JP2004191086A - Ultrasonic test equipment - Google Patents

Ultrasonic test equipment Download PDF

Info

Publication number
JP2004191086A
JP2004191086A JP2002356640A JP2002356640A JP2004191086A JP 2004191086 A JP2004191086 A JP 2004191086A JP 2002356640 A JP2002356640 A JP 2002356640A JP 2002356640 A JP2002356640 A JP 2002356640A JP 2004191086 A JP2004191086 A JP 2004191086A
Authority
JP
Japan
Prior art keywords
probe
ultrasonic
guide member
flaw detection
carriage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002356640A
Other languages
Japanese (ja)
Other versions
JP3688265B2 (en
Inventor
Koji Dojo
康二 道場
Hideyuki Hirasawa
英幸 平澤
Mitsuhiro Kamioka
光浩 神岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2002356640A priority Critical patent/JP3688265B2/en
Publication of JP2004191086A publication Critical patent/JP2004191086A/en
Application granted granted Critical
Publication of JP3688265B2 publication Critical patent/JP3688265B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem wherein stable flaw examination can not be performed by propagation of vibration or swelling movement to an ultrasonic search unit, generated when an ultrasonic test equipment is moved along a flaw examination part. <P>SOLUTION: A guide member 3 is provided along the flaw examination part 2 of an inspection object 1, and an automotive driving truck 4 and a search unit truck 5 provided with the ultrasonic search unit 17 for emitting an ultrasonic wave from the side part of the flaw examination part 2 toward the flaw examination part 2 are provided separately on the guide member 3, and the driving truck 4 and the search unit truck 5 are connected by a universal joint 14, to thereby prevent the vibration or the swelling movement generated on the driving truck 4 from being propagated to the ultrasonic search unit 17 side, and to enable stable ultrasonic flaw examination. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本願発明は、溶接継手部等の探傷部の内部欠陥を非破壊で検査する超音波探傷装置に関するものである。
【0002】
【従来の技術】
従来より、溶接継手部等の内部欠陥を非破壊で検査する手段として、超音波探傷検査(UT)が知られている。この超音波探傷検査は、被検査体の表面に探触子を密着させ、この探触子から被検査体に入射された超音波の反射によって欠陥を検出する非破壊検査であり、入射させた超音波の反射を検出するまでの時間によって欠陥の位置を知ることができる。
【0003】
この種の従来技術として、台車を継手溶接線の始端部から終端部に向って間欠運動させ、台車停止毎にこの台車に設けられた走査機構によって超音波探触子を台車走行方向およびこれと直交する方向に方形走査させることにより、継手溶接線の全線の探傷を行う自動超音波探傷装置がある。この超音波探傷装置によれば、超音波探触子を継手溶接線に対して前後方向に走査させながら、入射させた超音波の反射を検査して全線探傷を行っている(例えば、特許文献1参照。)。
【0004】
一方、超音波探触子によって検査できる被検査体の厚み方向の範囲は限られているので、全厚み方向の安定した検査をするために、超音波探触子を溶接継手部と近接又は離間させる走査を行って、超音波探触子の検査できる範囲を厚み方向に広げる場合もある。
【0005】
【特許文献1】
特開平5−333010号公報(第1頁、図1)
【0006】
【発明が解決しようとする課題】
しかしながら、前記文献1記載の超音波探傷装置の場合、溶接線方向に走行する台車に走査機構が取付けられており、走行しながら検査すると台車からの振動やうねり動作が探触子に伝わって安定した探傷ができないため、台車を走査範囲に対応した走行ピッチで間欠駆動させながら、台車の停止中に走行機構による方形走査を行うようにしている。したがって、連続的な超音波探傷ができず、多くの時間を要することになる。しかも、停止中であってもモータ等の駆動機からの振動等により、安定した超音波探傷ができないおそれもある。
【0007】
また、前記したように被検査体の板厚が厚くなると、それに伴って超音波探触子の前後走査の範囲も大きくなるので、探触子を走査させるための構成寸法が長くなり、それを支持するために装置全体が大きなものになってしまう。
【0008】
さらに、この超音波探傷装置では、平板を突合わせたような溶接継手部の検査は困難であり、限られた溶接継手部の超音波探傷でしか十分な効果を得ることができない。
【0009】
【課題を解決するための手段】
そこで、前記課題を解決するために、本願発明は、被検査体の探傷部に沿ってガイド部材を設け、該ガイド部材に、自走する駆動台車と、前記探傷部の側部から該探傷部に向けて超音波を発する超音波探触子を設けた探触子台車とを分離して設け、該駆動台車と探触子台車とを継手で連結している。このように、超音波探傷する超音波探触子を探傷部に沿って移動させる駆動台車と、超音波探触子を設けた探触子台車とを、それぞれ別体として分離し、これらの間を継手で連結することにより、駆動台車で生じる振動やうねりが超音波探触子側に伝わらなくなり、超音波探触子で安定した超音波探傷ができる。
【0010】
前記探触子台車に、前記超音波探触子を探傷部と近接又は離間する対称動作で走査を行う走査機構を具備した探触子駆動機を設ければ、探傷部に向って超音波探触子を近接又は離間するように対称動作させて走査することにより、被検査体の厚み方向を広く検査することができる。
【0011】
また、前記ガイド部材に案内される案内部材を前記駆動台車と探触子台車とに設け、該探触子台車に前記探触子駆動機を被検査体側へ押圧する押圧部材を設ければ、ガイド部材に沿って駆動台車と探触子台車とを安定して移動させるとともに、この安定して移動する探触子台車の探触子駆動機を被検査体側へ所定圧力で押圧して、超音波探触子による安定した超音波探傷ができる。
【0012】
さらに、前記継手を、前記ガイド部材とほぼ同軸上に配置する自在継手で構成すれば、駆動台車によって移動させる探触子台車がガイド部材を中心にして移動させられるので、探触子台車に回転モーメント等を生じさせることなく安定して移動させることができる。
【0013】
また、前記ガイド部材を探傷部から所定距離離した被検査体の表面に設け、該ガイド部材上に前記探触子台車を配設し、前記探触子駆動機の反探傷部側に被検査体の表面との距離を保つ規制部材を設け、該探触子駆動機の超音波探触子側に、該超音波探触子の被検査体表面への押圧力を制限する制限部材を設ければ、被検査体側に押圧される探触子駆動機は、反探傷部側の規制部材によって超音波探触子側を被検査体側へ安定して押圧することができ、超音波探触子の押圧力が規定以上に大きくなるような場合には制限部材で超音波探触子の押圧力を制限することができ、検査条件が変化しても超音波探触子を安定して被検査体に押圧して検査することができる。
【0014】
さらに、前記押圧部材を、前記探触子台車と探触子駆動機との間に設けたスプリングで構成し、該スプリングを、探触子駆動機の進行方向前後に配設すれば、簡単な構成であるスプリングのスプリング力で、探触子駆動機の前後を被検査体側へ安定して押圧することができ、スプリングの交換によって容易に押圧力を変更することもできる。
【0015】
その上、前記被検査体の探傷部に沿って、前記超音波探触子の走査範囲を含む範囲の流体層を形成する流体層形成機を設ければ、流体層によって超音波探触子を被検査体の表面に密着させながら近接又は離間する走査を連続的に行うことができ、被検査体の厚み方向の広い範囲を探傷部に沿って連続検査することができる。
【0016】
【発明の実施の形態】
以下、本願発明の一実施形態を図面に基づいて説明する。図1は本願発明の一実施形態を示す超音波探傷装置の斜視図であり、図2は図1に示すII−II矢視図、図3は図2に示すIII−III矢視図、図4は図2に示すIV部拡大図、図5は図1に示すV−V矢視図である。なお、説明のために図の一部は断面で示している。また、この実施形態では、被検査体として突合わせ溶接をした板材を例にし、その溶接継手部の溶接線方向を超音波探傷する超音波探傷装置を例にして説明する。
【0017】
図1に示すように、板材を突合わせて溶接した被検査体1の溶接継手部が探傷部2であり、図示する上下方向に連続した溶接線である。この探傷部2から所定距離離れた位置には、探傷部2と平行にガイド部材3が設けられている。この実施形態では、ガイド部材3として円筒断面のパイプレールが用いられている。このガイド部材3としては、角形断面や他の断面形状であってもよい。
【0018】
ガイド部材3には、このガイド部材3に沿って自走する駆動台車4と、この駆動台車4と連結されてガイド部材3に沿って移動する探触子台車5とが設けられている。これら駆動台車4と探触子台車5とで、超音波探傷装置6が構成されている。なお、これらを制御する制御装置は、駆動台車4内に設けても離れた制御室等に設けてもよい。
【0019】
駆動台車4は、被検査体1の表面と接する車輪11(4箇所)によって自重が支持され、ガイド部材3の両側部に接して回転する案内ローラ12(案内部材:4箇所)によってガイド部材3に沿って移動するように構成されている。探触子台車5は、ガイド部材3の両側部に接して回転する案内ローラ13(案内部材:4箇所)によって自重が支持され、この案内ローラ13によってガイド部材3に沿って移動するように構成されている。
【0020】
探触子台車5には、探傷部2と交差する方向に延びる探触子駆動機15が設けられている。この探触子駆動機15の走査部16に、探傷部2の両側部に位置するように超音波探触子17が設けられている。
【0021】
そして、これら駆動台車4と探触子台車5とは継手14によって連結され、駆動台車4の移動に追従して探触子台車5が移動するように構成されている。この駆動台車4と探触子台車5の制御部18とは配線19によって接続され、駆動台車4は図示しない制御装置と配線20で接続されている。
【0022】
図2に示すように、探触子台車5に設けられた案内ローラ13は、円形断面のガイド部材3の外面とほぼ同じ曲率で外面が形成されている。前記ガイド部材3は、所定高さの支持材21で被検査体1の表面に固定されており、このガイド部材3を前記案内ローラ13で両側部から挟むことにより、探触子台車5がガイド部材3に取付けられている。図示する左側の案内ローラ13Aは、軸22によって回転可能に支持されており、探触子台車5の移動に追従して回転する。右側の案内ローラ13Bは、軸23によってスライド部材24に回転可能に支持されており、探触子台車5の移動に追従して回転する。このスライド部材24は、探触子台車5の台車ベース板27の下部に設けられたスライド部25に沿ってスライド可能に設けられている。このスライド部25の内部にはスプリング26が設けられており、このスプリング26によって案内ローラ13Bは常にガイド部材3側へ押圧されている。このような構成により、ガイド部材3を左右の案内ローラ13A,13Bで所定の力(スプリング26の力)によって挟んだ状態が保たれている。このようにして探触子台車5を取付けることにより、探触子台車5を被検査体1の表面から所定距離の位置に浮かせた状態を保っている。
【0023】
また、探触子台車5の台車ベース板27の上部には、押圧軸28が立設されている。この実施形態では、図1に示すように、ガイド部材3の前後左右位置に押圧軸28が設けられている。この押圧軸28は、探触子駆動機15の駆動機ベース板29に設けられた挿通孔30とスプリングカバー31内に設けられたスプリング32とを貫通して上方に突出している。このスプリングカバー31から上方に突出した押圧軸28は、図示する左右の上端が、保持部材33によって連結されている。
