, but when an alternating current is used, the alternating current power wave is not particularly limited, and a sine wave, a rectangular wave, a trapezoidal wave, a triangular wave, etc. are used. Among these, a rectangular wave or a trapezoidal wave is preferable, and a trapezoidal wave is particularly preferable.
  • nitric acid electrolysis an average opening diameter of 1 ⁇ m to 100 ⁇ m is easily obtained by an electrochemical dissolution process (hereinafter also referred to as “nitric acid dissolution process”) using an electrolytic solution mainly composed of nitric acid, and an average aperture ratio. Through-holes with an amount of 1% to 40% can be formed.
  • the nitric acid dissolution treatment uses direct current, the average current density is 5 A / dm 2 or more, and the amount of electricity is 50 C / dm 2 or more because it is easy to control the dissolution point of through-hole formation. It is preferable that the electrolytic treatment is performed in step (b).
  • the average current density is preferably 100 A / dm 2 or less, and the quantity of electricity is preferably 10,000 C / dm 2 or less.
  • concentration and temperature of the electrolytic solution in nitric acid electrolysis are not particularly limited, and electrolysis is performed at a high concentration, for example, 30 to 60 ° C. using a nitric acid electrolytic solution having a nitric acid concentration of 15 to 35% by mass, Electrolysis can be carried out at a high temperature, for example, at 80 ° C. or higher, using a 7-2 mass% nitric acid electrolyte.
  • an average opening diameter of 1 to 100 ⁇ m is easily obtained by an electrochemical dissolution treatment (hereinafter also referred to as “hydrochloric acid dissolution treatment”) using an electrolytic solution mainly composed of hydrochloric acid.
  • a through hole having a rate of 1 to 40% can be formed.
  • the hydrochloric acid dissolution treatment uses direct current, the average current density is 5 A / dm 2 or more, and the amount of electricity is 50 C / dm 2 or more because it is easy to control the dissolution point of through-hole formation. It is preferable that the electrolytic treatment is performed in step (b).
  • the average current density is preferably 100 A / dm 2 or less, and the quantity of electricity is preferably 10,000 C / dm 2 or less.
  • concentration and temperature of the electrolytic solution in hydrochloric acid electrolysis are not particularly limited, and electrolysis is performed at 30 to 60 ° C. using a hydrochloric acid electrolytic solution having a high concentration, for example, a hydrochloric acid concentration of 10 to 35% by mass, or a hydrochloric acid concentration of 0. Electrolysis can be performed at a high temperature, for example, 80 ° C. or higher, using a 7-2 mass% hydrochloric acid electrolyte.
  • the average opening diameter of the through holes can be 5 ⁇ m or more and the opening ratio can be adjusted to 5% or more, the amount of electricity (Q) C / dm 2 and the electrolytic dissolution in the electrolytic dissolution treatment are adjusted.
  • the total thickness (t) ⁇ m of the oxide film and the aluminum substrate when the treatment is performed preferably satisfies the following formula (I), and more preferably satisfies the following formula (II).
  • the total thickness (t) of the oxide film and the aluminum base material when the electrolytic dissolution treatment is performed is basically the thickness of the aluminum base material before the above-described oxide film formation processing is performed. The same value as
  • the oxide film removing step is a step of removing the oxide film.
  • the oxide film can be removed by performing an acid etching process or an alkali etching process described later.
  • the dissolution treatment is a treatment for dissolving the oxide film using a solution (hereinafter referred to as “alumina solution”) that preferentially dissolves the oxide film (aluminum oxide) over aluminum.
  • alumina solution a solution that preferentially dissolves the oxide film (aluminum oxide) over aluminum.
  • alumina solution for example, chromium compound, nitric acid, sulfuric acid, phosphoric acid, zirconium compound, titanium compound, lithium salt, cerium salt, magnesium salt, sodium fluorosilicate, zinc fluoride, manganese compound, molybdenum
  • aqueous solution containing at least one selected from the group consisting of a compound, a magnesium compound, a barium compound and a halogen simple substance is preferable.
  • examples of the chromium compound include chromium (III) oxide and anhydrous chromium (VI) acid.
  • examples of the zirconium-based compound include zircon ammonium fluoride, zirconium fluoride, and zirconium chloride.
  • examples of the titanium compound include titanium oxide and titanium sulfide.
  • examples of the lithium salt include lithium fluoride and lithium chloride.
  • examples of the cerium salt include cerium fluoride and cerium chloride.
  • examples of the magnesium salt include magnesium sulfide.
  • Examples of the manganese compound include sodium permanganate and calcium permanganate.
  • Examples of the molybdenum compound include sodium molybdate.
  • magnesium compounds include magnesium fluoride pentahydrate.
  • barium compounds include barium oxide, barium acetate, barium carbonate, barium chlorate, barium chloride, barium fluoride, barium iodide, barium lactate, barium oxalate, barium perchlorate, barium selenate, selenite.
  • Examples thereof include barium, barium stearate, barium sulfite, barium titanate, barium hydroxide, barium nitrate, and hydrates thereof.
  • barium oxide, barium acetate, and barium carbonate are preferable, and barium oxide is particularly preferable.
  • halogen alone include chlorine, fluorine, and bromine.
  • the alumina solution is preferably an aqueous solution containing an acid.
  • the acid include sulfuric acid, phosphoric acid, nitric acid, hydrochloric acid, and the like, and a mixture of two or more acids may be used.
  • the acid concentration is preferably 0.01 mol / L or more, more preferably 0.05 mol / L or more, and still more preferably 0.1 mol / L or more. There is no particular upper limit, but generally it is preferably 10 mol / L or less, more preferably 5 mol / L or less.
  • the dissolution treatment is performed by bringing the aluminum base material on which the oxide film is formed into contact with the above-described alumina solution.
  • the method of making it contact is not specifically limited, For example, the immersion method and the spray method are mentioned. Of these, the dipping method is preferred.
  • the dipping method is a treatment in which an aluminum base material on which an oxide film is formed is dipped in the above-described alumina solution. Stirring during the dipping process is preferable because a uniform process is performed.
  • the dipping treatment time is preferably 10 minutes or longer, more preferably 1 hour or longer, and further preferably 3 hours or longer and 5 hours or longer.
  • the alkali etching treatment is a treatment for dissolving the surface layer by bringing the oxide film into contact with an alkaline solution.
  • Examples of the alkali used in the alkaline solution include caustic alkali and alkali metal salts.
  • caustic alkali include caustic soda and caustic potash.
  • alkali metal salt include alkali metal silicates such as sodium metasilicate, sodium silicate, potassium metasilicate, and potassium silicate; alkali metal carbonates such as sodium carbonate and potassium carbonate; sodium aluminate and alumina.
  • Alkali metal aluminates such as potassium acid; alkali metal aldones such as sodium gluconate and potassium gluconate; dibasic sodium phosphate, dibasic potassium phosphate, tribasic sodium phosphate, tertiary potassium phosphate, etc.
  • An alkali metal hydrogen phosphate is mentioned.
  • a caustic alkali solution and a solution containing both a caustic alkali and an alkali metal aluminate are preferable from the viewpoint of high etching rate and low cost.
  • an aqueous solution of caustic soda is preferable.
  • the concentration of the alkaline solution is preferably from 0.1 to 50% by mass, and more preferably from 0.5 to 10% by mass.
  • concentration of aluminum ions is preferably 0.01 to 10% by mass, and more preferably 0.1 to 3% by mass.
  • the temperature of the alkaline solution is preferably 10 to 90 ° C.
  • the treatment time is preferably 1 to 120 seconds.
  • Examples of the method of bringing the oxide film into contact with the alkaline solution include, for example, a method in which an aluminum base material on which an oxide film is formed is passed through a tank containing an alkali solution, and an aluminum base material on which an oxide film is formed is applied to an alkaline solution. Examples thereof include a method of immersing in an enclosed tank and a method of spraying an alkaline solution onto the surface (oxide film) of an aluminum substrate on which an oxide film is formed.
  • the optional roughening treatment step that the aluminum plate production method of the present invention may have is an electrochemical roughening treatment (hereinafter referred to as “electrolytic roughening”) on the aluminum substrate from which the oxide film has been removed. This is also a process of roughening the surface or back surface of the aluminum base material. As described above, by performing electrolytic surface roughening treatment and roughening the surface of the aluminum substrate, the adhesion with the layer containing the active material is improved, and the contact area is increased by increasing the surface area. The capacity retention rate of the electricity storage device using the aluminum plate (current collector) obtained by the production method of the present invention is increased.
  • the electrolytic surface-roughening treatment for example, conditions and apparatuses described in paragraphs [0041] to [0050] of JP2012-216513A can be appropriately employed.
  • a concave portion having an average opening diameter of 0.5 ⁇ m to 3.0 ⁇ m can be easily formed by an electrochemical surface roughening treatment (hereinafter also referred to as “nitric acid electrolysis”) using an electrolytic solution mainly composed of nitric acid. It can be formed at a density of 10 pieces / 100 ⁇ m 2 or more.
  • nitric acid electrolysis uses an alternating current for the reason that it is possible to form a uniform and high-density recess, and the peak current density is 30 A / dm 2 or more, the average current density is 13 A / dm 2 or more, and The electrolytic treatment is preferably performed under the condition that the amount of electricity is 150 c / dm 2 or more.
  • the peak current density is preferably 100 A / dm 2 or less, the average current density is preferably 40 A / dm 2 or less, and the amount of electricity is preferably 400 c / dm 2 or less.
  • the concentration and temperature of the electrolytic solution in nitric acid electrolysis are not particularly limited, and electrolysis is performed at a high concentration, for example, 30 to 60 ° C. using a nitric acid electrolytic solution having a nitric acid concentration of 15 to 35% by mass, or a nitric acid concentration of 0. Electrolysis can be carried out at a high temperature, for example, at 80 ° C. or higher, using a 7-2 mass% nitric acid electrolyte.
  • a concave portion having an average opening diameter of 0.5 ⁇ m to 3.0 ⁇ m is formed by an electrochemical surface roughening treatment (hereinafter also referred to as “hydrochloric acid electrolysis”) using an electrolytic solution mainly composed of hydrochloric acid. It can be formed at a density of not less than 100 / ⁇ m 2 .
  • the peak current density is 30 A / dm 2 or more, the average current density is 13 A / dm 2 or more, and
  • the electrolytic treatment is preferably performed under the condition that the amount of electricity is 150 c / dm 2 or more.
  • the peak current density is preferably 100 A / dm 2 or less, the average current density is preferably 40 A / dm 2 or less, and the amount of electricity is preferably 400 c / dm 2 or less.
  • the method for producing an aluminum plate of the present invention is such that the average opening diameter of the through holes formed by the above-described electrolytic dissolution treatment can be adjusted to a small range of about 1 ⁇ m to 20 ⁇ m. It is preferable to have a metal coating step of coating a part or all of the surface of the aluminum base material including the inner wall of the hole with a metal other than aluminum.
  • a metal coating step of coating a part or all of the surface of the aluminum base material including the inner wall of the hole with a metal other than aluminum is a metal other than aluminum.
  • “at least part or all of the surface of the aluminum substrate including the inner wall of the through hole is coated with a metal other than aluminum” means that at least the entire surface of the aluminum substrate including the inner wall of the through hole is penetrated. This means that the inner wall of the hole is covered, and the surface other than the inner wall may not be covered, or may be partially or entirely covered.
  • the metal coating step will be described with reference to FIG.
  • the aluminum plate 10 shown in FIG. 2 includes the first metal layer 6 and the second metal made of a metal or alloy other than aluminum on the front and back surfaces of the aluminum base 3 having through holes and the inner wall of the through holes. It is an aspect having the layer 7, and can be produced, for example, by subjecting the aluminum base material shown in FIG. 3D or FIG.
  • the replacement treatment is a treatment in which zinc or a zinc alloy is subjected to replacement plating on a part or all of the surface of the aluminum substrate including at least the inner wall of the through hole.
  • the displacement plating solution include a mixed solution of sodium hydroxide 120 g / l, zinc oxide 20 g / l, crystalline ferric chloride 2 g / l, lossel salt 50 g / l, and sodium nitrate 1 g / l.
  • Commercially available Zn or Zn alloy plating solution may also be used.
  • Substar Zn-1, Zn-2, Zn-3, Zn-8, Zn-10, Zn-111 manufactured by Okuno Pharmaceutical Co., Ltd. Zn-222, Zn-291, etc. can be used.
  • the immersion time of the aluminum substrate in such a displacement plating solution is preferably 15 seconds to 40 seconds, and the immersion temperature is preferably 15 seconds to 40 seconds.
  • ⁇ Plating treatment> When the zinc film is formed by replacing the surface of the aluminum base material with zinc or a zinc alloy by the above-described replacement treatment, for example, the zinc film is replaced with nickel by electroless plating described later, and then described later. It is preferable to perform a plating treatment for depositing various metals by electrolytic plating.
  • the nickel plating solution used for the electroless plating treatment commercially available products can be widely used. Examples thereof include an aqueous solution containing 30 g / l nickel sulfate, 20 g / l sodium hypophosphite, and 50 g / l ammonium citrate.
  • the nickel alloy plating solution include a Ni—P alloy plating solution in which a phosphorus compound is a reducing agent and a Ni—B plating solution in which a boron compound is a reducing agent.
  • the immersion time in such a nickel plating solution or nickel alloy plating solution is preferably 15 seconds to 10 minutes, and the immersion temperature is preferably 30 ° C. to 90 ° C.
  • a plating solution for electroplating Cu includes, for example, Cu 60 to 110 g / L, sulfuric acid 160 to 200 g / L and hydrochloric acid 0.1 to 0.15 mL / L to pure water. Furthermore, plating solutions containing Top Lucina SF Base WR 1z 5 to 5.0 mL / L, Top Lucina SF-B 0.5 to 2.0 mL / L, and Top Lucina SF Leveler 3.0 to 10 mL / L as additives are also listed. It is done.
  • the immersion time in such a copper plating solution is not particularly limited because it depends on the thickness of the Cu film, but for example, when a 2 ⁇ m Cu film is applied, it is preferable to immerse for about 5 minutes at a current density of 2 A / dm,
  • the immersion temperature is preferably 20 ° C. to 30 ° C.
  • the average opening diameter of the through holes formed by the above-described electrolytic dissolution treatment can be adjusted to a small value in the range of about 1 to 20 ⁇ m. It is preferable to perform anodizing treatment after forming an oxide film and then performing boehmite treatment.
  • the boehmite treatment uses a reaction in which aluminum reacts with high-temperature water or superheated steam to form a pseudo-boehmite hydrated oxide film.
  • water at 100 to 400 ° C. for example, pure water
  • Water, deionized water can be adjusted to pH 7-12 and a hydrated oxide film can be formed by immersing the aluminum substrate.
  • washing treatment it is preferable to carry out water washing after completion of the above-described processes.
  • pure water, well water, tap water, or the like can be used.
  • a nip device may be used to prevent the processing liquid from being brought into the next process.
  • Example 1 ⁇ Preparation of current collector aluminum substrate> The surface of an aluminum base material (JIS H-4160, alloy number: 1N30-H, aluminum purity: 99.30%) having an average thickness of 20 ⁇ m and a width of 200 mm is subjected to the following treatment to obtain an aluminum base material for a current collector Was made.
  • an aluminum base material JIS H-4160, alloy number: 1N30-H, aluminum purity: 99.30%
  • Oxide film formation process (oxide film formation process) A solution having a sulfuric acid concentration of 170 g / L and an aluminum concentration of 5% or less was applied to the aluminum substrate, and the aluminum substrate was used as an anode, and a DC current density of 5 A / dm 2 and a DC voltage of 3 V were applied for 27 seconds at 52 ° C. Then, an oxide film (film amount: 0.6 g / m 2 ) was formed on one surface (one surface) of the aluminum substrate. Then, water washing by spraying was performed.
  • Electrolytic dissolution treatment (through hole forming step) Next, using an electrolytic solution (nitric acid concentration: 1%, aluminum concentration: 4.5 g / L) kept at 50 ° C., the electrolytic treatment is performed under the condition that the total amount of electricity is 1500 C / dm 2 with the aluminum base material as the anode. And through holes were formed in the aluminum substrate and the oxide film. The electrolytic treatment was performed with a DC power wave. Current density was 10A / dm 2. Then, it was washed with water by spraying and dried.
  • an electrolytic solution nitric acid concentration: 1%, aluminum concentration: 4.5 g / L
  • Example 2 Using an aluminum base material (JIS H-4160, alloy number: 8021-H, aluminum purity: 98.10%) having an average thickness of 12 ⁇ m and a width of 200 mm as the aluminum base material, the oxide film shown in (a1) above is formed.
  • Example 1 except that the oxide film forming process shown in the following (a2) was performed instead of the process, and the electrolytic dissolving process shown in the following (b2) was performed instead of the electrolytic dissolving process shown in the above (b1).
  • An aluminum plate was produced in the same manner.
  • A2 Oxide film formation process (oxide film formation process) A solution having a sulfuric acid concentration of 170 g / L and an aluminum concentration of 5% or less was applied to the aluminum substrate, and the aluminum substrate was used as an anode, and a DC current density of 25 A / dm 2 and a DC voltage of 15 V were applied for 16 seconds at 52 ° C. Then, an oxide film (film amount: 2.4 g / m 2 ) was formed on one surface (one surface) of the aluminum base material. Then, water washing by spraying was performed.
  • Electrolytic dissolution treatment (through-hole forming step) Next, using an electrolytic solution (nitric acid concentration: 1%, aluminum concentration: 4.5 g / L) kept at 50 ° C., electrolytic treatment is performed under the condition that the total amount of electricity is 500 C / dm 2 with the aluminum base material as the anode. And through holes were formed in the aluminum substrate and the oxide film. The electrolytic treatment was performed with a DC power wave. Current density was 10A / dm 2. Then, it was washed with water by spraying and dried.
  • an electrolytic solution nitric acid concentration: 1%, aluminum concentration: 4.5 g / L
  • electrolytic treatment is performed under the condition that the total amount of electricity is 500 C / dm 2 with the aluminum base material as the anode. And through holes were formed in the aluminum substrate and the oxide film.
  • the electrolytic treatment was performed with a DC power wave. Current density was 10A / dm 2. Then, it was washed with water by spraying and dried
  • Example 3 instead of the oxide film forming process shown in the above (a1), the oxide film forming process shown in the above (a2) is performed, and instead of the electrolytic dissolving process shown in the above (b1), the electrolytic dissolving process shown in the following (b3) is performed.
  • An aluminum plate was produced in the same manner as in Example 1 except that it was applied.
  • Example 4 An aluminum plate was produced in the same manner as in Example 3 except that the total amount of electricity in the electrolytic treatment in the electrolytic dissolution treatment shown in (b3) was 2000 C / dm 2 .
  • Example 5 An aluminum plate was produced in the same manner as in Example 4 except that an aluminum substrate (A1085, aluminum purity: 99.85%) having an average thickness of 20 ⁇ m and a width of 200 mm was used as the aluminum substrate.
  • an aluminum substrate A1085, aluminum purity: 99.85%
  • Example 6 An aluminum plate was prepared in the same manner as in Example 2 using an aluminum substrate (JIS H-4160, alloy number: 8021-H, aluminum purity: 98.10%) having an average thickness of 15 ⁇ m as the aluminum substrate.
  • an aluminum substrate JIS H-4160, alloy number: 8021-H, aluminum purity: 98.10% having an average thickness of 15 ⁇ m as the aluminum substrate.
  • Example 7 As the aluminum base material, an aluminum base material having an average thickness of 12 ⁇ m (JIS H-4160, alloy number: 8021-H, aluminum purity: 98.10%) was used, and the electrolytic dissolution treatment (through-hole formation) shown in (b2) above. An aluminum plate was produced in the same manner as in Example 2 except that the current density of the electric field treatment in the step) was 25 A / dm 2 .
  • a resist film having a predetermined pattern is formed on both surfaces of an aluminum substrate (JIS H-4160, alloy number: 1N30-H, aluminum purity: 99.30%) having an average thickness of 20 ⁇ m and a width of 200 mm. Formed.
  • the main component of the resist ink is an acrylic resin, and a small amount of pigment is blended.
  • the viscosity of the resist ink was adjusted with toluene.
  • an etching process of ferric chloride was used to perform an etching process at a temperature of 40 ° C. for about 10 seconds, thereby forming through holes having a predetermined pattern in the aluminum foil. Thereafter, the resist ink was dissolved and removed with caustic soda to produce an aluminum plate.
  • Example 3 An aluminum plate was produced in the same manner as in Example 3 except that an aluminum substrate (aluminum purity: 99.99%) having an average thickness of 20 ⁇ m and a width of 200 mm was used as the aluminum substrate.
  • an aluminum substrate aluminum purity: 99.99%) having an average thickness of 20 ⁇ m and a width of 200 mm was used as the aluminum substrate.
  • the average opening diameter and average opening ratio of the through holes of the produced aluminum plate were measured by the following methods.
  • the average aperture diameter was obtained by photographing the surface of an aluminum plate at a magnification of 200 times from directly above using a high-resolution scanning electron microscope (SEM). Twenty samples were extracted, and the diameter was read as the opening diameter, and the average value of these was calculated as the average opening diameter.
  • the average aperture ratio of the through-holes was obtained by photographing the surface of the aluminum plate at a magnification of 200 times from directly above using a high resolution scanning electron microscope (SEM), and a 30 mm ⁇ 30 mm visual field (5 ), Binarize with image analysis software, etc., and observe the through-hole part and the non-through-hole part. From the total of the opening area of the through-hole and the area of the visual field (geometric area), Calculated from the geometric area), and the average value in each field of view (5 locations) was calculated as the average aperture ratio.
  • an active material layer was formed on both surfaces of the produced aluminum plate, and the applicability was evaluated by the presence or absence of irregularities on the surface of the active material layer.
  • 100 parts by mass of an activated carbon powder having a specific surface area of 1950 m 2 / g, 10 parts by mass of acetylene black, 7 parts by mass of an acrylic binder, and 4 parts by mass of carboxymethylcellulose are added to water and dispersed. By doing this, the slurry was adjusted.
  • the prepared slurry was applied to both surfaces of the aluminum plate on which the through holes were formed by a die coater so as to have a total thickness of 200 ⁇ m, thereby forming an active material layer on the surface of the aluminum plate.
  • the surface of the formed active material layer is visually evaluated to see if there are irregularities, A is when there are no irregularities with a diameter of 40 ⁇ m or more, B is when irregularities with a diameter of 40 to 100 ⁇ m are seen, and irregularities with a diameter of 100 ⁇ m or more are seen.
  • C The case where it was made was designated as C.
  • the average thickness is 50 ⁇ m or less
  • the purity of aluminum is 85% to 99.90%
  • the average opening diameter of the through holes is 1 ⁇ m to 100 ⁇ m
  • the average opening ratio is more preferably 20% or less.

