JP2004193147A - Semiconductor chip, method of mounting it on mounting member, and semiconductor device - Google Patents

Semiconductor chip, method of mounting it on mounting member, and semiconductor device Download PDF

Info

Publication number
JP2004193147A
JP2004193147A JP2002355422A JP2002355422A JP2004193147A JP 2004193147 A JP2004193147 A JP 2004193147A JP 2002355422 A JP2002355422 A JP 2002355422A JP 2002355422 A JP2002355422 A JP 2002355422A JP 2004193147 A JP2004193147 A JP 2004193147A
Authority
JP
Japan
Prior art keywords
semiconductor chip
electrode
mounting
electrodes
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002355422A
Other languages
Japanese (ja)
Inventor
Michihito Kawabata
理仁 川端
Hiroyuki Suzuki
啓之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002355422A priority Critical patent/JP2004193147A/en
Publication of JP2004193147A publication Critical patent/JP2004193147A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Landscapes

  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor chip which is capable of bringing electrodes uniformly into mechanical contact with each other when a semiconductor chip is mounted in a flip chip mounting manner through a pressure contact system, such as a heated pressure contact system or the like, to provide a method of mounting the same, and a semiconductor device. <P>SOLUTION: When the semiconductor chip equipped with electrodes that are laid out on its peripheral area is connected to a mounting member, such as a printed wiring board or the like, through a pressure contact system, the electrodes located at the one side of the semiconductor chip are set equal in total contact area to ones located at the opposed side. This method is effective when the semiconductor chip is mounted in flip chip mounting. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体チップ、その実装方法および半導体装置にかかり、特に半導体ベアチップ(以下半導体チップと称する)のフリップチップ実装における電極接続に関するものである。
【0002】
【従来の技術】
半導体チップとプリント配線基板、リードフレームなどの実装部材とを接続する方法として、半導体チップの電極と実装部材の配線電極との間に異方性導電性フイルムまたは、絶縁ペーストを挟み込み、熱圧着するフリップチップ実装方法が一般に知られている。
【0003】
この実装方法では、異方性導電性フイルムを用いる場合は、チップとプリント配線基板などの実装部材の電極同士が、導電粒子を電極間に挟んだ状態でメカニカルにコンタクトし、絶縁ペーストを用いる場合は、単にメカニカルコンタクトのみで、導通する。隣接電極の絶縁保持や、チップと実装部材の接着には、通常熱硬化型の樹脂で設計された絶縁樹脂がその役割を果すという実装メカニズムになっている。(例えば、非特許文献1参照)
【0004】
ここで、異方性導電性フイルムの場合、電極間に挟みこまれる導電粒子が、接続する電極高さのばらつきを吸収する役割を果しており、絶縁ペーストを用いる場合では、熱圧着時にチップの電極を潰すことで、電極高さのばらつきを吸収している。
【0005】
また、電極間隔が狭スペース化するものに対しては、隣接電極間の絶縁を維持するため、導電粒子に絶縁被膜を形成しておくようにし、熱圧着時に電極間に挟み込まれた粒子のみが、絶縁被膜が破れ導通するようにしたものも提案されている。(例えば、特許文献1参照)
そして現在、この実装方法は、多端子、狭ピッチ接続を要望される、液晶駆動用半導体装置において、標準的工法として、用いられている。(例えば、非特許文献2参照)
【0006】
従来の異方性導電性フイルムを用いたフリップチップ実装後の断面は、図7に示すように、半導体チップ1のチップ電極3とプリント配線基板2の基板電極4が、異方性導電性樹脂6中の導電粒子5を介して、メカニカルにコンタクトすることで、電気的に導通する状態を形成している。
【0007】
一方、絶縁ペーストの場合は、導電粒子を介在させることなく、電極同士のメカニカルコンタクトのみで、電気的に導通する状態を作っている。
【0008】
【特許文献1】
特開昭63−237372(特許第2546262号公報)(7頁、第1図、第5図)
【非特許文献1】
エレクトロニクス実装技術(技術調査会刊行雑誌)1997年7月号、46〜51頁
【非特許文献2】
エレクトロニクス実装技術(技術調査会刊行雑誌)2000年12月号、55〜56頁
【0009】
【発明が解決しようとする課題】
ところで、近年、半導体チップの電極は狭ピッチ化、微細化が進行しており、相対するプリント配線基板などの実装部材の電極配線も微細化していく傾向にある。
また、半導体チップの機能向上に伴うI/O数の増加により、電極端子数も増加する傾向にある。
半導体チップの電極は、一般に半導体チップの周縁部に配置される、いわゆるペリフェラル(周辺側)配置であるが、このような電極の微細化・端子数増加に伴い、電極形状を均一にすることが出来難い傾向にある。当然、各辺側に配置される電極の数も均等であるとは、限らない。
【0010】
このように電極形状が均一でない、電極数も各辺側で不均等である半導体チップと、基板配線電極が、全端子同じルールで、配線幅、長さに設定されているプリント配線基板を、異方性導電性フイルムや、絶縁ペーストを用いて、熱圧着フリップチップ実装を行う場合を考える。
【0011】
最初に電極同士を位置合わせしたあと、半導体チップ裏面から加熱・加圧するが、この時電極同士が接近し、同時に樹脂が熱流動後、熱硬化することで、実装が成立する。
【0012】
ところが、この熱流動時には、電極部のみに圧着荷重が加わった状態であり、電極接続面積すなわち、接触面積の総和が、各辺で異なっていると、圧着は、金属またはセラミックス材料からなる平坦なツールで各辺上で均一に荷重を加えているので、圧力のアンバランスが生じることになる。
【0013】
つまり、総接触面積が小さい辺側の電極は大きく潰れ、総接触面積が大きい辺側の電極は潰れ難い状態になる。
【0014】
その後、周りの樹脂が硬化するので、半導体チップ全体で、圧着荷重を受けることになるが、電極潰れの差が生じているので、チップ自体も傾いた状態になり、接続不良が生じやすく装置としての信頼性にも影響することが予想される。
【0015】
本発明は、前記実情に鑑みてなされたもので、熱圧着方式等の圧着方式を用いて、半導体チップのフリップチップ実装を行うような場合に、電極同士のメカニカルコンタクトを均等にすることのできる半導体チップ、その実装方法および半導体装置を提供することを目的とする。
【0016】
【課題を解決するための手段】
そこで本発明の電極接続方法は、電極がペリフェラル配置された半導体チップと、プリント配線基板などの実装部材とを圧着方式で、接続する際、各辺における接触総面積が相対向する辺側で、等しくなるようにしている。この方法は特にフリップチップ実装を行う時、有効である。
【0017】
かかる構成によれば、熱圧着開始直後の電極のみにかかる圧力が相対向する辺上で均一にかかるので、電極つぶれに差がなく、均一なメカニカルコンタクト状態にすることができる。
【0018】
すなわち、本発明の半導体チップは、半導体基板の外表面に形成され、前記半導体基板の裏面からの高さが同程度となるように形成された電極を有し、前記半導体基板の相対向する辺側の前記電極の総面積が互いに等しくなるように形成されていることを特徴とする。
【0019】
かかる構成によれば、平坦面上に接続端子が形成された実装部材に実装する場合にも、相対向する辺側で接触部の総面積が互いに等しくなるため、熱圧着などの圧着方式で接続する場合にも熱圧着開始直後の電極のみにかかる圧力が相対向する辺で均一にかかるので、電極つぶれに差がなく、均一な接続を達成することが可能となる。
【0020】
また、このような半導体チップは、電極がペリフェラル配置されているのがより望ましい。
【0021】
また、電極は、容易に接触面積を調整することができるため、内部回路と電気的に接続されていない少なくともひとつのダミー電極を含むようにするのが望ましい。
【0022】
本発明の実装方法は、半導体チップを圧着方式で実装部材上に実装し電気的に接続する実装方法において、前記半導体チップの電極と前記実装部材との接触総面積が相対向する各辺側で、等しくなるようにしたことを特徴とする。
【0023】
また、内部回路と電気的に接続されていない少なくともひとつのダミー電極を含むようにすれば、容易に接触面積を調整することができる。
【0024】
また、電極がペリフェラル配置された半導体チップを、プリント基板上に、熱圧着方式で、フリップチップ実装を行うようにするのが望ましい。
【0025】
また、前記半導体チップは、半導体基板の外表面に形成され、前記半導体基板の裏面からの高さがほぼ同程度となるように形成された電極を有し、前記半導体チップの相対向する辺側の前記電極の総面積が互いに等しくなるように形成するのが望ましい。
【0026】
また、前記電極は、内部回路と電気的に接続されていない少なくともひとつのダミー電極を含むことを特徴とする。
【0027】
望ましくは、電極接続部のプリント配線電極幅を、前記半導体チップの電極との接触総面積が相対向する各辺で、等しくなるように調整せしめるようにすれば、容易に熱圧着直後の電極にかかる圧力が相対向する各辺で均一になるようにすれば、電極つぶれに差がなく、均一なメカニカルコンタクト状態を形成することが可能となる。
【0028】
また、電極接続部のプリント配線電極長さを、前記半導体チップの電極との接触総面積が相対向する辺側で、等しくなるように調整するようにしても、同様に、容易に熱圧着直後の電極にかかる圧力が相対向する各辺で均一になるようにすれば、電極つぶれに差がなく、均一なメカニカルコンタクト状態を形成することが可能となる。
【0029】
また、プリント基板に、電気的に浮遊状態のダミー電極を付加することにより、前記半導体チップの電極との接触総面積が相対向する辺側で、等しくなるように容易に調整することができ、均一なメカニカルコンタクト状態を形成することが可能となる。
【0030】
さらにまた、表面に電極が配置された半導体チップを、プリント基板上にフリップチップ方式で実装せしめられた半導体装置であって、前記電極と前記プリント基板上の配線電極との接触総面積比が相対向する辺側で、等しくなるように構成したことを特徴とする。
【0031】
かかる構成によれば、熱圧着開始直後の電極のみにかかる圧力が、相対向する辺側で均一にかかるので、電極つぶれに差がなく、均一なメカニカルコンタクト状態にすることができる。
【0032】
また本発明の半導体装置は、表面に電極が配置された半導体チップを、プリント基板上にフリップチップ方式で実装せしめられた半導体装置であって、電極接続総面積比が各対辺側で、1.5倍以内となるように構成されたことを特徴とする。
実験結果から、つぶれ量の差が2μm以内に収まったとき、対向辺での接続抵抗値が安定することがわかった。そしてこれを実現するためには、接続面積比1.5以内にすることによって達成されることがわかった。かかる値に設定することにより、熱圧着開始直後の電極のみにかかる圧力が相対向する辺側で、ほぼ均一にかかるので、電極つぶれの差が小さくなり、ほぼ均一なメカニカルコンタクト状態にすることができる。
【0033】
【発明の実施の形態】