【0024】
さらに、押圧軸28は、所定位置から上部がスプリングカバー31の内径よりも僅かに小径の案内部34に形成されている。この案内部34がスプリングカバー31の内面に沿って上下動することにより、押圧軸28とスプリングカバー31とがほぼ同軸上でスライドするように構成されている。この案内部34の下面が、スプリング32の上端支持部となっている。
【0025】
このようにして、押圧軸28の案内部34によってスプリング32の上端を支持することにより、スプリング32の力によって駆動機ベース板29が被検査体1の表面側へ押圧されるようにしている。この時、スプリングカバー31が押圧軸28の案内部34に案内されて、探触子駆動機15の全体がほぼ平行に被検査体1側へ押圧される。なお、探触子駆動機15を被検査体1側へ押圧する力は、スプリング32を変更することにより容易に可能であり、例えば、被検査体1の下面を上向きに検査する場合や、急傾斜面の被検査体1を横向きに検査する場合等、使用条件等に応じた力のスプリング32に変更することが容易にできる。
【0026】
一方、探触子駆動機15の走査部16には、探傷部2の側部から探傷部2に向けて超音波を発する超音波探触子17が設けられている。この超音波探触子17は、走査部16の軸方向に設けられたガイドレール37に沿って移動する移動部材38から被検査体1側に向けて突設された支持部材39に設けられている。
【0027】
図3に示すように、前記ガイドレール37は走査部16の中央部軸方向に設けられており、その周囲にタイミングベルト40が設けられている。このタイミングベルト40は、走査部16の両端に設けられたスプロケット41に掛けられており、制御部17側(図の右側)に設けられた駆動スプロケット41が駆動モータ35によって回転可能に構成されている。このように設けられたタイミングベルト40の異なる直線部側(図の上下)に、前記移動部材38がそれぞれ固定部材42で固定されている。このように固定することにより、タイミングベルト40を所定距離で間欠的に正方向/逆方向に移動させれば、両超音波探触子17が近接又は離間するように動作をさせることができる。この構成の場合、左側又は右側の超音波探触子17から発した超音波を、右側又は左側の超音波探触子17で受信する。
【0028】
図4に示すように、前記超音波探触子17には、ガイドレール37に沿って移動する移動部材38の支持部材39によって垂直方向にガイドされるガイド軸43と、このガイド軸43の下端に固定された保持部44と、この保持部44に設けた水平方向の支持軸45で支持された探触子本体46とが設けられている。この探触子本体46には、車輪36が設けられている。また、探触子本体46を設けた保持部44は、ガイド軸43に設けられたスプリング47によって被検査体1側へ押圧されており、被検査体1の表面と近接又は離間する方向に移動可能となっている。この保持部44の上下動時には、ガイド軸43が支持部材39に案内される。
【0029】
このように、探触子本体46を、垂直方向に上下動する保持部44に支持軸45で水平方向の揺動が可能なように設けることにより、押圧される探触子本体46が被検査体1の表面と密接するようにしている。これらが走査機構の走査部分である。
【0030】
一方、図2に示すように、探触子駆動機15の走査部16の反探傷部2側には、走査部16と被検査体1の表面との距離を保つ規制部材48が設けられている。この規制部材48は、走査部16から被検査体1側に向けて設けられたブラケット49に軸50で取付けられた車輪51であり、被検査体1の表面に接しながら回転可能なように構成されている。この規制部材48は、ガイド部材3を挟んで反超音波探触子17側に設けられており、この規制部材48を設けることにより、スプリング32によって全体的に被検査体1側へ押圧されている探触子駆動機15の規制部材48側が被検査体1の表面側へ移動する距離を規制している。この規制部材48で、スプリング32により全体が被検査体1側へ押圧されている探触子駆動機15の反超音波探触子側の移動を規制することにより、固定されたガイド部材3を中心に超音波探触子側が被検査体1の表面側へ押圧されるようにしている。
【0031】
つまり、探触子台車5に設けられたスプリング32によって常に被検査体1側へ押圧される探触子駆動機15は、その反超音波探触子側が規制部材48によって一定距離に決定されるので、この探触子駆動機15の超音波探触子17側に被検査体1の表面側への力が作用するようにしている。これによって、探触子駆動機15からスプリング47で被検査体1側へ付勢されている探触子本体46が、常に被検査体1の表面に一定の圧力で押し付けられて密着し、安定した超音波探傷を行うことができるようにしている。
【0032】
また、走査部16の超音波探触子17側には、前記超音波探触子17を被検査体1へ押圧することを制限する制限部材52が設けられている。この制限部材52は、走査部16から被検査体1側に向けて設けられたブラケット53に軸54で取付けられた車輪55であり、被検査体1に接しながら回転可能なように構成されている。この制限部材52は、超音波探触子17が所定の押圧力で被検査体1の表面に押圧された状態では、被検査体1の表面とは僅かな隙間が設けられて浮いた状態であり、超音波探触子17が所定の押圧力を越えて押圧された時には被検査体1の表面と接して、超音波探触子17に大きな力が作用するのを防止している。
【0033】
そして、図5に示すように、駆動台車4と探触子台車5とが、ボールジョイント構造の自在継手14によって連結されている。この自在継手14は、探触子台車5に設けられた取付ブラケット56と駆動台車4との間に設けられ、それぞれに球面状のすべり面となるボール部57が設けられ、角変位が可能なように連結されている。このような自在継手14で駆動台車4と探触子台車5とを連結することにより、駆動台車4側の駆動モータ58等で発生する振動や、被検査体1の表面上を車輪11で走行する駆動台車4にうねり運動等を生じても、自在継手14の変位で吸収して振動やうねり等が探触子台車5側へ直接伝わらないようにしている。なお、自在継手14としては、ユニバーサルジョイント等の他の構成であってもよい。
【0034】
また、この自在継手14は、図1に示すように、ガイド部材3とほぼ同軸上に配設されており、駆動台車4による牽引力が探触子台車5の案内ローラ13A,13B間のほぼ走行中心に働くようにしている。これにより、探触子台車5に回転モーメントが作用しないようにしている。
【0035】
以上のように構成された超音波探傷装置6によれば、探傷部2に沿って設けられたパイプレールのガイド部材3にガイドさせて駆動台車4を所定速度で自走させることにより、この駆動台車4に追従して探触子台車5が同一の速度でガイド部材3に沿って移動する。この探触子台車5には、探傷部2の側部から探傷部2を超音波探傷する超音波探触子17が設けられており、探触子駆動機15に設けられた駆動モータ35の正転・逆転を走査範囲で間欠的に行うことにより、タイミングベルト40で超音波探触子17を探傷部2と近接・離間させる走査をさせながら駆動台車4を走行させることができる。これにより、探傷部2に沿って移動しながら超音波探傷できる超音波探傷装置6となる。この時、超音波探触子17と被検査体1の表面との間に水等の液体が供給され、この液体の層によって超音波探触子17と被検査体1の表面との間に空気層が形成されるのを防止している。
【0036】
しかも、超音波探傷装置6を移動させる駆動台車4から超音波探傷する探触子台車5を分離させて自在継手14で連結しているので、駆動台車4の駆動モータ58の振動が超音波探触子17まで伝わったり、駆動台車4そのものの振動やうねり動作が超音波探触子17まで伝わることは無く、安定した超音波探傷を行うことが可能となる。
【0037】
また、このように移動しながら超音波探傷する操作は、制御装置等の設定で自動化することも可能であり、自動超音波探傷装置6として構成することも可能となる。
【0038】
その上、駆動台車4と探触子台車5とはガイド部材3に沿って移動し、その探触子台車5から被検査体1の表面に向けて超音波探触子17が押圧されているので、超音波探触子17が安定して被検査体1の表面(探傷面)と接するようにでき、表面が所定の曲率で形成された被検査体1を外側から検査又は内側から検査するような場合に、探傷姿勢が下向きであろうと横向きであろうと、安定した超音波探傷を行うことが可能である。
【0039】
したがって、例えば、船積みのLPGやLNGタンクのように、曲率半径数十mの線溶接継手等も安定して超音波探傷できる超音波探傷装置1を実現することができるとともに、その自動化も実現可能な超音波探傷装置1となる。
【0040】
なお、前記実施の形態では、駆動台車4で探触子台車5を牽引する構成を説明したが、駆動台車4で探触子台車5を押すようにしてもよく、超音波探触子17によって超音波探傷する構成と探傷部2に沿って移動させる構成とが別体であれば、他の構成であってもよい。
【0041】
また、上述した実施形態は一実施形態であり、本願発明の要旨を損なわない範囲での種々の変更は可能であり、本願発明は上述した実施形態に限定されるものではない。
【0042】
【発明の効果】
本願発明は、以上説明したような形態で実施され、超音波探触子を探傷部に沿って移動させる台車で生じる振動やうねり等が超音波探触子側に伝わらなくなり、超音波探触子による超音波探傷を安定して行うことが可能となる。
【図面の簡単な説明】
【図1】本願発明の一実施形態を示す超音波探傷装置の斜視図である。
【図2】図1に示すII−II矢視図である。
【図3】図2に示すIII−III矢視図である。
【図4】図2に示すIV部拡大図である。
【図5】図1に示すV−V矢視図である。
【符号の説明】
1…被検査体
2…探傷部
3…ガイド部材
4…駆動台車
5…探触子台車
6…超音波探傷装置
11…車輪
12…案内ローラ
13…案内ローラ
14…自在継手
15…探触子駆動機
16…走査部
17…超音波探触子
18…制御部
21…支持材
24…スライド部材
25…スライド部材
26…スプリング
27…台車ベース板
28…押圧軸
29…駆動機ベース板
30…挿通孔
31…スプリングカバー
32…スプリング
33…保持部材
34…案内部
35…駆動モータ
36…車輪
37…ガイドレール
38…移動部材
39…支持部材
40…タイミングベルト
41…スプロケット
42…固定部材
43…ガイド軸
44…保持部
45…支持軸
46…探触子本体
47…スプリング
48…規制部材
49…ブラケット
51…車輪
52…制限部材
53…ブラケット
55…車輪
56…取付ブラケット
57…ボール部
58…駆動モータ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an ultrasonic flaw detector for non-destructively inspecting an internal defect of a flaw detection part such as a weld joint part.
[0002]
[Prior art]
Conventionally, ultrasonic inspection (UT) has been known as a means for non-destructively inspecting internal defects such as welded joints. This ultrasonic flaw detection inspection is a non-destructive inspection in which a probe is brought into close contact with the surface of an object to be inspected and a defect is detected by reflection of ultrasonic waves incident on the object to be inspected from this probe. The position of the defect can be known from the time until the reflection of the ultrasonic wave is detected.
[0003]
As a conventional technique of this kind, a bogie is intermittently moved from a starting end to a terminating end of a joint welding line, and each time the bogie is stopped, a scanning mechanism provided on the bogie causes the ultrasonic probe to move the ultrasonic probe in the bogie traveling direction and the traveling direction. There is an automatic ultrasonic flaw detector that performs flaw detection on the entire joint welding line by performing a rectangular scan in a direction orthogonal to the flaw. According to this ultrasonic inspection apparatus, while scanning the ultrasonic probe in the front-rear direction with respect to the joint welding line, the reflection of the incident ultrasonic wave is inspected to perform a full-line inspection (for example, see Patent Document 1). 1).