Abstract

The present invention addresses the issue of providing an aluminum plate having a plurality of fine through-holes and having a high tensile strength. The aluminum plate having a plurality of through-holes in the thickness direction has an average thickness of no more than 50 µm, an aluminum purity of 85.00%-99.90%, an average through-hole opening diameter of 1-100 µm, and an average opening ratio of 1%-40%.

Description

アルミニウム板Aluminum plate
 本発明は、蓄電デバイス用集電体などに用いられるアルミニウム板に関する。 The present invention relates to an aluminum plate used for a current collector for an electricity storage device.
 近年、パーソナルコンピュータ、携帯電話等のポータブル機器や、ハイブリッド自動車、電気自動車等の開発に伴い、その電源としての蓄電デバイス、特に、リチウムイオンキャパシタ、リチウムイオン二次電池、電気二重層キャパシタの需要が増大している。 In recent years, with the development of portable devices such as personal computers and mobile phones, hybrid cars, electric cars, etc., there is a demand for power storage devices as their power sources, especially lithium ion capacitors, lithium ion secondary batteries, and electric double layer capacitors. It is increasing.
 このような蓄電デバイスの正極または負極に用いられる電極用集電体(以下、単に「集電体」という。)としては、アルミニウム板を用いることが知られている。また、このアルミニウム板からなる集電体の表面に、活性炭などの活物質を塗布され、正極または負極の電極として用いることが知られている。 It is known that an aluminum plate is used as an electrode current collector (hereinafter simply referred to as “current collector”) used for the positive electrode or the negative electrode of such an electricity storage device. It is also known that an active material such as activated carbon is applied to the surface of a current collector made of an aluminum plate and used as a positive electrode or a negative electrode.
 例えば、特許文献1には、集電体として、複数の貫通孔を有する金属箔を用いることが記載されており、また、その材質としてアルミニウム、銅などが記載されており、この金属箔の片面または両面に活物質層を有する電極が記載されている([請求項1][0021])。
 また、特許文献2には、集電体として、貫通孔を有するフィルム状の集電体を用いることが記載されており、また、正極集電体としては、アルミニウム、ステンレスなどが用いられることが記載されており、また、この集電体と活物質とを有する電極が記載されている([請求項1][0053])。
 また、特許文献3には、正負極板として、活物質を付着させる箇所に多数の貫通孔を形成させた金属箔が記載されており、また、正極集電体としてアルミニウム箔が記載されており、また、この金属箔に活物質合剤が塗着された電極が記載されている([請求項1][0016])。
 また、特許文献4には、集電体として、アルミニウム貫通箔を用いることが記載されており、また、このアルミニウム貫通箔に活物質を塗布することが記載されている([請求項1][0036])。
For example, Patent Document 1 describes using a metal foil having a plurality of through-holes as a current collector, and describes aluminum, copper, and the like as its material. One side of this metal foil Alternatively, an electrode having an active material layer on both surfaces is described ([claim 1] [0021]).
Patent Document 2 describes that a current collector in the form of a film having through holes is used as the current collector, and aluminum, stainless steel, or the like is used as the positive electrode current collector. In addition, an electrode having the current collector and the active material is described ([claim 1] [0053]).
Patent Document 3 describes a metal foil in which a large number of through holes are formed at locations where an active material is attached as a positive and negative electrode plate, and an aluminum foil as a positive electrode current collector. In addition, an electrode in which an active material mixture is applied to the metal foil is described ([claim 1] [0016]).
Patent Document 4 describes that an aluminum through foil is used as the current collector, and describes that an active material is applied to the aluminum through foil ([Claim 1] [Claim 1] 0036]).
 このような集電体において、貫通孔は、リチウムイオンの移動を容易にするため形成されるものであるが、多数の貫通孔を有することで、活物質との密着性を向上することも知られている。この貫通孔は、大きすぎると活物質の塗布性が低下したり、塗布した活物質の表面に凹みができて均一性が損なわれたり、あるいは、集電体の強度が低下してしまう。そのため、貫通孔を微細に形成し、また、開口率を制御して、集電体と活物質との密着性、活物質の塗布性や活物質表面の均一性、集電体の強度等を向上することが知られている。 In such a current collector, the through hole is formed to facilitate the movement of lithium ions, but it is also known that having a large number of through holes improves the adhesion to the active material. It has been. If this through-hole is too large, the coating property of the active material is lowered, the surface of the coated active material is dented, the uniformity is impaired, or the strength of the current collector is lowered. Therefore, through-holes are formed finely, and the aperture ratio is controlled so that the adhesion between the current collector and the active material, the coating properties of the active material, the uniformity of the active material surface, the strength of the current collector, etc. It is known to improve.
 例えば、特許文献1には、貫通孔の最小孔径を0.01~0.19mmの範囲とすることで、活物質層との接着強度を増大し、また、貫通孔のパターンが活物質層の表面に反映するのを抑制して、活物質層の表面粗さを小さくすることが記載されている([0022])。
 また、特許文献2には、開口率を5~79%とすることで、集電体の強度の低下を防止することが記載されている([0066])。
 また、特許文献3には、貫通孔の各面積を8×10-72以下とし、開口率を5%~55%の範囲とすることで、金属箔への活物質合剤の塗着を容易にすることが記載されている([0081])。
 また、特許文献4には、表面積拡大率を、0.15×箔厚みt(μm)以上の値に設定することによって、集電体と活物質との密着性を向上させることが記載されている([0037])。
For example, in Patent Document 1, by setting the minimum hole diameter of the through hole in the range of 0.01 to 0.19 mm, the adhesive strength with the active material layer is increased, and the pattern of the through hole is that of the active material layer. It is described that the surface roughness of the active material layer is reduced by suppressing reflection on the surface ([0022]).
Patent Document 2 describes that the strength of the current collector is prevented from being reduced by setting the aperture ratio to 5 to 79% ([0066]).
Patent Document 3 discloses that an active material mixture is applied to a metal foil by setting each area of the through-hole to 8 × 10 −7 m 2 or less and an opening ratio in a range of 5% to 55%. ([0081]).
Patent Document 4 describes that the adhesion between the current collector and the active material is improved by setting the surface area enlargement ratio to a value of 0.15 × foil thickness t (μm) or more. ([0037]).
 また、このような微細な貫通孔は、例えば、特許文献4に記載されるように、電解エッチングにより形成される([0052])。 Further, such fine through holes are formed by electrolytic etching as described in, for example, Patent Document 4 ([0052]).
特開2013-077734号公報JP 2013-077774 A 特開2012-151395号公報JP 2012-151395 A 特開2010-186779号公報JP 2010-186777 A 国際公開第2011/004777号International Publication No. 2011/004777
 特許文献4では、電解エッチングで微細な貫通孔を形成するために、高純度なアルミニウムを用いている([請求項1])。
 しかしながら、本発明者が検討したところ、高純度なアルミニウム板を用いると、強度に劣るという問題があることがわかった。
In Patent Document 4, high-purity aluminum is used in order to form fine through holes by electrolytic etching ([Claim 1]).
However, as a result of studies by the present inventors, it has been found that there is a problem that the strength is poor when a high-purity aluminum plate is used.
 そこで、本発明は、微細な貫通孔を多数有し、かつ、高い引張強度を有するアルミニウム板を提供することを目的とする。 Therefore, an object of the present invention is to provide an aluminum plate having a large number of fine through holes and having a high tensile strength.
 本発明者は、上記目的を達成すべく鋭意検討した結果、平均厚さが50μm以下、アルミニウムの純度が85%~99.90%であり、貫通孔の平均開口径が1μm~100μm、平均開口率が1%~40%であるアルミニウム板とすることにより、微細な貫通孔を多数有し、かつ、高い引張強度とすることができることを見出し、本発明を完成させた。
 すなわち、以下の構成により上記目的を達成することができることを見出した。
As a result of intensive studies to achieve the above object, the present inventors have found that the average thickness is 50 μm or less, the purity of aluminum is 85% to 99.90%, the average opening diameter of the through holes is 1 μm to 100 μm, and the average opening It was found that by using an aluminum plate with a rate of 1% to 40%, it was possible to have a large number of fine through holes and a high tensile strength, and the present invention was completed.
That is, it has been found that the above object can be achieved by the following configuration.
 [1] 厚み方向に複数の貫通孔を有するアルミニウム板において、
 平均厚さが50μm以下、アルミニウムの純度が85%~99.90%であり、
 貫通孔の平均開口径が1μm~100μm、平均開口率が1%~40%である、アルミニウム板。
 [2] アルミニウムの純度が、90%~99.80%である[1]に記載のアルミニウム板。
 [3] 貫通孔の平均開口径が、1μm~60μmである[1]または[2]に記載のアルミニウム板。
 [4] 貫通孔の平均開口率が、5%~30%である[1]~[3]のいずれかに記載のアルミニウム板。
 [5] 少なくとも貫通孔の内表面を覆う金属めっきからなる金属層を有する[1]~[4]のいずれかに記載のアルミニウム板。
[1] In an aluminum plate having a plurality of through holes in the thickness direction,
The average thickness is 50 μm or less, the purity of aluminum is 85% to 99.90%,
An aluminum plate having an average opening diameter of through holes of 1 μm to 100 μm and an average opening ratio of 1% to 40%.
[2] The aluminum plate according to [1], wherein the purity of aluminum is 90% to 99.80%.
[3] The aluminum plate according to [1] or [2], wherein the average opening diameter of the through holes is 1 μm to 60 μm.
[4] The aluminum plate according to any one of [1] to [3], wherein the average opening ratio of the through holes is 5% to 30%.
[5] The aluminum plate according to any one of [1] to [4], which has a metal layer made of metal plating that covers at least the inner surface of the through hole.
 以下に説明するように、本発明によれば、微細な貫通孔を多数有し、かつ、高い引張強度を有するアルミニウム板を提供することができる。 As described below, according to the present invention, an aluminum plate having a large number of fine through holes and having a high tensile strength can be provided.
図1(A)は、本発明のアルミニウム板の一例を概念的に示す上面図であり、図1(B)は、図1(A)のB-B線断面図であり、図1(C)は、図1(A)を集電体として用いた電極を示す概略断面図である。1A is a top view conceptually showing an example of the aluminum plate of the present invention, and FIG. 1B is a cross-sectional view taken along the line BB of FIG. 1A. ) Is a schematic cross-sectional view showing an electrode using FIG. 1A as a current collector. 図2は、本発明のアルミニウム板の他の一例を示す模式的な断面図である。FIG. 2 is a schematic cross-sectional view showing another example of the aluminum plate of the present invention. 図3(A)~図3(E)は、本発明のアルミニウム板の好適な製造方法の一例を説明するための模式的な断面図であり、図3(A)はアルミニウム基材の模式的な断面図であり、図3(B)はアルミニウム基材に酸化膜形成処理を施し、酸化膜を表面に形成した状態を示す模式的な断面図であり、図3(C)は酸化膜形成処理の後に電気化学的溶解処理を施し、アルミニウム基材および酸化膜に貫通孔を形成した状態を示す模式的な断面図であり、図3(D)は電気化学的溶解処理の後に酸化膜を除去した後の状態を示す模式的な断面図であり、図3(E)は酸化膜を除去した後に、更に電気化学的粗面化処理を施した後の状態を示す模式的な断面図である。3 (A) to 3 (E) are schematic cross-sectional views for explaining an example of a preferred method for producing the aluminum plate of the present invention, and FIG. 3 (A) is a schematic view of an aluminum substrate. FIG. 3B is a schematic cross-sectional view showing a state in which the oxide film is formed on the surface of the aluminum base material, and FIG. 3C is a schematic cross-sectional view of the oxide film formation. FIG. 3D is a schematic cross-sectional view showing a state in which an electrochemical dissolution process is performed after the treatment and through holes are formed in the aluminum base material and the oxide film. FIG. 3D is a diagram illustrating the oxide film after the electrochemical dissolution process. FIG. 3E is a schematic cross-sectional view showing the state after the electrochemical roughening treatment is performed after removing the oxide film. is there. 図4(A)~図4(E)は、本発明のアルミニウム板の好適な製造方法の他の一例を説明するための模式的な断面図であり、図4(A)はアルミニウム基材の模式的な断面図であり、図4(B)はアルミニウム基材に酸化膜形成処理を施し、酸化膜を表面および裏面に形成した状態を示す模式的な断面図であり、図4(C)は酸化膜形成処理の後に電気化学的溶解処理を施し、アルミニウム基材および酸化膜に貫通孔を形成した状態を示す模式的な断面図であり、図4(D)は電気化学的溶解処理の後に酸化膜を除去した後の状態を示す模式的な断面図であり、図4(E)は酸化膜を除去した後に、更に電気化学的粗面化処理を施した後の状態を示す模式的な断面図である。4 (A) to 4 (E) are schematic cross-sectional views for explaining another example of a preferred method for producing an aluminum plate of the present invention, and FIG. 4 (A) shows an aluminum substrate. FIG. 4B is a schematic cross-sectional view showing a state in which an oxide film is formed on the aluminum base, and the oxide film is formed on the front and back surfaces. FIG. FIG. 4 is a schematic cross-sectional view showing a state in which an electrochemical dissolution process is performed after the oxide film formation process and through holes are formed in the aluminum base material and the oxide film, and FIG. FIG. 4E is a schematic cross-sectional view showing a state after the oxide film is removed later, and FIG. 4E is a schematic view showing a state after the electrochemical roughening treatment is performed after the oxide film is removed. FIG.
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
Hereinafter, the present invention will be described in detail.
The description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments.
In this specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
[アルミニウム板]
 本発明のアルミニウム板は、平均厚さが50μm以下、アルミニウムの純度が85%~99.90%であり、貫通孔の平均開口径が1μm~100μm、平均開口率が1%~40%のアルミニウム板である。
 次に、本発明のアルミニウム板の構成について、図1(A)~図1(C)を用いて説明する。
[Aluminum plate]
The aluminum plate of the present invention has an average thickness of 50 μm or less, an aluminum purity of 85% to 99.90%, an average opening diameter of through holes of 1 μm to 100 μm, and an average opening ratio of 1% to 40%. It is a board.
Next, the structure of the aluminum plate of the present invention will be described with reference to FIGS. 1 (A) to 1 (C).
 図1(A)は、本発明のアルミニウム板の好適な実施態様の一例を示す模式的な上面図であり、図1(B)は、図1(A)のB-B線断面図であり、図1(C)は、図1(A)に示すアルミニウム板10を、蓄電デバイスの集電体として用いる電極の一例を示す模式的な断面図である。
 図1(A)および図1(B)に示すように、アルミニウム板10は、アルミニウム基材3に複数の貫通孔5を形成してなるものである。
 また、図1(C)に示す電極30は、図1(B)に示すアルミニウム板10の一方の面に活物質層32が積層されてなるものである。
FIG. 1 (A) is a schematic top view showing an example of a preferred embodiment of the aluminum plate of the present invention, and FIG. 1 (B) is a cross-sectional view taken along the line BB of FIG. 1 (A). FIG. 1C is a schematic cross-sectional view showing an example of an electrode using the aluminum plate 10 shown in FIG. 1A as a current collector of an electricity storage device.
As shown in FIGS. 1 (A) and 1 (B), the aluminum plate 10 is formed by forming a plurality of through holes 5 in an aluminum base 3.
An electrode 30 shown in FIG. 1C is formed by laminating an active material layer 32 on one surface of the aluminum plate 10 shown in FIG.
 アルミニウム基材3に形成される複数の貫通孔5は、平均開口径が1μm~100μmであり、平均開口率が1%~40%である。
 また、アルミニウム基材3は、純度が85%~99.90%のアルミニウムであり、平均厚さが50μm以下である。
 ここで、貫通孔の平均開口径は、高分解能走査型電子顕微鏡(SEM)を用いてアルミニウム板の表面を真上から倍率200倍で撮影し、得られたSEM写真において、周囲が環状に連なっている貫通孔を少なくとも20個抽出し、その直径を読み取って開口径とし、これらの平均値を平均開口径として算出した。
 なお、直径は、貫通孔部分の端部間の距離の最大値を測定した。
 また、貫通孔の平均開口率は、高分解能走査型電子顕微鏡(SEM)を用いてアルミニウム板の表面を真上から倍率200倍で撮影し、得られたSEM写真の30mm×30mmの視野(5箇所)について、画像解析ソフト等で2値化して貫通孔部分と非貫通孔部分を観察し、貫通孔の開口面積の合計と視野の面積(幾何学的面積)とから、比率(開口面積/幾何学的面積)から算出し、各視野(5箇所)における平均値を平均開口率として算出した。
 また、アルミニウムの純度は、JIS H 1305:2005 アルミニウム及びアルミニウム合金の発光分光分析方法に基づいて測定した。
The plurality of through holes 5 formed in the aluminum base 3 have an average opening diameter of 1 μm to 100 μm and an average opening ratio of 1% to 40%.
The aluminum substrate 3 is aluminum having a purity of 85% to 99.90% and an average thickness of 50 μm or less.
Here, the average opening diameter of the through-holes was obtained by photographing the surface of the aluminum plate at a magnification of 200 times from directly above using a high-resolution scanning electron microscope (SEM). At least 20 through-holes were extracted, and the diameter was read as the opening diameter, and the average value of these was calculated as the average opening diameter.
In addition, the diameter measured the maximum value of the distance between the edge parts of a through-hole part.
Further, the average aperture ratio of the through-holes was obtained by photographing the surface of the aluminum plate at a magnification of 200 times from directly above using a high resolution scanning electron microscope (SEM), and a 30 mm × 30 mm visual field (5 ), Binarize with image analysis software, etc., and observe the through-hole part and the non-through-hole part. From the total of the opening area of the through-hole and the area of the visual field (geometric area), Calculated from the geometric area), and the average value in each field of view (5 locations) was calculated as the average aperture ratio.