以下、本発明の実施の形態を、図面を参照しながら説明する。なお、図2に示す従来技術における部材と同一の部材については同一の符号を付して詳細な説明は省略する。
【0034】
(第1の実施の形態)
図1(a)乃至(c)は、本発明の第1の実施の形態の半導体チップを示す図である。図1(a)は、本発明の半導体チップの電極パッド配列を示す上面図であり、図1(b)および(c)は図1(a)のA−A断面図およびB−B断面図である。
【0035】
本実施の形態の半導体チップは、半導体基板1の外表面に形成され、前記半導体基板の裏面からの高さがほぼ同程度となるように形成された電極3が、内部回路とは電気的に接続されていないダミー電極3dを付加したことを特徴とする。
【0036】
これにより、図1(b)および(c)の比較からも明らかなように、半導体基板の相対向する辺側で、半導体チップの電極3と、プリント基板2の配線電極4との当接部の総面積が互いに等しくなり、熱圧着などの圧着方式で接続する場合にも熱圧着開始直後の電極のみにかかる圧力が相対向する辺側で等しく、均一にかかるので、電極つぶれに差がなく、均一な接続を達成することが可能となる。
【0037】
そして、このようにして形成された半導体チップ1を、配線電極4の形成されたプリント基板2にフリップチップで実装することによって形成した半導体装置を図2(a)乃至(c)に示す。図2(a)は、本発明の半導体チップの電極パッド配列を示す上面図であり、図2(b)および(c)は図2(a)のA−A断面図およびB−B断面図である。なお、図2(a)は、プリント基板2を省略し、プリント基板の配線電極4のみを示した。
【0038】
この図から明らかなように、半導体チップ1の電極3と、プリント基板2の配線電極4と当接する接続部の接触総面積が、相対向する辺側で等しくなるように構成されているため、上述したように接着性樹脂6中に導電性粒子5を含有させた接着剤を介して、熱圧着などの圧着方式で接続する場合にも熱圧着開始直後の電極のみにかかる圧力が相対向する辺で均一にかかるので、電極つぶれに差がなく、均一な接続を達成することが可能となる。
【0039】
ここで、下辺側の1つの接続部を7、上辺側の1つの接続部を8で示す。
【0040】
また、このような半導体チップは、電極がペリフェラル配置されているのがより望ましい。
【0041】
また、半導体チップ1の、電極3の少ない辺上には、ダミー電極3dが形成されており、容易に接触面積を調整することができる。
【0042】
このように、図1(a)に示すように、半導体チップ1の電極3と基板電極4の接続部で、下辺側の1つの接続部7と、上辺側の1つの接続部8の面積が等しく、電極数も等しくしたので、上辺側と下辺側の接触総面積が、等しくなる設計にした。この場合、半導体電極の設計段階で、ダミー電極も含めて上下の電極面積及び左右の電極面積を等しくなるようにする必要がある。これにより、フリップチップ実装を熱圧着方式で行う時、相対向する辺の電極接続部に均等に圧力が加わるので、均一なメカニカルコンタクトが成立する。
【0043】
(第2の実施の形態)
図3は、本発明の第2の実施の形態の半導体チップを示す図である。図3にプリント基板の配線電極4のみを配した図(プリント基板2は省略)示す。図3は、上辺側の電極パッド数が下辺側電極の電極パッド数よりも少ない場合で、上辺側の半導体チップ電極3のサイズをy方向に長くすることで、上辺側の接続部8の面積が大きくなり、上辺側と下辺側の接触総面積が、等しくなる設計になっている。
【0044】
すなわち、本実施の形態では、プリント基板2の配線電極4との電極接続部7、8に位置する半導体チップ1の電極パッドの長さlを、半導体チップ1の電極との接触総面積が相対向する辺側で、等しくなるように大きくしたことを特徴とするものである。
【0045】
かかる構成によれば、電極3の数が少ない上辺側では、電極パッドの長さlを大きくすることにより、接触面積が同程度となるように構成している。このようにして、容易に熱圧着直後の電極にかかる圧力が相対向する辺で均一になるようにすることができ、電極つぶれに差がなく、均一なメカニカルコンタクト状態を形成することが可能となる。
【0046】
(第3の実施の形態)
図4は、本発明の第3の実施の形態の半導体チップを示す図である。図4にプリント基板の配線電極4のみを配した図(プリント基板2は省略)を示す。図4は、上辺側の電極パッド数が下辺側電極の電極パッド数よりも少ない場合で、上辺側の半導体チップ電極3のサイズをx方向に大きくすることで、上辺側の電極接続部8の面積が大きくなり、上辺側と下辺側の接触総面積が、等しくなる設計になっている。
【0047】
すなわち、図4は、同じく上辺側の電極数が下辺側電極数よりも少ない場合で、上辺側の基板電極4の幅W1を太く、下辺側の基板電極4の幅W2を細くすることで、上辺側の接触接続部8の面積が大きくなり、下辺側の接触接続部7の面積が小さくなり、上辺側と下辺側の接続総面積が、等しくなる設計になっている。
【0048】
(第4の実施の形態)
図5は、本発明の第4の実施の形態の半導体装置を示す図である。この例ではプリント基板上の配線電極で調整するようにしたことを特徴とする。図5にプリント基板の配線電極4のみを配した図(プリント基板2は省略)示す。図5は、同じく半導体チップ1の上辺側の電極数が下辺側電極数よりも少ない場合で、半導体チップの下辺側の各電極3と、プリント基板2の各配線電極4との接触面積が小さくなるように、プリント基板2の各配線電極4の位置を外方にずらしたことを特徴とする。
【0049】
かかる構成によれば、プリント基板2の下辺側の各配線電極4の位置をずらすことで、下辺側の接触総面積を減らし、上辺側と下辺側の接触総面積が、等しくなる設計になっている。
【0050】
(第5の実施の形態)
図6は、本発明の第5の実施の形態の半導体装置を示す図である。この例ではプリント基板上の配線電極で調整するようにしたことを特徴とする。図6にプリント基板の配線電極4のみを配した図(プリント基板2は省略)示す。図6は、同じく半導体チップ1の上辺側の電極数が下辺側電極数よりも少ない場合で、下辺側の電極3の中で、元々、導通に関与しないダミー電極3dに相対する位置のプリント基板2の配線電極4を設置しないことで、下辺側の接触総面積を減らし、上辺側と下辺側の接触総面積が、等しくなる設計になっている。
【0051】
すなわち、この例では、図6に示すように、上辺側の電極数が下辺側の電極数よりも少ない場合に、下辺側の電極3の中で、元々、導通に関与しないダミー電極3dに相対する配線電極4を設置しないことで、下辺側の接触総面積を減らし、上辺側と下辺側の接触総面積が、等しくなる設計にしている。これにより、フリップチップ実装を熱圧着方式で行う時、対辺側の電極接続部に均等に圧力が加わるので、均一なメカニカルコンタクトが成立する。
【0052】
なお、上辺側・下辺側の電極数、電極接続面積が極端に違う場合、例えば、入力信号が少なく、出力信号が多い液晶駆動用半導体チップなどでは、半導体の設計変更で、第1乃至第2の実施の形態に取り組むようにすればよい。
また実装段階では、基板配線について第3乃至第5の実施の形態に取り組むことで、上辺側・下辺側の接続面積比を1.5倍以下に設計する。これにより、フリップチップ実装を熱圧着方式で行う時、対辺側の電極接続部にほぼ均等に圧力が加わるので、ほぼ均一なメカニカルコンタクトが成立する。
これの数値範囲は種々の実験の結果から得られたものである。接続面積比とつぶれ量の差の関係を変化しながら、接続状態を観察した。この結果を図8に示す。ここで縦軸はつぶれ量、横軸は接続面積比を示す。この結果から、つぶれ量の差が2μm以内に収まったとき、対向辺での接続抵抗値が安定することがわかった。そしてこれを実現するためには、接続面積比1.5以内にすることによって達成されることがわかった。このように設定することにより、熱圧着開始直後の電極のみにかかる圧力が相対向する辺側で、ほぼ均一にかかるので、電極つぶれの差が小さくなり、ほぼ均一なメカニカルコンタクト状態にすることができる。
【0053】
また前記実施の形態では、プリント基板上への半導体チップの搭載について説明したが、フィルムキャリアや、リードフレームへの実装に際しても本発明は有効であることはいうまでもない。
【0054】
また、前記実施の形態では、熱圧着方式で実装する場合について説明したが、これに限定されることなく、光硬化性樹脂を用いて実装する場合あるいは、熱可塑性樹脂を用いて実装する場合などにおいても圧着工程を含む場合には適用可能である。
【0055】
【発明の効果】
以上のように本発明によれば、熱圧着方式のフリップチップ実装において、半導体ベアチップとプリント配線基板の電極接続、メカニカルコンタクトが、上辺側・下辺側、左辺側・右辺側など、相対向する2辺側で均一になるので、電気的接続信頼性の高い実装状態を提供することが可能となる。
【図面の簡単な説明】
【図1】図1(a)は、本発明の第1の実施の形態の半導体チップの上面図、図1(b)は、図1(a)のA−A断面図、図1(c)は、図1(a)のB−B断面図である。
【図2】図2(a)は、本発明の第1の実施の形態の半導体チップを用いて実装した半導体装置の上面図、図2(b)は、図2(a)のA−A断面図、図2(c)は、図1(a)のB−B断面図である。図2(a)では、プリント基板を省略している。
【図3】本発明の第2の実施の形態を示す図である。
【図4】本発明の第3の実施の形態を示す図である。
【図5】本発明の第4の実施の形態を示す図である。
【図6】本発明の第5の実施の形態を示す図である。
【図7】従来の異方性導電性フイルムによるフリップチップ実装断面図である。
【図8】異方性導電性フイルムによるフリップチップ実装の場合の接続面積比とつぶれ量を測定した結果を示す図である。
【符号の説明】
1 半導体チップ
2 プリント基板
3 チップ電極
4 配線電極
5 導電粒子
6 異方性導電性フイルムの樹脂
7 下辺側の電極接続部
8 上辺側の電極接続部
3d ダミー電極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor chip, a mounting method thereof, and a semiconductor device, and more particularly to electrode connection in flip chip mounting of a semiconductor bare chip (hereinafter, referred to as a semiconductor chip).
[0002]
[Prior art]
As a method of connecting a semiconductor chip to a mounting member such as a printed wiring board or a lead frame, an anisotropic conductive film or an insulating paste is sandwiched between an electrode of the semiconductor chip and a wiring electrode of the mounting member, and thermocompression bonding is performed. A flip chip mounting method is generally known.
[0003]
In this mounting method, when using an anisotropic conductive film, the electrodes of a mounting member such as a chip and a printed wiring board are mechanically contacted with conductive particles sandwiched between the electrodes, and an insulating paste is used. Is conducted only by a mechanical contact. A mounting mechanism in which an insulating resin designed by a thermosetting resin normally plays a role in insulating and holding the adjacent electrodes and bonding the chip to the mounting member is used. (For example, see Non-Patent Document 1)
[0004]
Here, in the case of an anisotropic conductive film, the conductive particles sandwiched between the electrodes play a role of absorbing variations in the height of the electrode to be connected. To absorb variations in electrode height.
[0005]