[0004]
On the other hand, since the range in the thickness direction of the test object that can be inspected by the ultrasonic probe is limited, in order to perform a stable inspection in the entire thickness direction, the ultrasonic probe is moved close to or away from the weld joint. In some cases, a scanning operation is performed to widen the range in which the ultrasonic probe can be inspected in the thickness direction.
[0005]
[Patent Document 1]
JP-A-5-333010 (page 1, FIG. 1)
[0006]
[Problems to be solved by the invention]
However, in the case of the ultrasonic flaw detector described in Document 1, a scanning mechanism is attached to a bogie traveling in the direction of the welding line, and when inspecting while running, vibrations and undulations from the bogie are transmitted to the probe and stable. Therefore, while the carriage is stopped intermittently at a traveling pitch corresponding to the scanning range, a rectangular scan is performed by the traveling mechanism while the carriage is stopped. Therefore, continuous ultrasonic testing cannot be performed, and much time is required. Moreover, even during stoppage, there is a possibility that stable ultrasonic flaw detection cannot be performed due to vibration from a driving device such as a motor.
[0007]
Further, as described above, when the thickness of the object to be inspected is increased, the range of the forward and backward scanning of the ultrasonic probe is accordingly increased, so that the configuration size for scanning the probe becomes longer, Because of the support, the entire device becomes large.
[0008]
Further, with this ultrasonic flaw detector, it is difficult to inspect a welded joint such as abutted flat plates, and a sufficient effect can be obtained only by ultrasonic inspection of a limited welded joint.
[0009]
[Means for Solving the Problems]
Therefore, in order to solve the above-described problem, the present invention provides a guide member along a flaw detection portion of an object to be inspected, the guide member having a self-propelled driving bogie, and a flaw detection portion from a side portion of the flaw detection portion. A probe carriage provided with an ultrasonic probe for emitting ultrasonic waves is provided separately, and the drive carriage and the probe carriage are connected by a joint. In this way, the drive bogie that moves the ultrasonic probe for ultrasonic flaw detection along the flaw detection part and the probe bogie provided with the ultrasonic probe are separated as separate bodies, and the Are connected to each other by a joint, vibrations and undulations generated in the drive cart are not transmitted to the ultrasonic probe side, and stable ultrasonic inspection can be performed by the ultrasonic probe.
[0010]
If the probe carriage is provided with a probe driving device provided with a scanning mechanism that performs scanning by a symmetrical operation of moving the ultrasonic probe close to or away from the flaw detection unit, the ultrasonic probe is directed toward the flaw detection unit. By scanning the tentacles symmetrically so as to approach or separate from each other, it is possible to inspect the object to be inspected widely in the thickness direction.
[0011]
Further, if a guide member guided by the guide member is provided on the drive carriage and the probe carriage, and a pressure member for pressing the probe drive machine toward the object to be inspected is provided on the probe carriage, The drive cart and the probe cart are stably moved along the guide member, and the probe drive of the stably moved probe cart is pressed against the object to be inspected with a predetermined pressure, and the Stable ultrasonic flaw detection with an ultrasonic probe is possible.
[0012]
Further, if the joint is constituted by a universal joint arranged substantially coaxially with the guide member, the probe cart moved by the drive cart can be moved around the guide member, so that the probe cart rotates. It can be moved stably without generating a moment or the like.
[0013]
Further, the guide member is provided on the surface of the inspection object at a predetermined distance from the flaw detection unit, the probe cart is disposed on the guide member, and the inspection unit is provided on the anti-flaw detection unit side of the probe driving machine. A restricting member that keeps a distance from the surface of the body is provided, and a restricting member that restricts a pressing force of the ultrasonic probe on the surface of the inspection object is provided on the ultrasonic probe side of the probe driving device. Accordingly, the probe driving device pressed against the inspected object side can stably press the ultrasonic probe side toward the inspected object side by the regulating member on the anti-flaw detection portion side, and the ultrasonic probe When the pressing force of the probe becomes larger than the specified value, the pressing force of the ultrasonic probe can be limited by the restricting member, and the ultrasonic probe can be inspected stably even if the inspection conditions change. It can be inspected by pressing against the body.
[0014]
Furthermore, if the pressing member is constituted by a spring provided between the probe carriage and the probe driving device, and the spring is disposed before and after in the traveling direction of the probe driving device, it is simple. The front and rear of the probe driving device can be stably pressed toward the test object by the spring force of the spring having the configuration, and the pressing force can be easily changed by replacing the spring.
[0015]