Moreover, the purity of aluminum was measured based on the emission spectroscopic analysis method of JIS H 1305: 2005 aluminum and aluminum alloy.
 本発明においては、貫通孔5の平均開口径を1μm~100μmの微細な径とし、また、平均開口率を1%~40%として、アルミニウムの純度を85.00%~99.90%の範囲とすることで、平均厚さ50μm以下の薄い基材で、多数の貫通孔を有しても、十分な引張強度を有するものとすることができる。また、貫通孔5の平均開口径および平均開口率をこの範囲とすることで、アルミニウム板10の表面に塗布する塗料の塗布性を向上でき、また、塗布により形成した層の均一性を向上でき、形成した層との密着性を向上できる。 In the present invention, the average opening diameter of the through-holes 5 is a fine diameter of 1 μm to 100 μm, the average opening ratio is 1% to 40%, and the purity of aluminum is in the range of 85.00% to 99.90%. As a result, a thin base material having an average thickness of 50 μm or less can have a sufficient tensile strength even if it has a large number of through holes. In addition, by setting the average opening diameter and the average opening ratio of the through holes 5 within this range, it is possible to improve the coating property of the coating applied to the surface of the aluminum plate 10 and to improve the uniformity of the layer formed by coating. The adhesion with the formed layer can be improved.
 例えば、アルミニウム板10をリチウムイオンキャパシタの集電体として用いる場合には、貫通孔5の平均開口径を1μm~100μmとし、平均開口率を1%~40%とすることで、短時間でのリチウムのプレドープが可能となり、リチウムをより均一に分散させることが可能となる。また、図1(C)に示す電極30のように、集電体であるアルミニウム板10の表面に活物質層32を形成する場合に、活物質の塗布性およびアルミニウム板10と活物質層32との密着性が良好となり、また、形成した活物質層32表面の均一性を向上できるので、サイクル特性に優れる蓄電デバイスを作製することができる。 For example, when the aluminum plate 10 is used as a current collector of a lithium ion capacitor, the average opening diameter of the through holes 5 is set to 1 μm to 100 μm, and the average opening ratio is set to 1% to 40%. Lithium can be pre-doped, and lithium can be more uniformly dispersed. In addition, when the active material layer 32 is formed on the surface of the aluminum plate 10 that is a current collector, like the electrode 30 shown in FIG. 1C, the active material coating property and the aluminum plate 10 and the active material layer 32 are formed. And the uniformity of the surface of the formed active material layer 32 can be improved, so that an electricity storage device having excellent cycle characteristics can be manufactured.
 また、アルミニウムの純度を上記範囲とし、また、貫通孔の平均開口径および平均開口率を上記範囲とすることで、引張強度として、15N/mm2以上、好ましくは20N/mm2以上、より好ましくは60N/mm2以上の引張強度を実現することができる。
 なお、引張強度は、JIS Z2241:2011に基づいた引張試験における引張強度である。具体的には、幅25mm、長さ150mmの試料を、チャック間距離が70mmとなるように固定し、引張速度10mm/minで10回測定し、その平均値を引張強度とした。
Further, by setting the purity of aluminum within the above range and the average opening diameter and average opening ratio of the through holes within the above range, the tensile strength is 15 N / mm 2 or more, preferably 20 N / mm 2 or more, more preferably. Can realize a tensile strength of 60 N / mm 2 or more.
The tensile strength is a tensile strength in a tensile test based on JIS Z2241: 2011. Specifically, a sample having a width of 25 mm and a length of 150 mm was fixed so that the distance between chucks was 70 mm, measured 10 times at a tensile speed of 10 mm / min, and the average value was taken as the tensile strength.
 貫通孔の平均開口径は、上記の塗布性、密着性、引張強度等の観点から、1μm~60μmが好ましく、1μm~50μmがより好ましく、1~40μmが特に好ましく、10~40μmがさらに好ましい。
 また、貫通孔の平均開口率は、上記の塗布性、密着性、引張強度等の観点から、5%~30%が好ましく、5%~25%がより好ましく、5%超20%以下が特に好ましい。
The average opening diameter of the through holes is preferably 1 μm to 60 μm, more preferably 1 μm to 50 μm, particularly preferably 1 to 40 μm, and further preferably 10 to 40 μm, from the viewpoints of the above-described coating properties, adhesion, and tensile strength.
In addition, the average opening ratio of the through holes is preferably 5% to 30%, more preferably 5% to 25%, and particularly preferably more than 5% and 20% or less from the viewpoints of the above-described applicability, adhesion, and tensile strength. preferable.
 また、アルミニウムの純度は、上記の引張強度の観点から、90%~99.80%の範囲が好ましく、92%~99.70%がより好ましく、95%~99.50%がさらに好ましく、95%以上98.50%未満が特に好ましい。
 また、アルミニウム板の平均厚さは、5μm~50μmが好ましく、10μm~50μmがより好ましい。
 アルミニウム板の厚さを5μm以上とすることで、強度不足で破断するのを抑制することができる。また、50μm以下とすることで、体積増加を抑制して、省スペース化することができ、また、貫通処理を容易にすることができる。
 なお、アルミニウム板の平均厚さは、100mm×100mm内で5点の厚さを測定し、その平均値とした。
Further, the purity of aluminum is preferably in the range of 90% to 99.80%, more preferably in the range of 92% to 99.70%, still more preferably in the range of 95% to 99.50%, from the viewpoint of the tensile strength. % Or more and less than 98.50% is particularly preferable.
The average thickness of the aluminum plate is preferably 5 μm to 50 μm, more preferably 10 μm to 50 μm.
By setting the thickness of the aluminum plate to 5 μm or more, it is possible to suppress breakage due to insufficient strength. Further, when the thickness is 50 μm or less, an increase in volume can be suppressed, space saving can be achieved, and a penetration process can be facilitated.
In addition, the average thickness of the aluminum plate measured the thickness of five points within 100 mm x 100 mm, and made it the average value.
 また、図示例において、複数の貫通孔は規則的に形成されているが、複数の貫通孔は、平均開口径および平均開口率が上記範囲を満たせば、不規則に形成されていてもよい。 In the illustrated example, the plurality of through holes are regularly formed. However, the plurality of through holes may be irregularly formed as long as the average opening diameter and the average opening ratio satisfy the above ranges.
 また、アルミニウム板10の表面は粗面化されていてもよく、例えば、平均開口径0.5μm~3.0μmの凹部が10個/100μm2以上の密度で形成されるのが好ましい。アルミニウム板の表面を粗面化することにより、活物質層との密着性が向上するとともに、表面積が増えることによって接触面積が増えるため、アルミニウム板(集電体)を用いた蓄電デバイスの容量維持率が高くなる。
 なお、粗面化の処理方法には特に限定はなく、公知の粗面化処理方法が適宜利用可能である。例えば、後述する電気化学的粗面化処理により、粗面化するのが好ましい。
Further, the surface of the aluminum plate 10 may be roughened. For example, it is preferable that concave portions having an average opening diameter of 0.5 μm to 3.0 μm are formed at a density of 10/100 μm 2 or more. By roughening the surface of the aluminum plate, the adhesion to the active material layer is improved, and the contact area increases by increasing the surface area, so the capacity of the electricity storage device using the aluminum plate (current collector) is maintained. The rate is high.
The roughening treatment method is not particularly limited, and a known roughening treatment method can be used as appropriate. For example, the surface is preferably roughened by an electrochemical surface roughening treatment described later.
 また、図1(B)に示す例では、アルミニウム基材3に複数の貫通孔5が形成されてなる構成としたが、本発明はこれに限定はされず、少なくとも貫通孔の内表面を覆う金属めっきからなる金属層を有していてもよい。
 図2は、本発明のアルミニウム板の他の一例を示す模式的な断面図である。
 図2に示すアルミニウム板10は、貫通孔を有するアルミニウム基材3の表面および裏面ならびに貫通孔5の内表面(内壁)にアルミニウム以外の金属または合金からなる第1の金属層6および第2の金属層7を有する態様である。
 このように、貫通孔の内表面に金属層を形成することで、貫通孔の平均開口径を1μm~20μm程度の小さい範囲に好適に調整できる。
 このような金属層は、後述する金属被覆工程により形成することができる。
 なお、図示例においては、アルミニウム基材3の表面および裏面ならびに貫通孔5の内表面に金属層を形成する構成としたが、これに限定はされず、少なくとも、貫通孔5の内表面に金属層を形成すればよい。
Further, in the example shown in FIG. 1B, the aluminum base 3 is configured to have a plurality of through holes 5, but the present invention is not limited to this, and at least covers the inner surface of the through holes. You may have the metal layer which consists of metal plating.
FIG. 2 is a schematic cross-sectional view showing another example of the aluminum plate of the present invention.
An aluminum plate 10 shown in FIG. 2 includes first and second metal layers 6 and 2 made of a metal or alloy other than aluminum on the front and back surfaces of the aluminum base 3 having through holes and the inner surface (inner wall) of the through holes 5. In this embodiment, the metal layer 7 is provided.
Thus, by forming the metal layer on the inner surface of the through hole, the average opening diameter of the through hole can be suitably adjusted to a small range of about 1 μm to 20 μm.
Such a metal layer can be formed by a metal coating process described later.
In the illustrated example, the metal layer is formed on the front and back surfaces of the aluminum base 3 and the inner surface of the through hole 5. However, the present invention is not limited to this, and at least a metal is formed on the inner surface of the through hole 5. A layer may be formed.
 <アルミニウム基材>
 上記アルミニウム基材は、厚みが50μm以下であり、アルミニウムの純度が85%~99.90%であれば特に限定はされず、公知のアルミニウム基材を用いることができる。すなわち、アルミニウム基材は、アルミニウムを主成分とし、微量の異元素を含む合金板である。
 例えば、アルミニウム基材として、JIS H-4160、合金番号:A1085H-H18、A1070H-H18、A1050H-H18、A1100H-H18、A1N30H-H18、A3003H-H18、A3004H-H18、A8021H-H18、A8079H-H18等を用いることができる。
<Aluminum substrate>
The aluminum substrate is not particularly limited as long as it has a thickness of 50 μm or less and the purity of aluminum is 85% to 99.90%, and a known aluminum substrate can be used. That is, the aluminum substrate is an alloy plate containing aluminum as a main component and containing a trace amount of foreign elements.
For example, JIS H-4160, alloy numbers: A1085H-H18, A1070H-H18, A1050H-H18, A1100H-H18, A1N30H-H18, A3003H-H18, A3004H-H18, A8021H-H18, A8079H-H18 Etc. can be used.
 <活物質層>
 活物質層としては特に限定はなく、従来の蓄電デバイスにおいて用いられる公知の活物質層が利用可能である。
 具体的には、アルミニウム板を正極の集電体として用いる場合の、活物質および活物質層に含有していてもよい導電材、結着剤、溶媒等については、特開2012-216513号公報の[0077]~[0088]段落に記載された材料を適宜採用することができ、その内容は本明細書に参照として取り込まれる。
 また、アルミニウム板を負極の集電体として用いる場合の、活物質については、特開2012-216513号公報の[0089]段落に記載された材料を適宜採用することができ、その内容は本明細書に参照として取り込まれる。
<Active material layer>
There is no limitation in particular as an active material layer, The well-known active material layer used in the conventional electrical storage device can be utilized.
Specifically, regarding an active material and a conductive material, a binder, a solvent, and the like that may be contained in the active material layer when an aluminum plate is used as a positive electrode current collector, JP 2012-216513 A The materials described in the paragraphs [0077] to [0088] can be adopted as appropriate, the contents of which are incorporated herein by reference.
In addition, as an active material when an aluminum plate is used as a negative electrode current collector, the materials described in paragraph [0089] of JP2012-216513A can be appropriately employed, and the contents thereof are described in this specification. Incorporated into the book as a reference.
[蓄電デバイス]
 本発明のアルミニウム板を集電体として利用する電極は、蓄電デバイスの正極あるいは負極として用いることができる。
 ここで、蓄電デバイス(特に、二次電池)の具体的な構成や適用される用途については、特開2012-216513号公報の[0090]~[0123]段落に記載された材料や用途を適宜採用することができ、その内容は本明細書に参照として取り込まれる。
[Power storage device]
An electrode using the aluminum plate of the present invention as a current collector can be used as a positive electrode or a negative electrode of an electricity storage device.
Here, regarding the specific configuration of the electricity storage device (particularly the secondary battery) and the application to which it is applied, the materials and applications described in paragraphs [0090] to [0123] of JP2012-216513A are appropriately used. Which is incorporated herein by reference.
 また、図1(C)に示す例では、本発明のアルミニウム板を集電体として用いる構成を示したが、本発明のアルミニウム板はこれ以外の用途にも利用することができる。例えば、耐熱微粒子フィルター、吸音材等に好適に利用可能である。 Further, in the example shown in FIG. 1C, a configuration in which the aluminum plate of the present invention is used as a current collector is shown, but the aluminum plate of the present invention can be used for other purposes. For example, it can be suitably used for heat resistant fine particle filters, sound absorbing materials, and the like.
[アルミニウム板の製造方法]
 次に、本発明のアルミニウム板の製造方法について説明する。
 アルミニウム板の製造方法は、厚み方向に複数の貫通孔を有するアルミニウム基材を有するアルミニウム板の製造方法であって、平均厚さ50μm以下のアルミニウム基材の表面に酸化膜形成処理を施し、酸化膜を形成する酸化膜形成工程と、酸化膜形成工程の後に電気化学的溶解処理(以下、「電解溶解処理」とも略す。)を施し、貫通孔を形成する貫通孔形成工程と、アルミニウム板から酸化膜を除去する酸化膜除去工程とを有する、アルミニウム板の製造方法である。
[Aluminum plate manufacturing method]
Next, the manufacturing method of the aluminum plate of this invention is demonstrated.
The method for producing an aluminum plate is a method for producing an aluminum plate having an aluminum substrate having a plurality of through-holes in the thickness direction, wherein the surface of the aluminum substrate having an average thickness of 50 μm or less is subjected to an oxide film forming treatment and oxidized. An oxide film forming process for forming a film, an electrochemical dissolution process (hereinafter also referred to as “electrolytic dissolution process”) after the oxide film forming process to form a through hole, and an aluminum plate And an oxide film removing step for removing the oxide film.
 本発明においては、酸化膜形成工程と貫通孔形成工程と酸化膜除去工程とを有することにより、活物質の塗布性および活物質層との密着性が良好で、活物質層表面の均一性を向上でき、かつ、十分な引張強度を有する集電体に好適に用いることができるアルミニウム板を製造することができる。
 これは、詳細には明らかではないが、本発明者らは以下のように推測している。
 すなわち、酸化膜形成処理により生じ、アルミニウム基材表面またはアルミニウム基材と酸化膜との界面に存在する金属間化合物や、酸化膜形成処理により生じる酸化膜中の欠陥、凹凸形状などを起点として、電解溶解処理によって容易に貫通孔を形成することができるため、純度が85.00%~99.90%のアルミニウムを用いた場合でも、平均開口径が1μm~100μmの微細な貫通孔を形成することができると考えられる。
In the present invention, by having the oxide film forming step, the through-hole forming step, and the oxide film removing step, the coating property of the active material and the adhesion with the active material layer are good, and the uniformity of the active material layer surface is improved. An aluminum plate that can be improved and can be suitably used for a current collector having sufficient tensile strength can be manufactured.
Although this is not clear in detail, the present inventors presume as follows.
That is, starting from the intermetallic compound existing at the surface of the aluminum substrate or at the interface between the aluminum substrate and the oxide film, defects in the oxide film generated by the oxide film formation process, uneven shape, etc. Since through-holes can be easily formed by electrolytic dissolution treatment, even when aluminum having a purity of 85.00% to 99.90% is used, fine through-holes having an average opening diameter of 1 μm to 100 μm are formed. It is considered possible.
 次に、アルミニウム板の製造方法の各工程を図3(A)~図3(E)および図4(A)~図4(E)を用いて説明した後に、各工程について詳述する。 Next, each step of the aluminum plate manufacturing method will be described with reference to FIGS. 3 (A) to 3 (E) and FIGS. 4 (A) to 4 (E).
 図3(A)~図3(E)および図4(A)~図4(E)は、アルミニウム板の製造方法の好適な実施態様の一例を示す模式的な断面図である。
 アルミニウム板の製造方法は、図3(A)~図3(E)および図4(A)~図4(E)に示すように、アルミニウム基材1の表面(図4に示す態様においては表面および裏面)に対して酸化膜形成処理を施し、酸化膜2を形成する酸化膜形成工程(図3(A)および図3(B),図4(A)および図4(B))と、酸化膜形成工程の後に電解溶解処理を施して貫通孔5を形成し、貫通孔を有するアルミニウム基材3および貫通孔を有する酸化膜4を有するアルミニウム板を作製する貫通孔形成工程(図3(B)および図3(C),図4(B)および図4(C))と、貫通孔形成工程の後に、貫通孔を有する酸化膜4を除去し、貫通孔を有するアルミニウム基材3からなるアルミニウム板10を作製する酸化膜除去工程(図3(C)および図3(D),図4(C)および図4(D))と、を有する製造方法である。
 また、アルミニウム板の製造方法は、酸化膜除去工程の後に、貫通孔を有するアルミニウム基材3に電気化学的粗面化処理を施し、表面を粗面化したアルミニウム板10を作製する粗面化処理工程(図3(D)および図3(E),図4(D)および図4(E))を有しているのが好ましい。
3 (A) to 3 (E) and FIGS. 4 (A) to 4 (E) are schematic cross-sectional views showing an example of a preferred embodiment of a method for producing an aluminum plate.
As shown in FIGS. 3 (A) to 3 (E) and FIGS. 4 (A) to 4 (E), the manufacturing method of the aluminum plate is the surface of the aluminum substrate 1 (the surface in the embodiment shown in FIG. 4). And an oxide film formation process (FIGS. 3A and 3B, FIG. 4A and FIG. 4B) for performing an oxide film formation process on the back surface and forming an oxide film 2, After the oxide film forming step, electrolytic dissolution treatment is performed to form the through hole 5, and a through hole forming step for producing an aluminum plate having the aluminum substrate 3 having the through hole and the oxide film 4 having the through hole (FIG. 3 ( B), FIG. 3 (C), FIG. 4 (B) and FIG. 4 (C)), and after the through hole forming step, the oxide film 4 having the through hole is removed, and the aluminum substrate 3 having the through hole is removed. Oxide film removing step (FIG. 3C) and FIG. D), is a manufacturing method having the FIG. 4 (C) and FIG. 4 (D)), a.