In addition, in the case where the space between the electrodes becomes narrower, an insulating coating is formed on the conductive particles in order to maintain the insulation between the adjacent electrodes, and only the particles sandwiched between the electrodes during thermocompression bonding. In addition, there has been proposed a device in which an insulating film is broken to conduct electricity. (For example, see Patent Document 1)
At present, this mounting method is used as a standard method in a semiconductor device for driving a liquid crystal, which requires a multi-terminal, narrow-pitch connection. (For example, see Non-Patent Document 2)
[0006]
As shown in FIG. 7, the cross-section after flip-chip mounting using the conventional anisotropic conductive film is such that the chip electrode 3 of the semiconductor chip 1 and the substrate electrode 4 of the printed wiring board 2 are anisotropic conductive resin. Electrically conductive state is formed by mechanically contacting via conductive particles 5 in 6.
[0007]
On the other hand, in the case of the insulating paste, a state is established in which electrical conduction is achieved only by mechanical contact between electrodes without intervening conductive particles.
[0008]
[Patent Document 1]
JP-A-63-237372 (Japanese Patent No. 2546262) (p. 7, FIG. 1, FIG. 5)
[Non-patent document 1]
Electronics Packaging Technology (Journal of the Technical Research Council), July 1997, pp. 46-51 [Non-Patent Document 2]
Electronics Packaging Technology (Journal of the Technical Research Council), December 2000, 55-56 pages
[Problems to be solved by the invention]
By the way, in recent years, the pitch of the electrodes of a semiconductor chip has been narrowed and miniaturized, and the electrode wiring of a mounting member such as a printed wiring board also tends to be miniaturized.
In addition, the number of electrode terminals tends to increase due to an increase in the number of I / Os associated with an improvement in the function of the semiconductor chip.
The electrodes of the semiconductor chip are generally arranged at the periphery of the semiconductor chip, that is, in a so-called peripheral (peripheral side) arrangement. However, with the miniaturization of the electrodes and the increase in the number of terminals, it is necessary to make the electrode shape uniform. It tends to be difficult. Naturally, the number of electrodes arranged on each side is not necessarily equal.
[0010]
As described above, a semiconductor chip in which the electrode shape is not uniform, the number of electrodes is also uneven on each side, and a printed wiring board in which the board wiring electrodes are set to the same wiring width and length as the same rule for all terminals, Consider a case in which thermocompression bonding flip chip mounting is performed using an anisotropic conductive film or an insulating paste.
[0011]
After the electrodes are first aligned, heating and pressurization are performed from the back surface of the semiconductor chip. At this time, the electrodes come close to each other, and at the same time, the resin thermally flows and then hardens, whereby the mounting is established.
[0012]
However, at the time of this heat flow, the crimping load is applied only to the electrode portion, and if the electrode connection area, that is, the sum of the contact areas is different on each side, the crimping is performed using a flat metal or ceramic material. Since the load is uniformly applied on each side by the tool, pressure imbalance will occur.
[0013]
That is, the electrode on the side with the smaller total contact area is largely crushed, and the electrode on the side with the larger total contact area is hardly crushed.
[0014]
After that, the surrounding resin is cured, so that the entire semiconductor chip receives a compression load.However, since the difference in electrode collapse occurs, the chip itself is also inclined, and connection failure is likely to occur. Is also expected to affect the reliability of
[0015]
The present invention has been made in view of the above-described circumstances, and in a case where a semiconductor chip is flip-chip mounted using a compression bonding method such as a thermocompression bonding method, it is possible to equalize mechanical contacts between electrodes. An object of the present invention is to provide a semiconductor chip, a mounting method thereof, and a semiconductor device.
[0016]
[Means for Solving the Problems]
Therefore, the electrode connection method of the present invention, when connecting the semiconductor chip on which the electrodes are arranged peripherally, and a mounting member such as a printed wiring board by a crimping method, when the total contact area on each side is opposite to the side, I try to be equal. This method is particularly effective when performing flip chip mounting.
[0017]
According to such a configuration, the pressure applied only to the electrodes immediately after the start of thermocompression bonding is uniformly applied on the opposing sides, so that there is no difference in the collapse of the electrodes and a uniform mechanical contact state can be obtained.
[0018]
That is, the semiconductor chip of the present invention has electrodes formed on the outer surface of the semiconductor substrate and formed to have substantially the same height from the back surface of the semiconductor substrate, and opposing sides of the semiconductor substrate. The electrodes are formed so that the total area of the electrodes on the side is equal to each other.
[0019]
According to such a configuration, even when mounted on a mounting member having connection terminals formed on a flat surface, the total area of the contact portions on the opposite sides is equal to each other. Also in this case, since the pressure applied only to the electrodes immediately after the start of thermocompression bonding is uniformly applied to the opposing sides, there is no difference in the collapse of the electrodes, and uniform connection can be achieved.
[0020]
Further, in such a semiconductor chip, it is more desirable that the electrodes are arranged in a peripheral manner.