In addition, if a fluid layer forming machine that forms a fluid layer in a range including the scanning range of the ultrasonic probe is provided along the flaw detection part of the inspection object, the ultrasonic probe is formed by the fluid layer. Scanning that approaches or separates from the surface of the object to be inspected can be continuously performed while being in close contact with the surface of the object to be inspected, and a wide range in the thickness direction of the object to be inspected can be continuously inspected along the flaw detection part.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of an ultrasonic flaw detector showing an embodiment of the present invention, FIG. 2 is a view taken along the line II-II shown in FIG. 1, and FIG. 3 is a view taken along a line III-III shown in FIG. 4 is an enlarged view of an IV section shown in FIG. 2, and FIG. 5 is a view taken along a line VV shown in FIG. For the sake of explanation, a part of the figure is shown in a cross section. In this embodiment, a butt-welded plate material is taken as an example of an object to be inspected, and an ultrasonic flaw detector that ultrasonically flaws a weld line at a weld joint is described as an example.
[0017]
As shown in FIG. 1, the welded joint portion of the test object 1 in which the plate materials are butted and welded together is a flaw detector 2, which is a welding line that is continuous in the vertical direction shown in the drawing. A guide member 3 is provided at a position separated from the flaw detection unit 2 by a predetermined distance in parallel with the flaw detection unit 2. In this embodiment, a pipe rail having a cylindrical cross section is used as the guide member 3. The guide member 3 may have a rectangular cross section or another cross section.
[0018]
The guide member 3 is provided with a drive cart 4 which runs along the guide member 3 and a probe cart 5 which is connected to the drive cart 4 and moves along the guide member 3. The drive cart 4 and the probe cart 5 constitute an ultrasonic flaw detector 6. The control device for controlling these may be provided in the drive carriage 4 or in a remote control room or the like.
[0019]
The drive truck 4 has its own weight supported by wheels 11 (four places) in contact with the surface of the test object 1, and is guided by guide rollers 12 (guide members: four places) that rotate in contact with both sides of the guide member 3. It is configured to move along. The probe cart 5 is configured such that its own weight is supported by guide rollers 13 (guide members: four places) that rotate in contact with both side portions of the guide member 3, and move along the guide member 3 by the guide rollers 13. Have been.
[0020]
The probe carriage 5 is provided with a probe driving device 15 extending in a direction intersecting the flaw detection unit 2. An ultrasonic probe 17 is provided on the scanning unit 16 of the probe driving device 15 so as to be located on both sides of the flaw detection unit 2.
[0021]
The drive cart 4 and the probe cart 5 are connected by a joint 14 so that the probe cart 5 moves following the movement of the drive cart 4. The drive cart 4 and the control unit 18 of the probe cart 5 are connected by a wire 19, and the drive cart 4 is connected to a control device (not shown) by a wire 20.
[0022]
As shown in FIG. 2, the outer surface of the guide roller 13 provided on the probe cart 5 has substantially the same curvature as the outer surface of the guide member 3 having a circular cross section. The guide member 3 is fixed to the surface of the test object 1 by a support member 21 having a predetermined height. By sandwiching the guide member 3 from both sides of the guide roller 13, the probe carriage 5 guides It is attached to the member 3. The illustrated left guide roller 13 </ b> A is rotatably supported by a shaft 22 and rotates following the movement of the probe cart 5. The right guide roller 13 </ b> B is rotatably supported by a slide member 24 by a shaft 23, and rotates following the movement of the probe cart 5. The slide member 24 is provided so as to be slidable along a slide portion 25 provided below the bogie base plate 27 of the probe bogie 5. A spring 26 is provided inside the slide portion 25, and the guide roller 13B is constantly pressed toward the guide member 3 by the spring 26. With such a configuration, the state in which the guide member 3 is sandwiched between the left and right guide rollers 13A and 13B by a predetermined force (the force of the spring 26) is maintained. By attaching the probe cart 5 in this manner, the probe cart 5 is maintained at a position at a predetermined distance from the surface of the device under test 1.
[0023]
A pressing shaft 28 is provided upright on the bogie base plate 27 of the probe bogie 5. In this embodiment, as shown in FIG. 1, pressing shafts 28 are provided at front, rear, left and right positions of the guide member 3. The pressing shaft 28 protrudes upward through an insertion hole 30 provided in a driving device base plate 29 of the probe driving device 15 and a spring 32 provided in a spring cover 31. The pressing shaft 28 protruding upward from the spring cover 31 is connected at its left and right upper ends by a holding member 33.
[0024]
Further, the pressing shaft 28 is formed in a guide portion 34 whose upper portion from a predetermined position is slightly smaller in diameter than the inner diameter of the spring cover 31. When the guide portion 34 moves up and down along the inner surface of the spring cover 31, the pressing shaft 28 and the spring cover 31 slide substantially coaxially. The lower surface of the guide part 34 serves as an upper end support part of the spring 32.
[0025]
In this manner, the upper end of the spring 32 is supported by the guide portion 34 of the pressing shaft 28, so that the driving machine base plate 29 is pressed toward the surface of the test object 1 by the force of the spring 32. At this time, the spring cover 31 is guided by the guide portion 34 of the pressing shaft 28, and the whole of the probe driving device 15 is pressed toward the DUT 1 substantially in parallel. The force for pressing the probe driving device 15 toward the object 1 can be easily changed by changing the spring 32. For example, when the lower surface of the object 1 is inspected upward, For example, when the test object 1 having an inclined surface is to be inspected sideways, it is possible to easily change to the spring 32 having a force according to use conditions and the like.