In addition, the aluminum plate manufacturing method is such that after the oxide film removal step, the aluminum substrate 3 having a through hole is subjected to an electrochemical surface roughening treatment to produce a roughened aluminum plate 10. It preferably has processing steps (FIG. 3D and FIG. 3E, FIG. 4D and FIG. 4E).
 〔酸化膜形成工程〕
 本発明の製造方法が有する酸化膜形成工程は、平均厚さ50μm以下のアルミニウム基材の表面に酸化膜形成処理を施し、酸化膜を形成する工程である。
[Oxide film formation process]
The oxide film forming step of the manufacturing method of the present invention is a step of forming an oxide film by performing an oxide film forming process on the surface of an aluminum substrate having an average thickness of 50 μm or less.
 <酸化膜形成処理>
 上記酸化膜形成処理は特に限定されず、例えば、従来公知の陽極酸化処理と同様の処理を施すことができる。
 陽極酸化処理としては、例えば、特開2012-216513号公報の[0063]~[0073]段落に記載された条件や装置を適宜採用することができる。
<Oxide film formation treatment>
The oxide film forming process is not particularly limited, and for example, a process similar to a conventionally known anodizing process can be performed.
As the anodizing treatment, for example, conditions and apparatuses described in paragraphs [0063] to [0073] of JP2012-216513A can be appropriately employed.
 本発明においては、陽極酸化処理の条件は、使用される電解液によって種々変化するので一概に決定され得ないが、一般的には電解液濃度1~80質量%、液温5~70℃、電流密度0.5~60A/dm2、電圧1~100V、電解時間1秒~20分であるのが適当であり、所望の酸化膜量となるように調整される。 In the present invention, conditions for anodizing treatment vary depending on the electrolyte used, and thus cannot be determined unconditionally. However, in general, the electrolyte concentration is 1 to 80% by mass, the solution temperature is 5 to 70 ° C., It is appropriate that the current density is 0.5 to 60 A / dm 2 , the voltage is 1 to 100 V, and the electrolysis time is 1 second to 20 minutes, which are adjusted to obtain a desired amount of oxide film.
 本発明においては、硫酸溶液中で施す陽極酸化処理が好ましい。
 硫酸を含有する電解液中で陽極酸化処理を行う場合には、アルミニウム基材と対極との間に直流を印加してもよく、交流を印加してもよい。アルミニウム基材に直流を印加する場合においては、電流密度は、1~60A/dm2であるのが好ましく、5~40A/dm2であるのがより好ましい。連続的に陽極酸化処理を行う場合には、アルミニウム基材に、電解液を介して給電する液給電方式により行うのが好ましい。
In the present invention, an anodizing treatment performed in a sulfuric acid solution is preferable.
When anodizing is performed in an electrolytic solution containing sulfuric acid, direct current may be applied between the aluminum substrate and the counter electrode, or alternating current may be applied. When direct current is applied to the aluminum substrate, the current density is preferably 1 to 60 A / dm 2 , and more preferably 5 to 40 A / dm 2 . When the anodizing treatment is continuously performed, it is preferable that the anodization is performed by a liquid power feeding method in which power is supplied to the aluminum base material through the electrolytic solution.
 本発明においては、陽極酸化処理により形成される酸化膜の量は0.05~50g/m2であるのが好ましく、0.1~10g/m2であるのがより好ましい。 In the present invention, the amount of the oxide film formed by the anodic oxidation treatment is preferably 0.05 to 50 g / m 2 , and more preferably 0.1 to 10 g / m 2 .
 〔貫通孔形成工程〕
 貫通孔形成工程は、酸化膜形成工程の後に電解溶解処理を施し、貫通孔を形成する工程である。
[Through hole forming process]
The through hole forming step is a step of forming a through hole by performing electrolytic dissolution treatment after the oxide film forming step.
 <電解溶解処理>
 上記電解溶解処理は特に限定されず、直流または交流を用い、酸性溶液を電解液に用いることができる。中でも、塩酸または硝酸を主体とする電解液を用いるのが好ましい。
<Electrolytic dissolution treatment>
The electrolytic dissolution treatment is not particularly limited, and direct current or alternating current can be used, and an acidic solution can be used as the electrolytic solution. Among these, it is preferable to use an electrolytic solution mainly composed of hydrochloric acid or nitric acid.
 本発明においては、電解液である酸性溶液としては、硝酸、塩酸のほかに、米国特許第4,671,859号、同第4,661,219号、同第4,618,405号、同第4,600,482号、同第4,566,960号、同第4,566,958号、同第4,566,959号、同第4,416,972号、同第4,374,710号、同第4,336,113号、同第4,184,932号の各明細書等に記載されている電解液を用いることもできる。 In the present invention, the acidic solution as the electrolytic solution includes, in addition to nitric acid and hydrochloric acid, U.S. Pat. Nos. 4,671,859, 4,661,219, 4,618,405, 4,600,482, 4,566,960, 4,566,958, 4,566,959, 4,416,972, 4,374, Electrolytic solutions described in the specifications of Nos. 710, 4,336,113, and 4,184,932 can also be used.
 酸性溶液の濃度は0.5~2.5質量%であるのが好ましく、0.7~2.0質量%であるのが特に好ましい。また、酸性溶液の液温は20~80℃であるのが好ましく、30~60℃であるのがより好ましい。 The concentration of the acidic solution is preferably 0.5 to 2.5% by mass, particularly preferably 0.7 to 2.0% by mass. The liquid temperature of the acidic solution is preferably 20 to 80 ° C., more preferably 30 to 60 ° C.
 また、塩酸または硝酸を主体とする水溶液は、濃度1~100g/Lの塩酸または硝酸の水溶液に、硝酸アルミニウム、硝酸ナトリウム、硝酸アンモニウム等の硝酸イオンを有する硝酸化合物または塩化アルミニウム、塩化ナトリウム、塩化アンモニウム等の塩酸イオンを有する塩酸化合物の少なくとも一つを1g/Lから飽和するまでの範囲で添加して使用することができる。
 また、塩酸または硝酸を主体とする水溶液には、鉄、銅、マンガン、ニッケル、チタン、マグネシウム、シリカ等のアルミニウム合金中に含まれる金属が溶解していてもよい。好ましくは、塩酸または硝酸の濃度0.5~2質量%の水溶液にアルミニウムイオンが3~50g/Lとなるように、塩化アルミニウム、硝酸アルミニウム等を添加した液を用いることが好ましい。
An aqueous solution mainly composed of hydrochloric acid or nitric acid is an aqueous solution of hydrochloric acid or nitric acid having a concentration of 1 to 100 g / L, nitric acid compounds having nitrate ions such as aluminum nitrate, sodium nitrate, ammonium nitrate, aluminum chloride, sodium chloride, ammonium chloride. It is possible to add at least one hydrochloric acid compound having a hydrochloric acid ion such as 1 g / L to saturation.
Moreover, the metal contained in aluminum alloys, such as iron, copper, manganese, nickel, titanium, magnesium, a silica, may melt | dissolve in the aqueous solution which has hydrochloric acid or nitric acid as a main component. Preferably, a solution obtained by adding aluminum chloride, aluminum nitrate or the like to an aqueous solution of hydrochloric acid or nitric acid having a concentration of 0.5 to 2% by mass so that aluminum ions are 3 to 50 g / L is preferably used.
 電気化学的溶解処理には、主に直流電流が用いられるが、交流電流を使用する場合にはその交流電源波は特に限定されず、サイン波、矩形波、台形波、三角波等が用いられ、中でも、矩形波または台形波が好ましく、台形波が特に好ましい。 In the electrochemical dissolution treatment, a direct current is mainly used, but when an alternating current is used, the alternating current power wave is not particularly limited, and a sine wave, a rectangular wave, a trapezoidal wave, a triangular wave, etc. are used. Among these, a rectangular wave or a trapezoidal wave is preferable, and a trapezoidal wave is particularly preferable.
 (硝酸電解)
 本発明においては、硝酸を主体とする電解液を用いた電気化学的溶解処理(以下、「硝酸溶解処理」とも略す。)により、容易に、平均開口径が1μm~100μmであり、平均開口率が1%~40%となる貫通孔を形成することができる。
 ここで、硝酸溶解処理は、貫通孔形成の溶解ポイントを制御しやすい理由から、直流電流を用い、平均電流密度を5A/dm2以上とし、かつ、電気量を50C/dm2以上とする条件で施す電解処理であるであるのが好ましい。なお、平均電流密度は100A/dm2以下であるのが好ましく、電気量は10000C/dm2以下であるのが好ましい。
 また、硝酸電解における電解液の濃度や温度は特に限定されず、高濃度、例えば、硝酸濃度15~35質量%の硝酸電解液を用いて30~60℃で電解を行ったり、硝酸濃度0.7~2質量%の硝酸電解液を用いて高温、例えば、80℃以上で電解を行ったりすることできる。
(Nitric acid electrolysis)
In the present invention, an average opening diameter of 1 μm to 100 μm is easily obtained by an electrochemical dissolution process (hereinafter also referred to as “nitric acid dissolution process”) using an electrolytic solution mainly composed of nitric acid, and an average aperture ratio. Through-holes with an amount of 1% to 40% can be formed.
Here, the nitric acid dissolution treatment uses direct current, the average current density is 5 A / dm 2 or more, and the amount of electricity is 50 C / dm 2 or more because it is easy to control the dissolution point of through-hole formation. It is preferable that the electrolytic treatment is performed in step (b). The average current density is preferably 100 A / dm 2 or less, and the quantity of electricity is preferably 10,000 C / dm 2 or less.
In addition, the concentration and temperature of the electrolytic solution in nitric acid electrolysis are not particularly limited, and electrolysis is performed at a high concentration, for example, 30 to 60 ° C. using a nitric acid electrolytic solution having a nitric acid concentration of 15 to 35% by mass, Electrolysis can be carried out at a high temperature, for example, at 80 ° C. or higher, using a 7-2 mass% nitric acid electrolyte.
 (塩酸電解)
 本発明においては、塩酸を主体とする電解液を用いた電気化学的溶解処理(以下、「塩酸溶解処理」とも略す。)によっても、容易に、平均開口径が1~100μmであり、平均開口率が1~40%となる貫通孔を形成することができる。
 ここで、塩酸溶解処理は、貫通孔形成の溶解ポイントを制御しやすい理由から、直流電流を用い、平均電流密度を5A/dm2以上とし、かつ、電気量を50C/dm2以上とする条件で施す電解処理であるであるのが好ましい。なお、平均電流密度は100A/dm2以下であるのが好ましく、電気量は10000C/dm2以下であるのが好ましい。
 また、塩酸電解における電解液の濃度や温度は特に限定されず、高濃度、例えば、塩酸濃度10~35質量%の塩酸電解液を用いて30~60℃で電解を行ったり、塩酸濃度0.7~2質量%の塩酸電解液を用いて高温、例えば、80℃以上で電解を行ったりすることできる。
(Hydrochloric acid electrolysis)
In the present invention, an average opening diameter of 1 to 100 μm is easily obtained by an electrochemical dissolution treatment (hereinafter also referred to as “hydrochloric acid dissolution treatment”) using an electrolytic solution mainly composed of hydrochloric acid. A through hole having a rate of 1 to 40% can be formed.
Here, the hydrochloric acid dissolution treatment uses direct current, the average current density is 5 A / dm 2 or more, and the amount of electricity is 50 C / dm 2 or more because it is easy to control the dissolution point of through-hole formation. It is preferable that the electrolytic treatment is performed in step (b). The average current density is preferably 100 A / dm 2 or less, and the quantity of electricity is preferably 10,000 C / dm 2 or less.
Further, the concentration and temperature of the electrolytic solution in hydrochloric acid electrolysis are not particularly limited, and electrolysis is performed at 30 to 60 ° C. using a hydrochloric acid electrolytic solution having a high concentration, for example, a hydrochloric acid concentration of 10 to 35% by mass, or a hydrochloric acid concentration of 0. Electrolysis can be performed at a high temperature, for example, 80 ° C. or higher, using a 7-2 mass% hydrochloric acid electrolyte.
 本発明においては、貫通孔の平均開口径を5μm以上とすることができ、また、開口率も5%以上に調整できる理由から、電解溶解処理における電気量(Q)C/dm2と電解溶解処理を施す際の酸化膜およびアルミニウム基材の合計の厚み(t)μmとが、下記式(I)を満たすことが好ましく、下記式(II)を満たすことがより好ましい。
 5≦Q/t≦300 ・・・(I)
 10≦Q/t≦300 ・・・(II)
 これは、上記式(I)を満たすことにより、電解溶解処理による酸化膜およびアルミニウム基材の溶出が、厚みに対して好適な状態になるためであると考えられる。
 なお、本発明においては、電解溶解処理を施す際の酸化膜およびアルミニウム基材の合計の厚み(t)とは、基本的には、上述した酸化膜形成処理を施す前のアルミニウム基材の厚みと同じ値となる。
In the present invention, since the average opening diameter of the through holes can be 5 μm or more and the opening ratio can be adjusted to 5% or more, the amount of electricity (Q) C / dm 2 and the electrolytic dissolution in the electrolytic dissolution treatment are adjusted. The total thickness (t) μm of the oxide film and the aluminum substrate when the treatment is performed preferably satisfies the following formula (I), and more preferably satisfies the following formula (II).
5 ≦ Q / t ≦ 300 (I)
10 ≦ Q / t ≦ 300 (II)
This is considered to be because, when the above formula (I) is satisfied, the elution of the oxide film and the aluminum base material by the electrolytic dissolution treatment is in a suitable state with respect to the thickness.
In the present invention, the total thickness (t) of the oxide film and the aluminum base material when the electrolytic dissolution treatment is performed is basically the thickness of the aluminum base material before the above-described oxide film formation processing is performed. The same value as
 〔酸化膜除去工程〕
 酸化膜除去工程は、酸化膜を除去する工程である。
 上記酸化膜除去工程は、例えば、後述する酸エッチング処理やアルカリエッチング処理を施すことにより酸化膜を除去することができる。
[Oxide film removal process]
The oxide film removing step is a step of removing the oxide film.
In the oxide film removing step, for example, the oxide film can be removed by performing an acid etching process or an alkali etching process described later.
 <酸エッチング処理>
 上記溶解処理は、アルミニウムよりも酸化膜(酸化アルミニウム)を優先的に溶解させる溶液(以下、「アルミナ溶解液」という。)を用いて酸化膜を溶解させる処理である。
<Acid etching treatment>
The dissolution treatment is a treatment for dissolving the oxide film using a solution (hereinafter referred to as “alumina solution”) that preferentially dissolves the oxide film (aluminum oxide) over aluminum.
 ここで、アルミナ溶解液としては、例えば、クロム化合物、硝酸、硫酸、リン酸、ジルコニウム系化合物、チタン系化合物、リチウム塩、セリウム塩、マグネシウム塩、ケイフッ化ナトリウム、フッ化亜鉛、マンガン化合物、モリブデン化合物、マグネシウム化合物、バリウム化合物およびハロゲン単体からなる群から選ばれる少なくとも1種を含有した水溶液が好ましい。 Here, as the alumina solution, for example, chromium compound, nitric acid, sulfuric acid, phosphoric acid, zirconium compound, titanium compound, lithium salt, cerium salt, magnesium salt, sodium fluorosilicate, zinc fluoride, manganese compound, molybdenum An aqueous solution containing at least one selected from the group consisting of a compound, a magnesium compound, a barium compound and a halogen simple substance is preferable.
 具体的には、クロム化合物としては、例えば、酸化クロム(III)、無水クロム(VI)酸等が挙げられる。
 ジルコニウム系化合物としては、例えば、フッ化ジルコンアンモニウム、フッ化ジルコニウム、塩化ジルコニウムが挙げられる。
 チタン化合物としては、例えば、酸化チタン、硫化チタンが挙げられる。
 リチウム塩としては、例えば、フッ化リチウム、塩化リチウムが挙げられる。
 セリウム塩としては、例えば、フッ化セリウム、塩化セリウムが挙げられる。
 マグネシウム塩としては、例えば、硫化マグネシウムが挙げられる。
 マンガン化合物としては、例えば、過マンガン酸ナトリウム、過マンガン酸カルシウムが挙げられる。
 モリブデン化合物としては、例えば、モリブデン酸ナトリウムが挙げられる。
 マグネシウム化合物としては、例えば、フッ化マグネシウム・五水和物が挙げられる。
 バリウム化合物としては、例えば、酸化バリウム、酢酸バリウム、炭酸バリウム、塩素酸バリウム、塩化バリウム、フッ化バリウム、ヨウ化バリウム、乳酸バリウム、シュウ酸バリウム、過塩素酸バリウム、セレン酸バリウム、亜セレン酸バリウム、ステアリン酸バリウム、亜硫酸バリウム、チタン酸バリウム、水酸化バリウム、硝酸バリウム、あるいはこれらの水和物等が挙げられる。
 上記バリウム化合物の中でも、酸化バリウム、酢酸バリウム、炭酸バリウムが好ましく、酸化バリウムが特に好ましい。
 ハロゲン単体としては、例えば、塩素、フッ素、臭素が挙げられる。
Specifically, examples of the chromium compound include chromium (III) oxide and anhydrous chromium (VI) acid.
Examples of the zirconium-based compound include zircon ammonium fluoride, zirconium fluoride, and zirconium chloride.
Examples of the titanium compound include titanium oxide and titanium sulfide.
Examples of the lithium salt include lithium fluoride and lithium chloride.
Examples of the cerium salt include cerium fluoride and cerium chloride.
Examples of the magnesium salt include magnesium sulfide.
Examples of the manganese compound include sodium permanganate and calcium permanganate.
Examples of the molybdenum compound include sodium molybdate.
Examples of magnesium compounds include magnesium fluoride pentahydrate.
Examples of barium compounds include barium oxide, barium acetate, barium carbonate, barium chlorate, barium chloride, barium fluoride, barium iodide, barium lactate, barium oxalate, barium perchlorate, barium selenate, selenite. Examples thereof include barium, barium stearate, barium sulfite, barium titanate, barium hydroxide, barium nitrate, and hydrates thereof.
Among the barium compounds, barium oxide, barium acetate, and barium carbonate are preferable, and barium oxide is particularly preferable.
Examples of halogen alone include chlorine, fluorine, and bromine.
 中でも、上記アルミナ溶解液が、酸を含有する水溶液であるのが好ましく、酸として、硫酸、リン酸、硝酸、塩酸等が挙げられ、2種以上の酸の混合物であってもよい。
 酸濃度としては、0.01mol/L以上であるのが好ましく、0.05mol/L以上であるのがより好ましく、0.1mol/L以上であるのが更に好ましい。上限は特にないが、一般的には10mol/L以下であるのが好ましく、5mol/L以下であるのがより好ましい。
Among them, the alumina solution is preferably an aqueous solution containing an acid. Examples of the acid include sulfuric acid, phosphoric acid, nitric acid, hydrochloric acid, and the like, and a mixture of two or more acids may be used.