[0021]
In addition, since the contact area of the electrode can be easily adjusted, it is desirable to include at least one dummy electrode that is not electrically connected to the internal circuit.
[0022]
The mounting method of the present invention is a mounting method in which a semiconductor chip is mounted on a mounting member by a crimping method and is electrically connected, wherein a total contact area between an electrode of the semiconductor chip and the mounting member is opposite to each side. , So as to be equal.
[0023]
Also, by including at least one dummy electrode that is not electrically connected to the internal circuit, the contact area can be easily adjusted.
[0024]
In addition, it is desirable that a semiconductor chip having electrodes arranged in a peripheral manner be flip-chip mounted on a printed circuit board by a thermocompression bonding method.
[0025]
Further, the semiconductor chip has electrodes formed on an outer surface of the semiconductor substrate so that the height from the back surface of the semiconductor substrate is substantially the same, and a side of the semiconductor chip facing the opposite side. It is preferable that the electrodes have a total area equal to each other.
[0026]
Further, the electrode includes at least one dummy electrode that is not electrically connected to an internal circuit.
[0027]
Desirably, if the printed wiring electrode width of the electrode connecting portion is adjusted so that the total contact area with the electrode of the semiconductor chip is equal on each side facing each other, the electrode can be easily applied to the electrode immediately after thermocompression bonding. If such pressure is made uniform on each of the opposing sides, there is no difference in electrode crushing, and a uniform mechanical contact state can be formed.
[0028]
Also, even if the length of the printed wiring electrode of the electrode connecting portion is adjusted so that the total contact area with the electrode of the semiconductor chip is equal on the sides facing each other, similarly, immediately after thermocompression bonding, If the pressure applied to the electrode is made uniform on each of the opposing sides, there is no difference in the collapse of the electrode, and a uniform mechanical contact state can be formed.
[0029]
In addition, by adding a dummy electrode in an electrically floating state to the printed circuit board, the total contact area with the electrode of the semiconductor chip can be easily adjusted to be equal on opposite sides, It is possible to form a uniform mechanical contact state.
[0030]
Furthermore, a semiconductor device in which a semiconductor chip having electrodes disposed on a surface thereof is mounted on a printed circuit board by a flip chip method, wherein a total contact area ratio between the electrode and a wiring electrode on the printed circuit board is relatively high. It is characterized in that they are configured to be equal on opposite sides.
[0031]
According to this configuration, the pressure applied only to the electrodes immediately after the start of thermocompression bonding is uniformly applied to the opposing sides, so that there is no difference in the collapse of the electrodes and a uniform mechanical contact state can be obtained.
[0032]
Further, the semiconductor device of the present invention is a semiconductor device in which a semiconductor chip having electrodes disposed on its surface is mounted on a printed circuit board by a flip-chip method. It is characterized by being configured to be within 5 times.
From the experimental results, it was found that when the difference in the crushing amount was within 2 μm, the connection resistance value on the opposite side was stabilized. It has been found that this can be achieved by setting the connection area ratio within 1.5. By setting to such a value, the pressure applied only to the electrode immediately after the start of the thermocompression bonding is applied substantially uniformly on the side opposite to each other, so that the difference in the collapse of the electrode is reduced, and a substantially uniform mechanical contact state can be obtained. it can.
[0033]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same members as those in the prior art shown in FIG. 2 are denoted by the same reference numerals, and detailed description is omitted.
[0034]
(First Embodiment)
FIGS. 1A to 1C are views showing a semiconductor chip according to a first embodiment of the present invention. FIG. 1A is a top view showing an electrode pad arrangement of a semiconductor chip of the present invention, and FIGS. 1B and 1C are AA sectional view and BB sectional view of FIG. 1A. It is.
[0035]
The semiconductor chip of the present embodiment is formed on the outer surface of the semiconductor substrate 1, and the electrode 3 formed so that the height from the back surface of the semiconductor substrate is substantially the same, is electrically connected to the internal circuit. It is characterized in that an unconnected dummy electrode 3d is added.
[0036]
Thereby, as is clear from the comparison between FIGS. 1B and 1C, the contact portion between the electrode 3 of the semiconductor chip and the wiring electrode 4 of the printed circuit board 2 on the opposite side of the semiconductor substrate. Even when connecting by crimping method such as thermocompression bonding, the pressure applied only to the electrode immediately after the start of thermocompression is equal on the opposing sides and applied uniformly, so there is no difference in electrode collapse , Uniform connection can be achieved.
[0037]
FIGS. 2A to 2C show semiconductor devices formed by mounting the semiconductor chip 1 thus formed on the printed circuit board 2 on which the wiring electrodes 4 are formed by flip-chip. FIG. 2A is a top view showing an electrode pad arrangement of the semiconductor chip of the present invention, and FIGS. 2B and 2C are AA sectional view and BB sectional view of FIG. 2A. It is. FIG. 2A omits the printed circuit board 2 and shows only the wiring electrodes 4 of the printed circuit board.