[0026]
On the other hand, the scanning unit 16 of the probe driving device 15 is provided with an ultrasonic probe 17 that emits ultrasonic waves from the side of the flaw detection unit 2 toward the flaw detection unit 2. The ultrasonic probe 17 is provided on a support member 39 protruding from a moving member 38 moving along a guide rail 37 provided in the axial direction of the scanning section 16 toward the device under test 1. I have.
[0027]
As shown in FIG. 3, the guide rail 37 is provided in the central portion of the scanning unit 16 in the axial direction, and a timing belt 40 is provided around the guide rail 37. The timing belt 40 is hung on sprockets 41 provided at both ends of the scanning unit 16, and a driving sprocket 41 provided on the control unit 17 side (right side in the drawing) is configured to be rotatable by a driving motor 35. I have. The moving members 38 are fixed by fixing members 42 on different linear portion sides (up and down in the figure) of the timing belt 40 provided in this manner. When the timing belt 40 is intermittently moved in the forward / reverse direction at a predetermined distance by fixing in this manner, the operation can be performed so that the two ultrasonic probes 17 approach or separate from each other. In the case of this configuration, the ultrasonic waves emitted from the left or right ultrasonic probe 17 are received by the right or left ultrasonic probe 17.
[0028]
As shown in FIG. 4, the ultrasonic probe 17 has a guide shaft 43 that is vertically guided by a support member 39 of a moving member 38 that moves along a guide rail 37, and a lower end of the guide shaft 43. And a probe main body 46 supported by a horizontal support shaft 45 provided on the holding portion 44. The probe body 46 is provided with wheels 36. Further, the holding portion 44 provided with the probe body 46 is pressed toward the device 1 by a spring 47 provided on the guide shaft 43 and moves in a direction to approach or separate from the surface of the device 1. It is possible. When the holding portion 44 moves up and down, the guide shaft 43 is guided by the support member 39.
[0029]
As described above, by providing the probe main body 46 on the holding portion 44 which moves vertically in the vertical direction so that the support shaft 45 can swing in the horizontal direction, the pressed probe main body 46 can be inspected. The body 1 is in close contact with the surface. These are the scanning part of the scanning mechanism.
[0030]
On the other hand, as shown in FIG. 2, a restricting member 48 for maintaining a distance between the scanning unit 16 and the surface of the test object 1 is provided on the anti-flaw detection unit 2 side of the scanning unit 16 of the probe driving device 15. I have. The regulating member 48 is a wheel 51 attached to a bracket 49 provided from the scanning unit 16 toward the inspection object 1 with a shaft 50, and is configured to be rotatable while being in contact with the surface of the inspection object 1. Have been. The restricting member 48 is provided on the anti-ultrasonic probe 17 side with the guide member 3 interposed therebetween. With the provision of the restricting member 48, the entirety of the restricting member 48 is pressed toward the test object 1 by the spring 32. The restricting member 48 side of the probe driving device 15 restricts the distance that the probe driving device 15 moves to the surface side of the DUT 1. The regulating member 48 regulates the movement of the probe driving device 15 on the anti-ultrasonic probe side, which is entirely pressed by the spring 32 toward the test object 1, so that the fixed guide member 3 is centered. The ultrasonic probe side is pressed against the surface side of the DUT 1.
[0031]
In other words, the probe driving device 15 that is constantly pressed toward the device under test 1 by the spring 32 provided on the probe carriage 5 has its anti-ultrasonic probe side determined by the regulating member 48 at a fixed distance. A force is applied to the ultrasonic probe 17 side of the probe driving device 15 toward the surface of the DUT 1. As a result, the probe main body 46 urged from the probe driving device 15 toward the device under test 1 by the spring 47 is constantly pressed against the surface of the device under test 1 with a constant pressure, and is stably contacted. Ultrasonic flaw detection can be performed.
[0032]
Further, on the ultrasonic probe 17 side of the scanning unit 16, there is provided a restricting member 52 for restricting pressing of the ultrasonic probe 17 against the device under test 1. The restriction member 52 is a wheel 55 attached to a bracket 53 provided from the scanning unit 16 toward the inspection object 1 by a shaft 54, and is configured to be rotatable while contacting the inspection object 1. I have. When the ultrasonic probe 17 is pressed against the surface of the test object 1 with a predetermined pressing force, the restricting member 52 floats with a slight gap from the surface of the test object 1. In addition, when the ultrasonic probe 17 is pressed beyond a predetermined pressing force, the ultrasonic probe 17 comes into contact with the surface of the test object 1 to prevent a large force from acting on the ultrasonic probe 17.
[0033]