The acid concentration is preferably 0.01 mol / L or more, more preferably 0.05 mol / L or more, and still more preferably 0.1 mol / L or more. There is no particular upper limit, but generally it is preferably 10 mol / L or less, more preferably 5 mol / L or less.
 溶解処理は、酸化膜が形成されたアルミニウム基材を上述したアルミナ溶解液に接触させることにより行う。接触させる方法は、特に限定されず、例えば、浸せき法、スプレー法が挙げられる。中でも、浸せき法が好ましい。 The dissolution treatment is performed by bringing the aluminum base material on which the oxide film is formed into contact with the above-described alumina solution. The method of making it contact is not specifically limited, For example, the immersion method and the spray method are mentioned. Of these, the dipping method is preferred.
 浸せき法は、酸化膜が形成されたアルミニウム基材を上述したアルミナ溶解液に浸せきさせる処理である。浸せき処理の際にかくはんを行うと、ムラのない処理が行われるため、好ましい。
 浸せき処理の時間は、10分以上であるのが好ましく、1時間以上であるのがより好ましく、3時間以上、5時間以上であるのが更に好ましい。
The dipping method is a treatment in which an aluminum base material on which an oxide film is formed is dipped in the above-described alumina solution. Stirring during the dipping process is preferable because a uniform process is performed.
The dipping treatment time is preferably 10 minutes or longer, more preferably 1 hour or longer, and further preferably 3 hours or longer and 5 hours or longer.
 <アルカリエッチング処理>
 アルカリエッチング処理は、上記酸化膜をアルカリ溶液に接触させることにより、表層を溶解させる処理である。
<Alkaline etching treatment>
The alkali etching treatment is a treatment for dissolving the surface layer by bringing the oxide film into contact with an alkaline solution.
 アルカリ溶液に用いられるアルカリとしては、例えば、カセイアルカリ、アルカリ金属塩が挙げられる。具体的には、カセイアルカリとしては、例えば、カセイソーダ、カセイカリが挙げられる。また、アルカリ金属塩としては、例えば、メタケイ酸ソーダ、ケイ酸ソーダ、メタケイ酸カリ、ケイ酸カリ等のアルカリ金属ケイ酸塩;炭酸ソーダ、炭酸カリ等のアルカリ金属炭酸塩;アルミン酸ソーダ、アルミン酸カリ等のアルカリ金属アルミン酸塩;グルコン酸ソーダ、グルコン酸カリ等のアルカリ金属アルドン酸塩;第二リン酸ソーダ、第二リン酸カリ、第三リン酸ソーダ、第三リン酸カリ等のアルカリ金属リン酸水素塩が挙げられる。中でも、エッチング速度が速い点および安価である点から、カセイアルカリの溶液、および、カセイアルカリとアルカリ金属アルミン酸塩との両者を含有する溶液が好ましい。特に、カセイソーダの水溶液が好ましい。 Examples of the alkali used in the alkaline solution include caustic alkali and alkali metal salts. Specifically, examples of caustic alkali include caustic soda and caustic potash. Examples of the alkali metal salt include alkali metal silicates such as sodium metasilicate, sodium silicate, potassium metasilicate, and potassium silicate; alkali metal carbonates such as sodium carbonate and potassium carbonate; sodium aluminate and alumina. Alkali metal aluminates such as potassium acid; alkali metal aldones such as sodium gluconate and potassium gluconate; dibasic sodium phosphate, dibasic potassium phosphate, tribasic sodium phosphate, tertiary potassium phosphate, etc. An alkali metal hydrogen phosphate is mentioned. Among these, a caustic alkali solution and a solution containing both a caustic alkali and an alkali metal aluminate are preferable from the viewpoint of high etching rate and low cost. In particular, an aqueous solution of caustic soda is preferable.
 アルカリ溶液の濃度は、0.1~50質量%であるのが好ましく、0.5~10質量%であるのがより好ましい。アルカリ溶液中にアルミニウムイオンが溶解している場合には、アルミニウムイオンの濃度は、0.01~10質量%であるのが好ましく、0.1~3質量%であるのがより好ましい。アルカリ溶液の温度は10~90℃であるのが好ましい。処理時間は1~120秒であるのが好ましい。 The concentration of the alkaline solution is preferably from 0.1 to 50% by mass, and more preferably from 0.5 to 10% by mass. When aluminum ions are dissolved in the alkaline solution, the concentration of aluminum ions is preferably 0.01 to 10% by mass, and more preferably 0.1 to 3% by mass. The temperature of the alkaline solution is preferably 10 to 90 ° C. The treatment time is preferably 1 to 120 seconds.
 酸化膜をアルカリ溶液に接触させる方法としては、例えば、酸化膜が形成されたアルミニウム基材をアルカリ溶液を入れた槽の中を通過させる方法、酸化膜が形成されたアルミニウム基材をアルカリ溶液を入れた槽の中に浸せきさせる方法、アルカリ溶液を酸化膜が形成されたアルミニウム基材の表面(酸化膜)に噴きかける方法が挙げられる。 Examples of the method of bringing the oxide film into contact with the alkaline solution include, for example, a method in which an aluminum base material on which an oxide film is formed is passed through a tank containing an alkali solution, and an aluminum base material on which an oxide film is formed is applied to an alkaline solution. Examples thereof include a method of immersing in an enclosed tank and a method of spraying an alkaline solution onto the surface (oxide film) of an aluminum substrate on which an oxide film is formed.
 〔粗面化処理工程〕
 本発明のアルミニウム板の製造方法が有していてもよい任意の粗面化処理工程は、酸化膜を除去したアルミニウム基材に対して電気化学的粗面化処理(以下、「電解粗面化処理」とも略す。)を施し、アルミニウム基材の表面ないし裏面を粗面化する工程である。
 前述のとおり、電解粗面化処理を施し、アルミニウム基材の表面を粗面化することにより、活物質を含む層との密着性が向上するとともに、表面積が増えることによって接触面積が増えるため、本発明の製造方法により得られるアルミニウム板(集電体)を用いた蓄電デバイスの容量維持率が高くなる。
 上記電解粗面化処理としては、例えば、特開2012-216513号公報の[0041]~[0050]段落に記載された条件や装置を適宜採用することができる。
[Roughening treatment process]
The optional roughening treatment step that the aluminum plate production method of the present invention may have is an electrochemical roughening treatment (hereinafter referred to as “electrolytic roughening”) on the aluminum substrate from which the oxide film has been removed. This is also a process of roughening the surface or back surface of the aluminum base material.
As described above, by performing electrolytic surface roughening treatment and roughening the surface of the aluminum substrate, the adhesion with the layer containing the active material is improved, and the contact area is increased by increasing the surface area. The capacity retention rate of the electricity storage device using the aluminum plate (current collector) obtained by the production method of the present invention is increased.
As the electrolytic surface-roughening treatment, for example, conditions and apparatuses described in paragraphs [0041] to [0050] of JP2012-216513A can be appropriately employed.
 <硝酸電解>
 本発明においては、硝酸を主体とする電解液を用いた電気化学的粗面化処理(以下、「硝酸電解」とも略す。)により、容易に平均開口径0.5μm~3.0μmの凹部を10個/100μm2以上の密度で形成することができる。
 ここで、硝酸電解は、均一で密度の高い凹部形成が可能となる理由から、交流電流を用い、ピーク電流密度を30A/dm2以上とし、平均電流密度を13A/dm2以上とし、かつ、電気量を150c/dm2以上とする条件で施す電解処理であるであるのが好ましい。なお、ピーク電流密度は100A/dm2以下であるのが好ましく、平均電流密度は40A/dm2以下であるのが好ましく、電気量は400c/dm2以下であるのが好ましい。
 また、硝酸電解における電解液の濃度や温度は特に限定されず、高濃度、例えば、硝酸濃度15~35質量%の硝酸電解液を用いて30~60℃で電解を行ったり、硝酸濃度0.7~2質量%の硝酸電解液を用いて高温、例えば、80℃以上で電解を行ったりすることできる。
<Nitric acid electrolysis>
In the present invention, a concave portion having an average opening diameter of 0.5 μm to 3.0 μm can be easily formed by an electrochemical surface roughening treatment (hereinafter also referred to as “nitric acid electrolysis”) using an electrolytic solution mainly composed of nitric acid. It can be formed at a density of 10 pieces / 100 μm 2 or more.
Here, nitric acid electrolysis uses an alternating current for the reason that it is possible to form a uniform and high-density recess, and the peak current density is 30 A / dm 2 or more, the average current density is 13 A / dm 2 or more, and The electrolytic treatment is preferably performed under the condition that the amount of electricity is 150 c / dm 2 or more. The peak current density is preferably 100 A / dm 2 or less, the average current density is preferably 40 A / dm 2 or less, and the amount of electricity is preferably 400 c / dm 2 or less.
In addition, the concentration and temperature of the electrolytic solution in nitric acid electrolysis are not particularly limited, and electrolysis is performed at a high concentration, for example, 30 to 60 ° C. using a nitric acid electrolytic solution having a nitric acid concentration of 15 to 35% by mass, or a nitric acid concentration of 0. Electrolysis can be carried out at a high temperature, for example, at 80 ° C. or higher, using a 7-2 mass% nitric acid electrolyte.
 <塩酸電解>
 本発明においては、塩酸を主体とする電解液を用いた電気化学的粗面化処理(以下、「塩酸電解」とも略す。)によっても、平均開口径0.5μm~3.0μmの凹部を10個/100μm2以上の密度で形成することができる。
 ここで、塩酸電解においては、均一で密度の高い凹部形成が可能となる理由から、交流電流を用い、ピーク電流密度を30A/dm2以上とし、平均電流密度を13A/dm2以上とし、かつ、電気量を150c/dm2以上とする条件で施す電解処理であるであるのが好ましい。なお、ピーク電流密度は100A/dm2以下であるのが好ましく、平均電流密度は40A/dm2以下であるのが好ましく、電気量は400c/dm2以下であるのが好ましい。
<Hydrochloric acid electrolysis>
In the present invention, a concave portion having an average opening diameter of 0.5 μm to 3.0 μm is formed by an electrochemical surface roughening treatment (hereinafter also referred to as “hydrochloric acid electrolysis”) using an electrolytic solution mainly composed of hydrochloric acid. It can be formed at a density of not less than 100 / μm 2 .
Here, in hydrochloric acid electrolysis, for the reason that uniform and high-density recesses can be formed, an alternating current is used, the peak current density is 30 A / dm 2 or more, the average current density is 13 A / dm 2 or more, and The electrolytic treatment is preferably performed under the condition that the amount of electricity is 150 c / dm 2 or more. The peak current density is preferably 100 A / dm 2 or less, the average current density is preferably 40 A / dm 2 or less, and the amount of electricity is preferably 400 c / dm 2 or less.
 〔金属被覆工程〕
 本発明のアルミニウム板の製造方法は、上述した電解溶解処理により形成された貫通孔の平均開口径を1μm~20μm程度の小さい範囲に調整できる理由から、上述した酸化膜除去工程の後に、少なくとも貫通孔の内壁を含むアルミニウム基材の表面の一部または全部をアルミニウム以外の金属で被覆する金属被覆工程を有しているのが好ましい。
 ここで、「少なくとも貫通孔の内壁を含むアルミニウム基材の表面の一部または全部をアルミニウム以外の金属で被覆する」とは、貫通孔の内壁を含むアルミニウム基材の全表面のうち、少なくとも貫通孔の内壁については被覆されていることを意味しており、内壁以外の表面は、被覆されていなくてもよく、一部または全部が被覆されていてもよい。
 以下に、図2を用いて、金属被覆工程を説明する。
[Metal coating process]
The method for producing an aluminum plate of the present invention is such that the average opening diameter of the through holes formed by the above-described electrolytic dissolution treatment can be adjusted to a small range of about 1 μm to 20 μm. It is preferable to have a metal coating step of coating a part or all of the surface of the aluminum base material including the inner wall of the hole with a metal other than aluminum.
Here, “at least part or all of the surface of the aluminum substrate including the inner wall of the through hole is coated with a metal other than aluminum” means that at least the entire surface of the aluminum substrate including the inner wall of the through hole is penetrated. This means that the inner wall of the hole is covered, and the surface other than the inner wall may not be covered, or may be partially or entirely covered.
Hereinafter, the metal coating step will be described with reference to FIG.
 前述のとおり、図2に示すアルミニウム板10は、貫通孔を有するアルミニウム基材3の表面および裏面ならびに貫通孔の内壁にアルミニウム以外の金属または合金からなる第1の金属層6および第2の金属層7を有する態様であり、図3(D)または図4(D)に示すアルミニウム基材に対して、例えば、後述する置換処理およびめっき処理を施すことにより作製することができる。 As described above, the aluminum plate 10 shown in FIG. 2 includes the first metal layer 6 and the second metal made of a metal or alloy other than aluminum on the front and back surfaces of the aluminum base 3 having through holes and the inner wall of the through holes. It is an aspect having the layer 7, and can be produced, for example, by subjecting the aluminum base material shown in FIG. 3D or FIG.
 <置換処理>
 上記置換処理は、少なくとも貫通孔の内壁を含むアルミニウム基材の表面の一部または全部に、亜鉛または亜鉛合金を置換めっきする処理である。
 置換めっき液としては、例えば、水酸化ナトリウム120g/l、酸化亜鉛20g/l、結晶性塩化第二鉄2g/l、ロッセル塩50g/l、硝酸ナトリウム1g/lの混合溶液などが挙げられる。
 また、市販のZnまたはZn合金めっき液を使用してもよく、例えば、奥野製薬工業株式会社製サブスターZn-1、Zn-2、Zn-3、Zn-8、Zn-10、Zn-111、Zn-222、Zn-291等を使用することができる。
 このような置換めっき液へのアルミニウム基材の浸漬時間は15秒~40秒であるのが好ましく、浸漬温度は15秒~40秒であるのが好ましい。
<Replacement process>
The replacement treatment is a treatment in which zinc or a zinc alloy is subjected to replacement plating on a part or all of the surface of the aluminum substrate including at least the inner wall of the through hole.
Examples of the displacement plating solution include a mixed solution of sodium hydroxide 120 g / l, zinc oxide 20 g / l, crystalline ferric chloride 2 g / l, lossel salt 50 g / l, and sodium nitrate 1 g / l.
Commercially available Zn or Zn alloy plating solution may also be used. For example, Substar Zn-1, Zn-2, Zn-3, Zn-8, Zn-10, Zn-111 manufactured by Okuno Pharmaceutical Co., Ltd. Zn-222, Zn-291, etc. can be used.
The immersion time of the aluminum substrate in such a displacement plating solution is preferably 15 seconds to 40 seconds, and the immersion temperature is preferably 15 seconds to 40 seconds.
 <めっき処理>
 上述した置換処理により、アルミニウム基材の表面に亜鉛または亜鉛合金を置換めっきして亜鉛皮膜を形成させた場合は、例えば、後述する無電解めっきにより亜鉛皮膜をニッケルに置換させた後、後述する電解めっきにより各種金属を析出させる、めっき処理を施すのが好ましい。
<Plating treatment>
When the zinc film is formed by replacing the surface of the aluminum base material with zinc or a zinc alloy by the above-described replacement treatment, for example, the zinc film is replaced with nickel by electroless plating described later, and then described later. It is preferable to perform a plating treatment for depositing various metals by electrolytic plating.
 (無電解めっき処理)
 無電解めっき処理に用いるニッケルめっき液としては、市販品が幅広く使用でき、例えば、硫酸ニッケル30g/l、次亜リン酸ソーダ20g/l、クエン酸アンモニウム50g/lを含む水溶液などが挙げられる。
 また、ニッケル合金めっき液としては、りん化合物が還元剤となるNi-P合金めっき液やホウ素化合物が還元剤となるNi-Bメッキ液などが挙げられる。
 このようなニッケルめっき液やニッケル合金めっき液への浸漬時間は15秒~10分であるのが好ましく、浸漬温度は30℃~90℃であるのが好ましい。
(Electroless plating treatment)
As the nickel plating solution used for the electroless plating treatment, commercially available products can be widely used. Examples thereof include an aqueous solution containing 30 g / l nickel sulfate, 20 g / l sodium hypophosphite, and 50 g / l ammonium citrate.
Examples of the nickel alloy plating solution include a Ni—P alloy plating solution in which a phosphorus compound is a reducing agent and a Ni—B plating solution in which a boron compound is a reducing agent.
The immersion time in such a nickel plating solution or nickel alloy plating solution is preferably 15 seconds to 10 minutes, and the immersion temperature is preferably 30 ° C. to 90 ° C.
 (電解めっき処理)
 電解めっき処理として、例えば、Cuを電気めっきする場合のめっき液は、例えば、硫酸Cu60~110g/L、硫酸160~200g/Lおよび塩酸0.1~0.15mL/Lを純水に加え、さらに奥野製薬株式会社製トップルチナSFベースWR1z5~5.0mL/L、トップルチナSF-B0.5~2.0mL/L及びトップルチナSFレベラー3.0~10mL/Lを添加剤として加えためっき液が挙げられる。
 このような銅めっき液への浸漬時間は、Cu膜の厚さによるため特に限定されないが、例えば、2μmのCu膜をつける場合は、電流密度2A/dmで約5分間浸漬するのが好ましく、浸漬温度は20℃~30℃であるのが好ましい。
(Electrolytic plating treatment)
As the electroplating treatment, for example, a plating solution for electroplating Cu includes, for example, Cu 60 to 110 g / L, sulfuric acid 160 to 200 g / L and hydrochloric acid 0.1 to 0.15 mL / L to pure water. Furthermore, plating solutions containing Top Lucina SF Base WR 1z 5 to 5.0 mL / L, Top Lucina SF-B 0.5 to 2.0 mL / L, and Top Lucina SF Leveler 3.0 to 10 mL / L as additives are also listed. It is done.
The immersion time in such a copper plating solution is not particularly limited because it depends on the thickness of the Cu film, but for example, when a 2 μm Cu film is applied, it is preferable to immerse for about 5 minutes at a current density of 2 A / dm, The immersion temperature is preferably 20 ° C. to 30 ° C.
 〔ベーマイト処理〕
 本発明のアルミニウム板の製造方法においては、上述した電解溶解処理により形成された貫通孔の平均開口径を1~20μm程度の範囲で小さく調整できる理由から、上述した酸化膜除去工程の後であって更に陽極酸化処理を施して酸化膜を形成した後に、ベーマイト処理を施すのが好ましい。
 ここで、ベーマイト処理は、アルミニウムが高温の水や過熱水蒸気と反応して擬ベーマイト質の水和酸化皮膜を生成する反応を用いたものであり、例えば、100~400℃の水(例えば、純水、脱イオン水)をpH7~12に調整し、アルミニウム基材を浸漬することによって水和酸化皮膜を生成することができる。
[Boehmite treatment]
In the method for producing an aluminum plate of the present invention, the average opening diameter of the through holes formed by the above-described electrolytic dissolution treatment can be adjusted to a small value in the range of about 1 to 20 μm. It is preferable to perform anodizing treatment after forming an oxide film and then performing boehmite treatment.