[0038]
As is clear from this figure, since the total contact area of the electrode 3 of the semiconductor chip 1 and the connection portion that comes into contact with the wiring electrode 4 of the printed board 2 is configured to be equal on opposite sides, As described above, the pressure applied only to the electrode immediately after the start of thermocompression opposes even when connection is performed by a crimping method such as thermocompression bonding via the adhesive containing the conductive particles 5 in the adhesive resin 6. Since the edges are uniformly applied, there is no difference in the collapse of the electrodes, and uniform connection can be achieved.
[0039]
Here, one connection portion on the lower side is denoted by 7, and one connection portion on the upper side is denoted by 8.
[0040]
Further, in such a semiconductor chip, it is more desirable that the electrodes are arranged in a peripheral manner.
[0041]
Further, a dummy electrode 3d is formed on the side of the semiconductor chip 1 where the electrode 3 is small, so that the contact area can be easily adjusted.
[0042]
In this way, as shown in FIG. 1A, in the connection portion between the electrode 3 of the semiconductor chip 1 and the substrate electrode 4, the area of one connection portion 7 on the lower side and one connection portion 8 on the upper side are reduced. Since they were equal and the number of electrodes was equal, the design was such that the total contact area on the upper side and the lower side was equal. In this case, it is necessary to equalize the upper and lower electrode areas and the left and right electrode areas including the dummy electrodes in the design stage of the semiconductor electrode. Accordingly, when the flip chip mounting is performed by the thermocompression bonding method, pressure is evenly applied to the electrode connection portions on opposing sides, so that a uniform mechanical contact is established.
[0043]
(Second embodiment)
FIG. 3 is a diagram illustrating a semiconductor chip according to a second embodiment of the present invention. FIG. 3 shows a diagram in which only the wiring electrodes 4 of the printed board are arranged (the printed board 2 is omitted). FIG. 3 shows a case where the number of electrode pads on the upper side is smaller than the number of electrode pads on the lower side electrode, and the size of the semiconductor chip electrode 3 on the upper side is increased in the y direction, so that the area of the connection portion 8 on the upper side is increased. Are designed so that the total contact area on the upper side and the lower side is equal.
[0044]
That is, in the present embodiment, the length l of the electrode pads of the semiconductor chip 1 located at the electrode connection portions 7 and 8 with the wiring electrodes 4 of the printed circuit board 2 is determined by the relative total contact area with the electrodes of the semiconductor chip 1. It is characterized in that it is increased so as to be equal on the side of the opposite side.
[0045]
According to such a configuration, on the upper side where the number of the electrodes 3 is small, the length l of the electrode pad is increased so that the contact area is substantially the same. In this way, the pressure applied to the electrode immediately after the thermocompression bonding can be easily made uniform on the opposing sides, so that there is no difference in electrode collapse and a uniform mechanical contact state can be formed. Become.
[0046]
(Third embodiment)
FIG. 4 is a diagram illustrating a semiconductor chip according to a third embodiment of the present invention. FIG. 4 shows a diagram in which only the wiring electrodes 4 of the printed board are arranged (the printed board 2 is omitted). FIG. 4 shows a case in which the number of electrode pads on the upper side is smaller than the number of electrode pads on the lower side electrode. By increasing the size of the semiconductor chip electrode 3 on the upper side in the x direction, the electrode connection portion 8 on the upper side is formed. The design is such that the area is large and the total contact area on the upper side and the lower side is equal.
[0047]
That is, FIG. 4 shows a case where the number of electrodes on the upper side is smaller than the number of electrodes on the lower side, and the width W1 of the substrate electrode 4 on the upper side is increased and the width W2 of the substrate electrode 4 on the lower side is reduced. The design is such that the area of the contact connection portion 8 on the upper side becomes larger, the area of the contact connection portion 7 on the lower side becomes smaller, and the total connection area of the upper side and the lower side becomes equal.
[0048]
(Fourth embodiment)
FIG. 5 is a diagram illustrating a semiconductor device according to a fourth embodiment of the present invention. This example is characterized in that the adjustment is made with the wiring electrodes on the printed circuit board. FIG. 5 shows a diagram in which only the wiring electrodes 4 of the printed board are arranged (the printed board 2 is omitted). FIG. 5 shows a case where the number of electrodes on the upper side of the semiconductor chip 1 is smaller than the number of electrodes on the lower side, and the contact area between each electrode 3 on the lower side of the semiconductor chip and each wiring electrode 4 of the printed circuit board 2 is small. Thus, the position of each wiring electrode 4 on the printed circuit board 2 is shifted outward.
[0049]
According to such a configuration, the position of each wiring electrode 4 on the lower side of the printed board 2 is shifted to reduce the total contact area on the lower side, and the total contact area on the upper side and the lower side is designed to be equal. I have.