Then, as shown in FIG. 5, the drive cart 4 and the probe cart 5 are connected by a universal joint 14 having a ball joint structure. The universal joint 14 is provided between a mounting bracket 56 provided on the probe cart 5 and the driving cart 4, and a ball portion 57 serving as a spherical slip surface is provided on each of the universal joints 14, and angular displacement is possible. It is connected as follows. By connecting the drive cart 4 and the probe cart 5 with such a universal joint 14, vibration generated by the drive motor 58 and the like on the drive cart 4 and running on the surface of the device under test 1 by the wheels 11 are provided. Even if a swelling motion or the like occurs in the driving carriage 4, vibration or swelling is prevented from being directly transmitted to the probe carriage 5 by absorbing the displacement of the universal joint 14. The universal joint 14 may have another configuration such as a universal joint.
[0034]
As shown in FIG. 1, the universal joint 14 is disposed substantially coaxially with the guide member 3 so that the traction force of the drive truck 4 substantially moves between the guide rollers 13A and 13B of the probe truck 5. I work at the center. Thus, no rotational moment acts on the probe carriage 5.
[0035]
According to the ultrasonic flaw detector 6 configured as described above, the driving carriage 4 is allowed to travel at a predetermined speed by being guided by the guide member 3 of the pipe rail provided along the flaw detection unit 2, and thus the driving is performed. The probe carriage 5 moves along the guide member 3 at the same speed following the carriage 4. The probe cart 5 is provided with an ultrasonic probe 17 for ultrasonically flaw-detecting the flaw detection unit 2 from the side of the flaw detection unit 2, and is provided with a drive motor 35 provided in the probe drive unit 15. By intermittently performing the forward rotation and the reverse rotation in the scanning range, the drive cart 4 can be caused to travel while the timing belt 40 performs scanning to move the ultrasonic probe 17 toward and away from the flaw detection unit 2. Thus, an ultrasonic flaw detector 6 that can perform ultrasonic flaw detection while moving along the flaw detector 2 is provided. At this time, a liquid such as water is supplied between the ultrasonic probe 17 and the surface of the device 1 to be inspected, and a layer of the liquid causes a liquid between the ultrasonic probe 17 and the surface of the device 1 to be inspected. The formation of an air layer is prevented.
[0036]
In addition, since the probe cart 5 for ultrasonic flaw detection is separated from the drive cart 4 for moving the ultrasonic flaw detector 6 and connected by the universal joint 14, the vibration of the drive motor 58 of the drive cart 4 causes the ultrasonic detection. The ultrasonic wave does not propagate to the probe 17 and the vibration or undulation of the drive cart 4 itself does not propagate to the ultrasonic probe 17, so that stable ultrasonic inspection can be performed.
[0037]
Further, the operation of performing ultrasonic inspection while moving as described above can be automated by setting of a control device or the like, and can be configured as an automatic ultrasonic inspection device 6.
[0038]
In addition, the drive cart 4 and the probe cart 5 move along the guide member 3, and the ultrasonic probe 17 is pressed from the probe cart 5 toward the surface of the test object 1. Therefore, the ultrasonic probe 17 can be stably brought into contact with the surface (detection surface) of the inspection object 1, and the inspection object 1 having the surface formed with a predetermined curvature is inspected from the outside or from the inside. In such a case, it is possible to perform stable ultrasonic inspection regardless of whether the inspection position is downward or sideways.
[0039]
Therefore, for example, it is possible to realize the ultrasonic flaw detector 1 capable of stably performing ultrasonic flaw detection on a line welded joint having a radius of curvature of several tens of meters, such as a shipping LPG or LNG tank, and also to realize automation thereof. A simple ultrasonic flaw detector 1 is obtained.
[0040]
In the above-described embodiment, the configuration in which the probe bogie 5 is pulled by the drive bogie 4 has been described. However, the probe bogie 5 may be pushed by the drive bogie 4, and the ultrasonic probe 17 may be used. Other configurations may be used as long as the configuration for ultrasonic testing and the configuration for moving along the testing unit 2 are separate.
[0041]
In addition, the above-described embodiment is one embodiment, and various changes can be made without departing from the spirit of the present invention, and the present invention is not limited to the above-described embodiment.
[0042]
【The invention's effect】
The invention of the present application is implemented in the form described above, and vibrations, undulations, and the like generated by a bogie that moves the ultrasonic probe along the flaw detection part are not transmitted to the ultrasonic probe side, and the ultrasonic probe Flaw detection can be stably performed.
[Brief description of the drawings]
FIG. 1 is a perspective view of an ultrasonic flaw detector according to an embodiment of the present invention.
FIG. 2 is a view taken in the direction of arrows II-II shown in FIG.
FIG. 3 is a view taken in the direction of arrows III-III shown in FIG. 2;
FIG. 4 is an enlarged view of an IV section shown in FIG. 2;
FIG. 5 is a view taken in the direction of arrows VV shown in FIG. 1;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Inspection object 2 ... Flaw detection part 3 ... Guide member 4 ... Driving carriage 5 ... Probe carriage 6 ... Ultrasonic flaw detector 11 ... Wheel 12 ... Guide roller 13 ... Guide roller 14 ... Universal joint 15 ... Probe drive Machine 16 Scanning unit 17 Ultrasonic probe 18 Control unit 21 Support member 24 Slide member 25 Slide member 26 Spring 27 Truck base plate 28 Pressing shaft 29 Driver base plate 30 Insertion hole 31 Spring cover 32 Spring 33 Holding member 34 Guide 35 Drive motor 36 Wheel 37 Guide rail 38 Moving member 39 Support member 40 Timing belt 41 Sprocket 42 Fixed member 43 Guide shaft 44 ... Holding part 45... Support shaft 46. Probe main body 47. Spring 48... Regulating member 49. Mounting bracket 57 ... ball portion 58 ... drive motor