Here, the boehmite treatment uses a reaction in which aluminum reacts with high-temperature water or superheated steam to form a pseudo-boehmite hydrated oxide film. For example, water at 100 to 400 ° C. (for example, pure water) Water, deionized water) can be adjusted to pH 7-12 and a hydrated oxide film can be formed by immersing the aluminum substrate.
 〔水洗処理〕
 本発明においては、上述した各処理の工程終了後には水洗を行うのが好ましい。水洗には、純水、井水、水道水等を用いることができる。処理液の次工程への持ち込みを防ぐためにニップ装置を用いてもよい。
[Washing treatment]
In the present invention, it is preferable to carry out water washing after completion of the above-described processes. For washing, pure water, well water, tap water, or the like can be used. A nip device may be used to prevent the processing liquid from being brought into the next process.
 以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。 Hereinafter, the present invention will be described in more detail based on examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the following examples.
 〔実施例1〕
 <集電体用アルミニウム基材の作製>
 平均厚さ20μm、幅200mmのアルミニウム基材(JIS H-4160、合金番号:1N30-H、アルミニウム純度:99.30%)の表面に、以下に示す処理を施し、集電体用アルミニウム基材を作製した。
[Example 1]
<Preparation of current collector aluminum substrate>
The surface of an aluminum base material (JIS H-4160, alloy number: 1N30-H, aluminum purity: 99.30%) having an average thickness of 20 μm and a width of 200 mm is subjected to the following treatment to obtain an aluminum base material for a current collector Was made.
 (a1)酸化膜形成処理(酸化膜形成工程)
 上記アルミニウム基材に硫酸濃度170g/Lで、アルミニウム濃度5%以下の溶液を用い、アルミニウム基材を陽極として、52℃の条件下で直流電流密度5A/dm2、直流電圧3Vを27秒間印加して、上記アルミニウム基材の片側の表面(片面)に酸化膜(皮膜量:0.6g/m2)を形成した。その後、スプレーによる水洗を行った。
(A1) Oxide film formation process (oxide film formation process)
A solution having a sulfuric acid concentration of 170 g / L and an aluminum concentration of 5% or less was applied to the aluminum substrate, and the aluminum substrate was used as an anode, and a DC current density of 5 A / dm 2 and a DC voltage of 3 V were applied for 27 seconds at 52 ° C. Then, an oxide film (film amount: 0.6 g / m 2 ) was formed on one surface (one surface) of the aluminum substrate. Then, water washing by spraying was performed.
 (b1)電解溶解処理(貫通孔形成工程)
 次いで、50℃に保温した電解液(硝酸濃度:1%、アルミニウム濃度4.5g/L)を用いて、アルミニウム基材を陽極として、電気量総和が1500C/dm2の条件下で電解処理を施し、アルミニウム基材および酸化膜に貫通孔を形成させた。なお、電解処理は、直流電源波で行った。電流密度は、10A/dm2とした。
 その後、スプレーによる水洗を行い、乾燥させた。
(B1) Electrolytic dissolution treatment (through hole forming step)
Next, using an electrolytic solution (nitric acid concentration: 1%, aluminum concentration: 4.5 g / L) kept at 50 ° C., the electrolytic treatment is performed under the condition that the total amount of electricity is 1500 C / dm 2 with the aluminum base material as the anode. And through holes were formed in the aluminum substrate and the oxide film. The electrolytic treatment was performed with a DC power wave. Current density was 10A / dm 2.
Then, it was washed with water by spraying and dried.
 (c1)酸化膜の除去処理(酸化膜除去工程)
 次いで、電解溶解処理後のアルミニウム基材を、カセイソーダ濃度5質量%、アルミニウムイオン濃度0.5質量%の水溶液(液温:35℃)中に3秒間浸漬させることにより、酸化膜を溶解し、除去した。
 その後、スプレーによる水洗を行い、乾燥させることにより、貫通孔を有するアルミニウム板を作製した。
(C1) Oxide film removal process (oxide film removal step)
Next, the aluminum substrate after electrolytic dissolution treatment is immersed in an aqueous solution (liquid temperature: 35 ° C.) having a caustic soda concentration of 5 mass% and an aluminum ion concentration of 0.5 mass% for 3 seconds to dissolve the oxide film, Removed.
Then, the aluminum plate which has a through-hole was produced by performing water washing by spraying and making it dry.
 〔実施例2〕
 アルミニウム基材として、平均厚さ12μm、幅200mmのアルミニウム基材(JIS H-4160、合金番号:8021-H、アルミニウム純度:98.10%)を用いて、上記(a1)に示す酸化膜形成処理に代えて、下記(a2)に示す酸化膜形成処理を施し、上記(b1)に示す電解溶解処理に代えて、下記(b2)に示す電解溶解処理を施した以外は、実施例1と同様にしてアルミニウム板を作製した。
[Example 2]
Using an aluminum base material (JIS H-4160, alloy number: 8021-H, aluminum purity: 98.10%) having an average thickness of 12 μm and a width of 200 mm as the aluminum base material, the oxide film shown in (a1) above is formed. Example 1 except that the oxide film forming process shown in the following (a2) was performed instead of the process, and the electrolytic dissolving process shown in the following (b2) was performed instead of the electrolytic dissolving process shown in the above (b1). An aluminum plate was produced in the same manner.
 (a2)酸化膜形成処理(酸化膜形成工程)
 上記アルミニウム基材に硫酸濃度170g/Lで、アルミニウム濃度5%以下の溶液を用い、アルミニウム基材を陽極として、52℃の条件下で直流電流密度25A/dm2、直流電圧15Vを16秒間印加して、上記アルミニウム基材の片側の表面(片面)に酸化膜(皮膜量:2.4g/m2)を形成した。その後、スプレーによる水洗を行った。
(A2) Oxide film formation process (oxide film formation process)
A solution having a sulfuric acid concentration of 170 g / L and an aluminum concentration of 5% or less was applied to the aluminum substrate, and the aluminum substrate was used as an anode, and a DC current density of 25 A / dm 2 and a DC voltage of 15 V were applied for 16 seconds at 52 ° C. Then, an oxide film (film amount: 2.4 g / m 2 ) was formed on one surface (one surface) of the aluminum base material. Then, water washing by spraying was performed.
 (b2)電解溶解処理(貫通孔形成工程)
 次いで、50℃に保温した電解液(硝酸濃度:1%、アルミニウム濃度4.5g/L)を用いて、アルミニウム基材を陽極として、電気量総和が500C/dm2の条件下で電解処理を施し、アルミニウム基材および酸化膜に貫通孔を形成させた。なお、電解処理は、直流電源波で行った。電流密度は、10A/dm2とした。その後、スプレーによる水洗を行い、乾燥させた。
(B2) Electrolytic dissolution treatment (through-hole forming step)
Next, using an electrolytic solution (nitric acid concentration: 1%, aluminum concentration: 4.5 g / L) kept at 50 ° C., electrolytic treatment is performed under the condition that the total amount of electricity is 500 C / dm 2 with the aluminum base material as the anode. And through holes were formed in the aluminum substrate and the oxide film. The electrolytic treatment was performed with a DC power wave. Current density was 10A / dm 2. Then, it was washed with water by spraying and dried.
 〔実施例3〕
 上記(a1)に示す酸化膜形成処理に代えて、上記(a2)に示す酸化膜形成処理を施し、上記(b1)に示す電解溶解処理に代えて、下記(b3)に示す電解溶解処理を施した以外は、実施例1と同様にしてアルミニウム板を作製した。
Example 3
Instead of the oxide film forming process shown in the above (a1), the oxide film forming process shown in the above (a2) is performed, and instead of the electrolytic dissolving process shown in the above (b1), the electrolytic dissolving process shown in the following (b3) is performed. An aluminum plate was produced in the same manner as in Example 1 except that it was applied.
 (b3)電解溶解処理(貫通孔形成工程)
 次いで、50℃に保温した電解液(硝酸濃度:1%、アルミニウム濃度4.5g/L)を用いて、アルミニウム基材を陽極として、電気量総和が1000C/dm2の条件下で電解処理を施し、アルミニウム基材および酸化膜に貫通孔を形成させた。なお、電解処理は、直流電源波で行った。電流密度は、10A/dm2とした。その後、スプレーによる水洗を行い、乾燥させた。
(B3) Electrolytic dissolution treatment (through-hole forming step)
Next, using an electrolytic solution kept at 50 ° C. (nitric acid concentration: 1%, aluminum concentration: 4.5 g / L), an aluminum substrate is used as an anode, and an electrolytic treatment is performed under a condition where the total amount of electricity is 1000 C / dm 2. And through holes were formed in the aluminum substrate and the oxide film. The electrolytic treatment was performed with a DC power wave. Current density was 10A / dm 2. Then, it was washed with water by spraying and dried.
 〔実施例4〕
 上記(b3)に示す電解溶解処理における電解処理の電気量総和が2000C/dm2である以外は、実施例3と同様にしてアルミニウム板を作製した。
Example 4
An aluminum plate was produced in the same manner as in Example 3 except that the total amount of electricity in the electrolytic treatment in the electrolytic dissolution treatment shown in (b3) was 2000 C / dm 2 .
 〔実施例5〕
 アルミニウム基材として、平均厚さ20μm、幅200mmのアルミニウム基材(A1085、アルミニウム純度:99.85%)を用いた以外は、実施例4と同様にしてアルミニウム板を作製した。
Example 5
An aluminum plate was produced in the same manner as in Example 4 except that an aluminum substrate (A1085, aluminum purity: 99.85%) having an average thickness of 20 μm and a width of 200 mm was used as the aluminum substrate.
 〔実施例6〕
 アルミニウム基材として、平均厚さ15μmのアルミニウム基材(JIS H-4160、合金番号:8021-H、アルミニウム純度:98.10%)を用い、実施例2と同様にしてアルミニウム板を作製した。
Example 6
An aluminum plate was prepared in the same manner as in Example 2 using an aluminum substrate (JIS H-4160, alloy number: 8021-H, aluminum purity: 98.10%) having an average thickness of 15 μm as the aluminum substrate.
 〔実施例7〕
 アルミニウム基材として、平均厚さ12μmのアルミニウム基材(JIS H-4160、合金番号:8021-H、アルミニウム純度:98.10%)を用い、上記(b2)に示す電解溶解処理(貫通孔形成工程)における電界処理の電流密度を25A/dm2とした以外は、実施例2と同様にしてアルミニウム板を作製した。
Example 7
As the aluminum base material, an aluminum base material having an average thickness of 12 μm (JIS H-4160, alloy number: 8021-H, aluminum purity: 98.10%) was used, and the electrolytic dissolution treatment (through-hole formation) shown in (b2) above. An aluminum plate was produced in the same manner as in Example 2 except that the current density of the electric field treatment in the step) was 25 A / dm 2 .
 〔比較例1〕
 平均厚さ20μm、幅200mmのアルミニウム基材(JIS H-4160、合金番号:1N30-H、アルミニウム純度:99.30%)の両面に、所定のパターンを有するレジスト膜を、グラビアロールを用いて形成した。レジストインキの主成分はアクリル系樹脂からなり、少量の顔料が配合されており、トルエンでレジストインキの粘度を調整した。次に塩化第二鉄からなるエッチング液を用いて温度40℃で約10秒間のエッチング処理を施すことにより、所定のパターンの貫通孔をアルミニウム箔に形成した。その後、レジストインキを苛性ソーダにより溶解除去しアルミニウム板を作製した。
[Comparative Example 1]
Using a gravure roll, a resist film having a predetermined pattern is formed on both surfaces of an aluminum substrate (JIS H-4160, alloy number: 1N30-H, aluminum purity: 99.30%) having an average thickness of 20 μm and a width of 200 mm. Formed. The main component of the resist ink is an acrylic resin, and a small amount of pigment is blended. The viscosity of the resist ink was adjusted with toluene. Next, an etching process of ferric chloride was used to perform an etching process at a temperature of 40 ° C. for about 10 seconds, thereby forming through holes having a predetermined pattern in the aluminum foil. Thereafter, the resist ink was dissolved and removed with caustic soda to produce an aluminum plate.
 〔比較例2〕
 上記(b3)に示す電解溶解処理における電解処理の電気量総和が3000C/dm2である以外は、実施例3と同様にしてアルミニウム板を作製した。
[Comparative Example 2]
An aluminum plate was produced in the same manner as in Example 3 except that the total amount of electricity in the electrolytic treatment in the electrolytic dissolution treatment shown in (b3) was 3000 C / dm 2 .
 〔比較例3〕
 アルミニウム基材として、平均厚さ20μm、幅200mmのアルミニウム基材(アルミニウム純度:99.99%)を用いた以外は、実施例3と同様にしてアルミニウム板を作製した。
[Comparative Example 3]
An aluminum plate was produced in the same manner as in Example 3 except that an aluminum substrate (aluminum purity: 99.99%) having an average thickness of 20 μm and a width of 200 mm was used as the aluminum substrate.
 作製したアルミニウム板の貫通孔の平均開口径および平均開口率を以下の方法で測定した。
 平均開口径は、高分解能走査型電子顕微鏡(SEM)を用いてアルミニウム板の表面を真上から倍率200倍で撮影し、得られたSEM写真において、周囲が環状に連なっている貫通孔を少なくとも20個抽出し、その直径を読み取って開口径とし、これらの平均値を平均開口径として算出した。
 また、貫通孔の平均開口率は、高分解能走査型電子顕微鏡(SEM)を用いてアルミニウム板の表面を真上から倍率200倍で撮影し、得られたSEM写真の30mm×30mmの視野(5箇所)について、画像解析ソフト等で2値化して貫通孔部分と非貫通孔部分を観察し、貫通孔の開口面積の合計と視野の面積(幾何学的面積)とから、比率(開口面積/幾何学的面積)から算出し、各視野(5箇所)における平均値を平均開口率として算出した。
The average opening diameter and average opening ratio of the through holes of the produced aluminum plate were measured by the following methods.
The average aperture diameter was obtained by photographing the surface of an aluminum plate at a magnification of 200 times from directly above using a high-resolution scanning electron microscope (SEM). Twenty samples were extracted, and the diameter was read as the opening diameter, and the average value of these was calculated as the average opening diameter.
Further, the average aperture ratio of the through-holes was obtained by photographing the surface of the aluminum plate at a magnification of 200 times from directly above using a high resolution scanning electron microscope (SEM), and a 30 mm × 30 mm visual field (5 ), Binarize with image analysis software, etc., and observe the through-hole part and the non-through-hole part. From the total of the opening area of the through-hole and the area of the visual field (geometric area), Calculated from the geometric area), and the average value in each field of view (5 locations) was calculated as the average aperture ratio.
 〔評価〕
 <塗布性>
 作製したアルミニウム板の両面に活物質層を形成して、活物質層の表面の凹凸の有無により塗布性を評価した。
 まず、活物質として、比表面積が1950m2/gの活性炭粉末100質量部と、アセチレンブラック10質量部と、アクリル系バインダー7質量部と、カルボキシメチルセルロース4質量部とを、水に添加して分散することにより、スラリーを調整した。
 次に、調整したスラリーを、貫通孔が形成されたアルミニウム板の両面に、ダイコーターによって合計200μmの厚みになるように塗工し、アルミニウム板の表面に活物質層を形成した。
 形成した活物質層の表面に、凹凸が見られるかを目視評価し、直径40μm以上の凹凸が無い場合をA、直径40~100μmの凹凸が見られる場合をB、直径100μm以上の凹凸が見られる場合をCとした。
[Evaluation]
<Applicability>
An active material layer was formed on both surfaces of the produced aluminum plate, and the applicability was evaluated by the presence or absence of irregularities on the surface of the active material layer.
First, as an active material, 100 parts by mass of an activated carbon powder having a specific surface area of 1950 m 2 / g, 10 parts by mass of acetylene black, 7 parts by mass of an acrylic binder, and 4 parts by mass of carboxymethylcellulose are added to water and dispersed. By doing this, the slurry was adjusted.
Next, the prepared slurry was applied to both surfaces of the aluminum plate on which the through holes were formed by a die coater so as to have a total thickness of 200 μm, thereby forming an active material layer on the surface of the aluminum plate.
The surface of the formed active material layer is visually evaluated to see if there are irregularities, A is when there are no irregularities with a diameter of 40 μm or more, B is when irregularities with a diameter of 40 to 100 μm are seen, and irregularities with a diameter of 100 μm or more are seen. The case where it was made was designated as C.
 <引張強度>
 作製したアルミニウム板の引張強度を、JIS Z2241に準ずる引張試験(引張速度:2mm/分)で測定した。
 評価結果を表1に示す。
<Tensile strength>
The tensile strength of the produced aluminum plate was measured by a tensile test according to JIS Z2241 (tensile speed: 2 mm / min).
The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す通り、実施例と比較例との対比から、平均厚さを50μm以下、アルミニウムの純度を85%~99.90%とし、貫通孔の平均開口径を1μm~100μm、平均開口率を1%~40%とすることにより、活物質層の塗布性が向上して表面の均一性が向上し、また、引張強度を高くすることができることが分かる。
 また、実施例3と実施例4との対比から、平均開口径は40μm以下、平均開口率は20%以下がより好ましいことが分かる。
 また、実施例4、実施例5および実施例6の対比から、アルミニウムの純度は、99.80%以下であるのがより好ましいことが分かり、98.5%未満がさらに好ましいことがわかる。
 以上より本発明の効果は明らかである。
As shown in Table 1, from the comparison between Examples and Comparative Examples, the average thickness is 50 μm or less, the purity of aluminum is 85% to 99.90%, the average opening diameter of the through holes is 1 μm to 100 μm, and the average opening ratio It can be seen that by setting the content to 1% to 40%, the coating property of the active material layer is improved, the surface uniformity is improved, and the tensile strength can be increased.
Further, from comparison between Example 3 and Example 4, it can be seen that the average aperture diameter is more preferably 40 μm or less and the average aperture ratio is more preferably 20% or less.
Further, from the comparison of Example 4, Example 5 and Example 6, it can be seen that the purity of aluminum is more preferably 99.80% or less, and more preferably less than 98.5%.
From the above, the effects of the present invention are clear.
 1 アルミニウム基材
 2 酸化膜
 3 貫通孔を有するアルミニウム基材
 4 貫通孔を有する酸化膜
 5 貫通孔
 6 第1の金属層
 7 第2の金属層
 10 アルミニウム板
 30 電極
 32 活物質層
DESCRIPTION OF SYMBOLS 1 Aluminum base material 2 Oxide film 3 Aluminum base material which has through-hole 4 Oxide film which has through-hole 5 Through-hole 6 1st metal layer 7 2nd metal layer 10 Aluminum plate 30 Electrode 32 Active material layer