[0050]
(Fifth embodiment)
FIG. 6 is a diagram illustrating a semiconductor device according to a fifth embodiment of the present invention. This example is characterized in that the adjustment is made with the wiring electrodes on the printed circuit board. FIG. 6 shows a diagram in which only the wiring electrodes 4 of the printed circuit board are arranged (the printed circuit board 2 is omitted). FIG. 6 shows a case where the number of electrodes on the upper side of the semiconductor chip 1 is also smaller than the number of electrodes on the lower side, and the printed circuit board in the lower side electrode 3 at a position corresponding to the dummy electrode 3d which is not originally involved in conduction. By not providing the two wiring electrodes 4, the total contact area on the lower side is reduced, and the total contact area on the upper side and the lower side is designed to be equal.
[0051]
That is, in this example, as shown in FIG. 6, when the number of electrodes on the upper side is smaller than the number of electrodes on the lower side, the lower electrode 3 has a relative position to the dummy electrode 3d originally not involved in conduction. By not providing the wiring electrodes 4 to be formed, the total contact area on the lower side is reduced, and the total contact area on the upper side and the lower side is designed to be equal. Thereby, when the flip chip mounting is performed by the thermocompression bonding method, pressure is evenly applied to the electrode connecting portion on the opposite side, so that a uniform mechanical contact is established.
[0052]
When the number of electrodes and the electrode connection area on the upper side and the lower side are extremely different, for example, in a liquid crystal driving semiconductor chip having a small input signal and a large output signal, the first and the second are changed due to a semiconductor design change. It is sufficient to work on the embodiment.
In the mounting stage, the connection area ratio between the upper side and the lower side is designed to be 1.5 times or less by working on the third to fifth embodiments for the substrate wiring. Thereby, when the flip chip mounting is performed by the thermocompression bonding method, the pressure is almost uniformly applied to the electrode connecting portion on the opposite side, so that a substantially uniform mechanical contact is established.
This numerical range has been obtained from the results of various experiments. The connection state was observed while changing the relationship between the connection area ratio and the difference between the crushing amounts. The result is shown in FIG. Here, the vertical axis indicates the amount of crush, and the horizontal axis indicates the connection area ratio. From this result, it was found that when the difference in the crushing amount was within 2 μm, the connection resistance value on the opposite side was stabilized. It has been found that this can be achieved by setting the connection area ratio within 1.5. With this setting, the pressure applied only to the electrode immediately after the start of the thermocompression bonding is applied almost uniformly on the opposing sides, so that the difference in electrode crushing is reduced, and a substantially uniform mechanical contact state can be obtained. it can.
[0053]
Further, in the above embodiment, the mounting of the semiconductor chip on the printed circuit board has been described, but it goes without saying that the present invention is also effective for mounting on a film carrier or a lead frame.
[0054]
Further, in the above-described embodiment, the case of mounting by a thermocompression bonding method has been described.However, the present invention is not limited to this. For example, a case of mounting using a photocurable resin, a case of mounting using a thermoplastic resin, and the like. This is also applicable in the case where a crimping step is included.
[0055]
【The invention's effect】
As described above, according to the present invention, in the flip-chip mounting of the thermocompression bonding method, the electrode connection and the mechanical contact between the semiconductor bare chip and the printed wiring board are opposed to each other, such as the upper side / lower side, the left side / right side. Since the sides are uniform, it is possible to provide a mounting state with high electrical connection reliability.
[Brief description of the drawings]
FIG. 1A is a top view of a semiconductor chip according to a first embodiment of the present invention, FIG. 1B is a cross-sectional view taken along line AA of FIG. 1A, and FIG. 1) is a sectional view taken along line BB of FIG.
FIG. 2A is a top view of a semiconductor device mounted using the semiconductor chip according to the first embodiment of the present invention, and FIG. 2B is an AA of FIG. 2A; FIG. 2C is a cross-sectional view of FIG. 1A along the line BB. In FIG. 2A, the printed circuit board is omitted.
FIG. 3 is a diagram showing a second embodiment of the present invention.
FIG. 4 is a diagram showing a third embodiment of the present invention.
FIG. 5 is a diagram showing a fourth embodiment of the present invention.
FIG. 6 is a diagram showing a fifth embodiment of the present invention.
FIG. 7 is a cross-sectional view of flip-chip mounting using a conventional anisotropic conductive film.
FIG. 8 is a diagram showing a result of measuring a connection area ratio and a crush amount in a case of flip-chip mounting using an anisotropic conductive film.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Semiconductor chip 2 Printed circuit board 3 Chip electrode 4 Wiring electrode 5 Conductive particles 6 Resin of anisotropic conductive film 7 Lower electrode connection part 8 Upper electrode connection part 3d Dummy electrode