Claims (7)

被検査体の探傷部に沿ってガイド部材を設け、該ガイド部材に、自走する駆動台車と、前記探傷部の側部から該探傷部に向けて超音波を発する超音波探触子を設けた探触子台車とを分離して設け、該駆動台車と探触子台車とを継手で連結した超音波探傷装置。A guide member is provided along the flaw detection part of the test object, and the guide member is provided with a self-propelled driving carriage and an ultrasonic probe that emits ultrasonic waves from the side of the flaw detection part toward the flaw detection part. An ultrasonic flaw detector in which the probe bogie is provided separately from the drive bogie and the drive bogie and the probe bogie are connected by a joint. 前記探触子台車に、前記超音波探触子を探傷部と近接又は離間する対称動作で走査を行う走査機構を具備した探触子駆動機を設けた請求項1記載の超音波探傷装置。2. The ultrasonic flaw detector according to claim 1, wherein the probe carriage is provided with a probe driving device including a scanning mechanism for performing scanning by a symmetrical operation of moving the ultrasonic probe close to or away from a flaw detection unit. 前記ガイド部材に案内される案内部材を前記駆動台車と探触子台車とに設け、該探触子台車に前記探触子駆動機を被検査体側へ押圧する押圧部材を設けた請求項2記載の超音波探傷装置。The guide member guided by the guide member is provided on the drive carriage and the probe carriage, and the probe carriage is provided with a pressing member for pressing the probe drive machine toward the device to be inspected. Ultrasonic flaw detector. 前記継手を、前記ガイド部材とほぼ同軸上に配置する自在継手で構成した請求項1〜3のいずれか1項に記載の超音波探傷装置。The ultrasonic flaw detector according to any one of claims 1 to 3, wherein the joint is a universal joint arranged substantially coaxially with the guide member. 前記ガイド部材を探傷部から所定距離離した被検査体の表面に設け、該ガイド部材上に前記探触子台車を配設し、前記探触子駆動機の反探傷部側に被検査体の表面との距離を保つ規制部材を設け、該探触子駆動機の超音波探触子側に、該超音波探触子の被検査体表面への押圧力を制限する制限部材を設けた請求項2〜4のいずれか1項に記載の超音波探傷装置。The guide member is provided on the surface of the test object at a predetermined distance from the flaw detection unit, the probe cart is disposed on the guide member, and the test object is located on the side opposite to the flaw detection unit of the probe driving device. A restriction member for maintaining a distance from the surface is provided, and a restriction member for restricting a pressing force of the ultrasonic probe on the surface of the inspection object is provided on the ultrasonic probe side of the probe driving device. Item 5. The ultrasonic flaw detector according to any one of Items 2 to 4. 前記押圧部材を、前記探触子台車と探触子駆動機との間に設けたスプリングで構成し、該スプリングを、探触子駆動機の進行方向前後に配設した請求項3〜5のいずれか1項に記載の超音波探傷装置。6. The device according to claim 3, wherein the pressing member is constituted by a spring provided between the probe carriage and the probe driving device, and the spring is disposed before and after in a traveling direction of the probe driving device. The ultrasonic flaw detector according to any one of the preceding claims. 前記被検査体の探傷部に沿って、前記超音波探触子の走査範囲を含む範囲の流体層を形成する流体層形成機を設けた請求項2〜6のいずれか1項に記載の超音波探傷装置。7. The ultrasonic probe according to claim 2, further comprising a fluid layer forming machine that forms a fluid layer in a range including a scanning range of the ultrasonic probe along a flaw detection part of the inspection object. 8. Sonic flaw detector.
JP2002356640A 2002-12-09 2002-12-09 Ultrasonic flaw detector Expired - Lifetime JP3688265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002356640A JP3688265B2 (en) 2002-12-09 2002-12-09 Ultrasonic flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002356640A JP3688265B2 (en) 2002-12-09 2002-12-09 Ultrasonic flaw detector