Claims (5)

  1.  厚み方向に複数の貫通孔を有するアルミニウム板において、
     平均厚さが50μm以下、アルミニウムの純度が85%~99.90%であり、
     前記貫通孔の平均開口径が1μm~100μm、平均開口率が1%~40%である、アルミニウム板。
    In an aluminum plate having a plurality of through holes in the thickness direction,
    The average thickness is 50 μm or less, the purity of aluminum is 85% to 99.90%,
    An aluminum plate, wherein the through holes have an average opening diameter of 1 μm to 100 μm and an average opening ratio of 1% to 40%.
  2.  アルミニウムの純度が、90%~99.80%である請求項1に記載のアルミニウム板。 The aluminum plate according to claim 1, wherein the purity of the aluminum is 90% to 99.80%.
  3.  前記貫通孔の平均開口径が、1μm~60μmである請求項1または2に記載のアルミニウム板。 The aluminum plate according to claim 1 or 2, wherein an average opening diameter of the through holes is 1 µm to 60 µm.
  4.  前記貫通孔の平均開口率が、5%~30%である請求項1~3のいずれか1項に記載のアルミニウム板。 4. The aluminum plate according to claim 1, wherein an average opening ratio of the through holes is 5% to 30%.
  5.  少なくとも前記貫通孔の内表面を覆う金属めっきからなる金属層を有する請求項1~4のいずれか1項に記載のアルミニウム板。 The aluminum plate according to any one of claims 1 to 4, further comprising a metal layer made of metal plating covering at least the inner surface of the through hole.
PCT/JP2015/069619 2014-07-31 2015-07-08 Aluminum plate WO2016017380A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014156620 2014-07-31
JP2014-156620 2014-07-31