Claims (12)

半導体基板の外表面に前記半導体基板の裏面からの高さが同程度となるように形成された電極を有し、前記半導体基板の相対向する辺側の前記電極の総面積が互いに等しくなるように形成されていることを特徴とする半導体チップ。An electrode formed on the outer surface of the semiconductor substrate so that the height from the back surface of the semiconductor substrate is substantially the same, and the total area of the electrodes on opposite sides of the semiconductor substrate is equal to each other. A semiconductor chip characterized by being formed on a semiconductor chip. 前記半導体チップは、前記電極がペリフェラル配置されていることを特徴とする請求項1に記載の半導体チップ。The semiconductor chip according to claim 1, wherein the semiconductor chip has the electrodes arranged in a peripheral configuration. 前記電極は、内部回路と電気的に接続されていない少なくともひとつのダミー電極を含むことを特徴とする請求項1または2に記載の半導体チップ。The semiconductor chip according to claim 1, wherein the electrode includes at least one dummy electrode that is not electrically connected to an internal circuit. 半導体チップを実装部材上に圧着方式で実装し電気的に接続する実装方法において、
前記半導体チップの電極と前記実装部材との接触総面積が前記半導体チップの相対向する辺側で等しくなるようにしたことを特徴とする半導体チップの実装方法。
In a mounting method in which a semiconductor chip is mounted on a mounting member by a crimping method and electrically connected,
A method of mounting a semiconductor chip, wherein a total contact area between an electrode of the semiconductor chip and the mounting member is equal on opposite sides of the semiconductor chip.
前記実装方法は、前記電極がペリフェラル配置された半導体チップを、プリント基板上に熱圧着方式を用いてフリップチップ実装を行う方法を含むことを特徴とする請求項4に記載の半導体チップの実装方法。The method according to claim 4, wherein the mounting method includes a method of flip-chip mounting the semiconductor chip on which the electrodes are peripherally arranged on a printed circuit board using a thermocompression bonding method. . 前記半導体チップは、半導体基板の外表面に形成され前記半導体基板の裏面からの高さがほぼ同程度となるように形成された電極を有し、前記半導体チップの相対向する辺側の前記電極の総面積が互いに等しくなるように形成されていることを特徴とする請求項4に記載の半導体チップの実装方法。The semiconductor chip has an electrode formed on the outer surface of the semiconductor substrate and formed so that the height from the back surface of the semiconductor substrate is substantially the same, and the electrode on the opposite side of the semiconductor chip. 5. The method of mounting a semiconductor chip according to claim 4, wherein a total area of the semiconductor chips is equal to each other. 前記電極は、内部回路と電気的に接続されていない少なくともひとつのダミー電極を含むことを特徴とする請求項4乃至6のいずれかに記載の半導体チップの実装方法。7. The semiconductor chip mounting method according to claim 4, wherein the electrodes include at least one dummy electrode that is not electrically connected to an internal circuit. 前記プリント基板は、電極接続部のプリント配線電極幅を、前記半導体チップの電極との接触総面積が相対向する辺側で、等しくなるように調整せしめられていることを特徴とする請求項4に記載の半導体チップの実装方法。5. The printed circuit board according to claim 4, wherein the printed wiring electrode width of the electrode connection portion is adjusted so that the total contact area of the electrode with the electrode of the semiconductor chip is equal on the sides facing each other. The mounting method of the semiconductor chip described in 1. 前記プリント基板は、電極接続部のプリント配線電極長さを、前記半導体チップの電極との接触総面積が相対向する辺側で、等しくなるように調整せしめられていることを特徴とする請求項4に記載の半導体チップの実装方法。The printed circuit board, wherein the length of the printed wiring electrode of the electrode connection portion is adjusted so that the total contact area of the electrode of the semiconductor chip with the electrode of the semiconductor chip is equal on opposite sides. 5. The mounting method of the semiconductor chip according to 4. 前記プリント基板は、電気的に浮遊状態のダミー電極を具備することにより、前記半導体チップの電極との接触総面積が相対向する辺側で、等しくなるように調整せしめられていることを特徴とする請求項4に記載の半導体チップの実装方法。The printed circuit board is provided with a dummy electrode in an electrically floating state, so that the total contact area with the electrode of the semiconductor chip is adjusted to be equal on opposite sides. The method of mounting a semiconductor chip according to claim 4. 表面に電極が配置された半導体チップを、プリント基板上にフリップチップ方式で実装せしめられた半導体装置であって、
前記電極と前記プリント基板上の配線電極との接触総面積比が相対向する辺側上で、等しくなるように構成したことを特徴とする半導体装置。
A semiconductor device in which a semiconductor chip having electrodes disposed on its surface is mounted on a printed circuit board by a flip chip method,
A semiconductor device, wherein a total contact area ratio between the electrode and a wiring electrode on the printed board is equal on opposite sides.
表面に電極が配置された半導体チップを、プリント基板側にフリップチップ方式で実装せしめられた半導体装置であって、
電極接続総面積比が各対辺側で、1.5倍以内となるように構成されたことを特徴とする半導体装置。
A semiconductor device in which a semiconductor chip having electrodes disposed on a surface thereof is mounted on a printed circuit board side by a flip chip method,
A semiconductor device characterized in that the total electrode connection area ratio is 1.5 times or less on each side.
JP2002355422A 2002-12-06 2002-12-06 Semiconductor chip, method of mounting it on mounting member, and semiconductor device Pending JP2004193147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002355422A JP2004193147A (en) 2002-12-06 2002-12-06 Semiconductor chip, method of mounting it on mounting member, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002355422A JP2004193147A (en) 2002-12-06 2002-12-06 Semiconductor chip, method of mounting it on mounting member, and semiconductor device