Publications (2)

Publication Number Publication Date
JP2004191086A true JP2004191086A (en) 2004-07-08
JP3688265B2 JP3688265B2 (en) 2005-08-24

Family

ID=32756923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002356640A Expired - Lifetime JP3688265B2 (en) 2002-12-09 2002-12-09 Ultrasonic flaw detector

Country Status (1)

Country Link
JP (1) JP3688265B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110031542A (en) * 2019-04-26 2019-07-19 射阳县智能探伤设备有限公司 A kind of magnaflux convenient for adjusting
CN112807016A (en) * 2019-11-18 2021-05-18 通用电气精准医疗有限责任公司 Method and system for ultrasound scanning enabling turbulence perception

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110031542A (en) * 2019-04-26 2019-07-19 射阳县智能探伤设备有限公司 A kind of magnaflux convenient for adjusting
CN110031542B (en) * 2019-04-26 2023-02-28 射阳县智能探伤设备有限公司 Magnetic particle flaw detector convenient to adjust
CN112807016A (en) * 2019-11-18 2021-05-18 通用电气精准医疗有限责任公司 Method and system for ultrasound scanning enabling turbulence perception

Also Published As

Publication number Publication date
JP3688265B2 (en) 2005-08-24

Similar Documents

Publication Publication Date Title
EP2277037B1 (en) Method of and an apparatus for in situ ultrasonic rail inspection of a railroad rail
JP2642370B2 (en) Method and apparatus for detecting a feature of a defect in a tubular member
US5062301A (en) Scanning device for ultrasonic quality control of articles
JP6538326B2 (en) Rail inspection apparatus and rail inspection method
JP2007285772A (en) Pipe inspection method, and pipe inspection device used therefor
US6920791B2 (en) Ultrasound monitoring of overlapping welded joints between sheets
KR100799334B1 (en) Crack detection apparatus in press fit railway axle
CN201060179Y (en) Aqueous medium ultrasonic inspection machine
JP3688265B2 (en) Ultrasonic flaw detector
KR20170040501A (en) A detection device for welding flaw region inside of pipe having overlay welding
JP2008249510A (en) Movable flaw detection tool
JPH07128314A (en) Ultrasonic flaw detecting method for socket welding coupling
US3608360A (en) Method and means for checking wheel set tires in rolling stock
KR101477386B1 (en) Ultrasonic detecting device
KR200353038Y1 (en) Apparatus for inspecting a tube using supersonic wave
JP2002005907A (en) Inspection method of junction and inspection device
JP2001056318A (en) Flaw detection method of pipe by ultrasonic waves and ultrasonic flaw detector
JP2004361352A (en) Automatic flaw detector
JP6551950B2 (en) Steel material inspection equipment
JP2881658B2 (en) Ultrasonic testing equipment for pipe structures
KR102561059B1 (en) Ultrasonics Wave Inspection Apparatus for Weld Zone of Steel Pipe Having Angle Adjustable Wheel Unit
JPH01147361A (en) Ultrasonic inspecting device
JP2001074711A (en) Apparatus and method for inspecting cylindrical body
JP2004361353A (en) Automatic flaw detector
JPH0148502B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3688265

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

EXPY Cancellation because of completion of term