Publications (1)

Publication Number Publication Date
WO2016017380A1 true WO2016017380A1 (en) 2016-02-04

Family

ID=55217285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069619 WO2016017380A1 (en) 2014-07-31 2015-07-08 Aluminum plate

Country Status (2)

Country Link
TW (1) TW201608582A (en)
WO (1) WO2016017380A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107230556A (en) * 2016-03-25 2017-10-03 华北电力大学(保定) A kind of pillar super capacitor
JP2017183174A (en) * 2016-03-31 2017-10-05 富士フイルム株式会社 Metal foil, manufacturing method thereof, and current collector for power storage device
WO2018181139A1 (en) 2017-03-27 2018-10-04 富士フイルム株式会社 Soundproof structure, sound absorption panel, and tuning panel
WO2019039469A1 (en) 2017-08-22 2019-02-28 富士フイルム株式会社 Soundproof structure and sound absorption panel
EP3438968A4 (en) * 2016-03-29 2019-05-22 FUJIFILM Corporation Soundproofing structure, partition structure, window member, and cage
EP3522193A4 (en) * 2016-09-29 2019-10-30 FUJIFILM Corporation Aluminum member for electrodes and method for producing aluminum member for electrodes
CN110637385A (en) * 2017-05-18 2019-12-31 富士胶片株式会社 Perforated metal foil, method for producing perforated metal foil, negative electrode for secondary battery, and positive electrode for secondary battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000231923A (en) * 1999-02-12 2000-08-22 Kee:Kk Porous collector and electrode for nonaqueous secondary battery
JP2004193562A (en) * 2002-11-29 2004-07-08 Honda Motor Co Ltd Electric double layer capacitor
JP2005002371A (en) * 2003-06-09 2005-01-06 Toyo Aluminium Kk Aluminum foil, its production method, charge collector, secondary battery and electric double layer capacitor
JP2005129924A (en) * 2003-10-02 2005-05-19 Showa Denko Kk Metal collector for use in electric double layer capacitor, and polarizable electrode as well as electric double layer capacitor using it
WO2007055358A1 (en) * 2005-11-14 2007-05-18 Fuji Jukogyo Kabushiki Kaisha Lithium ion capacitor
JP2008041971A (en) * 2006-08-08 2008-02-21 Tomoegawa Paper Co Ltd Electrode, manufacturing method therefor and electrochemical element
JP2011222672A (en) * 2010-04-07 2011-11-04 Daiso Co Ltd Perforated conductive foil and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000231923A (en) * 1999-02-12 2000-08-22 Kee:Kk Porous collector and electrode for nonaqueous secondary battery
JP2004193562A (en) * 2002-11-29 2004-07-08 Honda Motor Co Ltd Electric double layer capacitor
JP2005002371A (en) * 2003-06-09 2005-01-06 Toyo Aluminium Kk Aluminum foil, its production method, charge collector, secondary battery and electric double layer capacitor
JP2005129924A (en) * 2003-10-02 2005-05-19 Showa Denko Kk Metal collector for use in electric double layer capacitor, and polarizable electrode as well as electric double layer capacitor using it
WO2007055358A1 (en) * 2005-11-14 2007-05-18 Fuji Jukogyo Kabushiki Kaisha Lithium ion capacitor
JP2008041971A (en) * 2006-08-08 2008-02-21 Tomoegawa Paper Co Ltd Electrode, manufacturing method therefor and electrochemical element
JP2011222672A (en) * 2010-04-07 2011-11-04 Daiso Co Ltd Perforated conductive foil and method for producing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107230556A (en) * 2016-03-25 2017-10-03 华北电力大学(保定) A kind of pillar super capacitor
CN107230556B (en) * 2016-03-25 2023-04-11 华北电力大学(保定) Column type super capacitor
EP3438968A4 (en) * 2016-03-29 2019-05-22 FUJIFILM Corporation Soundproofing structure, partition structure, window member, and cage
JP2017183174A (en) * 2016-03-31 2017-10-05 富士フイルム株式会社 Metal foil, manufacturing method thereof, and current collector for power storage device
EP3522193A4 (en) * 2016-09-29 2019-10-30 FUJIFILM Corporation Aluminum member for electrodes and method for producing aluminum member for electrodes
US11527760B2 (en) 2016-09-29 2022-12-13 Fujifilm Corporation Aluminum member for electrodes and method of producing aluminum member for electrodes
WO2018181139A1 (en) 2017-03-27 2018-10-04 富士フイルム株式会社 Soundproof structure, sound absorption panel, and tuning panel
CN110637385A (en) * 2017-05-18 2019-12-31 富士胶片株式会社 Perforated metal foil, method for producing perforated metal foil, negative electrode for secondary battery, and positive electrode for secondary battery
WO2019039469A1 (en) 2017-08-22 2019-02-28 富士フイルム株式会社 Soundproof structure and sound absorption panel
EP3675119A4 (en) * 2017-08-22 2020-08-26 FUJIFILM Corporation Soundproof structure and sound absorption panel

Also Published As

Publication number Publication date
TW201608582A (en) 2016-03-01

Similar Documents

Publication Publication Date Title
JP6374013B2 (en) Aluminum plate
WO2016017380A1 (en) Aluminum plate
JP6199416B2 (en) Aluminum plate manufacturing method, aluminum plate, current collector for power storage device, power storage device, soundproofing / sound absorbing material, electromagnetic wave shield, and building material
JP6328785B2 (en) Aluminum plate and method for manufacturing aluminum plate
WO2017018462A1 (en) Aluminum plate and method for producing aluminum plate
US11527760B2 (en) Aluminum member for electrodes and method of producing aluminum member for electrodes
CN111225997B (en) Aluminum foil and aluminum member for electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15827313

Country of ref document: EP

Kind code of ref document: A1