Publications (1)

Publication Number Publication Date
JP2004193147A true JP2004193147A (en) 2004-07-08

Family

ID=32756128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002355422A Pending JP2004193147A (en) 2002-12-06 2002-12-06 Semiconductor chip, method of mounting it on mounting member, and semiconductor device

Country Status (1)

Country Link
JP (1) JP2004193147A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010529673A (en) * 2007-06-07 2010-08-26 シリコン・ワークス・カンパニー・リミテッド Pad layout structure of semiconductor chip
US9721926B2 (en) 2014-08-27 2017-08-01 Samsung Electronics Co., Ltd. Semiconductor device having stacked semiconductor chips interconnected via TSV and method of fabricating the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010529673A (en) * 2007-06-07 2010-08-26 シリコン・ワークス・カンパニー・リミテッド Pad layout structure of semiconductor chip
US9721926B2 (en) 2014-08-27 2017-08-01 Samsung Electronics Co., Ltd. Semiconductor device having stacked semiconductor chips interconnected via TSV and method of fabricating the same
US10020290B2 (en) 2014-08-27 2018-07-10 Samsung Electronics Co., Ltd. Semiconductor device having stacked semiconductor chips interconnected via TSV

Similar Documents

Publication Publication Date Title
JP4828164B2 (en) Interposer and semiconductor device
JPH11260851A (en) Semiconductor device and its manufacture
JP2009105209A (en) Electronic device and method of manufacturing the same
JPH1116949A (en) Acf-bonding structure
JP2004193147A (en) Semiconductor chip, method of mounting it on mounting member, and semiconductor device
KR100510518B1 (en) Semiconductor device and packaging method of the semiconductor device
JP3519924B2 (en) Semiconductor device structure and method of manufacturing the same
JP4324773B2 (en) Manufacturing method of semiconductor device
JP2004134653A (en) Substrate connecting structure and fabricating process of electronic parts therewith
JP4699089B2 (en) Chip-on-film semiconductor device
JP3565724B2 (en) Flip chip type semiconductor package and resin injection method in the device
JPH06232203A (en) Lsi packaging structure
JP2004266016A (en) Semiconductor device, its manufacturing method and semiconductor substrate
JP2008060159A (en) Semiconductor device and manufacturing method therefor
JP3844079B2 (en) Manufacturing method of semiconductor device
JP7454345B2 (en) Semiconductor devices and their manufacturing methods, and electronic equipment
JP2001015552A (en) Flip-chip mounting method
KR101162504B1 (en) Bump for semiconductor device and method for manufacturing the same
JP2004281899A (en) Semiconductor device, manufacturing method thereof, circuit board, and electronic appliance
JPH05182516A (en) Anisotropic conductive adhesive and conductive connection structure
JP2007005559A (en) Electronic circuit module
JP4436748B2 (en) Semiconductor device and mounting method thereof
JP2000332157A (en) Electronic part mounting member
JP2005121757A (en) Substrate connecting structure, electronic component, liquid crystal display device, and method for manufacturing electronic component
JP2002158327A (en) Manufacturing method of electronic circuit device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051122

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060325

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071114

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071121

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080521